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Abstract We study efficient discovery of proximity word-association 
patterns, defined by a sequence of strings and a proximity gap, from a col- 
lection of texts with the positive and the negative labels. We present an 
algorithm that finds all d-strings k-proximity word-association patterns that 
maximize the number of texts whose matchindg agree with their labels. It 
runs in expected time complexity O(ka-tnlog n) and space O(kd-ln) with 
the total length n of texts, if texts are uniformly random strings. We also 
show that the problem to find one of the best word-association patterns with 
arbitrarily many strings is MAX SNP-hard. 

Keywords: Text Databases, Data Mining, Optimization, Proximity Word- 
association Patterns, Discovery Science. 

w Introduction 
In this paper, we present a fast algorithm for efficient discovery of combi- 

natorial patterns, called proximity word-association patterns, from a collection of 
texts with binary classification labels. 

Since emerged in early 1990's, data  mining has been extensively studied 
to develop semi-automatic tools for discovering valuable rules from stored facts 
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in large scale databases. 1) A rule which is looked for is an association among 
attr ibutes that  gives a useful property. Mainly a considerable amount  of results 
have been known for well-defined and structured databases, such as relational 
databases with boolean or numeric at tr ibutes.  1.,) 

Beside this, recent progress of measuring and sensing technology, storage 
devises and network infrastructure has been rapidly increasing the size and the 
species of weakly-structured databases such as bibliographic databases, e-mails 
and HTML streams and raw experimental  results as genomic sequences. These 
lead to potential  demands to data  mining tools for databases where no at tr ibutes 
or structure is assumed in advance. However, there are still a few results in this 
direction) *) One difficulty might be tha t  a tool should quickly extract  a structure 
behind the data  as well as discover rules of interests. Our aim is to develop an 
efficient tool for text  databases along the lines of data  mining. 

We consider a data  mining problem in a large collection of unstructured 
texts based on association rules over subwords of texts. A proximity word as- 
sociation pattern is an expression such as (:rATA, TAGT, AGGAGGT; 30) that  
expresses a rule tha t  if subwords TATA, TAGT, and AGGAGGT appear  in a text  
in this order with distance no more than  30 letters then a specified property 
will hold over the text  with a probability. Note that  we use the te rm word in 
the sense of a consecutive substring of unlimited length rather than  a keywords. 

The da ta  mining problem we consider is the maximum agreement problem 
defined as follows. Assume that  we are given a collection of documents with an 
objective condition, that  is, a binary label ~ over texts in S tha t  indicates if a 
text has a proper ty  of interest. A pa t te rn  7r agrees with ~ on s if 7r matches s 
if and only if ~(s) = 1. The maximum agreement problem, also called empirical 
risk minimization, 5) is to find a k-proximity d-word association pat tern  7r that  
maximizes the number  of documents in S on which 7r agrees with ~. This problem 
is an instance of optimal pattern discovery, which at t racts  much attention in the 
field of data  mining. ~) 

The notion of proximity word association pat terns extends frequently used 
proximity patterns consisting of two strings and a gap. lo) An algorithm that  effi- 
ciently solves this problem can be applied in a wide range of practical problems 
and plays a key role in the discovery of a consensus motif  from protein sequences 
as in Reference. 14) Further, the max imum agreement problem plays an impor- 
tant  role in computat ional  learning theory; it is shown that  an algorithm that  
efficiently solves the problem for a class with moderate  complexity will be an 
efficient learner with the same class in the framework of Agnostic PAC-learning2 ) 

Clearly, the maximum agreement problem by proximity word-association 
patterns is polynomial-t ime solvable in O(n 2d+l) t ime if the pat terns  are formed 
from at most d strings. A modified algorithm that  uses the suffix tree struc- 

7d+l d ture improves to O(n ) t ime but still requires O(n ) scans of input texts, x4) 
However, the practical importance of the problem requires more efficient, essen- 
tially faster algorithm. Hence, we have devised an algorithm that  efficiently 
solves the max imum agreement problem, which finds a d-words k-proximity 
word-association pa t t e rn  with the max imum agreement in expected running 

d 1 dq-1 d 1 t ime O(k - nlog n) and space O(k - n) with the total  length n of texts, 
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if texts are uniformly random strings. Even in the worst case the algori thm runs 
in t ime O(kdn d+l log n) which is essentially faster than  the naive method.  

On  the other  hand, if the number  of strings in a proximity  word-association 
pa t te rn  is not  limited, the m a x i m um  agreement  problem is intractable.  Dealing 
with this hardness,  we should look for a polynomial- t ime a lgor i thm tha t  solves 
the problem approximate ly  with some guaranteed  approximat ion ratio. We par- 
tially clarify this issue by presenting the  nonapproximabi l i ty  of our  maximizat ion 
problem. We show tha t  the m a x i m u m  agreement  problem of word-associat ion 
pat terns  formed from arbi t rary  m a n y  words is hard to approximate  within a 
factor arbitrari ly close to one in polynomial  time, i.e., has no polynomial- t ime 
approximat ion scheme (PTAS) unless P = N P .  I t  is an interesting contras t  tha t  
the problem is obviously approximable  in polynomial- t ime within a fixed ap- 
proximat ion ratio. 

The  remainder  of this paper  is organized as follows. First ,  we introduce 
some notions and definitions. Next, we present the efficient a lgor i thm tha t  dis- 
covers all the  best  word-associat ion pat terns ,  and analyze its running  time. Then  
we prove the nonapproximabi l i ty  of  the problem. We end with some discussion 
on the relation between our problem and computa t iona l  learning theory. 

w Notions and Definitions 
The  set E is a finite a lphabet  t h roughou t  this paper.  We assume some 

fixed total  ordering on the letters in E. The  empty  string in E* whose length is 
zero is referred to c. For a s t r ing s E E*, we denote  by is] the length of  s and by 
s[i] with 1 < i < Isl the i th  letter of  s. The  concatenat ion of  two strings s and 
t in E* is denoted by s-  t, or s imply by  st. If  for a str ing t there exist (possibly 
empty)  strings u, v C E* such tha t  t = u-  v, then we say tha t  u and v are aprefix 
and a suffix of t, respectively. Any  prefix of  a suffix of t is a subword (substring) 
of t. A notion t[i,j] refers to the subword  t[i]...t[j] of  t f rom the i th  to the 
j t h  letters. An  occurrence of a string v in t is an  integer 1 < i < Is I specifying 
a position from which the substr ing v occurs  in t, t ha t  is, an index i such tha t  
t[i, i + Iv[ - 1] = v. 

A proximity word-association pattern r over ~ (word-association pattern) is a 
pair 7r = ((Wl,. �9 �9 , wd), k) of a finite sequence of  strings in E* and a nonnegative 
integer k called proximity. A (d, k)-pattern refers to a d-word k-proximity associ- 
at ion pat tern.  An  occurrence of  r in s is a sequence ( i l , . . .  , id) of occurrences of 
w l , . . .  ,w4 in s t h a t  satisfy 0 < ij+l - i j  <_ k for all 1 < j < d. We say rcmatches 
s E E* if an occurrence of ~r in s exists. W h e n  we specify the positive infinity 
proximity oo, we write rc = ( w l , . . .  , Wd) by omit t ing k. The  concatenat ion  7r. T 
of  tWO pat te rns  r = ( ( u l , . . . ,  Uc), k) and T = ( (Wl , . . .  , Wd), k) with the same 
proximity is the pa t t e rn  ~r. T = ((Ul, �9 �9 �9 , Ue, Wl, . .  �9 , Wd), k). 

Now we define our problem. A sample is a finite set S = { s l , . . .  ,sin} 
of strings in E*, and an objective condition over S is a b inary  labeling function 

: S --* {0, 1}. A string s~ in S is a document whose label is ~(si). We say 
a word-associat ion pa t te rn  7r agrees with ~ on si if either (i) ~ matches  8i and 
{(si) = 1, or (ii) ~r does not match  si and {(si)  = O. The number  of  elements in 
S is denoted by IS]. 
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Definition 2.1 
MAX AGREEMENT BY k-PROXIMITY d - W O R D  ASSOCIATION PATTERN 
An instance (S, ~) is a pair of a sample S c ~* and an objective condition 
over S. A solution is a d-word k-proximity pat tern rr over E, and the measure 
of 7r is the number of documents in S on which rr agrees with ~. The goal of the 
problem is to find a (d, k)-pattern rr of the maximum measure. 

The problem for which the proximity and the number of words are not 
specified is denoted by MA X  AGREEMENT BY PROXIMITY WORD ASSOCIATION 

PATTERN. 

Before describing the algorithm, let us briefly review a key data  structure, 
a suffvc tree. 11) Let t be a string in E* of length n, and let t~o, .] for 1 _< p < n 
be the suffix of t starting at the position p. Then the suffix tree Tree(t) for t is a 
rooted tree that  satisfies the following: (i) Each edge is labeled by a subword w 
of t. All edges from the same node are mutually distinguished and alphabetically 
sorted by the first letters of the labels. (ii) Each node v represents a subword 
word(v) of t defined by the concatenation of the labels on the path from the root 
to v. (iii) All the non-empty suffices of t are represented by the leaves of Tree(S), 
and each leaf represents the ith suffix t[i, *] of t for some 1 < i < n uniquely. 
(iv) Every internal node has at least two children. 

The suffix tree Tree(t) has exactly n leaves and at most n - 1 internal 
nodes, and can be represented in O(n) space. McCreight 11) gives an elegant 
algorithm that  computes Tree(t) in linear time and space. The height of Tree(t) 
is the length of a longest path from the root to a leaf. The expected height of 
suffix trees is known to be logarithmistic for a random string, s) 

We employ the suffix tree Tree(t) as a compact representation of dictionary 
of subwords of t with the following notions. Let s be a subword of t. Then the 
locus loc(s) o fs  in Tree(t) is the node v in Tree(t) such that  (i) s is equal to or 
a prefix of word(v), and (ii) for the parent w of v word(w) represents a strictly 
shorter subword of s. Let li be the i th leave of Tree(t) and let pi be the position 
in t such that  word(li) = t~i ,  *]. Then t[pi, *] is the suffix of rank i in the 
lexicographic order. We refer this starting position Pi to spos(i) through the 
table spos of n positive integers, and define lex to be its inverse table, that is, 
lex(i) for an index 1 < i < n gives the lexicographic rank of the suffix from the 
position i. These are called the suffix arrays.I~ 

In the following discussion, a suffix tree of a string and its notions are 
extended to those of a set of strings. For this sake, we introduce a special de- 
limiter symbol $ which satisfies $ r E and $ ~ $. Given a sample S and a 
labeling function ~, the algorithm builds a suffix tree Tree(S) for all documents 
in S by assuming every documents ending with additional $. Any edge label 
including $ must be on a lowest branching edge. We implicitly regard a sample 
S = { 8 1 , - - -  , Sin} as a single but separated text S = sl$s2$.--$s,~$ concate- 
nating all the documents. A position 1 < p < ISI on the j t h  document in S is 
identified with the pair (i, j )  of the corresponding position i in sj appropriately. 

A pattern zr is canonical if it can be represented by some sequence of 
nodes Ul , . . .  ,u d of Tree(S) as rr = ((word(u1) . . . ,  word(ud)), k). Here, if uj is 
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a leaf then we define word(uj)  to be the whole string represented by uj except 
the delimiter $. Let (S, ~) be an instance of our maximum agreement problem, 
and let ~r be a pattern.  We denote by counta(~r) for a C {0, 1} the number of 
documents tha t  match 7r and are labeled with a.  Then the maximization of 
the agreement equals the maximization of the difference As,~(Tr) = counh (Tr) - 
counto(Tr) since the number of 0-labeled documents in S is fixed. Let ws  E ~* 
be an arbi t rary string which is strictly longer than any document  in S. Clearly 
a s , d ( ( w s ) ,  k)) equals O. 

The following lemma tells us that  it is sufficient to consider only the 
canonical pat terns  or 0Js for solving our problem. 

Lemma 2.1 
Either a canonical pat tern or ws maximizes As,~ over all (d, k)-patterns.  

Proof 
Let w be a string in Z*. By a contradiction, it can be seen tha t  every occurrence 
of w in S is also an occurrence of word(loc(w)) .  The value As,~ (Tr) is calculated 
with the set of occurrences of 7r in S and (, and each occurrence is a sequence 
of occurrences of the d-words in 7r. So we can examine with canonical pat terns 
and ws  all the measures of (i) pat terns  that  match some documents and (ii) a 
pat tern  tha t  match no documents. �9 

w Computing the Maximum Agreement by Association of 
a BoundedNumber of Words 
As well as the fact shown in the previous section, our algorithm employs 

the following observations: (i) in reality, the height of a suffix tree grows rather  
slowly with the size of the sample, especially Iogarithmistically for uniformly 
random strings; (ii) an internal node of a suffix tree and the leaves descended 
from it are corresponding to a subword in a document. The algorithm is outlined 
in Fig. 1. I t  searches for and tests canonical pat terns as hyper-rectangles on d- 
dimensional space, where the labeled points corresponding to the documents are 
distributed. This realizes an average case efficient algorithm for random inputs 
with the fact that  we have to visit only a small fraction O ( k d - l n h d )  of pat terns 
from O(n  d) possible combinations of d substrings of S, where h is the height of 
the suffix tree for the input text. 

For nonnegative integers i, j with i < j ,  we denote by [i, j] the interval 
from i to j .  We define [i,j] to be empty  if i > j .  Then Ill,j1] x . . .  x [id,ja] 
with integers il ,  j l , . . .  , ia, jd defines a d-dimensional axis-parallel rectangle, or d- 
dimensional box. For a sample S of m documents,  the d-dimensional diagonal set 
Diagd,k(S ) C [1, n] d x [1,m] of width k is the set of labeled points such that  a 
point (Pl, �9 �9 �9 , Pd; i) in Diagd, ~ (S) is formed from a sequence (P l , . . .  , Pd) which is 
possibly an occurrence of some (d, k)-pat tern  in s~. In another words, Diagd,k(S ) 
is the set of all the points (P l , . . .  ,Pd; i) e [1, n] d • [1, m] such tha t  1 < pj < [s~[ 
for 1 < j < d and 0 < p j + l - p j  _< k with 1 <_ j < d for 1 < i < m. Then 
d-dimensional rank space Rankd,k(S) C_ [1, n] d x [1, m] of S is defined by 

Rankd,k(S) = { (lex(pt), . . . , lex(pd); i) I (P l , . . .  ,Pal; i) �9 Diagd,k(S) } . 
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Algorithm Maximum_A g reement d , k : 

Input :  A sample  S C :E* and an objec t ive  cond i t ion  ~ : S ---* {0, 1}. 
Ou tpu t :  A (d, k ) -p rox imi ty  pa t t e rn  7r over ~ t h a t  max imizes  As,~(Tr). 

1. C o m p u t e  the  suffix t ree  Tree(S),  suffix a r rays  lex and al)os = lex - 1  �9 

2. Gene ra t e  the  e lements  of Diaga, k ( S ) ,  t hen  collect  t hem in Rankd,k ( S ) .  

3. Sort  the  po in t s  in RQnkd,k(S)  l ex icographica l ly  into the  l is t  Q. 
4. C o m p u t e  the  levels of al l  the  nodes  of Tree(S) ,  and  ini t ia l ize  the  global  d Boolean 

flags for a l l  t he  nodes of Tree(S).  
5. Call  Discover(Tree(S),  Q, 1, 7to) w i t h  the  e m p t y  p a t t e r n  lro :---- ( 0 ,  k). 
6. O u t p u t  the  l is t  the  bes t  p a t t e r n s  7r found if the  m a x i m u m  of A is posi t ive.  Other-  

wise, r e t u r n  w s .  

Fig. 1 The Algorithm for Computing the Maximum Agree- 
ment over (d, k)-patterns 

Let v be any node of Tree(S), and let 11 and 12 be the left-most and right- 
most leaves among the descendants of v. We identify a leaf of the suffix tree 
Tree(S) with its occurrence in S. Then we can see that  the set of the occurrences 
of word(v) form a consecutive subinterval I(v) = [lex(ll), lex(l~)] of [1,n]. We 
associate each canonical (d, k)-pat tern 7r = ((word(v1),.. .  ,word(vd)),k) with 
the d-dimensional box Box(r) = I(vl)  • . . .  • I(vd) over Rankd,k( S). For any set 
Q c [1, n] d • [1, m], we define the measure of box Box(r) by 

AQ,~ (Box(~r) ) = count~ (Q, 7r) - count~o (Q, ~r), 

where count,,(Q; ~r) for a c {0,1} is the number  of points ( r l , .  . . ,  rd;i) e Q 
such that  ( r l , . . .  , rd; i) is in Box(r)  • [1, m] and ~(si) -- a for si E S. 

Lemma 3.1 
Let S be a sample and Q = Rankd,k(S).  Then, for any canonical (d, k)-pat tern 

= aQ,dSox( )). 

Pr(mf 
This is essentially due to Manber and Baeza-Yates. 10) �9 

Now let v be a node of the suffix tree Tree(S). The level(v) o fv  in Tree(S) 
is the distance from the root to v. Fig. 2 shows the subprocedure Discover. A 
sequence of points is used as a representation of a set at tached to a node of 
the suffix tree. Also we assume tha t  each node of the suffix tree provides d 
Boolean flags. By checking the flags and the levels of nodes, we visit all the 
nodes corresponding to the subwords which possibly appear  in patterns.  

Lemma 3.2 
The subprocedure Discoverd,k invoked with a sequence Q of points and c -- 1 
generates and measures every canonical (d, k)-pat tern for Tree(S) that  matches 
at least one document  in Q exactly once. 

Proof 
Assume that  Discoverd,k is invoked with a sequence Q and a parameter  c < d at 
the (c - 1)th level of its recursion. Then clearly the words from the first to the 
(c - 1)th of ~r have already been fixed. We visit and t ry  a node v of Tree(S) if 
and only if the pa t te rn  7r with its additional cth word word(v) can match some 
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Procedure Discoverd ,k  ( Q , c, lr): 
1. If c _< d then:  

a) Make the  new e m p t y  queue  H.  
b) For each value r of the c th  e lements  of points  in Q do: 

i) Make a subsequence Q~ of points whose c th  e lement  equals  r .  
ii) A t t ach  Q .  to the  r t h  leaf l r  and  add  lr  to the  last of H .  

c) For each node v at  the  first of the  queue  H do: 
i) If v is not  a leaf, then:  

Let  u l , . . .  , up be the  children of v. 
Merge all the  points  in Q ~ I ,  �9 �9 �9 , Q~'p to Qw lexicographical ly  wi th  
respect  to the  e lements  f rom the  (c -i- 1) th  to  the  last.  
Discard the sequences Q ~ t ,  �9 ' �9 , Q~'p" 

ii) Call Di~'cover(c + 1, Qv,  lr .  ((word(v)), k)),  by placing word(v) to the  c th  
word of r ,  and  then  clear  the  flag of v. 

iii) If  v is not the  root ,  then:  
If  the  paren t  w of v is still not  checked an d  level(w) d- 1 = level(v), 
t hen  check a nd  a dd  w to  the  last  of H .  

iv) Dequeue the  first node  v f rom H .  
2. If c = d q- 1 then  c o m p u t e  coun t~  = 1{6 �9 Q ] ~(~) = a}]  for a �9 {0 ,1} .  

If  A :=  count1  - -counto  equals the  largest  value,  then  record  7r in t h e  list of pa t t e rns .  
If it is s t r ic t ly  larger  t h a n  the  values  seen so far,  discard p a t t e r n s  in the  list, and  
add  7r. 

Fig. 2 T h e  P r o c e d u r e  D i s c o v e r  

documents in Q. All those documents are prepared in the sequence Qv of points 
when v is visited. 

Firstly, the leaf Ir of rank r has to be tried as the cth word of a pattern 
only if Q contains points whose cth elements equal r. Every such leaf is added 
to H and gets the sequence QI~ of the points in Step 1-b. Next, any internal 
node v should be visited if any leaf descended from v is enqueued in H.  We 
will find out all such nodes by passing sequences of points from leaves to the 
root in Step 1-c-iii. The cth flag of v is set when its child in the 'next level' is 
visited, and is cleared after v is visited. By induction on the levels, it is clear 
that if any child in the level level(v) + 1 is encountered, then all the children of 
v in the deeper levels were visited, and all other children in level(v) + 1 have 
already been enqueued in H.  So the sequence Qv supplied to Discover in Step 
1-c-ii contains only and all the points whose elements from the first to the cth 
match with 7r- ((word(v)), k)). 

If c -- d + 1, the subprocedure Discoverd,k computes the measure of the 
(d, k)-pattern by simply counting labels of points. Therefore, all the canonical 
patterns are generated and tested by the procedure. II 

Lemma 3.3 
Let h be the height of the suffix tree. Then the procedure Discoverd,k with an 
input Q of h points and c = 1 runs in the worst case O(hdfi) time. 

Proof 
Let Tj(h) for O < j < d be the worst-case running time of Discoverd,k called 
with c -- d - j + 1 (to determine the last j words in the pattern).  

Clearly T0(h) runs in O(fi) time. For j > 1, Step 1-a takes O(h) time, 
and Step 1-b-i can be done in O(log IF~I. IQc,v,]) t ime because at most I~1 sorted 
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sequences have to be merged. Therefore, we have the recurrence 

Tj(h) = O(h) + ~ (log I~l" IQc,v,I + Tj-I(IQc,v,D), 
l <i<tree( S) 

where tree(S) < 2n - 1 is the number of nodes of Tree(S). Now we introduce 
the sets Ht with 0 < l < h partitioning the nodes of the suffix tree Tree(S) by 
their levels I. Although levels of leaves can vary, both the sequence of points 
that will be attached to the root and the union of the sequences attached to the 
leaves must include all h points supplied in Q. So the above recurrence can be 
rewritten by the inequality z.., ~ IQc,vl < h for all 1 < l < h to 

vEH~ 

r3(h) -- O(h) +loglEI ~ ~' IQ~,,,[ + ~ ~ Ty-~(IQ~,.I) 
l<l<h vEHt l</<h vEHl 

< O(h)+hhlogl~l+ ~ ~ Tj-I(IQ~,v[). 
l <l<_h vEHl 

Solving this recurrence, we have Tj(fi) = O(hJh). This completes the proof. �9 

Since we have at most kd-ln points in Rankd,~(S), the following holds. 

Theorem 3.1 
Let (S, () be a pair of sample over ~ and an objective function for S. Then, 
for fixed integer d and k, our algorithm finds all the (d, k)-patterns in canonical 
form that maximizes the measure in worst-case complexity O(kd-lhdn) time 
and O(kd-ln) space, where n is the total length of strings in S and h < n is the 
height of the suffix tree Tree(S). 

Corollary 3.1 
Let S C E* be a set of uniformly random strings with total length n. Then 
the  problem MAXIMUM AGREEMENT BY d-WORDS k-PROXIMITY ASSOCIATION 
is solvable in expected time O(dkd-ln log d n) and space O(kd-ln), where (S, ~) 
is an instance of the problem, and n is the total length of strings in S. 

Proof 
Applying the observation by Devroye et al. 5) on the height of suffix trees for 
uniformly random strings, we obtain the result. �9 

w Hardness of Approximating Maximum Agreement by Associa- 
tion of Arbitrary Many Words 
As we have seen, MAX AGREEMENT BY d-WORDS k-PROXIMITY ASSOCI- 

ATION for fixed d and k is solvable in polynomial time. However, the problem 
has seemed to be computationally intractable if d and k are not limited. This 
observation comes from the NP-completeness of a consistency problem of a class 
of regular patterns TM in computational learning thoory. Although the proof of 
this result does not capture the hardness of the optimization, it tells us that  the 
maximum agreement problem of word-association patterns is intractable if the 
optimum is very close to the total number of texts. 
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Consider the following trivial algorithm: Given an instance, simply count 
the numbers of positive-labeled strings and negative-labeled strings and choose 
the better one from either an empty pattern accepting all labeled strings or a 
pattern rejecting all strings (for example a string longer than all given strings). 
This algorithm clearly approximates the problem with a guaranteed factor 1/2, 
and thus MAX AGREEMENT BY WORD ASSOCIATION is in class A P X ?  ) 

On the other hand, it is hard to approximate the problem within an 
arbitrarily small error in polynomial time�9 The main result in this section is the 
following theorem. 

Theorem 4.1 
MAX AGREEMENT BY WORD ASSOCIATION is MAX SNP-hard. 

Proof 
In the following we give a PTAS-reduction from MAX 2-SAT that  proves this 
theorem. 

We build an instance ~r -- (Sr ~r of MAX AGREEMENT BY WORD ASSO- 
CIATION over a finite alphabet Ar for any MAX 2-SAT instance r = (X, C), a pair 
of a set X = {Xl . . . .  ,xn} of variables and a set C = {Cl, . . .  ,ca} of 2-literal 
clauses�9 Firstly, we define an alphabet Ai = {a~, bi} for every 1 < i < n + 1 
where n is the number of boolean variables ]XJ in 0. Let bin(i) for 1 < i < n 
be the binary representation of i in (A,,+I)[iog n/+I by some natural coding. We 
denote by symbols t i ,  f i ,  ui, di the strings aia, bi, biaiai, aibiai, biaibi in (Ai) 3 for 
all 1 < i < n, respectively. Note that  any word-association pat tern that accepts 
both di and ui cannot reject either t i  or fi ,  or both. Let Si for 1 < i < n be a 
set either { t i ,  f i ,  ui, di}, {t~, ui, di} or {f i ,  u~, di}. Then the notion [Si] refers a 
pattern that  accepts strings in Si and rejects {t i ,  f i ,  ui, d i } -  Si. For example, 
[{ti, di, ui)] is a pat tern (aib,) or (ai, hi), which accepts t:i, di, u but  rejects fi.  

Next, for each clause ci E C, we associate the following negative-labeled 
string: For each j from 1 to n, we concatenate either (i) dj if xj and ~j are 
not in ci, (ii) f j  if the literal xj appears in c~, or (iii) t:j if ~j is in ci. Then to 
its end we append bin(i). For example, we associate with a clause ci = (xj, xk) 
with 1 < j < k < n the string da --- f j - - -  t k - - -  d,~ - bin(i). Note that  we are 
assuming no clause in C has two complementary literals. Such a clause can be 
handled as the auxiliary additional value to the measure in the reduction. 

For each clause ci, we associate two positive-labeled strings dl --- dn'bin(i) 
and ua . . .  un.  bin(i). We refer to these by down-string and up-string, respectively. 
The labeled sample corresponding to r is defined as the set of the negative- 
labeled strings and the positive-labeled strings associated with all clause in C. 

Now we specify the translation from a solution p for (Ar162 to a 
Boolean assignment Bp for r Let Si for 1 < i < n be either t t i ,  u , ,d ,}  
or {f i ,  ui, di}. Then, a boolean assignment-pattern p for (Ar Tr ~r is a word- 

. . [ log 2 n ]  + 1  Flog s n | + l  assoclatmn pat tern  [$1]" [$2] . . . . .  ISn] - [a .+  1 ], where [an+ 1 ] denotes 
�9 �9 [ log s n ] + l  a pattern that  accepts all strings in An+ 1 . By regarding { t i ,  ui, di} and 

{fi ,  u~, di} as ' t rue'  and 'false' assignment to xi respectively, an assignment pat- 
tern rejects a negative-labeled string if and only if the corresponding clause is 
satisfied. This fact is important since the following lemma holds: �9 
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Lemma 4.1 
For any solution p of ~r = (Ar Tr ~e), we can compute in logspace an assignment- 
pattern pr for 7r whose measure is larger than that  of p. 

We show a brief outline of a proof of this lemma. Without loss of gener- 
ality, we can suppose that  a solution p accepts both some up-strings and down- 
strings and achieves the measure larger than 2 /3 .  [Tr Otherwise we simply 
take the empty-pat tern ( ) as p. Then, such a pattern p can be decomposed 
into the (possibly empty) subsequences Pi formed from only letters in Ai for all 
1 < i < n + 1, since p must accept all the positive-labeled strings except those 
rejected by Pn+l. 

If we modify the last segment ~vn+l] to accept more positive-labeled 
strings, at most one negative-labeled string will be accepted for each pair of 
newly accepted up-string and down-string ending with bin(i). Thus we can 
modify P~+I to pat tern that allows to accept all positive-labeled strings. Now 
let Pi be one of the subsequences o fp  accepting both t i  and fi .  We replace every 
such subsequence Pi with either [{d~, ui, t i}] or [{d,, ui, fi}]. Each choice can 
be done even arbitrarily, and every such replacement at least retains the number 
of rejected negative-labeled strings. Thus we obtain an assignment-pattern p' 
from p. 

The Lemma 4.1 tells that the measure of the optimum solution of ~r is given 
by some assignment pattern,  and a boolean assignment-pattern p corresponds 
to the boolean assignment, say Bp, to X with respect to the formula r Then, 
it is immediate that  the following claim hold: 

Claim 4.2 
For every 2-CNF formula r there holds opt(Tr) < 5.opt(C). For every assignment- 
pattern p, there holds opt(C) - rn(r Bp) = opt(Tr) - m(Tr,p). 

The first statement is true because, for any 2-CNF formula r always 
1 a) 

opt(C) >_ ~ ]C I and opt( Tr) = 2. IC] +opt(C) hold. The second statement is clear 

since with an assignment-pattern all the positive-labeled strings are accepted and 
thus only the number of rejected negative-strings corresponding to the satisfied 
clauses makes a difference between optOr ) and rn(Ir, p). 

Corollary 4.1 
There is no PTAS for MAX AGREEMENT FOR WORD ASSOCIATION PATTERNS 
unless P = NP. 

w Agnostic  PAC-Learning  
Agnostic PAC-learning 9) is a generalization of the well known PAC-learning 

model in computational learning theory, where the learner has no information 
about the structure behind the target function, or training examples may con- 
tain arbitrary large percent of noise. Kearns et al. 9) show that  for any class of 
polynomial VC-dimension, g) the polynomial time solvability of the maximum 
agreement problem and the efficient agnostic PAC-learnability are equivalent. 
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Unfortunately, the maximum agreement problem is intractable in most 
cases. ~) Recently, however, the problem is shown to be efficiently solvable for 
simple but interesting subclasses of geometric patterns such as axis-parallel rect- 
angles. 6) Since proximity word-association patterns obviously have polynomial 
VC-dimension, we have the next result from Theorem 3.1 and Theorem 3.1. 

Corollary 5.1 
For every d, k _> 0, the algorithm F i n d _ P a t t e r n s  in Fig. 1 is an efficient agnostic 
PAC-learning algorithm for the class of (d, k)-patterns. 

w Conclusion 
In this paper, we presented an efficient algorithm for finding proximity 

word-association patterns in a large collection of unstructured texts, and we also 
showed that  the problem is hard to approximate when the number of subwords in 
a pattern is not bounded. An implementation of and a preliminary experiments 
with of a prototype system are reported in companion papers. 3'4) 
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