
New Generation Computing, 10 (1991) 255-285
OHMSHA, LTD. and Springer-Verlag

(~) OHMSHA, LTD. 1992

Declarative Diagnosis of Missing Answers

Lee NAISH
Department of Computer Science,
University of Melbourne,
Parkville, Victoria 3052, Australia.

Received 16 May 1988
Final manuscript received 6 June 1991

Abstract This paper investigates algorithms for declarative diag-
nosis of missing answers in Prolog programs, especially programs which use
coroutines. The logic of the problem is first presented, in the form of the
simplest possible debugger. Next, we compare several previously published
declarative debuggers based on Shapiro's work. Examples showing incom-
pleteness, incorrectness and equivalence of debuggers are given. Several
enhancements to these debuggers are presented which can reduce the number
and complexity of questions asked of the oracle, while still supporting
coroutines. Although no debugger considered is best in all cases, the new
algorithms are a practical contribution. Finally, we discuss diagnosis algor-
ithms based more on Pereira's work. These algorithms ask easier questions
than Shapiro's algorithms but rely on the standard left to right computation
rule. We discuss possible ways to adapt these algorithms to handle coroutin-
ing. Completeness of debuggers is also discussed.

Keywords: Debugging, Coroutines, Failure, Programming Environments.

w Introduction
One of the potential advantages of logic programming is that it enables

one to easily separate the concerns of correctness (the declarative semantics, or
what instances of a goal are true) and efficiency (the procedural semantics, or
how the instances of a goal are computed))) To realise this potential, we must
be able to initially code, test (partial) correctness and debug programs using just
the declarative semantics. Declarative debugging (also called algorithmic,
rat ional and deductive debugging) enables precisely this, at the debugging
phase. Unfortunately, the standard left to right computa t ion rule used in Prolog
tends to result in infinite loops, making testing and (purely declarative) debug-

256 L. Naish

ging almost impossible. The primitives used to implement negation in Prolog
(including cut) also cause problems for declarative debugging, due to the lack
of clear declarative semantics. 16~ Programmers must consider the procedural
semantics in the initial coding, so at least some of the advantages of declarative
debugging are lost.

A partial solution to these problems has been provided by Prolog dialects
which have more flexible control strategies (most commonly coroutining, rather
than strict left to right evaluation) which can help avoid infinite loops. 15) Most
of these languages also have constructs for negation which have well defined
declarative semantics and are soundly implemented. Without declarative debug-
ging, some of the advantages of these languages are also lost. Although initial
coding can be easy, if any bugs are introduced they can be very difficult to locate
using conventional means because the procedural semantics is so complex. The
difficulties become even more acute when parallel execution is used. Thus
declarative debugging and Prolog dialects with flexible control (including
parallel execution) have a natural affinity. Despite this, there has been little work
on building practical declarative debuggers for these dialects, though some work
has been done on declarative debugging for other (parallel) logic programming
languages.

The first work on declara t ive debugging o f Pro log was done by
Shapiro? a) It introduced algorithms for diagnosing wrong and missing answers
which relied only on knowledge of the intended declarative semantics. Given a
goal which succeeds or fails incorrectly, the algorithms trace through the
execution, querying an oracle (most commonly the programmer) about the truth
of various subgoals, and eventually isolate the error to a single clause or
procedure. These algorithms were originally applied to debugging Prolog
programs which used the standard computation rule but can also be applied to
programs which use coroutining. Any wrong answer diagnosis algorithm can be
easily adapted to support coroutining. Given a successful (wrong) derivation
found using one computation rule, the sequence of calls can be reordered to
simulate any other computation rule, including the standard one. However, a
goal which fails finitely with one computation rule may loop with another, so
missing answer diagnosis algorithms which rely on the standard computation
rule cannot (necessarily) be adapted to handle coroutining.

There have been a great number of papers analyzing and extending
Shapiro's work. A significant improvement in missing answer diagnosis was
described in Ref. 20). The most important aspect of this algorithm was the
introduction of a new kind of oracle query which resulted in easier questions to
the user. The algorithm also uses dependency information to improve the search
strategy and allows users to state that certain calls are "inadmissible". Despite
the advantages of this algorithm, much of the subsequent work on declarative
diagnosis was still based on Shapiro's algorithms, for several reasons. Shapiro's
algorithms are simple and were expressed by short Prolog programs whereas

Declarative Diagnosis of Missing Answers 257

Pereira's algorithms are more complex, were not presented as clearly and use
information such as admissibility which seemed procedural rather than declara-
tive. Furthermore, Pereira's algorithm relies on the standard computat ion rule so
it cannot be applied to coroutining (or stream and-parallel) systems.

Other areas which extend the original work include the following: theo-
retical issues such as soundness and completeness; 4'6'12'13a7~ automating or extend-
ing the orac le i n t e r ac t ion ; 2'3'4'5'8'13'27) i n t e g r a t i o n o f tes t ing and e r ro r
diagnosis; 2'8'17) complexity of diagnosis algorithms; zz) integrating wrong and
missing answer diagnosis with intelligent search strategies; 211 diagnosis of logic
programs with arbitrary formulas in the clause bodies; 12) and declarative diagno-
sis o f committed choice parallel logic programs. 7'1~

In this paper, we are primari ly concerned with declarative diagnosis of
missing answers, especially for (Prolog) programs which can use coroutines.
Most of the ideas presented here have been implemented for the NU-Pro log
system, z6) NU-Prolog has a flexible computat ion rule and allows arbitrary
formulas in the bodies of clauses. However, to assist in presentation, the code we
discuss will only deal with Horn clauses. It can be extended to deal with the
more general case simply by adding more clauses, as in Ref. 12). We start by
defining the simplest possible declarative debugger, then progressively make
enhancements following the style of Shapiro's debuggers. Later we discuss
possible extensions to debuggers more in the style of Pereira's.

w The Simplest Possible Declarative Debugger
There are two basic kinds of errors detected by most declarative debug-

gers. The simplest is an incorrect clause instance, which can be defined by the

following clause:

% debugger N.O, part I
bug((A:- B)):- is_clause(A, B), unsatisfiable(A), valid(B).

This states that, in the intended interpretation of the program, the head of the
clause instance is unsatisfiable but the body is valid. That is, the clause is
incorrect in the intended interpretation, is clause returns instances of object
program clauses, valid and unsatisfiable are calls to an oracle, which may be
implemented either by querying the user (as we assume in this paper) or by aasing
some specification of the p rogram? 's'81 Incorrect clause instances generally lead
to incorrect answers returned by the program although if negation is present,
they can also result in incompleteness of the program (missing answers). The
clause above is not only a definition of an incorrect clause instance; with
appropriate definitions of the three primitives it can be used as a logic program
to find incorrect clause instances. It is sound and complete, since it is its own
specificaiton. To be complete in practice, the order in which clause instances are
considered must be fair, so that every clause instance is considered eventually.
Generally, a large number of oracle queries will be needed to find a bug (or all

258 L. Naish

bugs). Previously published algorithms reduce the number of oracle queries to
a practical level.

The second type of bug is an uncovered atom, which can be defined by
the following NU-Prolog clause (all denotes universal quantification in NU-
Prolog):

~ debugger N.0, part 2
bug(atom(A)):-

valid(A),
all B not (is_clause(A, B), valid(B)).

This states that, in the intended interpretation, the a tom A is valid but there is
no matching clause instance with a valid body (later we will examine weaker
versions of this definition). This definition implies that the completion of the
procedure 1) is incorrect in the intended interpretation. It can also be run as a
logic program, though it has the problem of requiring many oracle queries. In
conjunct ion with the clause for incorrect clause instances, this is the simplest
program for declarative error diagnosis.

A third class of bugs, inadmissible calls, are detected by Pereira's debug-
gers. z~ Calls are said to be inadmissible if they have incorrect argument types.
It has generally been considered that this is not related to the declarative
semantics of the program, and hence has not been adopted by other declarative
debugging systems. In Ref. 18) it is argued that types play an important role in
the intended semantics of logic programs. It seems that this work can be used as
a theoretical basis for using admissibility in declarative debugging. We do not
deal with types or admissibility here however.

To find incorrect clause instances, it is sufficient to have an oracle which
can determine if a ground atom is valid. The definition of uncovered atoms is
more complex, and debugging missing answers generally requires more complex
oracle questions. Three types of questions have been used by debuggers in the
literature. The first asks whether a (generally non-ground) atom is satisfiable.
The second asks what valid instances a non-ground atom has. This requires the
oracle to provide bindings for variables in the atom, rather than just a yes or no
answer. I f the atom has several valid instances, all of these may have to be given
eventually. The third asks whether a set of instances of a non-ground atom
(generally the set of answers returned by the program) contains all valid
instances of the atom. Shapiro-style debuggers use the first and second types of
questions. Pereira-style debuggers use the first and third types of questions.
Although questions of the third type are more complex in some sense, they only
require a yes or no answer and they are relatively easy for the user to answer.

w Using a Goal to Guide the Search
The simple declarative debugger(s) presented in the previous section

essentially do a blind search for all possible bugs. They do not use a bug

Declarative Diagnosis of Missing Answers 259

symptom (a wrong or missing answer) to guide the search. All previous work on
declarative debugging has used a goal which exhibits incorrect behaviour to
guide the search for bugs. Most debuggers are divided into two procedures:
wrong, for diagnosing goals with wrong answers, and miss, for diagnosing goals
with missing answers (sometimes different names are used). We discuss these
approaches in this section.

Lloyd's approach 12~ was to first try to isolate the logic of the problem and
later add control information to make the program search for bugs more
efficiently. The core of his version without "control information" is as follows:

% debugger L. I
miss((A, B), R):-

miss(A, R).
miss((A, B), R):-

miss(B, R).
miss(A, R):-

user_pred(A),
clause(A, B),
miss(B, R).

miss(A, atom (A)):- % equivalent to N.0 part 2
user_pred(A),
valid (A),
\ + (clause(A, B), valid(B)).

The full version of the program deals with negation, quantifiers etc., and
includes a definition of wrong also. We will simply be concentrating on the
port ion used for diagnosing missing answers for Horn clause programs. The
programs we introduce can all be extended in the way Lloyd has shown. Also,
we will be using standard Prolog to express the programs. To make the theory
clear, Lloyd distinguished between object and meta levels and used explicit
quantifiers in the logic. In this paper we try to uncover some of the practical
difficulties which can be obscured in more theoretical approaches.

It is interesting to compare L.1 with N.0 (part 2). The last clause of L.I
is equivalent to N.0. The other clauses use the goat and restrict the search space,
so L.1 is not completely free of control information. Rather than returning all
possible bugs, it will only return bugs which are connected to the top level goal
by a series of calls. This is reflected in the soundness and completeness theorems
Lloyd proves. The soundness criteria for miss and wrong do not mention the goal
and are equivalent to N.0: if miss (wrong) succeeds then it returns a bug (as
defined by N.0). However, the completeness criterion for miss is more restricted:
if the goal is satisfiable but has a finitely failed SLD tree then miss will return
a bug (not necessarily all bugs). Thus, if miss is called with a goal which
succeeds, no bug needs to be returned, and if the program contains several bugs,
miss need only return one of them, whatever the goal is. The following example

260 L. Naish

shows how L.1 can fail, even though the program contains a bug:

p(a).
% q(a). % missing (uncovered atom)

?- miss(p(a), R). % fails (quite reasonably)

This seems a reasonable (partial) specification for miss. In practice, we
call miss when we have found a goal which incorrectly fails, and just find and
correct one bug at a time. The advantage of having a stricter completeness
difinition is that the debugger can have a smaller search space. Instead of a bl ind
search for bugs, L. 1 only examines atoms which, for some computat ion rule, can
be called (directly or indirectly) from the top level goal. For each of these atoms,
it finds valid instances (by calling valid) and checks that there is no matching
clause with a valid body. The search space of L.1 is still much larger than is
needed to achieve completeness (it can be infinite, even for a finitely failing
goal). In fact, L.1 was never intended as a practical debugger. Instead, Lloyd
proposed the following program, which has addit ional control information, as
a more practical debugger which supports coroutines.

% debugger k.2
miss((A, B), R):-

\ + call(A), % extra control
miss(A, R).

miss((A, B), R):-
\ + call(B), % extra control
miss(B, R).

miss(A, R):-
user_pred(A),
clause(A, B),
valid(B), % extra control
\ + call(B), % extra control
miss(B, R).

miss(A, atom(A)):-
user_pred(A),
valid(A),
\ + (clause(A, B), valid(B)).

L.2 is identical to L. l except that before each call to miss there is a check
to make sure the goal fails and there is a check in the third clause to make sure
the goal is valid (in practice this finds instances of the goal which are val id--see
below). I f the initial goal is valid but fails then this invariant will be maintained
in all subsequent calls to miss. The search for bugs is restricted to clause
instances which may cause the initial goal to fail, making it a practical debugger.

Procedurally, L.2 works as follows. Suppose miss is called with a valid
failing atomic goal. The debugger searches for a matching clause, then searches

Declarative Diagnosis of Missing Answers 26t

for a valid instance of the clause body (which must fail) then finds a failing atom
in this goal and recurses. I f there is no valid instance of a matching clause then
the atomic goal is an uncovered atom,

The search for matching clauses and valid instances can be nondeter-
ministic. To find valid instances of a complex goal, the goal can be broken down
into atomic subgoals and the user (or another oracle) is asked about these. The
user is asked whether the subgoal is satisfiable (has any valid instances), and if
the reply is yes, the user must type an instance (unless the subgoal is already
ground). On backtracking, the user is asked if there are more valid instances and
the process is repeated. Thus, if there are N valid instances of a subgoal, the user
may have to answer up to N + 1 yes/no questions and N questions where
instances are given (instance questions). Answers typed by the user can be saved,
so even if calls to valid are repeated the questions to the user are not. One of the
key performance criteria of declarative debuggers is the number of questions
asked, especially instance questions, as these require more effort to answer.

Ferrand ~ also proves a form of completeness for his debugger. Though
written rather differently, it is essentially very similar to Lloyd's first version, but
with some extra control added to the third clause (a subset o f that in L.2):

% debugger F. l
miss((A, B), R):-

miss(A, R).
miss((A, B), R):-

miss(B, R).
miss(A, R):-

user_pred(A),
clause(A, B),
valid(B), % extra control
miss(B, R).

miss(A, atom(A)):-
user_pred(A),
valid(A),
\ + (clause(A, B), valid(B)).

Another minor syntactic difference is the use of a predicate called satisfiable,
which actually returns all valid instances of a goal. We have renamed it valid to
minimise confusion (we do the same for Shapiro's debuggers given later).

Lloyd leaves the completeness of L.2 as an open question. As the program
stands, it is not complete: the call to the debugger fails in following example.

p(a).
% p(b). % missing
q(b).

?- miss((p(X), q(X)), R). % fails in L.2

262 L. Naish

The reason for failure is that the top level call to miss contains a goal
which fails and is satisfiable but not valid. In practice, this apparent bug in L.
2 can be avoided simply by calling miss via an interface procedure which finds
a valid instance of the goal, rather than calling miss directly. Another source of
incompleteness is the use of \ + and call to check for failure. Theoretically we
should use a fair computat ion rule though in practice it does not seem worth-
while. The use of an unfair computat ion rule can result in an infinite loop
instead of a call to \ + succeeding and the possible subsequent detection of a
bug. However, if this was the case, the top level goal would have looped rather
than finitely failed (assuming the same computat ion rule is used). We shall
discuss various kind of infinite loops these debuggers can get into later.

Dershowitz and Lee's debugger z~ also fails to find the bug in this example.
It assumes that incorrect failure is caused by the incorrect finite failure of a
single a tom in the computat ion. In this example, p(X) is missing a solution but
it does not finitely fail. I f we extend the example slightly, this debugger will
return an incorrect answer. Instead of returning an a tom of the procedure which
has an incorrect completion, it returns an atom from which the procedure was
called (this procedure is correct).

p(a).
% p(b). % missing
q(b).
r:- p(X), q(X).

?- miss(r, R). % returns atom(r), not atom(p(b))

Huntbach ' s debugger for Parlog7 ~ makes a similar assumption, though this may
be reasonable in Parlog, since calls cannot return more than one answer. The
error may be due to a misunderstanding of the terminology used in Ref. 20),
which uses the term finitely failed to describe goals which miss some answers,
even if they succeed with some other answers. Shapiro 23) also uses the term finite
failure, but in a way which is consistent with (but not identical to) the normal
use.

The code of Shapiro's original debugger za~ is as follows:

% debugger S.I
miss((A, B), R):-

(call(A)-- >
miss(B, R)

miss(A, R)).
miss(A, R):-

user pred(A),
(clause(A, B), valid(B) - - >

miss(B, R)

Declarative Diagnosis of Missing Answers 263

R = atom(A)).

Like L.2, an interface procedure shoud be used, which makes sure the
goal is valid but fails. Without this, S.1 can succeed when there are no errors:

p(a).

~- miss(p(b), R). % returns atom(p(b)) but should fail

I f the top level goal is valid and fails then this invariant will be preserved, as
with L.2. In fact, the control is equivalent in the two debuggers. S.1 can be
rewritten as follows:

miss((A, B), R):-
\ + call(A),
miss(A, R).

miss((A, B), R):-
call(A), % equivalent to \ + call(B)
miss(B, R).

miss(A, R):-
user_pred(A),
clause(A, B),
valid(B),

% \ + call(B) must succeed
miss(B, R).

miss(A, atom(A)):-
user_pred(A),

% valid(A) must succeed
\ + (clause(A, B), valid(B)).

The first clause is identical to that of L.2. The second call has call(A) instead
of \ + call(B), but the two are equivalent in the case where the first clause fails,
since A succeeds and (A, B) must fail. The third clause is missing the test \ +
call(B), but this must succeed anyway, since A fails. The last clause is missing the
test valid(A) but this must also succeed. Thus, L.2 and S.1 have essentially the
same logic and ask exactly the same questions if the normal cluase selection rule
is used. The extra call to valid in L.2 does not result in more questions, since it
is the same as a previous call which saves the information typed by the user. L.
2 is more similar to the specification but S.1 is more efficient.

w Rearranging and Eliminating Some Control
The S.1 and L.2 debuggers can be rewritten in a more logical and

straightforward way. Instead of using an interface procedure then maintaining
the invariant that each goal is valid and fails, this condit ion can simply be put
into the specification (or definition) of miss. That is, miss should succeed only
when (an instance of) the goal is valid and fails, and an uncovered atom should

264 L. Naish

be returned. The following debugger is an implementat ion of this idea. This
debugger does not require an interface procedure: it will find a valid failing
instance of the goal (if one exists) then proceed to find the bug.

% debugger N.I
miss((A, B), R):-

~ valid(B), % like S.I/L.2 (see below)
miss(A, R).

miss((A, B), R):-
valid(A),
miss(B, R).

miss(A, R):-
user_pred(A),
valid(A),
\ + call(A),
clause(A, B),
miss(B, R).

miss(A, atom(A)):-
user_pred(A),
valid(A), % the goal (instance) must be valid
\ + call(A), % and must fail
\ + (clause(A, B), valid(B)).

It is simple to show that this program, including the commented out call
to valid, is correct with respect to the specification above. Compar ing it with L.
1, we see that the calls to valid in the first three clauses and the calls to \ + call(A)
in the last two clauses are control information used to restrict the search. There
are some repeated calls to valid (the call to valid in the first clause overlaps with
the other calls to valid), but these will not result in extra questions for the user.
In fact, i f the first two clauses are reversed, N.1 will ask exactly the same
questions (in the same order) as S.1 and L2. Although this debugger is slightly
more verbose than the others, it gives a very clear statement of the logic behind
them. Another consequence of rearranging the control is that the calls to valid
contain simple atoms rather than complete clause bodies. This makes it easier to
modify the debugger so as to reduce the number of questions the user is asked.

By eliminating the call to valid in the first clause, repetition of calls to valid
can be reduced and the number of questions can also often be reduced. The
behaviour of the program is then as follows. Suppose miss is called with an
atomic goal. The debugger searches for a valid instance of the atom which fails.
If there are none, it fails. Otherwise, it searches for a matching clause, then
searches for an instance of the clause body such that all subgoals to the left of
a given a tom are valid and that a tom has a valid failing instance (it then recurses
on that atom). If there are no such matching clause instances then the valid
failing instance of the atomic goal is an uncovered atom.

This behaviour is essentially the same as Shapiro 's improved debugger for

Declarative Diagnosis of Missing Answers 265

missing answers TM reproduced below (with slight modifications so the last clause
fails rather than give an error when the goal succeeds):

% debugger S.2
miss(A, R):-

clause(A, B),
(missl(B, R)-- >

true

R = atom(A)).

missl((A, B), R):-
valid(A),
(call(A),

miss I (B, R)

\ + call(A),
miss(A, R)).

miss I (A, R):-
user_pred(A),
valid(A),
\ + call(A),
miss(A, R).

S.1 and L.2 find a valid instance of the whole clause body (by getting
valid instances of individual subgoals) before searching for the failing subgoal,
S.2 and N.1 check whether a valid instance of a subgoals fails as soon as the
instance is found. Consider the following example:

p(X):- q(x), r(Y), s(Y).

% q(a). missing
r(a).
s(a).

?- miss(p(a), R).

S.1 calls valid((q(a), r(Y), s(Y))). The user is first asked whether q(a) is val id
then is asked whether the other subgoals have valid instances and what those
instances are. N. 1 and S.2 ask the first question then immediately check whether
q(a) fails. It does, so the debuggers look for matching clauses and, finding none,
return atom(q(a)). In this example, two yes/no questions and one instance
question are avoided. If there were more subgoals to the right of q(X) this saving
would be increased. If backtracking was needed to find a valid instance of the
subgoals, the difference in the query complexity of S.1/L.2 and S.2/N.1 could be
exponential.

In practice, S.2 asks fewer questions than S. 1. However, the difference in

266 L. Naish

behaviour is essentially due to the elimination of some control information (the
call to valid in the first clause of N.1), so it is worth considering if the search
space of S.2 (and the number of questions asked) can ever be larger than that o f
S. 1. Shapiro claims that S.2 never has worse query complexity than S. 1, but the
following example disproves this.

m:- mZl, fail.

m:- ml.

m4:- m3.
m3:- m2.
m2:- m l.

% m l. % missing

?- miss(m, R),

Since the body of the first clause of m has no valid instances, miss(m4, R) will
never be called in S.1. In S.2 it will be called, which leads to the discovery of
a (the) bug, but not as directly. I f we consider the same program with the second
clause of m is removed (so m should fail, and hence no answer is missing) S.2
still succeeds. Thus S.2 (and N. 1) can return bugs even when given a goal which
behaves correctly. It seems reasonable to consider this a feature.

Even when the search space of S.I and S.2 are identical, S.2 may ask more
questions because the order of searching is subtly different. To debug nondeter-
ministic programs, it is important that valid returns all valid instances of the
goal. S.1 gets a valid instance of the whole clause body then checks that all
subgoals succeed. On backtracking another instance is generated. S.2 gets all
valid instances of the first subgoal in a clause body and checks that each one
succeeds before proceeding to the second subgoal. Consider the following
example:

p(a).
p(b).
p(c).
% q(a). % missing

m:- p(X), q(X).

?- miss(m, R),

I f we assume p(a) is the first valid instance of p(X) returned in S.1 then S.1 will
require fewer questions than S.2. Even if p(a) was the only valid instance, more
questions would be asked in S.2, since a question must be asked to verify that
there are no more valid instances. Questions of this kind are avoided in some of
Shapiro 's examples, because some predicates are assumed to be deterministic.
This requires additional information from the programmer, which we do not
consider in this paper.

Declarative Diagnosis of Missing Answers 267

There is a final subtle difference between S.1/L.2 and S.2/N.1 which
concerns the behaviour of valid with atoms that have a non-ground valid
instance. Althogh from a theoretical point of view we might say that valid should
return all valid instances of an atom (or at least all ground valid instances), in
practice it is important to represent an infinite set of ground instances by a single
non-ground instance. Shapiro actually assumes there are always a finite number
of (ground) valid instances, which makes a significant restriction on the class of
programs which can be debugged. For example, if the debugger calls
valid(length(Xs, I)), the user shoud be able to give the single substitution Xs = [_]
rather than the infinite number of ground lists of length one. Unfortunately, if
this is done in S.2/N.1, the debuggers can fail to find a bug (and even return
spurious bugs in the case of S.2). Consider the following example, where q(X) is
true for all X, but the fact has been misstyped:

p:- q(X), r(X).

q(x). % 'x' should be 'X'
r(a).

7_ miss(p, R).

The debuggers call valid(q(X)), fol lowed b y \ + call(q(X)). I f the first call
succeeds without instantiating X, the second call fails, preventing the bug in q
being found. In N.1 the top level call to miss fails and in S.2 it returns atom(p),
which is incorrect. The basic problem is that we want to check if q(X) succeeds
for all X, but \ + checks if it succeeds for some • This is the basic problem with
negation in Prolog. There have been many partial solution proposed, but none
are completely satisfactory. Rather than fixing the code in these and subsequent
debuggers in this paper, we will simple point out the problem and leave it to
other implementors to add some hacks or perhaps even find an elegant solution.
The problem is actually less severe in some of the later debuggers we discuss,
because valid is not used as much.

w Using Call Instead of Valid
The call to valid in the second clause of N.1 is useful for instantiating

variables in the goal so that calls to valid for subsequent subgoals have fewer
solutions (that is, the search space is restricted). However, it does result in
questions being asked. To avoid this, it is possible to use call to generate
instances. I f there is no bug in the first subgoal, then call will return the same
answers as valid. I f the call does not return all valid instances, some bugs in the
rest o f the goal may not be discovered. However, the first clause of the debugger
will find a bug in the first subgoal. Although the search space is reduced and a
call to miss may return fewer bugs than before, we can still guarantee that a bug
will be returned if the goal has a valid failing instance. This satisfies the
completeness definition of Lloyd and causes no problems if bugs are found and

268 L. Naish

removed one at a time.
Although the use o f call reduces the number of questions to the user, it

can markedly increase the cpu time used by the debugger. If the computat ion of
the top level goal takes N resolution steps then the debugger can take O(N 2)
steps. Many debuggers avoid this problem by saving a representation of the
original computation so that recomputation is avoided. The tradeoff between
time and and space is analysed in Ref. 22). When a left to right computation rule
is used, the search space of N.2 is a subset of the SLD tree of the top level goal
(unlike the debuggers presented so far). Recomputat ion could therefore be
avoided using this technique. However, coroutining can reduce the size of the
search space without reducing the search space of the debugger, so some extra
computat ion may have to be done in the debugger. We discuss the problems
associated with coroutining later in this section. Restricting the search space to
that o f the original SLD tree is discussed in Section 8.

There are two other useful modification to N.1 which we now make. The
first two clauses are swapped to improve the search order (we explain this in a
moment) and the last two clauses are combined using an if-then-else construct
(this makes the debugger more efficient).

% debugger N.2
miss((A, B), R):-

call(A), % was valid(A) in N.I
miss(B, R).

miss((A, B), R):- % was first clause in N. I
miss(A, R).

miss(A, R):- % last two clauses in N.I combined
user_pred(A),
valid(A),
\ + call(A),
(clause(A, B),
miss(B, RI)
- - >

R = R I

R = atom(A)
).

In the following example, N.1 would ask the user for valid instances of
q(Y), then ask if r(a) is valid. Using call instead of valid avoids questions concern-
ing q (one yes/no and one instance question) if the debugger clauses are ordered
as shown above.

p(X):- q(Y), r(X), s(Y).

q(a).
% r(a). missing

Declarative Diagnosis of Missing Answers 269

s(a).

?- miss(p(a), R).

N.2 calls subgoals in a clause from left to right until one fails. It then asks
if that subgoal has any valid instances. I f not, it backtracks to find different
solutions to the calls of subgoals to the left or other valid instances of subgoals
to the left which fail. I f the first two caluses are reversed in N.2, the search order
is reversed. The first failing subgoal is only examined after all previous subgoals
are examined. This usually results in more questions being asked, particularly
with deterministic computat ions (only one clause matches at each stage).

I f the computat ion is deterministic and no procedures return incorrect
answers, the first failing subgoal is always the subgoal with the bug. Thus N.2
can locate a bug in at most D yes/no questions and D instance questions, where
D is the depth of the failed p roof tree. S. l requires C.D yes/no questions, where
C is the number of subgoals per clause used in the incorrect failing branch of the
p roof tree, and up to C.D instance questions (depending on how many calls to
valid are ground). The best case for N.1 is the same as N.2, and occurs when the
first subgoal contains the bug at each step. The worst case for N.1 occurs when
the last subgoal contains the bug at each step. C.D instance questions and
(2C-1).D yes/no questions are asked (if the computat ion is known to be
deterministic in advance, this can be reduced to C.D, by avoiding "any more
instances" questions).

In Prolog systems which allow coroutines, the use of call can cause
complications. Generally, such systems have a mechanism for delaying the
evaluat ion of a call until certain variables in the calt are instantiated. Thus
call(A), in the first clause of N.2 can terminate with some subgoals still delayed,
rather than A being executed completely (call(A) is said to flounder). Any
variables bindings that would normally have been computed by the delayed
calls are not passed on to B. In the worst case, calling A binds no variables in
B, effectively eliminating the control component of the first clause and hence
significantly increasing the search space of the debugger. Another practical
problem is that the delayed subgoals of A can wake up later and interfere with
the execution of the debugger.

The most practical solution to these problems is to be more flexible about
ordering conjuncts. Rather than always considering the first conjunct first, it is
better to try to find a conjunct which executes completely and, effectively,
reorder the conjunction so this call appears first. In practice, it is rare for all the
conjuncts to flounder and in the uncommon case when it occurs, we can accept
a larger search space and either not call any subgoals or use hacks such as
copying terms to avoid delayed calls causing problems. The first two clauses of
N.2 can be combined in a way similar to what follows (again, we refrain from
complicat ing this and subsequent debuggers by including the details of desirable
hacks):

270 L. Naish

miss((AO, BO), R):-
pick_nondelay subgoal((AO, BO), A, B),
(call(A),

miss(B, R)

miss(A, R)
).

By combining the last two clauses of N.I into a single if-then-else
construct in N.2, the (repeated) work of the last clause is avoided. Unfortunate-
ly, from a theoretical viewpoint, this makes the debugger incomplete:

m:- ml, fail.
% m. % fact missing

ml:- m.

?- miss(m, R).

The computation rule could be such that m and ml both finitely fail. The
last clause for N.1 could then succeed, returning the uncovered atom m. The
complete SLD tree for the miss goal in N.1 has an infinite branch because of the
third clause, but in theory, this will not prevent the answer from being returned
(we could use a fair search for example). Because the last two clauses are
combined in N.2, the recursive call to miss (in the condit ion of the if-then-else)
neither succeeds or finitely fails, so there is no success branch on the S L D N F
tree. Both N.2 and S.2 must loop rather than returning the bug. If we use
standard Prolog to run the debuggers, even N.1 loops, because of the unfair
depth first search which Prolog uses. Hence, in practice, introducing the if-then-
else does not cause and more infinite loops.

Avoiding this kind of infinite loop seems quite difficult without calling
valid with a whole clause body (and thus asking more questions). In a standard
Prolog system, with a left to right computation rule, the problem is disguised
because the debugger does not loop unless the top level goal also loops. With
a different computation rule however, the debuggers can loop even when the
goal finitely fails. The difficulty lies in the fact that the debugger splits a
conjunction into parts and searches for bugs in each part independently (per-
haps passing some variable bindings from left to right). When the conjunction
is called however, coroutining make the interaction of the conjuncts much more
complex. The operation of the debugger is unable to mirror the execution of the
goal as can be done with a left to right computat ion rule. Examining the
conjuncts in a more flexible order, using pick_nondelay_subgoal as suggested
above, is an effective way of avoiding (most) infinite loops of this kind in
practice.

Declarative Diagnosis of Missing Answers 271

w Testing Validity of Answers from Call
It is quite common for failures to be caused by subcomputat ions return-

ing incorrect answers. Checking that the answers returned from call are correct
has several advantages. First, if we know that a call has returned an incorrect
answer, we can use wrong to find a bug. This is generally better than using miss,
since it requires only simple yes/no questions, and is more likely to find an error
in a single clause, rather than a whole procedure. Second, if we know that the
answer obtained by calling a subgoal is correct, then a later call to valid does not
need to ask the user so many questions (especially instance questions). Third,
asking the validity of answers from call immediately can prevent incorrect
bindings to variables showing up in other questions. These questions can be
confusing, since they can ask the validity of subgoals which should never occur.
In Pereira's debuggers, if such calls are declared inadimissible then the wrong
answer diagnosis algorithm is invoked. However, wrong answers do not neces-
sarily lead to inadmissible calls, so they are not always detected.

Checking that answers are valid generally involves asking questions. In
programs which do not return incorrect answers, more yes/no questions will be
asked. A reasonable compromise exists which delays (and often avoids) asking
the extra questions. It has the first two advantages mentioned but not the third.
The compromise is to ask if a result o f a call is valid if and when the subsequent
call, to miss fails. This is implemented in the program below (the previous
comments concerning call(A) floundering apply here also). I f the order of dis-
juncts in the first clause is changed then the questions are asked as soon as call
returns, gaining the third advantage but, we believe, asking more questions on
average. Immediate detection of wrong answers and efficient diagnosis of failing
deterministic code (as discussed in the previous section) seem to be conflicting
requirements.

The algorithm of Refs. 8) and 13) checks the validity of all answers to a
call before checking if it misses answers. The order of examining the different
atom instances in a failed conjunction is not specified, but if our ordering is used
the extra questions are delayed even longer than in our algorithm. The validity
of answers is checked only after all answers have been considered. This strategy
can be implemented in the code below by putting call(A) in both disjuncts o f the
first clause instead of before the whole disjunction.

% debugger N.3
miss((A, B), R):-

call(A),
(

miss(B, R)
; % could reverse order of;

unsatisfiable(A),

272 L. Naish

wrong(A, R)
).

miss((A, B), R):-
miss(A, R).

miss(A, R):-
user_pred(A),
valid(A),
\ + call(A),
(clause(A, B),

miss(B, RI)
- ->

R - -R I

R ---- atom(A)
).

The order of the first two clauses is important for two reasons. First, the
order of the search is superior (as with N.2). Second, it reduces the number of
instance questions (the second advantage ment ioned above). Suppose miss is
called with a conjunction and that the first subgoal is missing a solution but the
rest of the conjunction is free of bugs. The first subgoal will be called and for
each solution unsatisfiable will (eventually) be called. This will result in one yes/
no question about the validity of each solution. When all solutions to the
subgoal are exhausted, the debugger backtracks to the second clause of miss and
valid is called with the buggy subgoal. Since all instances of the subgoal which
succeed are known to the system, it can just ask if there are any more valid
instances. The first instance typed by the user will fail so miss can proceed
recursively. I f the clause order were reversed, or one of the previous debuggers
were used, the user may have to type many valid instances of the subgoal, all of
which succeed. Thus the number of instance questions asked by this debugger is
one per atom checked, compared with an unbounded number for the other
debuggers presented so far.

The following example (from Lloyd) is useful for comparing S.1/L.2, S.
2 /N . I , N.2 and N.3.

% "quick" sort
qsort(E~, El).
qsort(A.B, C.D):-

part(A, B, L I, L2),
qsort(L2, $2),
qsort(L I, S I),
app(SI, A.S2, C.D).

% partition
part(A, E~, ~J, E~).

Declarative Diagnosis of Missing Answers

part(A, B.C, B.D, E):-
A>----B,
part(A, C, D, E).

% should be part(A, B.C, D, B.E)

273

A = [I , 2], B - - [] .
A---- [] .
A--- [I , 2].

A - - [] , B--- [2] .
A = [2] .

The following shows the questions asked by N. 1, and user responses. The
error returned is the same. There are nine yes/no questions and four instance
questions. All questions about app and some questions about qsort are avoided,
but there are three extra questions verifying there are no more valid instances of
a goal (these are put on separate lines).

qsort([3, I, 2], [I , 2, 3]) y
part(3, [I, 2], A, B) y;
part(3, [I , 2], A, B) no
qsort([], A) y;
qsort([], A) no
qsort([I, 2], A) y;
part(I, [2], A, B) y;
part(I, [], [], [2]) n
part(I, [2], A, B) no more

The following shows the questions asked by N.2, and user responses. The
error returned is the same. There are eight yes/no questions and three instance

A = [1,2] , B - - [].
more

A---- [].
more

A---- [I, 2].
A = [], B - - [2].

qsort([3, I, 2], [I , 2, 3]) y
part(3, [I, 2], A, B) y;
qsort([], A) y;
qsort([I, 2], A) y;
app([l, 23, [3], [i , 2, 3]) y
part(I, [2], A, B) y;
qsort([2], A) y;
app([], [I, 2], [I , 2]) y
part(I, [], [], [2]) n

part(A, B.C, D, E):-
A < B ,
part(A, C, D, E).

% append
app(r], A, A).
app(A.B, C, A.D):-

app(B, C, D).

7_ miss(qsort([3, I, 2], [I, 2, 3]), a).

The following shows the questions asked by S. 1, and user responses. The
error returned is atom(part(I, [2], [], [2])). There are nine yes/no questions and
five instance questions (note that each line showing an instance question also
has an associated yes/no question), valid(qsort([], A)) is called twice but question-
ing the user is avoided on the second occasion, since the information is stored.

274 L. Naish

questions. Even though the example is not well suited to the search strategy of
N.2, checking the first failing subgoal first still reduces the number and complex-
ity of questions asked.

qsort([3, I, 2], [I , 2, 3]) y
app(EI], E3], [I , 2, 3]) n
qsort([I , 2], A) y; A :- El, 2].
app([] , El], El, 2]) n
qsort([] , A) y; A --- [] .
qsort([], A) no more
part(I, [2] , A, B) y; A : [] , B : [2] .
part(l, [], [], E2]) n

The following shows the questions asked by N.3, and user responses. The
error returned is an incorrect clause instance:

part(I, E2], [], []):-
I<2 ,
part(I, [], [], []).

There are five yes/no questions and no instance questions. When it is discovered
that qsort([I, 2], [I i) is not valid, wrong is called (which locates the bug with only
two further yes/no questions).

qsort([3, I, 2], El, 2, 3]) y
app([I] , [3], [I , 2, 3]) n
qsort([I , 2], El i) n
part(I, [2], [] , []) n
part(I, [] , [] , []) Y

w Using Satisfiable Instead of Valid
I f we know that a subgoal is satisfiable but fails, this is sufficient informa-

tion to tell us it contains a bug. We do not need to know a particular valid
instance of the subgoal, and asking the user for such an instance should clearly
be avoided if possible. Using this idea, we can generalise the notion of an
uncovered atom:

% debugger N.0.1 (part 2; part I is the same as in N.0)
bug(atom(A)):-

satisfiable(A),
all [H, B] not (subsumes(A, H), is_clause(H, B), valid(B)).

An atom is uncovered if it is satisfiable and no clause instance whose head is an
instance of the atom has a valid body. Note that this definition is equivalent to
N.0 when A is ground.

Unfortunately, we cannot simply take any of the previous debuggers and
replace valid by satisfiable everywhere and expect them to work. We need some

Declarative Diagnosis of Missing Answers 275

way of getting from an incorrectly failing goal to an incorrectly failing subgoal
in the body of a matching clause. The previous debuggers use valid to get
instances of subgoals in the bodies of matching clauses. It is pointless asking an
oracle for satisfiable instances of goals: the most general answer is the goal itself.
Some other method(s) must be used to find instances of subgoals which incor-
rectly fail.

The first method, used implicitly in all the debuggers, is the unification
of the goal with the head of the clause. I f the first subgoal contains the bug, this
often instantiates it sufficiently. Another method is to use call, as in N,2 and N.
3. This is sufficient if the failure at the top level is caused by the failure of a
single subgoal, rather than one of several answers being missed. This is an
assumption of Refs. 2) and 7) which, as we mentioned previously, can cause
incompleteness and even incorrectness.

The algorithm we suggest is to first use call to generate instances, but if
this fails to find an incorrectly failing subgoal, to resort to using valid as before.
This algorithm will find a bug whenever N.3 finds a bug, but will only ask the
user instance questions when yes/no questions have failed to find the bug. In
particular, if the computat ion is deterministic and no subgoal returns an incor-
rect answer, no instance questions will be asked. However, if yes/no questions
are not sufficient to find the bug, N.4 may ask more yes/no questions than N.3.
A p roof of completeness of a variant o f N.4 is sketched in Ref. 27).

% debugger N.4
miss(A, R):-

miss_c(A, R).
miss((A, B), R):-

miss v((A, B), R).

% miss for atoms
miss_atom(A, R):-

user_pred(A),
\ + call(A), % valid(A),
satisfiable(A), % \ + call(A)in N.3
(clause(A, B),

miss(B, RI)
- - >

R = R I

R = atom(A)
).

% uses call to get instances of subgoals which incorrectly
% fail (incomplete for non-atomic goals)

miss_c((A, B), R):- % same as N.3
call(A),

276 L. Naish

miss_c(B, R)

unsatisfiable(A),
wrong(A, R)

).
miss_c((A, B), R):-

miss_atom(A, R).
miss c(A, R):-

miss_atom(A, R).

% uses valid to get instances of subgoals which incorrectly
% fail (complete)

miss v((A, a), R):-
valid(A),
(miss_atom(A, R)

miss v(B, R)
).

miss_v(A, R):- % valid is not needed for atoms.
miss_atom(A, R).

The key part of the program, miss_atom, is the same as before except that
is uses satisfiable instead of valid. Therefore it never asks instance questions, miss
calls miss c, which uses call to generate instances of subgoals and, if that fails, it
calls miss v, which uses valid, miss_v is not used for a tomic goals because miss_c
will not fail in this case, assuming the goal at the top level is satisfiable but fails.

As with N.2 and N.3, miss c should be modified to handle the case when
call(A) flounders. The best solution is to find a non-floundering subgoal and call
that instead of A. Even if a more restrictive solution is used, such as failing if
call(A) flounders, bugs can still be found by miss_v (though this asks more
questions). Since miss v is only tried when miss c has failed to find a bug, it may
be worthwhile making miss_v more robust, at the expense of asking more
questions. For example, it could be made more like S. 1/L.2, thus avoiding some
problems with nonground valid atoms etc. Hopefully, the extra questions would
rarely be asked, because most bugs would be found by miss c.

We will use the following program (from Re['. 23)) as our next example:

isort([X I Xs], Ys):- isort(Xs, Zs), insert(X, Zs, Ys).
isort(~], ~]).

insert(X, I-YJYs], [YIZs]):- X < Y, insert(X, Ys, Zs).
insert(X, [YJYs], [X, YJYs]):- X = < Y.
~ insert(X, E-J, EX]). % missing

?- miss(isort([3, 2, I] , X), R).

Declarative Diagnosis of Missing Answers 277

S.I (L.2) requires seven yes/no questions and four instance questions to
find the uncovered atom insert(I, [], Ill). S.2 (N.1) requires the following six
yes /no questions (including one "any more valid instances" question) and four
instance questions to find the same uncovered atom:

isort([3, 2, I] , A) y; A = [I , 2, 3].
isort([2, I] , A) y; A = El, 2].
isor t ([l] , A) y; A = F l] .
isort([] , A) y; A = [] .
isort([] , A) no more
insert(I, [] , [I]) y

N.2 and N.3 avoid the three questions associated with isort([], A), since
that call succeeds with the (only) correct answer. This results in four yes /no
questions and three instance questions. N.4 avoids all instance questions and
needs only four yes/no questions also. The uncovered atom returned, insert(I, [],
A), contains a variable, meaning that the atom is satisfiable but the bodies of all
matching clauses are unsatisfiable.

isort([3, 2, I] , A) y
isort([2, I] , A) y
isor t ([I] , A) y
insert(I, [] , A) y

w Avoiding Instance Questions Entirely
All the debuggers we have examined so far rely on the user providing

valid instances of goals in some circumstances. We now examine two ways we
may be able to eliminate instance questions entirely by making the computation
of the debugger follow the search of the original computation more closely.
Failed derivations of the original computation are used to limit the search space
of the debugger. Both the ideas need considerably more research before they can
be used as the basis of practical debuggers. The first technique has been used
previously in some debuggers for conventional Prolog, with a left to right
computat ion rule. We discuss the possibility of adapting it to Prolog systems
which have coroutines. The second technique is new, and asks even simpler
questions than the first technique. It also overcomes some of the reasons for
incompleteness of the debuggers we have discussed, though it is also incomplete.

8.1 Using Incompleteness Questions
As mentioned previously, the Pereira-stye debuggers 3'4'8'13'14'2~ do not

ask instance questions. Instead, they ask if calls are incomplete. That is, not all
valid instances are returned by the program. This implies that some valid
instance of the call fails. The debuggers find all solutions to the call then print
the call and the solutions, and ask the user if any valid solutions are missing.

278 L, Naish

The idea of incomplete calls, or not completely covered atoms, a) can be used to
further generalise the definition of bugs:

% debugger N.0.2 (part 2; part I is the same as in N.0)
bug(atom(A)):-

incomplete(A),
all [H, B] not (subsumes(A, H), isclause(H, B), valid(B)).

Note that this is equivalent to N.0.1 in the case where A has at most one
valid instance. The following debugger, written in the style of N.2, uses this
more general definition. It implements a similar algorithm to those described in
the references above, wi thout enhancements associated with avoiding
recomputation, inadmissible calls, integration with wrong answer diagnosis and
intelligent search strategies. Intelligent search strategies could be used with the
logic of this program if alternative evaluation strategies are used, such as a
mixture of top down and bot tom up evaluation and an intelligent clause
election rule.

% debugger N.5
miss((A, B), R):-

call(A),
miss(B, R).

miss((A, B), R):-
miss(A, R).

miss(A, R):-
user_pred(A),
incomplete(A), % valid(A), \ + call(A), in N.2
(clause(A, Y),

miss(Y, RI)
- ->

R----RI

R -- atom(A)
).

In N.2, the last clause uses valid and call to find a valid failing instance of
the goal (if one exists). This requires instance questions. In contrast, N.5 uses
incomplete to check if a valid failing instance of the goal exists. However, the
actual instance is not required, so no instance questions are asked. For Prolog
systems with left to right computa t ion rules, this debugger is very effective. The
algorithms presented in Refs. 13) and 4) are proved sound and complete. The
ifLthen-else in the last clause does not cause incompleteness because the top level
goal is assumed to have a finite SLD tree using a left to right computat ion rule.

Unfortunately, the basic idea of incompleteness questions runs into
difficulties in systems which allow coroutines. The problem is that incomplete can
be catled with an atom whose execution flounders. It would be possible for

Declarative Diagnosis of Missing Answers 279

incomplete to use a different computat ion rule to find the set of successful
instances of the goal wi thout floundering. However, this is likely to cause
infinite loops, since one of the main reasons for delaying calls is that they have
an infinite number of solutions, is) The alternative is to only partially execute the
goal, but this can cause incompleteness of the debugger since the fact that some
answers are missed may not be detected by incomplete.

We propose two ways to deal with this incompleteness. The first is to use
a debugger in the style of N.4, which tries incomplete methods of bug location
which ask simple questions, then, if these fail, tries another method which is
(more) complete. Ideally, we should try to locate the bug using satisfiable first,
then incomplete, then valid. Reordering the examinat ion of conjuncts, using
pick_nondelay subgoal, should make this method quite effective, though occasion-
ally instance questions would still be asked. The second method we propose is
more complex, but avoids all instance questions. First, we note that the substitu-
t ion returned by a floundered goal can be considered a partial answer substitu-
t ion (as opposed to the normal total answer substitutions returned by non-
floundering goals). Similarly, partial answer substitutions can be produced by a
goal whose execution is interrupted by previously delayed calls being woken.
The set of partial answers to a goal includes or subsumes all the total answers
found by a computat ion rule which executes the goal completely without
interruption. Therefore, if the set of partial answers to a goal is incomplete then
the goal is incomplete. The converse is not true however, and this is the source
of incompleteness of the debugger.

The new algorithm which avoids this source of incompleteness is as
follows. We assume the goal in the call to miss is satisfiable but the set o f partial
answers is incomplete. Atomic clause bodies can be treated as before (since they
must also be incomplete). For simplicity, we just describe the conjunctive case
when there are two subgoals, p(X) and q(X). First, we find the set o f partial
answers to p(X) and check if it is incomplete (if so, we recursively search for the
bug in p(X)). Next, for each partial answer substitution 0i 1, for p(X), we find the
set o f partial answers for q(X)0i I (stopping forward execution whenever a delayed
call f rom p would be woken) and check if it is incomplete. So far, this is very
similar to N.5. However, i f no incompleteness is found, we continue by consider-
ing each partial answer substituition 0j 2, for q(X)0~ 1, and finding the set of partial
answers for p(X)0~0j 2 (and checking if it is incomplete). This conrresponds to the
coroutining execution where part of p is executed, followed by part o f q,
fol lowed by part of p. We continue to compose partial answer substitutions from
p(X) and q(X) until one of the sets is incomplete or total answer substitutions for
both calls are found (this corresponds to a whole branch of the SLD tree).

Each derivation of p(X), q(X) can be written as a sequence A~B~A2B2 - - . ,
where Aj (Bt) is a sequence of calls derived from p(X) (q(X)). The algorithm
searches for a prefix for which the last element exhibits incompleteness. Since
each derivation is finite and there are a finite number of derivations, the

280 L. Naish

algori thm must terminate. For simplicity, we have described an algorithm which
considers shortest prefixes first. It is better to reverse the search order, as was
done in N.2. With left to right execution, p and q are considered at most once
(the behaviour is identical to N.5 if the better the search order is used). As an
example, consider the following program. It contains two NU-Prolog when
declarations, which make calls to p and q delay until their first argument is a
non-variable.

?- p(I, J) when I.
% p(O, 0).
p(s(I), s(J)):- p(J, I).

?- q(I, J) when I.
q(O, 0).
q(s(I), s(J)):- q(J, I).

% only call when I instantiated
% fact missing

% note args swapped

% only call when I instantiated

% note args swapped

?- miss((p(s(s(O)), X), q(X, s(s(O)))), R).

The computat ion of the goal to be debugged is as follows. Initially, p is
called, binding X to s(XI). The recursive call to O then delays. Next, q binds XI
to s(• and delays in the same way. Finally, p is called and fails because the base
case is missing. The fol lowing table explains how the debugging algorithm
works in this example. It gives the calls examined and the corresponding set o f
partial answers.

p(s(s(O)), X) {p(s(s(O)), s(XI))}
q(s(Xl), s(s(O))) {q(s(s(X2)), s(s(O)))}
p(s(s(O)), s(s(X2))) { }

The first two partial answer sets are complete, but the last one is incom-
plete (the debugger considers this first if the better search order is used). We can
therefore recursively look for a bug with the a tom p(s(s(0)), s(s(X2))). Since the
body of the clause for p has only one atom, the debugger can then simply
identify the uncovered a tom p(0, • This example is simplified because no set
o f partial answers has more than one atom. This is because the finitely failed
SLD tree has only a single branch. In general, several combinations of alterna-
tive substitutions must be examined, corresponding to different failed SLD
derivations.

8.2 Using Satisflability Questions Only
The debuggers which use call presented so far are asymmetric and have

some problems when coroutining is used heavily (they have to resort to using
valid more). A purely declarative debugger should be symmetric with respect to
the order of subgoals in the goal being debugged. For example, the first two
clauses of N.2 should be:

Declarative Diagnosis of Missing Answers

miss((A, B), R):-
call(A),
miss(B, R).

miss((A, B), R):-
call(B),
miss(A, R).

281

% added for symmetry

Although B is sometimes able to generate useful instances of A, improving the
performance of the debugger, calling B before A often causes infinite loops. In
practice, logic programs are not purely declarative. They have a declarative
component but are written so as to be executed using a computation rule which
(by default) selects subgoal from left to right. Thus, N.2 is a practical debugger
but adding the extra call makes it impractical.

However, it is possible to generate instances of A by partially executing B
(and obtaining partial answer substitutions) and vice versa. The algorithm
proposed in the previous section used prefixes of the computation trace to obtain
partial answer substitutions. Only the longest prefix can lead to finite failure, so
incompleteness questions are generally asked more than satisfiability questions.
Also, if the interleaving of the execution is very fine, which is common in many
coroutining systems, many questions may be asked. An alternative method of
obtaining partial answer substitutions is to use the sequences A1AzAa . - - and
B1BzB3 �9 . . to find instances of B and A, respectively. The number of questions
is then not affected by the degree of interleaving. Furthermore, if the whole
conjunction finitely fails then each instance of A and B generated in this way
must also finitely fail, so satisfiability questions are sufficient. A disadvantage is
that calls in these sequences are generally less instantiated than in the original
execution trace, and hence may unify with more clause heads. Even a determinis-
tic execution of A, B may result in many partial answer substitutions when
considering A and B separately. Consider the following example:

?- p(I) when t. % only call when I instantiated
p(O).
p(I):- p(J), I = s(J).

q(a).
q(f(A)):- q(A).
% q(O). % missing

m:- p(X), q(X).

?- miss(m, R).

Using the NU-Prolog the computation rule, the computation proceeds as
follows. First m is called, then q(X), then p(I), then a = s(J), which fails. On
backtracking, q(X) is retried and matches with the second clause, then p(f(A)) is
called, then f(A)= s(J) fails. On backtracking, there are no further matching

282 L. Naish

clauses to any call so the goal finitely fails.
The debugger can first verify that the goal is satisfiable but fails, so a bug

must be manifest in the body of the clause for m. q(X) can then be used to
generate instances of the rest of the body. Rather than execute q(X) completely,
it is only executed as much as it was executed in the failing computat ion
outl ined above. That is, the initial call is done (which matches with two
clauses), but the recursive call is ignored. This leads to the two instances: p(I)
and p(f(A)). Note that both these instances finitely fail. Since both p(I) and p(f(A))
are unsatisfiable (that is, they fail correctly), the bug is not in p.

Next, p(• can be used to generate instances of q(X). In the finitely failed
computat ion, one call to p was done and, when the second clause of p was
used, = was called. Thus, the (finitely failing) instances q(0) and q(s(J)) are
generated. Note that in the original computat ion p was deterministic and • was
never bound to 0 or s(J), due to the bindings made by q. q(s(J)) is unsatisfiable
but q(0) is satisfiable. A satisfiable failing atom has been discovered so search for
the bug progresses recursively with q(0).

This algorithm can be applied to arbitrary coroutining in pure Prolog,
and no instance (or even incompleteness) questions are required. This example
also illustrates a problem with the debuggers which use valid to generate
instances of atoms, despite proofs of completeness in theory. Although the body
of the clause for m has only one valid instance, each subgoal has an infinite
number of valid instances (and an infinite nunber which succeed) and this set
cannot be represented by a finite set of atoms even if we allow variables. Even
with a left to right computa t ion rule, subgoals can have an infinite number of
valid instances (though only a finite number can succeed, otherwise the top level
goal would loop rather than fail).

Thus, the user can be asked to give a valid instance of an atom which has
an infinite number of valid instances. Relying on the user to eventually type the
lucky instance which shows up the bug is obviously problematic. Generating all
possible instances in some fair manner is also impractical. One way to avoid the
problem is to use a debugger like S.1 or L.2 and ask the user give a valid instance
of the whole clause body. This is obviously difficult for the user, especially when
there are long clauses. The debugger given in Ref. 24) actually requires the user
to provide instances of whole clauses (it is not intended to be a practical
debugger, however). I f valid can return an unbounded number of solutions then
the execution of the debugger must use a fair search strategy if it is to be
complete.

Although our algori thm which only asks satisfiability questions over-
comes some of the completeness problems introduced by call looping, incom-
pleteness of valid, coroutines and the unfair search strategy of Prolog, it is not
complete itself. The reason is that there may be more than one bug manifest in
a single clause. In the following example, p cannot generate the buggy instance
of q because p has a bug, and vice versa.

Declarative Diagnosis of Missing Answers 283

% p(a). % missing
p(b).

% q(a). % missing
q(c).

m:- p(X), q(X).

?- miss(m, R).

It seems that extending this technique for debugging programs with
negation and other system predicates would introduce further incompleteness. It
would be possible to use this method to generate instances instead of call but
still default to using valid if no bugs are found. Alternatively, incompleteness
questions could be asked regarding the partial executions A1A2A3 . . �9 and B1B2

B3 " ' ' .

w Conclusions
Declarative debugging, especially for systems which support flexible

control, is important for fully exploiting the benefits of logic programming.
Theoretical work has studied the soundness and completeness of declarative
debuggers which allow coroutines, but the practicality of these debuggers has
received little attention. We have presented successive modifications to previous-
ly published debuggers which, in general, significantly reduce the number and
complexity of oracle queries. We have also dicussed examples where various
debuggers have an infinite search space, due to infinite recursion or a call to valid
having an infinite number of solutions. This causes incompleteness in practice.

The reason why the search space can be infinite is that the operat ion of
the debugger does not mirror the (finite) computat ion of the goal which exhibits
the error symptom. I f a left to right computat ion rule is used, these problems are
more easily avoided. We have outlined two algorithms which have a search
space limited by the size of the SLD tree of the goal, and which use simpler
queries. One of these is an extension of an algorithm which has been used
successfully for left to right computat ion rules. However, much more work is
needed to enhance these algorithms, so that fewer questions are asked, establish
their practicality and prove their correctness.

Acknowledgements
I would like to thank Ann Nicholson for numerous comments on a draft

of this paper. John Lloyd originally interested me in declarative debugging and
in the course of this research I have had useful discussions with S. Y. Yan. This
research was supported by the Australian Commonweal th Department of
Science and ARGS (now ARC).

284 L. Naish

R e f e r e n c e s
1) Clark, K. L., "Negation as Failure," in Logic and Data Bases (H. Gallaire and J.

Minker, eds.), Plenum Press, pp. 293-322, 1978.
2) Dershowitz, N. and Lee, Y., "Deductive Debugging," Proceedings of the 4th IEEE

Symposium on Logic Programming, San Francisco, California, pp. 298-306, August
1987.

3) Drabent, W., Nadjm-Tehrani, S. and Maluszynski, J., "The Use of Assertions in
Algorithmic Debugging," Proceedings of the 1988 International Conference on Fifth
Generation Computer Systems, Tokyo, Japan, pp. 573-581, December 1988.

4) Drabent, W., Nadjm-Tehrani, S. and Maluszynski, J., "Algorithmic Debugging with
Assertions," in Meta-Programming in Logic Programming (J. W. Lloyd, eds.), MIT
Press, 1989.

5) Edman, A. and T~irnlund, S. -A., "Mechanization of an Oracle in a Debugging System,"
Proceedings of 8th IJCAI, Karlsruhe, Germany, pp+ 553-555, August 1983.

6) Ferrand, G., "Error Diagnosis in Logic Programming, an Adaptation of E. Y. Shapiro's
Method," Journal of Logic Programming 4, 3, pp. 177-198, September 1987+

7) Huntbach, M. M., "Algorithmic Parlog Debugging," Proceedings of the 4th IEEE
Symposium on Logic Programming, San Francisco, California, pp. 288-297, August
1987.

8) Kanamori, T., Kawamura, T., Maeji, M. and Horiuchi, K., "Logic Program Diagnosis
from Specification," ICOT Technical Report, TR-447, Institute for New Generation
Computer Technology, Tokyo, Japan, March 1989.

9) Kowalski, R. A., Logic for Problem Solving, North Holland, New York, 1980.
10) Lichtrenstein, Y., "Algorithmic Debugging of Flat Concurrent Prolog," M. Se. thesis,

Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel,
August 1987.

11) Lloyd, J. and Takeuchi, A., "A Framework for Debugging GHC," ICOT Technical
Report, TR-186, Institute for New Generation Computer Technology, Tokyo, Japan,
1986.

12) Lloyd, J. W., "Declarative Error Diagnosis," New Generation Computing, 5, 2, pp.
133-154, 1987.

13) Maeji, M. and Kanamori, T., "Top-Down Zooming Diagnosis of Logic Programs,"
ICOT Technical Report, TR-290, Institute for New Generation Computer Technology,
Tokyo, Japan, August 1987.

14) Nadjm-Tehrani, S., "Contributions to the Declarative Approach to Debugging Prolog
Programs," thesis No+ 187, Department of Computer and Information Sciences,
University of Link6ping, Link6ping, Sweden, 1989.

15) Naish, L., "Automating Control of Logic Programs," Journal of Logic Programming,
2, 3, pp. 167-183, October 1985.

16) Naish, L., "Negation and Quantifiers in NU-Prolog," Proceedings of the 3rd Interna-
tional Conference on Logic Programming, Imperial College of Science and Technol-
ogy, London, England, pp. 624-634, July 1986. published as Lecture Notes in Computer
Science 225 by Springer-Verlag.

17) Naish, L., Dart, P. W. and Zobel, J., "The NU-Prolog Debugging Environment,"
Proceedings of the 6th International Conference on Logic Programming, Lisboa,
Portugal, June 1989.

18) Naish, L., "Types and the Intended Meaning of Logic Programs," Technical Report,
90/4, Department of Computer Science, University of Melbourne, Melbourne,

Declarative Diagnosis of Missing Answers 285

Australia, February 1990. to appear in Types in Logic Programming, MIT press.
19) Nicholson, A. E., "Declarative Debugging of the Parallel Logic Programming Lan-

guage GHC," Proceedings of the llth Australian Computer Science Conference,
Brisbane, Australia, pp. 225-236, February 1988.

20) Pereira, L. M., "Rational Debugging in Logic Programming," Proceedings of the 3rd
International Conference in Logic Programming, London, England, pp. 203-210, July
1986. published as Lecture Notes in Computer Science 225 by Springer-Verlag.

21) Pereira, L. M. and Calejo, M., "A Framework for Prolog Debugging," Proceedings of
the 5th International Conference~Symposium on Logic Programming, Seattle, Washin-
gton, pp. 481-495, August 1988.

22) Plaisted, D. A., "An Efficient Bug Location Algorithm," Proceedings of the 2nd
International Logic Programming Conference, Uppsala, Sweden, pp. 151-157, July
1984.

23) Shapiro, E. Y., Algorithmic Program Debugging, MIT Press, Cambridge, Massa-
chusetts, 1983.

24) Sterling, L. and Shapiro, E., The Art of Prolog: Advanced Programming Techniques,
MIT Press, Cambridge, Massachusetts, 1986.

25) Takeuchi, A., "Algorithmic Debugging of GHC Programs and Its Implementation in
GHC," 1COT Technical Report, TR-185, Institute for New Generation Computer
Technology, Tokyo, Japan, 1986.

26) Thom, J. and Zobel, J. eds., "NU-Prolog Reference Manual, Version 1.0," Technical
Report, 86/10, Department of Computer Science, University of Melbourne, Melbourne,
Australia, 1986.

27) Yan S. Y. and Naish, L., "Completeness of an Improved Declarative Debugger," in
Advances in Computing and Information, Canadian Scholar's Press, pp. 132-135, May
1990. to appear in Applied Mathematical Letters.

