
New Generation Computing, 18(2000)49-60
Ohmsha, Ltd. and Springer-Verlag EW GE RATION COMPUTING

�9 Ltd. 2000

Efficient Discovery of Optimal Word-Association
Patterns in Large Text Databases

Shinichi SHIMOZONO
Dept. of Artificial Intelligence, Kyushu Inst. of Tech.,
Iizuka 820-8502, Japan
s in~ai, kyut ech. ac. jp

Hiroki ARIMURA
Dept. of lnformatics, Kyushu Univ., Fukuoka 812-8581, Japan
Precursory Research for Embryonic Science and Technology
at Japan Science and Technology Corporation
arim@i, kyushu-u, ac. jp

Setsuo ARIKAWA
Dept. of lnformatics, Kyushu Univ., Fukuoka 812-8581, Japan
arikawa~i, kyushu-u, ac. jp

Received 03 September 1999

Abstract We study efficient discovery of proximity word-association
patterns, defined by a sequence of strings and a proximity gap, from a col-
lection of texts with the positive and the negative labels. We present an
algorithm that finds all d-strings k-proximity word-association patterns that
maximize the number of texts whose matchindg agree with their labels. It
runs in expected time complexity O(ka-tnlog n) and space O(kd-ln) with
the total length n of texts, if texts are uniformly random strings. We also
show that the problem to find one of the best word-association patterns with
arbitrarily many strings is MAX SNP-hard.

Keywords: Text Databases, Data Mining, Optimization, Proximity Word-
association Patterns, Discovery Science.

w Introduction
In this paper, we present a fast algorithm for efficient discovery of combi-

natorial patterns, called proximity word-association patterns, from a collection of
texts with binary classification labels.

Since emerged in early 1990's, data mining has been extensively studied
to develop semi-automatic tools for discovering valuable rules from stored facts

50 S. Shimozono, H. Arimura and S. Arikawa

in large scale databases. 1) A rule which is looked for is an association among
attr ibutes that gives a useful property. Mainly a considerable amount of results
have been known for well-defined and structured databases, such as relational
databases with boolean or numeric at tr ibutes. 1.,)

Beside this, recent progress of measuring and sensing technology, storage
devises and network infrastructure has been rapidly increasing the size and the
species of weakly-structured databases such as bibliographic databases, e-mails
and HTML streams and raw experimental results as genomic sequences. These
lead to potential demands to data mining tools for databases where no at tr ibutes
or structure is assumed in advance. However, there are still a few results in this
direction) *) One difficulty might be tha t a tool should quickly extract a structure
behind the data as well as discover rules of interests. Our aim is to develop an
efficient tool for text databases along the lines of data mining.

We consider a data mining problem in a large collection of unstructured
texts based on association rules over subwords of texts. A proximity word as-
sociation pattern is an expression such as (:rATA, TAGT, AGGAGGT; 30) that
expresses a rule tha t if subwords TATA, TAGT, and AGGAGGT appear in a text
in this order with distance no more than 30 letters then a specified property
will hold over the text with a probability. Note that we use the te rm word in
the sense of a consecutive substring of unlimited length rather than a keywords.

The da ta mining problem we consider is the maximum agreement problem
defined as follows. Assume that we are given a collection of documents with an
objective condition, that is, a binary label ~ over texts in S tha t indicates if a
text has a proper ty of interest. A pa t te rn 7r agrees with ~ on s if 7r matches s
if and only if ~(s) = 1. The maximum agreement problem, also called empirical
risk minimization, 5) is to find a k-proximity d-word association pat tern 7r that
maximizes the number of documents in S on which 7r agrees with ~. This problem
is an instance of optimal pattern discovery, which at t racts much attention in the
field of data mining. ~)

The notion of proximity word association pat terns extends frequently used
proximity patterns consisting of two strings and a gap. lo) An algorithm that effi-
ciently solves this problem can be applied in a wide range of practical problems
and plays a key role in the discovery of a consensus motif from protein sequences
as in Reference. 14) Further, the max imum agreement problem plays an impor-
tant role in computat ional learning theory; it is shown that an algorithm that
efficiently solves the problem for a class with moderate complexity will be an
efficient learner with the same class in the framework of Agnostic PAC-learning2)

Clearly, the maximum agreement problem by proximity word-association
patterns is polynomial-t ime solvable in O(n 2d+l) t ime if the pat terns are formed
from at most d strings. A modified algorithm that uses the suffix tree struc-

7d+l d ture improves to O(n) t ime but still requires O(n) scans of input texts, x4)
However, the practical importance of the problem requires more efficient, essen-
tially faster algorithm. Hence, we have devised an algorithm that efficiently
solves the max imum agreement problem, which finds a d-words k-proximity
word-association pa t t e rn with the max imum agreement in expected running

d 1 dq-1 d 1 t ime O(k - nlog n) and space O(k - n) with the total length n of texts,

Efficient Discovery of Optimal Word-Association Patterns in Large Text Databases 5/

if texts are uniformly random strings. Even in the worst case the algori thm runs
in t ime O(kdn d+l log n) which is essentially faster than the naive method.

On the other hand, if the number of strings in a proximity word-association
pa t te rn is not limited, the m a x i m um agreement problem is intractable. Dealing
with this hardness, we should look for a polynomial- t ime a lgor i thm tha t solves
the problem approximate ly with some guaranteed approximat ion ratio. We par-
tially clarify this issue by presenting the nonapproximabi l i ty of our maximizat ion
problem. We show tha t the m a x i m u m agreement problem of word-associat ion
pat terns formed from arbi t rary m a n y words is hard to approximate within a
factor arbitrari ly close to one in polynomial time, i.e., has no polynomial- t ime
approximat ion scheme (PTAS) unless P = N P . I t is an interesting contras t tha t
the problem is obviously approximable in polynomial- t ime within a fixed ap-
proximat ion ratio.

The remainder of this paper is organized as follows. First , we introduce
some notions and definitions. Next, we present the efficient a lgor i thm tha t dis-
covers all the best word-associat ion pat terns , and analyze its running time. Then
we prove the nonapproximabi l i ty of the problem. We end with some discussion
on the relation between our problem and computa t iona l learning theory.

w Notions and Definitions
The set E is a finite a lphabet t h roughou t this paper. We assume some

fixed total ordering on the letters in E. The empty string in E* whose length is
zero is referred to c. For a s t r ing s E E*, we denote by is] the length of s and by
s[i] with 1 < i < Isl the i th letter of s. The concatenat ion of two strings s and
t in E* is denoted by s- t, or s imply by st. If for a str ing t there exist (possibly
empty) strings u, v C E* such tha t t = u- v, then we say tha t u and v are aprefix
and a suffix of t, respectively. Any prefix of a suffix of t is a subword (substring)
of t. A notion t[i,j] refers to the subword t[i]...t[j] of t f rom the i th to the
j t h letters. An occurrence of a string v in t is an integer 1 < i < Is I specifying
a position from which the substr ing v occurs in t, t ha t is, an index i such tha t
t[i, i + Iv[- 1] = v.

A proximity word-association pattern r over ~ (word-association pattern) is a
pair 7r = ((Wl,. �9 �9 , wd), k) of a finite sequence of strings in E* and a nonnegative
integer k called proximity. A (d, k)-pattern refers to a d-word k-proximity associ-
at ion pat tern. An occurrence of r in s is a sequence (i l , . . . , id) of occurrences of
w l , . . . ,w4 in s t h a t satisfy 0 < ij+l - i j <_ k for all 1 < j < d. We say rcmatches
s E E* if an occurrence of ~r in s exists. W h e n we specify the positive infinity
proximity oo, we write rc = (w l , . . . , Wd) by omit t ing k. The concatenat ion 7r. T
of tWO pat te rns r = ((u l , . . . , Uc), k) and T = ((Wl , . . . , Wd), k) with the same
proximity is the pa t t e rn ~r. T = ((Ul, �9 �9 �9 , Ue, Wl, . . �9 , Wd), k).

Now we define our problem. A sample is a finite set S = { s l , . . . ,sin}
of strings in E*, and an objective condition over S is a b inary labeling function

: S --* {0, 1}. A string s~ in S is a document whose label is ~(si). We say
a word-associat ion pa t te rn 7r agrees with ~ on si if either (i) ~ matches 8i and
{(si) = 1, or (ii) ~r does not match si and {(si) = O. The number of elements in
S is denoted by IS].

52 S. Shimozono, H. Arimura and S. Arikawa

Definition 2.1
MAX AGREEMENT BY k-PROXIMITY d - W O R D ASSOCIATION PATTERN
An instance (S, ~) is a pair of a sample S c ~* and an objective condition
over S. A solution is a d-word k-proximity pat tern rr over E, and the measure
of 7r is the number of documents in S on which rr agrees with ~. The goal of the
problem is to find a (d, k)-pattern rr of the maximum measure.

The problem for which the proximity and the number of words are not
specified is denoted by MA X AGREEMENT BY PROXIMITY WORD ASSOCIATION

PATTERN.

Before describing the algorithm, let us briefly review a key data structure,
a suffvc tree. 11) Let t be a string in E* of length n, and let t~o, .] for 1 _< p < n
be the suffix of t starting at the position p. Then the suffix tree Tree(t) for t is a
rooted tree that satisfies the following: (i) Each edge is labeled by a subword w
of t. All edges from the same node are mutually distinguished and alphabetically
sorted by the first letters of the labels. (ii) Each node v represents a subword
word(v) of t defined by the concatenation of the labels on the path from the root
to v. (iii) All the non-empty suffices of t are represented by the leaves of Tree(S),
and each leaf represents the ith suffix t[i, *] of t for some 1 < i < n uniquely.
(iv) Every internal node has at least two children.

The suffix tree Tree(t) has exactly n leaves and at most n - 1 internal
nodes, and can be represented in O(n) space. McCreight 11) gives an elegant
algorithm that computes Tree(t) in linear time and space. The height of Tree(t)
is the length of a longest path from the root to a leaf. The expected height of
suffix trees is known to be logarithmistic for a random string, s)

We employ the suffix tree Tree(t) as a compact representation of dictionary
of subwords of t with the following notions. Let s be a subword of t. Then the
locus loc(s) o fs in Tree(t) is the node v in Tree(t) such that (i) s is equal to or
a prefix of word(v), and (ii) for the parent w of v word(w) represents a strictly
shorter subword of s. Let li be the i th leave of Tree(t) and let pi be the position
in t such that word(li) = t~i , *]. Then t[pi, *] is the suffix of rank i in the
lexicographic order. We refer this starting position Pi to spos(i) through the
table spos of n positive integers, and define lex to be its inverse table, that is,
lex(i) for an index 1 < i < n gives the lexicographic rank of the suffix from the
position i. These are called the suffix arrays.I~

In the following discussion, a suffix tree of a string and its notions are
extended to those of a set of strings. For this sake, we introduce a special de-
limiter symbol $ which satisfies $ r E and $ ~ $. Given a sample S and a
labeling function ~, the algorithm builds a suffix tree Tree(S) for all documents
in S by assuming every documents ending with additional $. Any edge label
including $ must be on a lowest branching edge. We implicitly regard a sample
S = { 8 1 , - - - , Sin} as a single but separated text S = sl$s2$.--$s,~$ concate-
nating all the documents. A position 1 < p < ISI on the j t h document in S is
identified with the pair (i, j) of the corresponding position i in sj appropriately.

A pattern zr is canonical if it can be represented by some sequence of
nodes Ul , . . . ,u d of Tree(S) as rr = ((word(u1) . . . , word(ud)), k). Here, if uj is

Efficient Discovery of Optimal Word-Association Patterns in Large Text Databases 53

a leaf then we define word(uj) to be the whole string represented by uj except
the delimiter $. Let (S, ~) be an instance of our maximum agreement problem,
and let ~r be a pattern. We denote by counta(~r) for a C {0, 1} the number of
documents tha t match 7r and are labeled with a. Then the maximization of
the agreement equals the maximization of the difference As,~(Tr) = counh (Tr) -
counto(Tr) since the number of 0-labeled documents in S is fixed. Let ws E ~*
be an arbi t rary string which is strictly longer than any document in S. Clearly
a s , d ((w s) , k)) equals O.

The following lemma tells us that it is sufficient to consider only the
canonical pat terns or 0Js for solving our problem.

Lemma 2.1
Either a canonical pat tern or ws maximizes As,~ over all (d, k)-patterns.

Proof
Let w be a string in Z*. By a contradiction, it can be seen tha t every occurrence
of w in S is also an occurrence of word(loc(w)) . The value As,~ (Tr) is calculated
with the set of occurrences of 7r in S and (, and each occurrence is a sequence
of occurrences of the d-words in 7r. So we can examine with canonical pat terns
and ws all the measures of (i) pat terns that match some documents and (ii) a
pat tern tha t match no documents. �9

w Computing the Maximum Agreement by Association of
a BoundedNumber of Words
As well as the fact shown in the previous section, our algorithm employs

the following observations: (i) in reality, the height of a suffix tree grows rather
slowly with the size of the sample, especially Iogarithmistically for uniformly
random strings; (ii) an internal node of a suffix tree and the leaves descended
from it are corresponding to a subword in a document. The algorithm is outlined
in Fig. 1. I t searches for and tests canonical pat terns as hyper-rectangles on d-
dimensional space, where the labeled points corresponding to the documents are
distributed. This realizes an average case efficient algorithm for random inputs
with the fact that we have to visit only a small fraction O (k d - l n h d) of pat terns
from O(n d) possible combinations of d substrings of S, where h is the height of
the suffix tree for the input text.

For nonnegative integers i, j with i < j , we denote by [i, j] the interval
from i to j . We define [i,j] to be empty if i > j . Then Ill,j1] x . . . x [id,ja]
with integers il , j l , . . . , ia, jd defines a d-dimensional axis-parallel rectangle, or d-
dimensional box. For a sample S of m documents, the d-dimensional diagonal set
Diagd,k(S) C [1, n] d x [1,m] of width k is the set of labeled points such that a
point (Pl, �9 �9 �9 , Pd; i) in Diagd, ~ (S) is formed from a sequence (P l , . . . , Pd) which is
possibly an occurrence of some (d, k)-pat tern in s~. In another words, Diagd,k(S)
is the set of all the points (P l , . . . ,Pd; i) e [1, n] d • [1, m] such tha t 1 < pj < [s~[
for 1 < j < d and 0 < p j + l - p j _< k with 1 <_ j < d for 1 < i < m. Then
d-dimensional rank space Rankd,k(S) C_ [1, n] d x [1, m] of S is defined by

Rankd,k(S) = { (lex(pt), . . . , lex(pd); i) I (P l , . . . ,Pal; i) �9 Diagd,k(S) } .

5 4 S. Shimozono, H. A r i m u r a and S. Arikawa

Algorithm Maximum_A g reement d , k :

Input : A sample S C :E* and an objec t ive cond i t ion ~ : S ---* {0, 1}.
Ou tpu t : A (d, k) -p rox imi ty pa t t e rn 7r over ~ t h a t max imizes As,~(Tr).

1. C o m p u t e the suffix t ree Tree(S), suffix a r rays lex and al)os = lex - 1 �9

2. Gene ra t e the e lements of Diaga, k (S) , t hen collect t hem in Rankd,k (S) .

3. Sort the po in t s in RQnkd,k(S) l ex icographica l ly into the l is t Q.
4. C o m p u t e the levels of al l the nodes of Tree(S) , and ini t ia l ize the global d Boolean

flags for a l l t he nodes of Tree(S).
5. Call Discover(Tree(S), Q, 1, 7to) w i t h the e m p t y p a t t e r n lro :---- (0 , k).
6. O u t p u t the l is t the bes t p a t t e r n s 7r found if the m a x i m u m of A is posi t ive. Other-

wise, r e t u r n w s .

Fig. 1 The Algorithm for Computing the Maximum Agree-
ment over (d, k)-patterns

Let v be any node of Tree(S), and let 11 and 12 be the left-most and right-
most leaves among the descendants of v. We identify a leaf of the suffix tree
Tree(S) with its occurrence in S. Then we can see that the set of the occurrences
of word(v) form a consecutive subinterval I(v) = [lex(ll), lex(l~)] of [1,n]. We
associate each canonical (d, k)-pat tern 7r = ((word(v1),.. . ,word(vd)),k) with
the d-dimensional box Box(r) = I(vl) • . . . • I(vd) over Rankd,k(S). For any set
Q c [1, n] d • [1, m], we define the measure of box Box(r) by

AQ,~ (Box(~r)) = count~ (Q, 7r) - count~o (Q, ~r),

where count,,(Q; ~r) for a c {0,1} is the number of points (r l , . . . , rd;i) e Q
such that (r l , . . . , rd; i) is in Box(r) • [1, m] and ~(si) -- a for si E S.

Lemma 3.1
Let S be a sample and Q = Rankd,k(S). Then, for any canonical (d, k)-pat tern

= aQ,dSox()).

Pr(mf
This is essentially due to Manber and Baeza-Yates. 10) �9

Now let v be a node of the suffix tree Tree(S). The level(v) o fv in Tree(S)
is the distance from the root to v. Fig. 2 shows the subprocedure Discover. A
sequence of points is used as a representation of a set at tached to a node of
the suffix tree. Also we assume tha t each node of the suffix tree provides d
Boolean flags. By checking the flags and the levels of nodes, we visit all the
nodes corresponding to the subwords which possibly appear in patterns.

Lemma 3.2
The subprocedure Discoverd,k invoked with a sequence Q of points and c -- 1
generates and measures every canonical (d, k)-pat tern for Tree(S) that matches
at least one document in Q exactly once.

Proof
Assume that Discoverd,k is invoked with a sequence Q and a parameter c < d at
the (c - 1)th level of its recursion. Then clearly the words from the first to the
(c - 1)th of ~r have already been fixed. We visit and t ry a node v of Tree(S) if
and only if the pa t te rn 7r with its additional cth word word(v) can match some

Efficient Discovery of O p t i m a l Word-Associa t ion P a t t e r n s in Large Tex t D a t a b a s e s 5 5

Procedure Discoverd ,k (Q , c, lr):
1. If c _< d then:

a) Make the new e m p t y queue H.
b) For each value r of the c th e lements of points in Q do:

i) Make a subsequence Q~ of points whose c th e lement equals r .
ii) A t t ach Q . to the r t h leaf l r and add lr to the last of H .

c) For each node v at the first of the queue H do:
i) If v is not a leaf, then:

Let u l , . . . , up be the children of v.
Merge all the points in Q ~ I , �9 �9 �9 , Q~'p to Qw lexicographical ly wi th
respect to the e lements f rom the (c -i- 1) th to the last.
Discard the sequences Q ~ t , �9 ' �9 , Q~'p"

ii) Call Di~'cover(c + 1, Qv, lr . ((word(v)), k)), by placing word(v) to the c th
word of r , and then clear the flag of v.

iii) If v is not the root , then:
If the paren t w of v is still not checked an d level(w) d- 1 = level(v),
t hen check a nd a dd w to the last of H .

iv) Dequeue the first node v f rom H .
2. If c = d q- 1 then c o m p u t e coun t~ = 1{6 �9 Q] ~(~) = a}] for a �9 {0 ,1} .

If A := count1 - -counto equals the largest value, then record 7r in t h e list of pa t t e rns .
If it is s t r ic t ly larger t h a n the values seen so far, discard p a t t e r n s in the list, and
add 7r.

Fig. 2 T h e P r o c e d u r e D i s c o v e r

documents in Q. All those documents are prepared in the sequence Qv of points
when v is visited.

Firstly, the leaf Ir of rank r has to be tried as the cth word of a pattern
only if Q contains points whose cth elements equal r. Every such leaf is added
to H and gets the sequence QI~ of the points in Step 1-b. Next, any internal
node v should be visited if any leaf descended from v is enqueued in H. We
will find out all such nodes by passing sequences of points from leaves to the
root in Step 1-c-iii. The cth flag of v is set when its child in the 'next level' is
visited, and is cleared after v is visited. By induction on the levels, it is clear
that if any child in the level level(v) + 1 is encountered, then all the children of
v in the deeper levels were visited, and all other children in level(v) + 1 have
already been enqueued in H. So the sequence Qv supplied to Discover in Step
1-c-ii contains only and all the points whose elements from the first to the cth
match with 7r- ((word(v)), k)).

If c -- d + 1, the subprocedure Discoverd,k computes the measure of the
(d, k)-pattern by simply counting labels of points. Therefore, all the canonical
patterns are generated and tested by the procedure. II

Lemma 3.3
Let h be the height of the suffix tree. Then the procedure Discoverd,k with an
input Q of h points and c = 1 runs in the worst case O(hdfi) time.

Proof
Let Tj(h) for O < j < d be the worst-case running time of Discoverd,k called
with c -- d - j + 1 (to determine the last j words in the pattern).

Clearly T0(h) runs in O(fi) time. For j > 1, Step 1-a takes O(h) time,
and Step 1-b-i can be done in O(log IF~I. IQc,v,]) t ime because at most I~1 sorted

56 S. Shimozono, H. Arimura and S. Arikawa

sequences have to be merged. Therefore, we have the recurrence

Tj(h) = O(h) + ~ (log I~l" IQc,v,I + Tj-I(IQc,v,D),
l <i<tree(S)

where tree(S) < 2n - 1 is the number of nodes of Tree(S). Now we introduce
the sets Ht with 0 < l < h partitioning the nodes of the suffix tree Tree(S) by
their levels I. Although levels of leaves can vary, both the sequence of points
that will be attached to the root and the union of the sequences attached to the
leaves must include all h points supplied in Q. So the above recurrence can be
rewritten by the inequality z.., ~ IQc,vl < h for all 1 < l < h to

vEH~

r3(h) -- O(h) +loglEI ~ ~' IQ~,,,[+ ~ ~ Ty-~(IQ~,.I)
l<l<h vEHt l</<h vEHl

< O(h)+hhlogl~l+ ~ ~ Tj-I(IQ~,v[).
l <l<_h vEHl

Solving this recurrence, we have Tj(fi) = O(hJh). This completes the proof. �9

Since we have at most kd-ln points in Rankd,~(S), the following holds.

Theorem 3.1
Let (S, () be a pair of sample over ~ and an objective function for S. Then,
for fixed integer d and k, our algorithm finds all the (d, k)-patterns in canonical
form that maximizes the measure in worst-case complexity O(kd-lhdn) time
and O(kd-ln) space, where n is the total length of strings in S and h < n is the
height of the suffix tree Tree(S).

Corollary 3.1
Let S C E* be a set of uniformly random strings with total length n. Then
the problem MAXIMUM AGREEMENT BY d-WORDS k-PROXIMITY ASSOCIATION
is solvable in expected time O(dkd-ln log d n) and space O(kd-ln), where (S, ~)
is an instance of the problem, and n is the total length of strings in S.

Proof
Applying the observation by Devroye et al. 5) on the height of suffix trees for
uniformly random strings, we obtain the result. �9

w Hardness of Approximating Maximum Agreement by Associa-
tion of Arbitrary Many Words
As we have seen, MAX AGREEMENT BY d-WORDS k-PROXIMITY ASSOCI-

ATION for fixed d and k is solvable in polynomial time. However, the problem
has seemed to be computationally intractable if d and k are not limited. This
observation comes from the NP-completeness of a consistency problem of a class
of regular patterns TM in computational learning thoory. Although the proof of
this result does not capture the hardness of the optimization, it tells us that the
maximum agreement problem of word-association patterns is intractable if the
optimum is very close to the total number of texts.

Efficient Discovery of O p t i m a l W o r d - A s s o c i a t i o n P a t t e r n s in L a r g e T e x t D a t a b a s e s 57

Consider the following trivial algorithm: Given an instance, simply count
the numbers of positive-labeled strings and negative-labeled strings and choose
the better one from either an empty pattern accepting all labeled strings or a
pattern rejecting all strings (for example a string longer than all given strings).
This algorithm clearly approximates the problem with a guaranteed factor 1/2,
and thus MAX AGREEMENT BY WORD ASSOCIATION is in class A P X ?)

On the other hand, it is hard to approximate the problem within an
arbitrarily small error in polynomial time�9 The main result in this section is the
following theorem.

Theorem 4.1
MAX AGREEMENT BY WORD ASSOCIATION is MAX SNP-hard.

Proof
In the following we give a PTAS-reduction from MAX 2-SAT that proves this
theorem.

We build an instance ~r -- (Sr ~r of MAX AGREEMENT BY WORD ASSO-
CIATION over a finite alphabet Ar for any MAX 2-SAT instance r = (X, C), a pair
of a set X = {Xl ,xn} of variables and a set C = {Cl, . . . ,ca} of 2-literal
clauses�9 Firstly, we define an alphabet Ai = {a~, bi} for every 1 < i < n + 1
where n is the number of boolean variables]XJ in 0. Let bin(i) for 1 < i < n
be the binary representation of i in (A,,+I)[iog n/+I by some natural coding. We
denote by symbols t i , f i , ui, di the strings aia, bi, biaiai, aibiai, biaibi in (Ai) 3 for
all 1 < i < n, respectively. Note that any word-association pat tern that accepts
both di and ui cannot reject either t i or fi , or both. Let Si for 1 < i < n be a
set either { t i , f i , ui, di}, {t~, ui, di} or {f i , u~, di}. Then the notion [Si] refers a
pattern that accepts strings in Si and rejects {t i , f i , ui, d i } - Si. For example,
[{ti, di, ui)] is a pat tern (aib,) or (ai, hi), which accepts t:i, di, u but rejects fi.

Next, for each clause ci E C, we associate the following negative-labeled
string: For each j from 1 to n, we concatenate either (i) dj if xj and ~j are
not in ci, (ii) f j if the literal xj appears in c~, or (iii) t:j if ~j is in ci. Then to
its end we append bin(i). For example, we associate with a clause ci = (xj, xk)
with 1 < j < k < n the string da --- f j - - - t k - - - d,~ - bin(i). Note that we are
assuming no clause in C has two complementary literals. Such a clause can be
handled as the auxiliary additional value to the measure in the reduction.

For each clause ci, we associate two positive-labeled strings dl --- dn'bin(i)
and ua . . . un. bin(i). We refer to these by down-string and up-string, respectively.
The labeled sample corresponding to r is defined as the set of the negative-
labeled strings and the positive-labeled strings associated with all clause in C.

Now we specify the translation from a solution p for (Ar162 to a
Boolean assignment Bp for r Let Si for 1 < i < n be either t t i , u , ,d ,}
or {f i , ui, di}. Then, a boolean assignment-pattern p for (Ar Tr ~r is a word-

. . [log 2 n] + 1 Flog s n | + l assoclatmn pat tern [$1]" [$2] ISn] - [a .+ 1], where [an+ 1] denotes
�9 �9 [log s n] + l a pattern that accepts all strings in An+ 1 . By regarding { t i , ui, di} and

{fi , u~, di} as ' t rue' and 'false' assignment to xi respectively, an assignment pat-
tern rejects a negative-labeled string if and only if the corresponding clause is
satisfied. This fact is important since the following lemma holds: �9

58 S. Shimozono, H. Arimura and S. Arikawa

Lemma 4.1
For any solution p of ~r = (Ar Tr ~e), we can compute in logspace an assignment-
pattern pr for 7r whose measure is larger than that of p.

We show a brief outline of a proof of this lemma. Without loss of gener-
ality, we can suppose that a solution p accepts both some up-strings and down-
strings and achieves the measure larger than 2 /3 . [Tr Otherwise we simply
take the empty-pat tern () as p. Then, such a pattern p can be decomposed
into the (possibly empty) subsequences Pi formed from only letters in Ai for all
1 < i < n + 1, since p must accept all the positive-labeled strings except those
rejected by Pn+l.

If we modify the last segment ~vn+l] to accept more positive-labeled
strings, at most one negative-labeled string will be accepted for each pair of
newly accepted up-string and down-string ending with bin(i). Thus we can
modify P~+I to pat tern that allows to accept all positive-labeled strings. Now
let Pi be one of the subsequences o fp accepting both t i and fi . We replace every
such subsequence Pi with either [{d~, ui, t i}] or [{d,, ui, fi}]. Each choice can
be done even arbitrarily, and every such replacement at least retains the number
of rejected negative-labeled strings. Thus we obtain an assignment-pattern p'
from p.

The Lemma 4.1 tells that the measure of the optimum solution of ~r is given
by some assignment pattern, and a boolean assignment-pattern p corresponds
to the boolean assignment, say Bp, to X with respect to the formula r Then,
it is immediate that the following claim hold:

Claim 4.2
For every 2-CNF formula r there holds opt(Tr) < 5.opt(C). For every assignment-
pattern p, there holds opt(C) - rn(r Bp) = opt(Tr) - m(Tr,p).

The first statement is true because, for any 2-CNF formula r always
1 a)

opt(C) >_ ~]C I and opt(Tr) = 2. IC] +opt(C) hold. The second statement is clear

since with an assignment-pattern all the positive-labeled strings are accepted and
thus only the number of rejected negative-strings corresponding to the satisfied
clauses makes a difference between optOr) and rn(Ir, p).

Corollary 4.1
There is no PTAS for MAX AGREEMENT FOR WORD ASSOCIATION PATTERNS
unless P = NP.

w Agnostic PAC-Learning
Agnostic PAC-learning 9) is a generalization of the well known PAC-learning

model in computational learning theory, where the learner has no information
about the structure behind the target function, or training examples may con-
tain arbitrary large percent of noise. Kearns et al. 9) show that for any class of
polynomial VC-dimension, g) the polynomial time solvability of the maximum
agreement problem and the efficient agnostic PAC-learnability are equivalent.

Efficient Discovery of Optimal Word-Association Patterns in Large Text Databases 59

Unfortunately, the maximum agreement problem is intractable in most
cases. ~) Recently, however, the problem is shown to be efficiently solvable for
simple but interesting subclasses of geometric patterns such as axis-parallel rect-
angles. 6) Since proximity word-association patterns obviously have polynomial
VC-dimension, we have the next result from Theorem 3.1 and Theorem 3.1.

Corollary 5.1
For every d, k _> 0, the algorithm F i n d _ P a t t e r n s in Fig. 1 is an efficient agnostic
PAC-learning algorithm for the class of (d, k)-patterns.

w Conclusion
In this paper, we presented an efficient algorithm for finding proximity

word-association patterns in a large collection of unstructured texts, and we also
showed that the problem is hard to approximate when the number of subwords in
a pattern is not bounded. An implementation of and a preliminary experiments
with of a prototype system are reported in companion papers. 3'4)

References
1) Agrawal, R., Imielinski, T. and Swami, A., "Mining Association Rules between

Sets of Items in Large Databases," in Prec. 1993 SIGMOD, pp. 207-216, 1993.

2) Ansiello, G., Crescenzi, P. and Protasi, M., "Approximate Solution of NP Op-
timization Problems," Theor. Comput. Sc., 150, pp. 1-55, 1995.

3) Arimura, H., Wataki, A., Fujino, R. and Arikawa, S., "A Fast Algorithm for
Discovering Optimal String Patterns in Large Text Databases," in Proc. the 9th
Int. Workshop on Algorithmic Learning Theory, L1VA11501, pp. 247-261, 1998.

4) Arimura, H., Kasai, T., Wataki, A., Fujino, R., Shimozono, S. and Arikawa, S.,
"An Efficient Tool for Discovering Simple Combinatorial Patterns fTom Large
Text Databases," in Proc. the 1st Discovery Science, LNA11532, pp. 393-394, 1998.

5) Devroye, L., Szpankowski, W. and Rais, B., "A Note on the Height of the Suffix
Trees," SIAMJ. Comput., 21, pp. 48-53, 1992.

6) Dobkin, D. P. Gunopulos, D. and Maass, W., "Computing the Maximum
Bichromatic Discrepancy, with Applications to Computer Graphfcs and Ma-
chine Learning," J. Comut. Sys. Sci., 52, pp. 453-470, 1996.

7) Fukuda, T. Morimoto, Y., Morishita, S. and Tokuyama, T., "Data Mining Using
Two-Dimensional Optimized Association Rules," in Proc. 1996 SIGMOD, pp. 13-
23, 1996.

8) Johnson, D. S., "Approximation Algorithms for Combinatorial Problems," J. Co-
rout. Sys. Sci., 9, pp. 256-278, 1974.

9) Kearns, M. J., Shapire, R. E. and Sellie, L. M., "Toward Efficient Agnostic
Learning," Machine Learning, 17, pp. 115-141, 1994.

10) Manber, U. and Baeza-Yates, R., "An Algorithm for String Matching with a
Sequence of Don't Cares," Inf. Procc. Lett., 37, pp. 133-136, 1991.

11) McCreight, E. M., "A Space-Economical Suffix Tree Construction Algorithm,"
J. ACM, 23, pp. 262-272,1976.

60

12)

13)

14)

S. Shimozono, H. Arimura and S. Arikawa

Miyano, S., Shinohara, A. and Shinohara, T., "Which Classes of Elementary
Formal Systems are Polynomial-Time Learnable," in Proc. 2nd Workshop on Al-
gorithmic Learning Theory, pp. 139-150, 1991.

Papadimitriou, C. H. and Yannakakis, M., "Optimization, Approximation, and
Complexity Classes," J. Comput. Sys. Sci., 43, pp. 425-440, 1991.

Wang, J. T.-L., Chirn, G.-W., Marr, T. G. , Shapiro, B., Shasha, D. and Zhang.,
K., "Combinatorial Pattern Discovery for Scientific Data: Some preliminary
results," in Proc. 1994 SIGMOD, pp. 115-125, 1994.

Shinichi Shimozono, Ph.D.: He is an Associate Professor of the
Department of Artificial Intelligence at Kyushu Institute of Tech-
nology Iizuka, Japan. He obtained the B.S. degree in Physics from
Kyushu University, awarded M.S. degree from Graduate School
of Information Science in Kyushu University, and his Dr.Sci. de-
gree in 1996 from Kyushu University. His research interests are
primarily in the design and analysis of algorithms for intractable
problems.

Hiroki Arimum, Ph.D.: He is an Associate Professor of the De-
partment of Informatics at Kyushu University, Fukuoka, Japan.
He is also a researcher with Precursory Research for Embryonic
Science and Technology, Japan Science and Technology Corpo-
ration (JST) since 1999. He received the B.S. degree in 1988 in
Physics, the M.S. degree in 1979 and the Dr.Sci. degree in 1994
in Information Systems from Kyushu University. His research in-
terests include data mining, computational learning theory, and
inductive logic programming.

Setsuo Arikawa, Ph.D.: He is a Professor of the Department of
Informatics and the Director of University Library at Kyushu
University, Fukuoka, Japan. He received the B.S. degree in 1964,
the M.S. degree in 1966 and the Dr.Sci. degree in 1969 all in
Mathematics from Kyushu University. His research interests in-
clude Discovery Science, Algorithmic Learning Theory, Logic and
Inference/Reasoning in AI, Pattern Matching Algorithms and Li-
brary Science. He is the principal investigator of the Discovery
Science Project sponsored by the Grant-in Aid for Scientific Re-
search on Priority Area from the Ministry of ESSC, Japan.

