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Abstract This paper investigates algorithms for declarative diag- 
nosis of missing answers in Prolog programs, especially programs which use 
coroutines. The logic of the problem is first presented, in the form of the 
simplest possible debugger. Next, we compare several previously published 
declarative debuggers based on Shapiro's work. Examples showing incom- 
pleteness, incorrectness and equivalence of debuggers are given. Several 
enhancements to these debuggers are presented which can reduce the number 
and complexity of questions asked of the oracle, while still supporting 
coroutines. Although no debugger considered is best in all cases, the new 
algorithms are a practical contribution. Finally, we discuss diagnosis algor- 
ithms based more on Pereira's work. These algorithms ask easier questions 
than Shapiro's algorithms but rely on the standard left to right computation 
rule. We discuss possible ways to adapt these algorithms to handle coroutin- 
ing. Completeness of debuggers is also discussed. 

Keywords: Debugging, Coroutines, Failure, Programming Environments. 

w Introduction 
One of the potential advantages of  logic programming is that it enables 

one to easily separate the concerns of  correctness (the declarative semantics, or 
what instances of  a goal are true) and efficiency (the procedural semantics, or 
how the instances of  a goal are computed) )  ) To realise this potential, we must 
be able to initially code, test (partial) correctness and debug programs using just 
the declarative semantics. Declarative debugging (also called algorithmic, 
rat ional  and deductive debugging) enables precisely this, at the debugging 
phase. Unfortunately, the standard left to right computa t ion  rule used in Prolog 
tends to result in infinite loops, making testing and (purely declarative) debug- 
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ging almost impossible. The primitives used to implement negation in Prolog 
(including cut) also cause problems for declarative debugging, due to the lack 
of clear declarative semantics. 16~ Programmers must consider the procedural 
semantics in the initial coding, so at least some of the advantages of declarative 
debugging are lost. 

A partial solution to these problems has been provided by Prolog dialects 
which have more flexible control strategies (most commonly coroutining, rather 
than strict left to right evaluation) which can help avoid infinite loops. 15) Most 
of these languages also have constructs for negation which have well defined 
declarative semantics and are soundly implemented. Without  declarative debug- 
ging, some of  the advantages of  these languages are also lost. Although initial 
coding can be easy, if any bugs are introduced they can be very difficult to locate 
using conventional means because the procedural semantics is so complex. The 
difficulties become even more acute when parallel execution is used. Thus 
declarative debugging and Prolog dialects with flexible control (including 
parallel execution) have a natural affinity. Despite this, there has been little work 
on building practical declarative debuggers for these dialects, though some work 
has been done on declarative debugging for other (parallel) logic programming 
languages. 

The  first work on declara t ive  debugging o f  Pro log  was done by 
Shapiro? a) It introduced algorithms for diagnosing wrong and missing answers 
which relied only on knowledge of  the intended declarative semantics. Given a 
goal which succeeds or fails incorrectly, the algorithms trace through the 
execution, querying an oracle (most commonly the programmer) about the truth 
of  various subgoals, and eventually isolate the error to a single clause or 
procedure. These algorithms were originally applied to debugging Prolog 
programs which used the standard computation rule but can also be applied to 
programs which use coroutining. Any wrong answer diagnosis algorithm can be 
easily adapted to support coroutining. Given a successful (wrong) derivation 
found using one computation rule, the sequence of calls can be reordered to 
simulate any other computation rule, including the standard one. However, a 
goal which fails finitely with one computation rule may loop with another, so 
missing answer diagnosis algorithms which rely on the standard computation 
rule cannot (necessarily) be adapted to handle coroutining. 

There have been a great number of  papers analyzing and extending 
Shapiro's work. A significant improvement in missing answer diagnosis was 
described in Ref. 20). The most important aspect of  this algorithm was the 
introduction of  a new kind of  oracle query which resulted in easier questions to 
the user. The algorithm also uses dependency information to improve the search 
strategy and allows users to state that certain calls are "inadmissible". Despite 
the advantages of this algorithm, much of  the subsequent work on declarative 
diagnosis was still based on Shapiro's algorithms, for several reasons. Shapiro's 
algorithms are simple and were expressed by short Prolog programs whereas 
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Pereira's algorithms are more complex, were not presented as clearly and use 
information such as admissibility which seemed procedural  rather than declara- 
tive. Furthermore,  Pereira's algorithm relies on the standard computat ion rule so 
it cannot  be applied to coroutining (or stream and-parallel) systems. 

Other areas which extend the original work include the following: theo- 
retical issues such as soundness and completeness; 4'6'12'13a7~ automating or extend- 
ing the orac le  i n t e r ac t ion ;  2'3'4'5'8'13'27) i n t e g r a t i o n  o f  tes t ing  and  e r ro r  
diagnosis; 2'8'17) complexity of  diagnosis algorithms; zz) integrating wrong and 
missing answer diagnosis with intelligent search strategies; 211 diagnosis of  logic 
programs with arbitrary formulas in the clause bodies; 12) and declarative diagno- 
sis o f  committed choice parallel logic programs. 7'1~ 

In this paper, we are primari ly concerned with declarative diagnosis of  
missing answers, especially for (Prolog) programs which can use coroutines. 
Most of  the ideas presented here have been implemented for the NU-Pro log  
system, z6) NU-Prolog has a flexible computat ion rule and allows arbitrary 
formulas in the bodies of  clauses. However, to assist in presentation, the code we 
discuss will only deal with Horn  clauses. It can be extended to deal with the 
more general case simply by adding more clauses, as in Ref. 12). We start by 
defining the simplest possible declarative debugger, then progressively make 
enhancements following the style of  Shapiro's debuggers. Later we discuss 
possible extensions to debuggers more in the style of  Pereira's. 

w The Simplest Possible Declarative Debugger 
There are two basic kinds of  errors detected by most declarative debug- 

gers. The simplest is an incorrect clause instance, which can be defined by the 

following clause: 

% debugger N.O, part I 
bug((A:- B)):- is_clause(A, B), unsatisfiable(A), valid(B). 

This states that, in the intended interpretation of  the program, the head of  the 
clause instance is unsatisfiable but the body is valid. That  is, the clause is 
incorrect in the intended interpretation, is clause returns instances of  object 
program clauses, valid and unsatisfiable are calls to an oracle, which may be 
implemented either by querying the user (as we assume in this paper) or by aasing 
some specification of the p rogram? 's'81 Incorrect clause instances generally lead 
to incorrect answers returned by the program although if negation is present, 
they can also result in incompleteness of  the program (missing answers). The 
clause above is not only a definition of an incorrect clause instance; with 
appropriate  definitions of  the three primitives it can be used as a logic program 
to find incorrect clause instances. It is sound and complete, since it is its own 
specificaiton. To be complete in practice, the order in which clause instances are 
considered must be fair, so that every clause instance is considered eventually. 
Generally, a large number of  oracle queries will be needed to find a bug (or all 
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bugs). Previously published algorithms reduce the number  of  oracle queries to 
a practical level. 

The second type of  bug is an uncovered atom, which can be defined by 
the following NU-Prolog clause (all denotes universal quantification in NU- 
Prolog): 

~ debugger N.0, part 2 
bug(atom(A)):- 

valid(A), 
all B not (is_clause(A, B), valid(B)). 

This states that, in the intended interpretation, the a tom A is valid but there is 
no matching clause instance with a valid body (later we will examine weaker 
versions of  this definition). This definition implies that the completion of the 
procedure 1) is incorrect in the intended interpretation. It can also be run as a 
logic program, though it has the problem of requiring many oracle queries. In 
conjunct ion with the clause for incorrect clause instances, this is the simplest 
program for declarative error diagnosis. 

A third class of  bugs, inadmissible calls, are detected by Pereira's debug- 
gers. z~ Calls are said to be inadmissible if  they have incorrect argument types. 
It has generally been considered that this is not related to the declarative 
semantics of  the program, and hence has not been adopted by other declarative 
debugging systems. In Ref. 18) it is argued that types play an important  role in 
the intended semantics of  logic programs. It seems that this work can be used as 
a theoretical basis for using admissibility in declarative debugging. We do not 
deal with types or admissibility here however. 

To find incorrect clause instances, it is sufficient to have an oracle which 
can determine if a ground atom is valid. The definition of  uncovered atoms is 
more complex, and debugging missing answers generally requires more complex 
oracle questions. Three types of  questions have been used by debuggers in the 
literature. The first asks whether a (generally non-ground) atom is satisfiable. 
The second asks what valid instances a non-ground atom has. This requires the 
oracle to provide bindings for variables in the atom, rather than just a yes or no 
answer. I f  the atom has several valid instances, all of  these may have to be given 
eventually. The third asks whether a set of  instances of  a non-ground atom 
(generally the set of  answers returned by the program) contains all valid 
instances of  the atom. Shapiro-style debuggers use the first and second types of  
questions. Pereira-style debuggers use the first and third types of  questions. 
Although questions of  the third type are more complex in some sense, they only 
require a yes or no answer and they are relatively easy for the user to answer. 

w Using a Goal to Guide the Search 
The simple declarative debugger(s) presented in the previous section 

essentially do a blind search for all possible bugs. They do not use a bug 
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symptom (a wrong or missing answer) to guide the search. All previous work on 
declarative debugging has used a goal which exhibits incorrect behaviour  to 
guide the search for bugs. Most debuggers are divided into two procedures: 
wrong, for diagnosing goals with wrong answers, and miss, for diagnosing goals 
with missing answers (sometimes different names are used). We discuss these 
approaches in this section. 

Lloyd's  approach 12~ was to first try to isolate the logic of  the problem and 
later add control information to make the program search for bugs more 
efficiently. The core of  his version without "control information" is as follows: 

% debugger L. I 
miss((A, B), R):- 

miss(A, R). 
miss((A, B), R):- 

miss(B, R). 
miss(A, R):- 

user_pred(A), 
clause(A, B), 
miss(B, R). 

miss(A, atom (A)):- % equivalent to N.0 part 2 
user_pred(A), 
valid (A), 
\ +  (clause(A, B), valid(B)). 

The full version of  the program deals with negation, quantifiers etc., and 
includes a definition of wrong also. We will simply be concentrating on the 
port ion used for diagnosing missing answers for Horn  clause programs. The 
programs we introduce can all be extended in the way Lloyd has shown. Also, 
we will be using standard Prolog to express the programs. To make the theory 
clear, Lloyd distinguished between object and meta levels and used explicit 
quantifiers in the logic. In this paper we try to uncover some of  the practical 
difficulties which can be obscured in more theoretical approaches. 

It is interesting to compare  L.1 with N.0 (part 2). The last clause of  L.I 
is equivalent to N.0. The other clauses use the goat and restrict the search space, 
so L.1 is not completely free of  control information. Rather than returning all 
possible bugs, it will only return bugs which are connected to the top level goal 
by a series of  calls. This is reflected in the soundness and completeness theorems 
Lloyd proves. The soundness criteria for miss and wrong do not mention the goal 
and are equivalent to N.0: if  miss (wrong) succeeds then it returns a bug (as 
defined by N.0). However, the completeness criterion for miss is more restricted: 
if the goal is satisfiable but has a finitely failed SLD tree then miss will return 
a bug (not necessarily all bugs). Thus, if miss is called with a goal which 
succeeds, no bug needs to be returned, and if the program contains several bugs, 
miss need only return one of  them, whatever the goal is. The following example 
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shows how L.1 can fail, even though the program contains a bug: 

p(a). 
% q(a). % missing (uncovered atom) 

?- miss(p(a), R). % fails (quite reasonably) 

This seems a reasonable (partial) specification for miss. In practice, we 
call miss when we have found a goal which incorrectly fails, and just find and 
correct one bug at a time. The advantage of having a stricter completeness 
difinition is that the debugger can have a smaller search space. Instead of  a bl ind 
search for bugs, L. 1 only examines atoms which, for some computat ion rule, can 
be called (directly or indirectly) from the top level goal. For  each of  these atoms, 
it finds valid instances (by calling valid) and checks that there is no matching 
clause with a valid body. The search space of L.1 is still much larger than is 
needed to achieve completeness (it can be infinite, even for a finitely failing 
goal). In fact, L.1 was never intended as a practical debugger. Instead, Lloyd 
proposed the following program, which has addit ional control information, as 
a more practical debugger which supports coroutines. 

% debugger k.2 
miss((A, B), R):- 

\ +  call(A), % extra control 
miss(A, R). 

miss((A, B), R):- 
\ +  call(B), % extra control 
miss(B, R). 

miss(A, R):- 
user_pred(A), 
clause(A, B), 
valid(B), % extra control 
\ +  call(B), % extra control 
miss(B, R). 

miss(A, atom(A)):- 
user_pred(A), 
valid(A), 
\ +  (clause(A, B), valid(B)). 

L.2 is identical to L. l except that before each call to miss there is a check 
to make sure the goal fails and there is a check in the third clause to make sure 
the goal is valid (in practice this finds instances of  the goal which are val id--see  
below). I f  the initial goal is valid but fails then this invariant  will be maintained 
in all subsequent calls to miss. The search for bugs is restricted to clause 
instances which may cause the initial goal to fail, making  it a practical debugger. 

Procedurally, L.2 works as follows. Suppose miss is called with a valid 
failing atomic goal. The debugger searches for a matching clause, then searches 
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for a valid instance of the clause body (which must fail) then finds a failing atom 
in this goal and recurses. I f  there is no valid instance of  a matching clause then 
the atomic goal is an uncovered atom, 

The search for matching clauses and valid instances can be nondeter- 
ministic. To find valid instances of  a complex goal, the goal can be broken down 
into atomic subgoals and the user (or another oracle) is asked about these. The 
user is asked whether the subgoal is satisfiable (has any valid instances), and if 
the reply is yes, the user must type an instance (unless the subgoal is already 
ground). On backtracking, the user is asked if there are more valid instances and 
the process is repeated. Thus, if  there are N valid instances of  a subgoal, the user 
may have to answer up to N + 1 yes/no questions and N questions where 
instances are given (instance questions). Answers typed by the user can be saved, 
so even if calls to valid are repeated the questions to the user are not. One of  the 
key performance criteria of  declarative debuggers is the number of  questions 
asked, especially instance questions, as these require more effort to answer. 

Ferrand ~ also proves a form of  completeness for his debugger. Though  
written rather differently, it is essentially very similar to Lloyd's  first version, but 
with some extra control added to the third clause (a subset o f  that in L.2): 

% debugger F. l 
miss((A, B), R):- 

miss(A, R). 
miss((A, B), R):- 

miss(B, R). 
miss(A, R):- 

user_pred(A), 
clause(A, B), 
valid(B), % extra control 
miss(B, R). 

miss(A, atom(A)):- 
user_pred(A), 
valid(A), 
\ +  (clause(A, B), valid(B)). 

Another minor syntactic difference is the use of a predicate called satisfiable, 
which actually returns all valid instances of  a goal. We have renamed it valid to 
minimise confusion (we do the same for Shapiro's  debuggers given later). 

Lloyd leaves the completeness of  L.2 as an open question. As the program 
stands, it is not complete: the call to the debugger fails in following example. 

p(a). 
% p(b). % missing 
q(b). 

?- miss((p(X), q(X)), R). % fails in L.2 
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The reason for failure is that the top level call to miss contains a goal 
which fails and is satisfiable but  not valid. In practice, this apparent bug in L. 
2 can be avoided simply by calling miss via an interface procedure which finds 
a valid instance of  the goal, rather than calling miss directly. Another source of  
incompleteness is the use of  \ +  and call to check for failure. Theoretically we 
should use a fair computat ion rule though in practice it does not seem worth- 
while. The use of  an unfair computat ion rule can result in an infinite loop 
instead of  a call to \ +  succeeding and the possible subsequent detection of  a 
bug. However,  if this was the case, the top level goal would have looped rather 
than finitely failed (assuming the same computat ion rule is used). We shall 
discuss various kind of infinite loops these debuggers can get into later. 

Dershowitz and Lee's debugger z~ also fails to find the bug in this example. 
It assumes that incorrect failure is caused by the incorrect finite failure of  a 
single a tom in the computat ion.  In this example, p(X) is missing a solution but 
it does not finitely fail. I f  we extend the example slightly, this debugger will 
return an incorrect answer. Instead of  returning an a tom of  the procedure which 
has an incorrect completion, it returns an atom from which the procedure was 
called (this procedure is correct). 

p(a). 
% p(b). % missing 
q(b). 
r:- p(X), q(X). 

?- miss(r, R). % returns atom(r), not atom(p(b)) 

Huntbach ' s  debugger for Parlog7 ~ makes a similar assumption, though this may 
be reasonable in Parlog, since calls cannot return more than one answer. The 
error may be due to a misunderstanding of  the terminology used in Ref. 20), 
which uses the term finitely failed to describe goals which miss some answers, 
even if they succeed with some other answers. Shapiro 23) also uses the term finite 
failure, but in a way which is consistent with (but not identical to) the normal 
use. 

The code of  Shapiro's original debugger za~ is as follows: 

% debugger S.I 
miss((A, B), R):- 

(call(A)-- > 
miss(B, R) 

miss(A, R)). 
miss(A, R):- 

user pred(A), 
(clause(A, B), valid(B) - - >  

miss(B, R) 
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R = atom(A)). 

Like L.2, an interface procedure shoud be used, which makes sure the 
goal is valid but fails. Without  this, S.1 can succeed when there are no errors: 

p(a). 

~- miss(p(b), R). % returns atom(p(b)) but should fail 

I f  the top level goal is valid and fails then this invariant will be preserved, as 
with L.2. In fact, the control is equivalent in the two debuggers. S.1 can be 
rewritten as follows: 

miss((A, B), R):- 
\ + call(A), 
miss(A, R). 

miss((A, B), R):- 
call(A), % equivalent to \ + call(B) 
miss(B, R). 

miss(A, R):- 
user_pred(A), 
clause(A, B), 
valid(B), 

% \ +  call(B) must succeed 
miss(B, R). 

miss(A, atom(A)):- 
user_pred(A), 

% valid(A) must succeed 
\ +  (clause(A, B), valid(B)). 

The first clause is identical to that of  L.2. The second call has call(A) instead 
of  \ +  call(B), but the two are equivalent in the case where the first clause fails, 
since A succeeds and (A, B) must fail. The third clause is missing the test \ +  
call(B), but this must succeed anyway, since A fails. The last clause is missing the 
test valid(A) but this must also succeed. Thus, L.2 and S.1 have essentially the 
same logic and ask exactly the same questions if the normal  cluase selection rule 
is used. The extra call to valid in L.2 does not result in more questions, since it 
is the same as a previous call which saves the information typed by the user. L. 
2 is more similar to the specification but S.1 is more efficient. 

w Rearranging and Eliminating Some Control 
The S.1 and L.2 debuggers can be rewritten in a more logical and 

straightforward way. Instead of  using an interface procedure then maintaining 
the invariant that each goal is valid and fails, this condit ion can simply be put 
into the specification (or definition) of  miss. That  is, miss should succeed only 
when (an instance of) the goal is valid and fails, and an uncovered atom should 
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be returned. The following debugger is an implementat ion of this idea. This 
debugger does not require an interface procedure: it will find a valid failing 
instance of  the goal (if one exists) then proceed to find the bug. 

% debugger N.I 
miss((A, B), R):- 

~ valid(B), % like S.I/L.2 (see below) 
miss(A, R). 

miss((A, B), R):- 
valid(A), 
miss(B, R). 

miss(A, R):- 
user_pred(A), 
valid(A), 
\ +  call(A), 
clause(A, B), 
miss(B, R). 

miss(A, atom(A)):- 
user_pred(A), 
valid(A), % the goal (instance) must be valid 
\ +  call(A), % and must fail 
\ +  (clause(A, B), valid(B)). 

It is simple to show that this program, including the commented out call 
to valid, is correct with respect to the specification above. Compar ing it with L. 
1, we see that the calls to valid in the first three clauses and the calls to \ +  call(A) 
in the last two clauses are control  information used to restrict the search. There 
are some repeated calls to valid (the call to valid in the first clause overlaps with 
the other calls to valid), but these will not result in extra questions for the user. 
In fact, i f  the first two clauses are reversed, N.1 will ask exactly the same 
questions (in the same order) as S.1 and L2.  Although this debugger is slightly 
more verbose than the others, it gives a very clear statement of  the logic behind 
them. Another  consequence of  rearranging the control is that the calls to valid 
contain simple atoms rather than complete clause bodies. This makes it easier to 
modify the debugger so as to reduce the number of  questions the user is asked. 

By eliminating the call to valid in the first clause, repetition of calls to valid 
can be reduced and the number  of  questions can also often be reduced. The 
behaviour  of  the program is then as follows. Suppose miss is called with an 
atomic goal. The debugger searches for a valid instance of  the atom which fails. 
If  there are none, it fails. Otherwise, it searches for a matching clause, then 
searches for an instance of the clause body such that all subgoals to the left of  
a given a tom are valid and that a tom has a valid failing instance (it then recurses 
on that atom). If  there are no such matching clause instances then the valid 
failing instance of the atomic goal is an uncovered atom. 

This  behaviour is essentially the same as Shapiro 's  improved debugger for 
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missing answers TM reproduced below (with slight modifications so the last clause 
fails rather than give an error when the goal succeeds): 

% debugger S.2 
miss(A, R):- 

clause(A, B), 
(missl(B, R)-- > 

true 

R = atom(A)). 

missl((A, B), R):- 
valid(A), 
( call(A), 

miss I (B, R) 

\ +  call(A), 
miss(A, R)). 

miss I (A, R):- 
user_pred(A), 
valid(A), 
\ +  call(A), 
miss(A, R). 

S.1 and L.2 find a valid instance of the whole clause body (by getting 
valid instances of  individual subgoals) before searching for the failing subgoal, 
S.2 and N.1 check whether a valid instance of  a subgoals fails as soon as the 
instance is found. Consider the following example: 

p(X):- q(x), r(Y), s(Y). 

% q(a). missing 
r(a). 
s(a). 

?- miss(p(a), R). 

S.1 calls valid((q(a), r(Y), s(Y))). The user is first asked whether q(a) is val id 
then is asked whether the other subgoals have valid instances and what those 
instances are. N. 1 and S.2 ask the first question then immediately check whether 
q(a) fails. It does, so the debuggers look for matching clauses and, finding none, 
return atom(q(a)). In this example, two yes/no questions and one instance 
question are avoided. If  there were more subgoals to the right of q(X) this saving 
would be increased. If backtracking was needed to find a valid instance of  the 
subgoals, the difference in the query complexity of  S.1/L.2 and S.2/N.1 could be 
exponential. 

In practice, S.2 asks fewer questions than S. 1. However, the difference in 
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behaviour  is essentially due to the elimination of  some control information (the 
call to valid in the first clause of  N.1), so it is worth considering if the search 
space of  S.2 (and the number of  questions asked) can ever be larger than that o f  
S. 1. Shapiro claims that S.2 never has worse query complexity than S. 1, but the 
following example disproves this. 

m:- mZl, fail. 

m:- ml. 

m4:- m3. 
m3:- m2. 
m2:- m l. 

% m l. % missing 

?- miss(m, R), 

Since the body of  the first clause of  m has no valid instances, miss(m4, R) will 
never be called in S.1. In S.2 it will be called, which leads to the discovery of  
a (the) bug, but not as directly. I f  we consider the same program with the second 
clause of  m is removed (so m should fail, and hence no answer is missing) S.2 
still succeeds. Thus S.2 (and N. 1) can return bugs even when given a goal which 
behaves correctly. It seems reasonable to consider this a feature. 

Even when the search space of S.I and S.2 are identical, S.2 may ask more 
questions because the order of  searching is subtly different. To debug nondeter- 
ministic programs, it is important  that valid returns all valid instances of  the 
goal. S.1 gets a valid instance of  the whole clause body then checks that all 
subgoals succeed. On backtracking another instance is generated. S.2 gets all 
valid instances of  the first subgoal in a clause body and checks that each one 
succeeds before proceeding to the second subgoal. Consider the following 
example: 

p(a). 
p(b). 
p(c). 
% q(a). % missing 

m:- p(X), q(X). 

?- miss(m, R), 

I f  we assume p(a) is the first valid instance of p(X) returned in S.1 then S.1 will 
require fewer questions than S.2. Even if p(a) was the only valid instance, more 
questions would be asked in S.2, since a question must be asked to verify that 
there are no more valid instances. Questions of  this kind are avoided in some of  
Shapiro 's  examples, because some predicates are assumed to be deterministic. 
This requires additional information from the programmer,  which we do not 
consider in this paper. 
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There is a final subtle difference between S.1/L.2 and S.2/N.1 which 
concerns the behaviour of  valid with atoms that have a non-ground valid 
instance. Althogh from a theoretical point  of  view we might say that valid should 
return all valid instances of  an atom (or at least all ground valid instances), in 
practice it is important  to represent an infinite set of  ground instances by a single 
non-ground instance. Shapiro actually assumes there are always a finite number  
of  (ground) valid instances, which makes a significant restriction on the class of  
programs which can be debugged. For  example, if  the debugger calls 
valid(length(Xs, I)), the user shoud be able to give the single substitution Xs = [_] 
rather than the infinite number  of  ground lists of  length one. Unfortunately, if 
this is done in S.2/N.1, the debuggers can fail to find a bug (and even return 
spurious bugs in the case of  S.2). Consider the following example, where q(X) is 
true for all X, but the fact has been misstyped: 

p:- q(X), r(X). 

q(x). % 'x' should be 'X' 
r(a). 

7_ miss(p, R). 

The debuggers call valid(q(X)), fol lowed b y \ +  call(q(X)). I f  the first call 
succeeds without instantiating X, the second call fails, preventing the bug in q 
being found. In N.1 the top level call to miss fails and in S.2 it returns atom(p), 
which is incorrect. The basic problem is that we want to check if q(X) succeeds 
for all X, but \ +  checks if it succeeds for some • This is the basic problem with 
negation in Prolog. There have been many partial solution proposed, but none 
are completely satisfactory. Rather than fixing the code in these and subsequent 
debuggers in this paper, we will simple point out the problem and leave it to 
other implementors to add some hacks or perhaps even find an elegant solution. 
The problem is actually less severe in some of the later debuggers we discuss, 
because valid is not used as much. 

w Using Call Instead of Valid 
The call to valid in the second clause of  N.1 is useful for instantiating 

variables in the goal so that calls to valid for subsequent subgoals have fewer 
solutions (that is, the search space is restricted). However, it does result in 
questions being asked. To avoid this, it is possible to use call to generate 
instances. I f  there is no bug in the first subgoal, then call will return the same 
answers as valid. I f  the call does not return all valid instances, some bugs in the 
rest o f  the goal may not be discovered. However, the first clause of  the debugger 
will find a bug in the first subgoal. Although the search space is reduced and a 
call to miss may return fewer bugs than before, we can still guarantee that a bug 
will be returned if the goal has a valid failing instance. This satisfies the 
completeness definition of  Lloyd and causes no problems if bugs are found and 
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removed one at a time. 
Although the use o f  call reduces the number of  questions to the user, it 

can markedly increase the cpu time used by the debugger. If the computat ion of  
the top level goal takes N resolution steps then the debugger can take O(N 2) 
steps. Many debuggers avoid this problem by saving a representation of  the 
original computation so that recomputation is avoided. The tradeoff between 
time and and space is analysed in Ref. 22). When a left to right computation rule 
is used, the search space of  N.2 is a subset of  the SLD tree of  the top level goal 
(unlike the debuggers presented so far). Recomputat ion could therefore be 
avoided using this technique. However, coroutining can reduce the size of  the 
search space without reducing the search space of  the debugger, so some extra 
computat ion may have to be done in the debugger. We discuss the problems 
associated with coroutining later in this section. Restricting the search space to 
that o f  the original SLD tree is discussed in Section 8. 

There are two other useful modification to N.1 which we now make. The 
first two clauses are swapped to improve the search order (we explain this in a 
moment)  and the last two clauses are combined using an if-then-else construct 
(this makes the debugger more efficient). 

% debugger N.2 
miss((A, B), R):- 

call(A), % was valid(A) in N.I 
miss(B, R). 

miss((A, B), R):- % was first clause in N. I 
miss(A, R). 

miss(A, R):- % last two clauses in N.I combined 
user_pred(A), 
valid(A), 
\ +  call(A), 
(clause(A, B), 
miss(B, RI) 
- - >  

R = R I  

R = atom(A) 
). 

In the following example, N.1 would ask the user for valid instances of  
q(Y), then ask if r(a) is valid. Using call instead of  valid avoids questions concern- 
ing q (one yes/no and one instance question) if the debugger clauses are ordered 
as shown above. 

p(X):- q(Y), r(X), s(Y). 

q(a). 
% r(a). missing 
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s(a). 

?- miss(p(a), R). 

N.2 calls subgoals in a clause from left to right until one fails. It then asks 
if that subgoal has any valid instances. I f  not, it backtracks to find different 
solutions to the calls of  subgoals to the left or other valid instances of  subgoals 
to the left which fail. I f  the first two caluses are reversed in N.2, the search order 
is reversed. The first failing subgoal is only examined after all previous subgoals 
are examined. This usually results in more questions being asked, particularly 
with deterministic computat ions  (only one clause matches at each stage). 

I f  the computat ion is deterministic and no procedures return incorrect 
answers, the first failing subgoal is always the subgoal with the bug. Thus N.2 
can locate a bug in at most D yes/no questions and D instance questions, where 
D is the depth of the failed p roof  tree. S. l requires C.D yes/no questions, where 
C is the number of  subgoals per clause used in the incorrect failing branch of  the 
p roof  tree, and up to C.D instance questions (depending on how many calls to 
valid are ground). The best case for N.1 is the same as N.2, and occurs when the 
first subgoal contains the bug at each step. The worst case for N.1 occurs when 
the last subgoal contains the bug at each step. C.D instance questions and 
(2C-1).D yes/no questions are asked (if the computat ion is known to be 
deterministic in advance, this can be reduced to C.D, by avoiding "any more 
instances" questions). 

In Prolog systems which allow coroutines, the use of  call can cause 
complications.  Generally, such systems have a mechanism for delaying the 
evaluat ion of  a call until certain variables in the calt are instantiated. Thus 
call(A), in the first clause of  N.2 can terminate with some subgoals still delayed, 
rather than A being executed completely (call(A) is said to flounder). Any 
variables bindings that would normally have been computed by the delayed 
calls are not passed on to B. In the worst case, calling A binds no variables in 
B, effectively eliminating the control component  of  the first clause and hence 
significantly increasing the search space of the debugger. Another  practical 
problem is that the delayed subgoals of  A can wake up later and interfere with 
the execution of the debugger. 

The most practical solution to these problems is to be more flexible about  
ordering conjuncts. Rather than always considering the first conjunct first, it is 
better to try to find a conjunct  which executes completely and, effectively, 
reorder the conjunction so this call appears first. In practice, it is rare for all the 
conjuncts to flounder and in the uncommon case when it occurs, we can accept 
a larger search space and either not call any subgoals or use hacks such as 
copying terms to avoid delayed calls causing problems. The first two clauses of  
N.2 can be combined in a way similar to what follows (again, we refrain from 
complicat ing this and subsequent debuggers by including the details of  desirable 
hacks): 
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miss((AO, BO), R):- 
pick_nondelay subgoal((AO, BO), A, B), 
( call(A), 

miss(B, R) 

miss(A, R) 
). 

By combining the last two clauses of  N.I into a single if-then-else 
construct in N.2, the (repeated) work of  the last clause is avoided. Unfortunate- 
ly, from a theoretical viewpoint, this makes the debugger incomplete: 

m:- ml, fail. 
% m. % fact missing 

ml:- m. 

?- miss(m, R). 

The computation rule could be such that m and ml both finitely fail. The 
last clause for N.1 could then succeed, returning the uncovered atom m. The 
complete SLD tree for the miss goal in N.1 has an infinite branch because of  the 
third clause, but in theory, this will not prevent the answer from being returned 
(we could use a fair search for example). Because the last two clauses are 
combined in N.2, the recursive call to miss (in the condit ion of the if-then-else) 
neither succeeds or finitely fails, so there is no success branch on the S L D N F  
tree. Both N.2 and S.2 must loop rather than returning the bug. If we use 
standard Prolog to run the debuggers, even N.1 loops, because of the unfair 
depth first search which Prolog uses. Hence, in practice, introducing the if-then- 
else does not cause and more infinite loops. 

Avoiding this kind of  infinite loop seems quite difficult without calling 
valid with a whole clause body (and thus asking more questions). In a standard 
Prolog system, with a left to right computation rule, the problem is disguised 
because the debugger does not loop unless the top level goal also loops. With 
a different computation rule however, the debuggers can loop even when the 
goal finitely fails. The difficulty lies in the fact that the debugger splits a 
conjunction into parts and searches for bugs in each part independently (per- 
haps passing some variable bindings from left to right). When the conjunction 
is called however, coroutining make the interaction of  the conjuncts much more 
complex. The operation of  the debugger is unable to mirror the execution of  the 
goal as can be done with a left to right computat ion rule. Examining the 
conjuncts in a more flexible order, using pick_nondelay_subgoal as suggested 
above, is an effective way of  avoiding (most) infinite loops of this kind in 
practice. 
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w Testing Validity of Answers from Call 
It is quite common for failures to be caused by subcomputat ions return- 

ing incorrect answers. Checking that the answers returned from call are correct 
has several advantages. First, if  we know that a call has returned an incorrect 
answer, we can use wrong to find a bug. This is generally better than using miss, 
since it requires only simple yes/no questions, and is more likely to find an error 
in a single clause, rather than a whole procedure. Second, if we know that  the 
answer obtained by calling a subgoal is correct, then a later call to valid does not 
need to ask the user so many  questions (especially instance questions). Third, 
asking the validity of  answers from call immediately can prevent incorrect 
bindings to variables showing up in other questions. These questions can be 
confusing, since they can ask the validity of  subgoals which should never occur. 
In Pereira's debuggers, if such calls are declared inadimissible then the wrong 
answer diagnosis algorithm is invoked. However, wrong answers do not neces- 
sarily lead to inadmissible calls, so they are not always detected. 

Checking that answers are valid generally involves asking questions. In 
programs which do not return incorrect answers, more yes/no questions will be 
asked. A reasonable compromise  exists which delays (and often avoids) asking 
the extra questions. It has the first two advantages mentioned but not the third. 
The compromise  is to ask if a result o f  a call is valid if  and when the subsequent 
call, to miss fails. This is implemented in the program below (the previous 
comments  concerning call(A) floundering apply here also). I f  the order of  dis- 
juncts in the first clause is changed then the questions are asked as soon as call 
returns, gaining the third advantage but, we believe, asking more questions on 
average. Immediate detection of  wrong answers and efficient diagnosis of  failing 
deterministic code (as discussed in the previous section) seem to be conflicting 
requirements. 

The algorithm of  Refs. 8) and 13) checks the validity of  all answers to a 
call before checking if it misses answers. The order of  examining the different 
atom instances in a failed conjunction is not specified, but if our ordering is used 
the extra questions are delayed even longer than in our  algorithm. The validity 
of  answers is checked only after all answers have been considered. This strategy 
can be implemented in the code below by putting call(A) in both disjuncts o f  the 
first clause instead of before the whole disjunction. 

% debugger N.3 
miss((A, B), R):- 

call(A), 
( 

miss(B, R) 
; % could reverse order of; 

unsatisfiable(A), 
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wrong(A, R) 
). 

miss((A, B), R):- 
miss(A, R). 

miss(A, R):- 
user_pred(A), 
valid(A), 
\ +  call(A), 
( clause(A, B), 

miss(B, RI) 
- ->  

R - -R I  

R ---- atom(A) 
). 

The order of  the first two clauses is important  for two reasons. First, the 
order of  the search is superior (as with N.2). Second, it reduces the number  of  
instance questions (the second advantage ment ioned above). Suppose miss is 
called with a conjunction and that the first subgoal is missing a solution but the 
rest of  the conjunction is free of  bugs. The first subgoal will be called and for 
each solution unsatisfiable will (eventually) be called. This will result in one yes/  
no question about the validity of  each solution. When all solutions to the 
subgoal are exhausted, the debugger backtracks to the second clause of  miss and 
valid is called with the buggy subgoal. Since all instances of  the subgoal which 
succeed are known to the system, it can just ask if there are any more valid 
instances. The first instance typed by the user will fail so miss can proceed 
recursively. I f  the clause order were reversed, or one of  the previous debuggers 
were used, the user may have to type many valid instances of  the subgoal, all of  
which succeed. Thus the number  of  instance questions asked by this debugger is 
one per atom checked, compared with an unbounded number for the other 
debuggers presented so far. 

The following example (from Lloyd) is useful for comparing S.1/L.2, S. 
2 /N . I ,  N.2 and N.3. 

% "quick" sort 
qsort(E~, El). 
qsort(A.B, C.D):- 

part(A, B, L I, L2), 
qsort(L2, $2), 
qsort(L I, S I), 
app(SI, A.S2, C.D). 

% partition 
part(A, E~, ~J, E~). 
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part(A, B.C, B.D, E):- 
A>----B, 
part(A, C, D, E). 

% should be part(A, B.C, D, B.E) 
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A = [ I ,  2], B - -  [] .  
A---- [] .  
A---  [ I ,  2]. 

A - -  [ ] ,  B--- [2] .  
A = [2] .  

The following shows the questions asked by N. 1, and user responses. The 
error returned is the same. There are nine yes/no questions and four instance 
questions. All questions about  app and some questions about qsort are avoided, 
but there are three extra questions verifying there are no more valid instances of  
a goal (these are put on separate lines). 

qsort([3, I, 2], [ I ,  2, 3]) y 
part(3, [I, 2], A, B) y; 
part(3, [ I ,  2], A, B) no 
qsort([], A) y; 
qsort([], A) no 
qsort([I, 2], A) y; 
part(I, [2], A, B) y; 
part(I, [], [], [2]) n 
part(I, [2], A, B) no more 

The following shows the questions asked by N.2, and user responses. The 
error returned is the same. There are eight yes/no questions and three instance 

A =  [1,2] ,  B - -  []. 
more 

A---- []. 
more 

A---- [I, 2]. 
A =  [], B - -  [2]. 

qsort([3, I, 2], [ I ,  2, 3]) y 
part(3, [I, 2], A, B) y; 
qsort([], A) y; 
qsort([I, 2], A) y; 
app([l, 23, [3], [ i ,  2, 3]) y 
part(I, [2], A, B) y; 
qsort([2], A) y; 
app([], [I, 2], [ I ,  2]) y 
part(I, [], [], [2]) n 

part(A, B.C, D, E):- 
A < B ,  
part(A, C, D, E). 

% append 
app(r], A, A). 
app(A.B, C, A.D):- 

app(B, C, D). 

7_ miss(qsort([3, I, 2], [I, 2, 3]), a). 

The following shows the questions asked by S. 1, and user responses. The 
error returned is atom(part(I, [2], [], [2])). There are nine yes/no questions and 
five instance questions (note that each line showing an instance question also 
has an associated yes/no question), valid(qsort([], A)) is called twice but question- 
ing the user is avoided on the second occasion, since the information is stored. 



274 L. Naish 

questions. Even though the example is not well suited to the search strategy of  
N.2, checking the first failing subgoal first still reduces the number and complex- 
ity of  questions asked. 

qsort([3, I, 2], [ I ,  2, 3]) y 
app(EI],  E3], [ I ,  2, 3])  n 
qsort( [ I ,  2], A) y; A :- El, 2]. 
app([ ] ,  El], El, 2])  n 
qsort( [ ] ,  A) y; A --- [ ] .  
qsort([], A) no more 
part(I,  [2] ,  A, B) y; A : [ ] ,  B : [2] .  
part(l, [], [], E2]) n 

The following shows the questions asked by N.3, and user responses. The 
error returned is an incorrect clause instance: 

part(I, E2], [], []):- 
I<2 ,  
part(I, [], [], []). 

There are five yes/no questions and no instance questions. When it is discovered 
that qsort([I, 2], [I i) is not valid, wrong is called (which locates the bug with only 
two further yes/no questions). 

qsort([3, I, 2], El, 2, 3])  y 
app( [ I ] ,  [3],  [ I ,  2, 3])  n 
qsort( [ I ,  2], El i )  n 
part(I, [2],  [ ] ,  [ ] )  n 
part(I, [ ] ,  [ ] ,  [ ] )  Y 

w Using Satisfiable Instead of Valid 
I f  we know that a subgoal is satisfiable but fails, this is sufficient informa- 

tion to tell us it contains a bug. We do not need to know a particular valid 
instance of  the subgoal, and asking the user for such an instance should clearly 
be avoided if possible. Using this idea, we can generalise the notion of  an 
uncovered atom: 

% debugger N.0.1 (part 2; part I is the same as in N.0) 
bug(atom(A)):- 

satisfiable(A), 
all [H, B] not (subsumes(A, H), is_clause(H, B), valid(B)). 

An atom is uncovered if it is satisfiable and no clause instance whose head is an 
instance of  the atom has a valid body. Note that this definition is equivalent to 
N.0 when A is ground. 

Unfortunately,  we cannot simply take any of the previous debuggers and 
replace valid by satisfiable everywhere and expect them to work. We need some 
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way of  getting from an incorrectly failing goal to an incorrectly failing subgoal 
in the body of a matching clause. The previous debuggers use valid to get 
instances of  subgoals in the bodies of  matching clauses. It is pointless asking an 
oracle for satisfiable instances of  goals: the most general answer is the goal itself. 
Some other method(s) must be used to find instances of  subgoals which incor- 
rectly fail. 

The first method, used implicitly in all the debuggers, is the unification 
of the goal with the head of  the clause. I f  the first subgoal contains the bug, this 
often instantiates it sufficiently. Another  method is to use call, as in N,2 and N. 
3. This  is sufficient if the failure at the top level is caused by the failure of  a 
single subgoal, rather than one of  several answers being missed. This is an 
assumption of Refs. 2) and 7) which, as we mentioned previously, can cause 
incompleteness and even incorrectness. 

The algorithm we suggest is to first use call to generate instances, but  if 
this fails to find an incorrectly failing subgoal, to resort to using valid as before. 
This algorithm will find a bug whenever N.3 finds a bug, but will only ask the 
user instance questions when yes/no questions have failed to find the bug. In 
particular, if the computat ion is deterministic and no subgoal returns an incor- 
rect answer, no instance questions will be asked. However,  if yes/no questions 
are not sufficient to find the bug, N.4 may ask more yes/no questions than N.3. 
A p roof  of  completeness of  a variant o f  N.4 is sketched in Ref. 27). 

% debugger N.4 
miss(A, R):- 

miss_c(A, R). 
miss((A, B), R):- 

miss v((A, B), R). 

% miss for atoms 
miss_atom(A, R):- 

user_pred(A), 
\ +  call(A), % valid(A), 
satisfiable(A), % \ +  call(A)in N.3 
( clause(A, B), 

miss(B, RI) 
- - >  

R = R I  

R = atom(A) 
). 

% uses call to get instances of subgoals which incorrectly 
% fail (incomplete for non-atomic goals) 

miss_c((A, B), R):- % same as N.3 
call(A), 
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miss_c(B, R) 

unsatisfiable(A), 
wrong(A, R) 

). 
miss_c((A, B), R):- 

miss_atom(A, R). 
miss c(A, R):- 

miss_atom(A, R). 

% uses valid to get instances of subgoals which incorrectly 
% fail (complete) 

miss v((A, a), R):- 
valid(A), 
( miss_atom(A, R) 

miss v(B, R) 
). 

miss_v(A, R):- % valid is not needed for atoms. 
miss_atom(A, R). 

The key part  of  the program, miss_atom, is the same as before except that 
is uses satisfiable instead of  valid. Therefore it never asks instance questions, miss 
calls miss c, which uses call to generate instances of  subgoals and, if that fails, it 
calls miss v, which uses valid, miss_v is not used for a tomic goals because miss_c 
will not  fail in this case, assuming the goal at the top level is satisfiable but fails. 

As with N.2 and N.3, miss c should be modified to handle the case when 
call(A) flounders. The best solution is to find a non-floundering subgoal and call 
that instead of  A. Even if a more  restrictive solution is used, such as failing if 
call(A) flounders, bugs can still be found by miss_v (though this asks more 
questions). Since miss v is only tried when miss c has failed to find a bug, it may 
be worthwhile making miss_v more robust, at the expense of  asking more 
questions. For example, it could be made more like S. 1/L.2, thus avoiding some 
problems with nonground valid atoms etc. Hopefully,  the extra questions would 
rarely be asked, because most  bugs would be found by miss c. 

We will use the following program (from Re['. 23)) as our next example: 

isort([X I Xs], Ys):- isort(Xs, Zs), insert(X, Zs, Ys). 
isort(~], ~]). 

insert(X, I-YJYs], [YIZs]):- X < Y, insert(X, Ys, Zs). 
insert(X, [YJYs], [X, YJYs]):- X = <  Y. 
~ insert(X, E-J, EX]). % missing 

?- miss(isort([3, 2, I] ,  X), R). 
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S.I (L.2) requires seven yes/no questions and four instance questions to 
find the uncovered atom insert(I, [], Ill). S.2 (N.1) requires the following six 
yes /no  questions (including one "any more valid instances" question) and four 
instance questions to find the same uncovered atom: 

isort([3, 2, I ] ,  A) y; A = [ I ,  2, 3]. 
isort([2, I ] ,  A) y; A = El, 2]. 
isor t ( [ l ] ,  A) y; A = F l ] .  
isort( [ ] ,  A) y; A = [ ] .  
isort( [ ] ,  A) no more 
insert(I, [ ] ,  [ I ] )  y 

N.2 and N.3 avoid the three questions associated with isort([], A), since 
that call succeeds with the (only) correct answer. This results in four yes /no 
questions and three instance questions. N.4 avoids all instance questions and 
needs only four yes/no questions also. The uncovered atom returned, insert(I, [], 
A), contains a variable, meaning that the atom is satisfiable but the bodies of  all 
matching clauses are unsatisfiable. 

isort([3, 2, I ] ,  A) y 
isort([2, I ] ,  A) y 
isor t ( [ I ] ,  A) y 
insert(I, [ ] ,  A) y 

w Avoiding Instance Questions Entirely 
All the debuggers we have examined so far rely on the user providing 

valid instances of  goals in some circumstances. We now examine two ways we 
may be able to eliminate instance questions entirely by making the computation 
of  the debugger follow the search of  the original computation more closely. 
Failed derivations of the original computation are used to limit the search space 
of  the debugger. Both the ideas need considerably more research before they can 
be used as the basis of practical debuggers. The first technique has been used 
previously in some debuggers for conventional Prolog, with a left to right 
computat ion rule. We discuss the possibility of  adapting it to Prolog systems 
which have coroutines. The second technique is new, and asks even simpler 
questions than the first technique. It also overcomes some of the reasons for 
incompleteness of the debuggers we have discussed, though it is also incomplete. 

8.1 Using Incompleteness Questions 
As mentioned previously, the Pereira-stye debuggers 3'4'8'13'14'2~ do not 

ask instance questions. Instead, they ask if calls are incomplete. That is, not all 
valid instances are returned by the program. This implies that some valid 
instance of the call fails. The debuggers find all solutions to the call then print 
the call and the solutions, and ask the user if any valid solutions are missing. 
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The idea of incomplete calls, or not completely covered atoms, a) can be used to 
further generalise the definition of bugs: 

% debugger N.0.2 (part 2; part I is the same as in N.0) 
bug(atom(A)):- 

incomplete(A), 
all [H, B] not (subsumes(A, H), isclause(H, B), valid(B)). 

Note that this is equivalent to N.0.1 in the case where A has at most one 
valid instance. The following debugger, written in the style of  N.2, uses this 
more general definition. It implements a similar algorithm to those described in 
the references above, wi thout  enhancements associated with avoiding 
recomputation,  inadmissible calls, integration with wrong answer diagnosis and 
intelligent search strategies. Intelligent search strategies could be used with the 
logic of  this program if alternative evaluation strategies are used, such as a 
mixture of  top down and bot tom up evaluation and an intelligent clause 
election rule. 

% debugger N.5 
miss((A, B), R):- 

call(A), 
miss(B, R). 

miss((A, B), R):- 
miss(A, R). 

miss(A, R):- 
user_pred(A), 
incomplete(A), % valid(A), \ +  call(A), in N.2 
( clause(A, Y), 

miss(Y, RI) 
- ->  

R----RI 

R -- atom(A) 
). 

In N.2, the last clause uses valid and call to find a valid failing instance of  
the goal (if one exists). This requires instance questions. In contrast, N.5 uses 
incomplete to check if a valid failing instance of the goal exists. However, the 
actual instance is not required, so no instance questions are asked. For  Prolog 
systems with left to right computa t ion  rules, this debugger is very effective. The 
algorithms presented in Refs. 13) and 4) are proved sound and complete. The 
ifLthen-else in the last clause does not cause incompleteness because the top level 
goal is assumed to have a finite SLD tree using a left to right computat ion rule. 

Unfortunately, the basic idea of incompleteness questions runs into 
difficulties in systems which allow coroutines. The problem is that incomplete can 
be catled with an atom whose execution flounders. It  would be possible for 
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incomplete to use a different computat ion rule to find the set of  successful 
instances of  the goal wi thout  floundering. However,  this is likely to cause 
infinite loops, since one of  the main reasons for delaying calls is that they have 
an infinite number of  solutions, is) The alternative is to only partially execute the 
goal, but this can cause incompleteness of  the debugger since the fact that some 
answers are missed may not be detected by incomplete. 

We propose  two ways to deal with this incompleteness. The first is to use 
a debugger in the style of  N.4, which tries incomplete methods of bug location 
which ask simple questions, then, if  these fail, tries another method which is 
(more) complete. Ideally, we should try to locate the bug using satisfiable first, 
then incomplete, then valid. Reordering the examinat ion of conjuncts, using 
pick_nondelay subgoal, should make this method quite effective, though occasion- 
ally instance questions would  still be asked. The second method we propose is 
more complex, but avoids all instance questions. First, we note that the substitu- 
t ion returned by a floundered goal can be considered a partial answer substitu- 
t ion (as opposed to the normal  total answer substitutions returned by non- 
floundering goals). Similarly, partial answer substitutions can be produced by a 
goal whose execution is interrupted by previously delayed calls being woken. 
The set of  partial answers to a goal includes or subsumes all the total answers 
found by a computat ion rule which executes the goal completely without  
interruption. Therefore, if the set of  partial answers to a goal is incomplete then 
the goal is incomplete. The converse is not true however, and this is the source 
of  incompleteness of  the debugger. 

The new algorithm which avoids this source of incompleteness is as 
follows. We assume the goal in the call to miss is satisfiable but the set o f  partial 
answers is incomplete. Atomic  clause bodies can be treated as before (since they 
must also be incomplete). For  simplicity, we just describe the conjunctive case 
when there are two subgoals, p(X) and q(X). First, we find the set o f  partial 
answers to p(X) and check if it is incomplete (if so, we recursively search for the 
bug in p(X)). Next, for each partial answer substitution 0i 1, for p(X), we find the 
set o f  partial answers for q(X)0i I (stopping forward execution whenever a delayed 
call f rom p would be woken)  and check if it is incomplete. So far, this is very 
similar to N.5. However, i f  no incompleteness is found, we continue by consider- 
ing each partial answer substituition 0j 2, for q(X)0~ 1, and finding the set of  partial 
answers for p(X)0~0j 2 (and checking if it is incomplete). This conrresponds to the 
coroutining execution where part of  p is executed, followed by part o f  q, 
fol lowed by part of  p. We continue to compose partial answer substitutions from 
p(X) and q(X) until one of  the sets is incomplete or total answer substitutions for 
both  calls are found (this corresponds to a whole branch of  the SLD tree). 

Each derivation of  p(X), q(X) can be written as a sequence A~B~A2B2 - - . ,  
where Aj (Bt) is a sequence of  calls derived from p(X) (q(X)). The algorithm 
searches for a prefix for which the last element exhibits incompleteness. Since 
each derivation is finite and there are a finite number of  derivations, the 
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algori thm must terminate. For  simplicity, we have described an algorithm which 
considers shortest prefixes first. It is better to reverse the search order, as was 
done in N.2. With left to right execution, p and q are considered at most once 
(the behaviour  is identical to N.5 if the better the search order is used). As an 
example,  consider the following program. It contains two NU-Prolog when 
declarations, which make calls to p and q delay until their first argument is a 
non-variable.  

?- p(I, J) when I. 
% p(O, 0). 
p(s(I), s(J)):- p(J, I). 

?- q(I, J) when I. 
q(O, 0). 
q(s(I), s(J)):- q(J, I). 

% only call when I instantiated 
% fact missing 

% note args swapped 

% only call when I instantiated 

% note args swapped 

?- miss((p(s(s(O)), X), q(X, s(s(O)))), R). 

The computat ion of  the goal to be debugged is as follows. Initially, p is 
called, binding X to s(XI). The recursive call to O then delays. Next, q binds XI 
to s(• and delays in the same way. Finally, p is called and fails because the base 
case is missing. The fol lowing table explains how the debugging algorithm 
works in this example. It gives the calls examined and the corresponding set o f  
partial  answers. 

p(s(s(O)), X) {p(s(s(O)), s(XI))} 
q(s(Xl), s(s(O))) {q(s(s(X2)), s(s(O)))} 
p(s(s(O)), s(s(X2))) { } 

The first two partial answer sets are complete, but the last one is incom- 
plete (the debugger considers this first if  the better search order is used). We can 
therefore recursively look for a bug with the a tom p(s(s(0)), s(s(X2))). Since the 
body of  the clause for p has only one atom, the debugger can then simply 
identify the uncovered a tom p(0, • This example is simplified because no set 
o f  partial  answers has more than one atom. This is because the finitely failed 
SLD tree has only a single branch. In general, several combinations of  alterna- 
tive substitutions must be examined, corresponding to different failed SLD 
derivations. 

8.2 Using Satisflability Questions Only 
The debuggers which use call presented so far are asymmetric and have 

some problems when coroutining is used heavily (they have to resort to using 
valid more). A purely declarative debugger should be symmetric with respect to 
the order of  subgoals in the goal being debugged. For  example, the first two 
clauses of  N.2 should be: 
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miss((A, B), R):- 
call(A), 
miss(B, R). 

miss((A, B), R):- 
call(B), 
miss(A, R). 
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% added for symmetry 

Although B is sometimes able to generate useful instances of A, improving the 
performance of  the debugger, calling B before A often causes infinite loops. In 
practice, logic programs are not purely declarative. They have a declarative 
component  but are written so as to be executed using a computation rule which 
(by default) selects subgoal from left to right. Thus, N.2 is a practical debugger 
but adding the extra call makes it impractical. 

However, it is possible to generate instances of  A by partially executing B 
(and obtaining partial answer substitutions) and vice versa. The algorithm 
proposed in the previous section used prefixes of  the computation trace to obtain 
partial answer substitutions. Only the longest prefix can lead to finite failure, so 
incompleteness questions are generally asked more than satisfiability questions. 
Also, if the interleaving of  the execution is very fine, which is common in many 
coroutining systems, many questions may be asked. An alternative method of  
obtaining partial answer substitutions is to use the sequences A1AzAa . - -  and 
B1BzB3 �9 . .  to find instances of  B and A, respectively. The number of  questions 
is then not affected by the degree of interleaving. Furthermore, if the whole 
conjunction finitely fails then each instance of  A and B generated in this way 
must also finitely fail, so satisfiability questions are sufficient. A disadvantage is 
that calls in these sequences are generally less instantiated than in the original 
execution trace, and hence may unify with more clause heads. Even a determinis- 
tic execution of  A, B may result in many partial answer substitutions when 
considering A and B separately. Consider the following example: 

?- p(I) when t. % only call when I instantiated 
p(O). 
p(I):- p(J), I =  s(J). 

q(a). 
q(f(A)):- q(A). 
% q(O). % missing 

m:- p(X), q(X). 

?- miss(m, R). 

Using the NU-Prolog the computation rule, the computation proceeds as 
follows. First m is called, then q(X), then p(I), then a = s(J), which fails. On 
backtracking, q(X) is retried and matches with the second clause, then p(f(A)) is 
called, then f(A)= s(J) fails. On backtracking, there are no further matching 
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clauses to any call so the goal finitely fails. 
The debugger can first verify that the goal is satisfiable but fails, so a bug 

must be manifest in the body of  the clause for m. q(X) can then be used to 
generate instances of  the rest of  the body. Rather than execute q(X) completely, 
it is only executed as much as it was executed in the failing computat ion 
outl ined above. That  is, the initial call is done (which matches with two 
clauses), but the recursive call is ignored. This leads to the two instances: p(I) 
and p(f(A)). Note that both these instances finitely fail. Since both p(I) and p(f(A)) 
are unsatisfiable (that is, they fail correctly), the bug is not in p. 

Next, p(• can be used to generate instances of  q(X). In the finitely failed 
computat ion,  one call to p was done and, when the second clause of  p was 
used, = was called. Thus, the (finitely failing) instances q(0) and q(s(J)) are 
generated. Note that in the original computat ion p was deterministic and • was 
never bound to 0 or s(J), due to the bindings made by q. q(s(J)) is unsatisfiable 
but q(0) is satisfiable. A satisfiable failing atom has been discovered so search for 
the bug progresses recursively with q(0). 

This algorithm can be applied to arbitrary coroutining in pure Prolog, 
and no instance (or even incompleteness) questions are required. This example 
also illustrates a problem with the debuggers which use valid to generate 
instances of  atoms, despite proofs of  completeness in theory. Although the body 
of  the clause for m has only one valid instance, each subgoal has an infinite 
number  of  valid instances (and an infinite nunber which succeed) and this set 
cannot  be represented by a finite set of  atoms even if we allow variables. Even 
with a left to right computa t ion  rule, subgoals can have an infinite number  of  
valid instances (though only a finite number can succeed, otherwise the top level 
goal would loop rather than fail). 

Thus, the user can be asked to give a valid instance of an atom which has 
an infinite number of  valid instances. Relying on the user to eventually type the 
lucky instance which shows up the bug is obviously problematic. Generating all 
possible instances in some fair manner is also impractical. One way to avoid the 
problem is to use a debugger like S.1 or L.2 and ask the user give a valid instance 
of  the whole clause body. This  is obviously difficult for the user, especially when 
there are long clauses. The debugger given in Ref. 24) actually requires the user 
to provide instances of  whole clauses (it is not intended to be a practical 
debugger, however). I f  valid can return an unbounded number of  solutions then 
the execution of the debugger must use a fair search strategy if it is to be 
complete. 

Although our algori thm which only asks satisfiability questions over- 
comes some of  the completeness problems introduced by call looping, incom- 
pleteness of  valid, coroutines and the unfair search strategy of  Prolog, it is not 
complete itself. The reason is that there may be more than one bug manifest in 
a single clause. In the following example, p cannot  generate the buggy instance 
of  q because p has a bug, and vice versa. 
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% p(a). % missing 
p(b). 

% q(a). % missing 
q(c). 

m:- p(X), q(X). 

?- miss(m, R). 

It seems that extending this technique for debugging programs with 
negation and other system predicates would introduce further incompleteness. It 
would be possible to use this method to generate instances instead of  call but 
still default to using valid if no bugs are found. Alternatively, incompleteness 
questions could be asked regarding the partial executions A1A2A3 . .  �9 and B1B2 

B3 " ' ' .  

w Conclusions 
Declarative debugging, especially for systems which support flexible 

control, is important  for fully exploiting the benefits of  logic programming.  
Theoretical  work has studied the soundness and completeness of  declarative 
debuggers which allow coroutines, but the practicality of  these debuggers has 
received little attention. We have presented successive modifications to previous- 
ly published debuggers which, in general, significantly reduce the number  and 
complexity of  oracle queries. We have also dicussed examples where various 
debuggers have an infinite search space, due to infinite recursion or a call to valid 
having an infinite number of  solutions. This causes incompleteness in practice. 

The reason why the search space can be infinite is that the operat ion of  
the debugger does not mirror  the (finite) computat ion of  the goal which exhibits 
the error symptom. I f  a left to right computat ion rule is used, these problems are 
more easily avoided. We have outlined two algorithms which have a search 
space limited by the size of  the SLD tree of  the goal, and which use simpler 
queries. One of these is an extension of  an algorithm which has been used 
successfully for left to right computat ion rules. However,  much more work  is 
needed to enhance these algorithms, so that fewer questions are asked, establish 
their practicality and prove their correctness. 
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