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Abstract Substitution boxes (S-boxes) are important components in 
many modern-day symmetric key ciphers. Their study has attracted a great 
deal of attention over many years. The emergence of a variety of cryptosystem 
attacks has shown that substitutions must be designed with great care. Some 
general criteria such as high non-linearity and low autoeorrelation have been 
proposed (providing some protection against attacks such as linear cryptanal- 
ysis and differential cryptanalysis). The design of appropriate S-boxes is a 
difficult task; several criteria must be traded off and the design space is huge. 
There has been little application of evolutionary search to the development 
of S-boxes. In this paper we show how a cost function that has found excel- 
lent single-output Boolean functions can be generalised to provide improved 
results for small S-boxes. 

Keywords: Cryptography, S-boxes, Nonlinearity, Autocorrelation, Simulated 
Annealing. 

w Introduction 
Substitution plays a significant role in modern cryptography. Some sub- 

stitutions are carried out by functions that take several Boolean (i.e. binary) 
inputs and give a single Boolean output  as a result. The classic application is to 
combine linear feedback shift register streams to produce a binary key stream. 
Information flows from the input streams to the output key stream since the 
inputs determine the outputs. However, a key design criterion is that  someone 
observing the output  stream should not be able to practically exploit this infor- 
mation to compromise the system (for example, by deducing the initial states of 
each of the input registers which collectively form the secret key). The functions 
must be designed very carefully to resist attack. The design of Boolean functions 
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for cryptographic use has received significant attention from cryptographers for 
decades. Meta-heuristic search has emerged as a potentially very powerful tool 
for the design of such functions. 211~13) Most recently, metaheuristic search in 
combination with theory has found functions with properties unattained by any 
other means. 3'5) 

Substitution functions may also have multiple outputs. In many crypto- 
systems they are termed substitution boxes (S-boxes for short). Perhaps the most 
famous (notorious) S-boxes are those of the Data Encryption Standard (DES). 1~) 
Like many modern ciphers DES is an iterated block cipher; the algorithm is 
implemented by repeating a smaller and simpler cipher a number of times or 
'rounds'. Within each round the most significant contribution to security is 
made by eight 6-input, 4-output functions, shown as $1 $8 in Fig. 1. These are 
specified via lookup tables. The DES algorithm has been subject to a great deal 
of controversy. Much of this has revolved around the particular substitutions 
implemented by the eight S-boxes. (Another controversial aspect was the re- 
duction of the initially suggested key-length to 56 bits.) The S-box idea has a 
firm hold in modern day cryptography. The new international symmetric key 
cryptography standard, the Advanced Encryption Standard (AES), also uses 
S-boxes to perform substitutions. 

Unlike single-output Boolean functions, there has been little application 
of evolutionary or other metaheuristic search to the design of S-boxes. In this pa- 
per we show how an unusual cost function developed for evolving single-output 
Boolean functions can be generalised for the case of S-boxes to produce sig- 
nificant improvements on previous work. (Results of at tempts to find highly 
nonlinear small S-boxes hs been reported Millan et al. 9'1~ 

w Preliminaries 

2 . 1  B a c k g r o u n d  

This section provides some definitions of relevance to Boolean functions 
with cryptographic application. We denote the substitution table of an n-input 
k-output Boolean function by f : B n --~ B k, mapping each combination of n 
Boolean (binary) input values to some combination of k Boolean output  values. 
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For single-output functions if the number of combinations mapping to 0 is the 
same as the number  mapping to 1 then the function is said to be balanced. For 
the mult iple-output case, if each k-bit output  value appears  the same number of 
times, we say tha t  the function is regular. 

For the single-output case the substitution table is generally referred to 
as a ' t ru th  table' .  The polarity truth table is a particularly useful representation 
for our purposes. I t  is defined by 

] (x )  = ( - 1 )  f(x). (1) 

Two functions f and g are said to be uncorrelated when E ](x)~(x) = O. If 
xEB'~ 

so, if you try to approximate  f by using g, you will be right half the time and 
wrong half the time. 

An area of particular importance for cryptanalysts  is the ability to ap- 
proximate a function f by a simple linear function. One of the cryptosystem 
designer's tasks is to make such approximation as difficult as possible (by mak- 
ing the function f suitably nonlinear). Linearity is a form of s tructure crypto- 
designers clearly strive to avoid. One form of a t tack that  exploits linearity is 
known as linear cryptanalysis,  introduced by Matsui. s) I t  has a t t rac ted  a great  
deal of attention. Another form of structure that  is to be avoided is differential 
structure. Essentially, particular differences in input words (difference defined 
by simple bitwise XOR) may be associated with particular differences of output  
words (again defined by bitwise XOR) with some strong bias (i.e. the output  
difference is not uniform for a particular input difference). This can often be 
exploited by a form of a t tack known as differential cryptanalysis,  introduced by 
Biham and Shamir. 1) It  has also a t t rac ted  a great deal of attention. An excel- 
lent introduction to linear and differential cryptanalysis can be found in Heys'  
tutorial, c) 

Substi tution boxes are essentially n-input k-output  functions. These can 
be viewed as a combination of k individual single-output Boolean functions. 
Several important  security criteria are actually defined in terms of single-output 
function criteria and so it is essential to understand first the basic Boolean 
function definitions and concepts. We then extend these to cater for the multiple- 
output  case. 

2.2 Cryptographic Criteria for Single-output Functions 
Two impor tant  formal criteria have emerged for the single-output case to 

capture some aspects of resilience to the sorts of at tacks indicated above. These 
are high nonlinearity and low autocorrelation and are defined below together 
with other terminology used in this paper.  

A Linear Boolean Function, selected by ~v E B n, is denoted by 

Lw(x) = ~.dlXl O 022x2 O - - "  �9 ~dnXn (2) 

where wixi denotes the bitwise AND of the i th bits of w and x, and O denotes 
bitwise XOR. The set of affine functions is the set of linear functions and their 
complements 
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A~o,c(x) = L~o(x) | c (3) 

where c E B. The set of 2 n linear functions in polar form are an orthogonal 

basis for the space R 2". 

For a Boolean function f the Walsh Hadamard  Trans fo rm/~f  is defined 
by 

&(co) = Z (4) 
xEB, t  

where a: 6 B n. F/(a:)  is the vector dot product  of the polar forms of f and L,:. 
The Walsh Hadamard  values are essentially (scaled and signed) magnitudes of 

projections onto the various linear functions. Each value /~f(a:) is a measure 
of how correlated the function f is with the relevant linear function L~:, i.e. 
it indicates how well the linear function L~ approximates  f .  We denote the 
maximum absolute value taken by any transform value by 

WHmax(f) = max /~f(co) . (5) 
wEB,~ 

It  is related to the nonlinearity of f .  
The nonlinearity N S of a Boolean function f is its minimum distance to 

any affine function. It  is given by 

NI = l ( 2 n  - WH~ax(f)). (6) 

We can see tha t  nonlinearity is maximised when the greatest  magnitude of any 
Walsh Hadamard  value is minimised. The  less a function f can be approximated 
by any linear function, the higher its nonlinearity. There are limits to how 
resilient a Boolean function can be against linear approximation as demonstrated 
by Parseval. 

Parseval 's  Theorem states: 

Z = 2 n. (7) 
r n 

A consequence of this result is that  WHmax(f) > 2 n/2. A Boolean function f 
(in polar form) is a vector of 2 n elements, each of which is +1 or - 1 .  Parseval 's 
Theorem is a form of Pythagoras '  Theorem; the squares of the magnitudes of the 

projections of f onto the or thonormal  basis defined by the set of (normalised) 
linear fimctions must be 'the square of the magnitude of the function f. Thus, 
we can see how Parseval 's  theorem limits resilience to linear approximation.  
Some functions, known as Bent functions, achieve the maximum non-linearity. 

This occurs when P:(co) = 2~ uniformly across all co. In such cases f is never 
balanced. 

The Autocorrelation Transform of a Boolean function f is given by 

~:(s) = Z f ( x ) f ( x  ~ s) (8) 
X 
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where s E Bn\{0} We denote the maximum absolute value (over s # 0) in the 
autocorrelation spectrum of a function f by ACf,  i.e., 

ACf  = max ~ f ( x ) f ( x  | s) . (9) 

Here x ranges over B n and s ranges over Bn\{0}.  

2.3 Extensions to S-boxes 
For each k-output S-box, we can extract a single-output Boolean function 

by simply XOR-ing some subset of the output  bits together. If f (x) : B" -~ B k is 

an n-input k-output S-box then each/7 E B k defines a function that  is a linear 
combination f~(x) of the k outputs of f .  This is given by 

fz(x)  - - /~lf l  (x) O " "  O/3kfk(x). (10) 

For each such function fz  the Walsh-Hadamard values FL~ (w) and autoeorrela- 
tion values rL~ (s) are defined in the usual way. (Each such function f/~ is now a 
single-output function defined over the n inputs.) 

There are 2 k - 1 non-trivial functions obtainable in this way. The notions 
of non-linearity and autocorrelation are readily extended to the multiple-output 
case. For the k-output  case the non-linearity is the worst (lowest) non-linearity of 

all the 2 k - 1 non-trivial single output  functions f/~ obtained as indicated above. 
Similarly, the antocorrelation is the worst (highest) over all such functions. 

w Cost Functions 

3.1 Traditional Cost Functions 
Virtually all optimisation-based work aimed at producing highly nonlinear 

functions has used nonlinearity itself as the fitness function, i.e. the fitness of a 
function f on n input variables is given by 

1 
fitness(f) = N s = ~ (2 n - max F(oJ) ) (11) 

or, when viewed as a minimisation problem, the cost function is given by 

cost(f) = WHmax(f) = m U F(~)  (12) 

Similarly, with low autocorrelation as the target, the autocorrelation itself has 
been used as the cost function, i.e. the cost function is given by 

m a x  cost(f) = AC(I)  = s@o ~ ' f ( x ) i ( x  G s) = maxs@0 I§ (13) 

Previous optimisation approaches to evolving Boolean functions with de- 
sirable cryptographic properties have been generalised to the multiple-output 
case. Millan has compared random generation and hill-climbing as means of 
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evolving highly nonlinear bijective S-boxes. 9) Millan et al. have investigated the 
use of genetic algorithms and hill-climbing to evolve regular S-boxes. lO) Both 
high nonlinearity and low autoeorrelation were targets. The fitness and cost 
measures for an S-box were the nonlinearity and autocorrelation values of that 
S-box. For the S-box case, the researchers above have used extensions of the 
basic definitions as cost functions. For non-linearity the cost function was: 

cost(f) = max /#~ (w) (14) 
BeBk\{0},~vEB '~ 

where/#/~ is the Walsh Hadamard transform of the function f3. For autocorre- 
lation the cost function was: 

cost(f) = max IP~(s)t (15) 
j 3 c B k \ { 0 k } , s 6 B n \ { 0  "} 

where § is the autoeorrelation transform of the function f~. 

3.2 Spectrum Based Cost Functions 
In 2000 a new cost function family was proposed that offered significant 

improvements for the single-output case. 2) This cost function, after significant 
later experimentation, was shown capable of producing functions with excep- 
tional profiles of security criteria. 5) Rather than base the cost on extreme values 
(as per the definition of non-linearity and aurocorrelation), it defined a cost over 
the whole Walsh-Hadamard spectrum. The motivation is provided by Parseval's 
equation; if the magnitudes of the Walsh Hadamard projections are very similar, 
then the greatest magnitude will be kept low. The details of the experiments for 
the single output  case and the detailed motivation for the cost function adopted 
are given in Reference. 4) For present purposes we simply provide the cost function 
family below: 

R 
cost(f) = ~ I P f ( ~ ) l  - x (16) 

O) 

where X and R are real-valued parameters. It is difficult to predict what the best 
such parameter  values should be and considerable experimentation is needed. 
However, as indicated above, they have produced some exceptional results (ef- 
fectively equalling the best results of theoreticians for functions of 8-inputs or 

less). A similar cost function obtained by substituting § for [:y(w) was later 
used to similar effect. 4~) 

Since spectrum-l~ased approaches generated interesting results for the 
single-output case an obvious question to pose is 'Can the spectrum-based ap- 
proaches be generalised to allow S-boxes to be evolved with desirable properties?' 
Two cost functions can now be defined for use in S-box evolution. A cost function 
based on Walsh-Hadamard spectra is given by 

R 
cost(f) = ~ ~ IF~(a~)l - X (17) 

13cBk\{0} wEB " 



The Design of S-Boxes by Simulated Annealing 225 

and a similar cost function based on autocorrelation spectra is given by 

R 
cost(f) - -  I§ - x (18) 

/3EBk\{0} s c B  ~' 

The single output  cost functions have been applied to each function defined 
as a linear combination of the outputs and the results summed over all such 
combinations. 

w The General Approach 
All the S-boxes we are concerned with are regular: all outputs appear 

an equal number of times. In the case of bijective S-boxes, each output  appears 
only once. (They are effectively permutations on the input space). In the case of 

n-input k-output regular S-boxes, each output  appears 2 n-k times. A variety of 
move strategies are possible, but we adopt the simplest: simply swap the output  
values associated with two input values. The result is guaranteed to maintain 
regularity and bijectivity. In addition, we swap only dissimilar output  values. 
A search starts with a regular (but otherwise random) function and moves by a 
sequence of such swaps around the search space. 

The approach is as follows: 

1. Use an annealing-based search to minimise the value of the new cost func- 
tion (suitably parametrised) given in Equation 17. Let the best solution 
produced during the search be fsa. 

2. Hill-climb from fsa with respect to nonlinearity (or autocorrelation), i.e. 
use the cost function of Equation 14 or Equation 15 to produce the final 
solution fsahe, 

3. Measure the nonlinearity, autocorrelation and algebraic degree of fsahc. 

Although nonlinearity, autocorrelation and algebraic degree are all of in- 
terest, our approach is somewhat unusual in that  Stage 1 targets none of the 
criteria directly, Stage 2 considers only one of the first two, and algebraic degree 
is never considered at all (it is simply measured at the end). The motivation for 
the application of this function to the single output  case is explained in detail in 
Reference. 4) In this paper, however, we wish to investigate its extension to the 
derivation of S-boxes. 

We omit here a description of the annealing algorithm used for Stage 1. It 
is very much a 'vanilla' annealing. A full description is given in the Appendix. 

w Experiments Performed 
Two approaches have been used in experiments. In the first, the second- 

stage hill-climbing is with respect to nonlinearity. We refer to this approach as 
the NLT (Non-Linearity Targeted) approach. In the second, the second-stage 
hill-climbing is with respect to autocorrelation. We refer to this as the ACT 
(Auto-Correlation Targeted) approach. 



226 J .A.  Clark, J. L. Jacob and S. Stepney 

5.1 Experiments and Results 
Table I records the best nonlinearity values achieved in Millan's experi- 

ments comparing the ability of random search and hill-climbing to evolve 5 x 5, 
6 x 6, 7 x 7 and 8 x 8 bijective S-boxes. (For the 8 x 8 case Table2 provides 
more detailed results of Millan's improvement  technique applied to 10000 ran- 
domly generated bijective S-boxes. The distributions of the initial and final non- 
linearities obtained are shown with linear and logarithmic scales in Fig. 2.) The 
cost functions defined by equations 17 and 18 have been used to evolve S-boxes 
of similar dimensions. At the end of each run hill-climbing was carried out with 
respect to nonlinearity and autoeorrelation respectively. 50 runs were carried 
out for each value of X in the set - 4 ,  - 3 ,  - 2 ,  - 1 ,  0, 1, 2, 3, 4. R = 3.0 was used 
throughout.  Table I records the best joint values of nonlinearity and autoeorrela- 
tion achieved by either technique (i.e. functions were generated which possessed 
both the indicated nonlinearity value and the indicated autocorrelation value). 

Table 1 

Table 2 

Summary  Results for Bijective n (autocorrelation re- 
sults also shown for annealing) 

Millan 9) 

n rnd HC 

5 8 10 
6 20 20 
7 44 46 
8 98 100 

Annealing 
SA AC-SA 

10 16 
22 32 
48 48 
102 80 

Millan's improvement of random bijective 8 x 8 S- 
boxes, from a sample of 10000 

Original Final Non-linearity 
Non-linearity 90 92 94 96 98 100 

80 2 2 
82 1 4 
84 2 29 7 
86 5 80 34 
88 1 3 20 258 127 
90 1 65 886 447 
92 2 91 1919 1112 
94 26 1946 1826 
96 246 827 3 
98 17 

The results for the bijective S-boxes are not optimal. 6 • 6 boxes with 
nonlinearity of 24 have been provided by construction but they seem quite rare 
(Millan ~) a t t empted  one million random generation and hill-climbing a t tempts  
and found only a nonlinearity of 20). Deriving bijective S-boxes is not an easy 
task for annealing. As k increases by 1 the number of derived linear combinations 
to check doubles. An 8 • 8 bijective S-box with the parameter  values shown takes 
about  20 minutes on 1.4 GHz Pentium PC. However, again this is not easy. Only 
one (102, 80) function was generated from 200 runs. Similarly, for n = 7 only 
one (48, 48) function was generated. Does this matter?  We address this issue 
below. 
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Fig. 3 Nonlinearity and Autocorrelation Values Achieved for 
8 x m S-boxes 

B u r n e t t  et al. applied genetic a lgor i thms followed by hil l-cl imbing to 

evolve 8 • k regular  S-boxes (for k = 2 , . . . , 8 ) .  The  new cost funct ions were 
again used to evolve regular  S-boxes of similar d imensions  (with R = 3.0 and  
the same range  of X as before). The  best  values achieved for non l inea r i ty  and  au- 
tocorre la t ion by each of four techniques ( r anmdom,  Burne t t ' s ,  SNLT and  SACT) 
are shown in Fig. 3. We present  similar da t a  in Table 3 bu t  here the best  joint  
values of non l inea r i ty  and  autocorre la t ion  achieved by our  new approaches are 
shown (i.e. funct ions  a t t a ined  the indicated  nonl inear i ty  and  autocorre la t ion  
values s imul taneously) .  

B u r n e t t  et aL presented their resul ts  as their  ' cu r ren t  conjectures  for the 

Table 3 Nonlinearity and Autocorrelation Values Achieved 
for 8 x m S-boxes 

Burnett et al.l~ Spectrum Based 
NL AC Joint (NL,AC) 

n m rnd GAs 
8 2 108 110 
8 3 106 108 
8 4 104 106 
8 5 102 104 
8 6 100 104 
8 7 98 102 

rnd GAs 
56 48 
64 56 
72 64 
72 72 
80 80 
80 80 

SNLT SACT 
(114,32) (114,32) 
(112,40) (112,40) 
(110,56) (110,48) 
(108,64) (108,56) 
(106,64) (106,64) 
(104,80) (104,72) 
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achievable bounds'. The results of applying the annealing-based approaches 
with the new cost functions is fairly dramatic (the hill-climbing second stage 
with respect to nonlinearity or autocorrelation rarely improves matters). As 
m increases the same general patterns of declining nonlinearity and increasing 
autocorelation are witnessed as by Burnet t  et al. However, the new cost func- 
tions and annealing-based searches have found functions that simultaneously 
improve nonlinearity and autocorrelation. Most typically, for the best functions, 
nonlinearity is 4 higher and autocorrelation is 16 lower. 

w Conclusion 
Comparison with theoretical approaches is difficult. On specific criteria 

it is clear that  the derived S-boxes are not optimal. Nyberg, for example, has 
demonstrated 8 x 8 S-boxes with nonlinearity 112. For present purposes we note 
that spectrum-based cost functions have promise and have provided significant 
improvements on previous optimisation-based work. 

Single-output Boolean functions have been a highly important  applica- 
tion area for evolutionary and other metaheuristic search. Our techniques have 
already equalled and exceeded the combined achievements of theoretieians for 
the case of functions on small numbers of inputs (for n _< 8). For some higher 
number of inputs the techniques have also produced functions unattained by 
other means. For larger numbers of inputs theoreticians clearly have the upper 
hand. 

S-boxes, the multiple-output variant, are relatively unexplored and present 
significant challenges for the evolutionary commuting community. The search 
spaces involved are clearly vast. For example, although an 8 x 8 S-box would 
generally be considered 'small', there are actually 256256 possible S-boxes of this 
size (each of 256 inputs can take any of 256 possible outputs). The  message is 
very clear: S-box design gets hard very quickly. There has been considerable 
interest in S-boxes in the cryptography community for many years; the prob- 
lem is a real-world design one. The design problems can be clearly stated and 
the success criteria can be easily measured. They seem ideal tests problems for 
evaluation of evolutionary and other nature inspired techniques. 

We encourage the evolutionary computing community to attack this prob- 
lem. The results reported here are targets to attack. 
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Appendix 

w Description of Simulated Annealing 
In 1983 Kirkpatrick et al. ~) proposed simulated annealing, a new search 

technique inspired by the cooling processes of molten metals. I t  merges hill- 
climbing with the probabilistic acceptance of non-improving moves. The basic 
algorithm is shown in Fig. A1. The search starts at some initial s tate 5: := So. 
There is a control parameter  T known as the temperature.  This starts  'high'  
at To and is gradually lowered. At each temperature,  a number  MIL (Moves 
in Inner Loop) of moves to new states are a t tempted.  A candidate state Y is 
randomly selected from the neighborhood N ( S )  of the current state. The change 
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in value, 5, of f is calculated. If it improves the value of f ( S )  (i.e., if 5 < 0 for 
a minimisation problem) then a move to tha t  s tate is taken is taken (S = Y); if 
not, then it is taken with some probability. The worse a move is, the less likely 
it is to be accepted. The lower the tempera ture  T, the less likely is a worsening 
move to be accepted. Probabilistic acceptance is determined by generating a 
random value U in the range (0 . . .  1) and performing the indicated comparison. 
Initially the tempera ture  is high and virtually any move is accepted. 

As the tempera ture  is lowered it becomes ever more difficult to accept 
worsening moves. Eventually, only improving moves are allowed and the process 
becomes 'frozen'. The algorithm terminates when the stopping criterion is met. 
Common stopping criteria, and the ones used for the work in this paper,  are to 
stop the search after a fixed number MaxlL of inner loops have been executed, 
or else when some maximum number MUL of consecutive unproductive inner 
loops have been executed (i.e., without a single move having been accepted). 
Generally the best state achieved so far is also recorded (since the search may 
actually move out of it and subsequently be unable to find a state of similar 
quality). At the end of each inner loop the tempera ture  is lowered. The simplest 
way of lowering the temperature  is to multiply by a constant cooling factor (~ 
in the range (0 . . .  1); this is known as geometric cooling. The basic simulated 
annealing algorithm has proven remarkably effective over a range of problems. 

S:=So 
T:=To 
repeat 
{ 

for ( i n t i = O ; i < M l L ; i + + )  
{ 

select Y 6 N(S)  
a := f ( Y )  - f (S )  
if (a < 0) then 

S : = Y  
else 

generate U := rnd(O, 1) 
if (u < exp(-5/T)) then S := Y 

} 
T = T x a  

} 
until stopping criterion is met 

Fig. A1 Basih Simulated Annealing for Minimization Prob- 
lems 



The Design of S-Boxes by Simulated Annealing 23I 

John A. Clark: He is Professor of Critical Systems at the Uni- 
versity of York, where he leads the software testing, security and 
cryptography work. Much of this has been concerned with the 
application of meta-heuristic search. 

Jeremy L. Jacob: He has a BSc. in Mathematics from the Univer- 
sity of Hull, England, M.Sc. and D.Phil. in Computat ion from 
the University of Oxford, England and now works for the Uni- 
versity of York. His research interests include modelling secure 
systems and software engineering practices for secure systems. 

Susan Stepney: She is Professor of Computer  Science at the Uni- 
versity of York, and leads the Non-Standard Computat ion re- 
search group there. She is a member of the ACM, Fellow of the 
British Computer Society, and moderator of the UKCRC Grand 
Challenge in Non-Classical Computation. Her main research in- 
terests include novel applications of nature-inspired computation, 
modelling self-organising complex systems and designing and rea- 
soning about emergent properties. 


