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Abstract We present a compositional model-theoretic semantics for 
logic programs, where the composition of programs is modelled by the 
composition of the admissible Herbrand models of the programs. An 
Herbrand model is admissible if it is supported by the assumption of a set 
of hypotheses. On one hand, the hypotheses supporting a model correspond 
to an open interpretation of the program intended to capture possible 
compositions with other programs. On the other hand, admissible models 
provide a natural model-theory for a form of hypothetical reasoning, called 
abduction. The application of admissibel models to programs with negation 
is discussed. 
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w Introduction and Motivations 
One of the most fascinating properties of  using logic as a programming 

language is its semantics and declarativeness. Definite Horn clauses have simple 
model-theoretic, fixpoint and operational semantics, which have been proved to 
be all equivalent. 29) Several efforts have been devoted to broaden the application 
area of  logic programming to cover different aspects of computing. In many 

areas of  computer science, modularity has been recognised as a basic means for 
the incremental construction of  programs. Programming-in-the-large, metalevel 
programming and object-oriented programming are only some examples of  such 
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applications. 
F rom a theoretical point  of  view, the semantics of  program composi t ion 

operat ions represents a crucial issue in computat ional  logic. The union of  
programs is the simplest composi t ion operation between logic programs. 
Actually, every program can be viewed as the composi t ion by union of all its 
clauses. Unfortunately, the standard model-theoretic semantics of  logic program- 
ming does not extend in a straightforward way to the composit ion by union of  
programs. The minimal Herbrand model is usually taken as the semantic 
counterpart  of  a definite logic program. 29) A proposi t ional  example suffices to 
show that  the minimal Herbrand model of  the nuion of  two programs cannot  be 
obtained in a composi t ional  way from the minimal Herbrand models of  the two 
separate programs. Indeed, the two programs p *- q and p ~- r have the same 
(empty) minimal Herbrand model.  However, if these programs are composed 
with the program r ~ - w e  obtain two programs which have different minimal  
Herbrand models ({r} and {p, r}, respectively). 

Some works have been devoted to provide semantic frameworks to cope 
with program composit ion,  by defining concepts such as algebrae of  
programs. 17'18'21) In these papers, the semantics of  each program P is based on the 
immediate  consequence operator  (Tp), 2) and the union of  programs is mapped  
onto a transformation of the semantics of  the programs. Although the immediate 
consequence semantics for the union of programs indirectly entails a model-  
theoretic characterisation, we are interested in providing a direct model-  
theoretic characterisation, that is to define the semantics of  the composi t ion of  
two programs in terms of a composi t ion of their models. 

The reason why the minimal  Herbrand model semantics does not proper-  
ly cope with program composi t ion derives from the adopt ion of the Closed 
World  Assumption. 26) According to the Closed World  Assumption, and the 
corresponding completion semantics, 9) a logic program is interpreted as a 
complete knowledge specification. Such an interpretation does not reflect the 
implicit  assumption underlying program composit ion,  that is that a program is 
conceived as an incomplete chunk of knowledge to be possibly completed with 
other knowledge. As a consequence, each program cannot  be simply denoted by 
its minimal  Herbrand model,  where only provable formulae are considered. 
Also non-minimal  Herbrand models of a program must be considered, including 
formulae not provable in the program, but which can possibly become provable 
after some program composit ion.  

Under  this perspective, a composit ional  semantics of  logic programs has 
been defined in Ref. 7). Each program is denoted by the set of  all its Herbrand 
models, and the minimal Herbrand model of  the union of two programs is 
proved to be the minimal Herbrand model which is a model of  both programs. 

In this paper, we refine such a characterisation by considering only a 
subset of  the Herbrand models of  the program, called the admissible Herbrand 
models. An Herbrand model is admissible if it is supported by the assumption 
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of a set of hypotheses. On one hand, the hypotheses supporting a model 
correspond to an open interpretation of the program intended to capture 
possible compositions with other programs. On the other hand, admissible 
models provide a natural model-theory for a form of  hypothetical reasoning, 
called abduction. 4,8,za) 

The notion of open programs has been originally introduced in Ref. 6) to 
denote incomplete chunks of  knowledge, which can be dynamically composed 
together. Admissible models provide a semantical counterpart of  open pro- 
grams, and have been fruitfully applied to model different forms of  program 
composition, including fine-grained ones such as the composition of  logic 
modules with import /export  declarations. 

Admissible models can also be applied for characterising the class of  
general logic programs, that is programs containing negation in the bodies of  
clauses. In Section 5, we describe this application by discussing the generality 
and the advantages of  the approach, and by summarising the main results. A 
complete treatment of the semantics of  general logic programs through admis- 
sible models is outside the scope of this paper, and is reported in Ref. 5). To give 
an example of the results contained in Ref. 5), we show the relation between 
admissible and stable models, as a case study. 

The plan of the paper follows. First, the condit ion of admissibility on 
Herbrand models is formally introduced. Composit ionali ty is achieved by 
mapping the composition of  programs onto the composition of  the admissible 
models of  the programs. Then we illustrate the relations between admissible 
Herbrand models and abduction, and between admissible Herbrand models and 
negation. Finally, related work is discussed in some detail, and some conclu- 
sions are drawn. To make the paper more good reading, some proofs are 
reported in the appendix. 

w Admissible Herbrand Models 
The condition of  admissibility on the Herbrand models of a program 

restricts the set of  models to work with when handling the composition of  
programs. Roughly, an Herbrand model is considered admissible if it corre- 
sponds to the assumption of  a set of hypotheses, where each of the hypotheses 
occurs in the premise part (body) of some clause of  the program. 

Before introducing the formal definition of  admissible Herbrand models, 
let us consider a simple example. 

Example 2.1 
Consider the following program P: 

p , - q  

The minimal Herbrand model of  P(denoted by .Me)is { r}. The refutation of  the 
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goal "-- p fails on the sub-goal "-- q. In alternative, q may be interpreted as an 
admissible hypothesis which may become true (i.e. provable) after a composi-  
tion with some other program (trivially with the program q ,--). Therefore the 
(non-minimal)  Herbrand model {p, q, r} can be considered admissible for P 
under the hypothesis { q }. [] 

The formal definition of  admissible hypotheses for a program follows. 

Definition 2.2 (Admissible Hypotheses) 
Let P be a program. A subset H of  the Herbrand base of  P is an admissible set 
of  hypotheses for P if and only if for all h ~ H there exists a ground instance 
A ~ B of  a clause in P such that h E B. [] 

For  each program P, sets of  hypotheses occurring in the premise part o f  
the clauses of  P are considered admissible to deal with possible program 
compositions.  For  instance, in the previous example the sets of  admissible 
hypotheses for the program P are { } and {q}. 

The Herbrand models of  a program which are admissible are those which 
are supported by some set o f  admissible hypotheses. Roughly speaking, an 
Herbrand model M of a program P is admissible if  there exists an admissible 
set of  hypotheses H such that all the atoms in M are logical consequences of  P 
U H.  Let us introduce a formal definition of admissible Herbrand models. 

Definition 2.3 (Admissible Herbrand Model) 
Let P be a program, M be an Herbrand model of  P, and let H be an admissible 
set of  hypotheses for P. M is an admissible Herbrand model of  P under the 
hypotheses H if and only if M = MPuH. [] 

Notice that MpuH denotes the minimal Herbrand model of  P U H,  where 
P U H stands for P U {h~ ,~} U ... U {hn ~-} if H = {ha ..... hn}. 

There are other alternative equivalent ways of  formulating the condit ion 
M = MPuH of Definition 2.3. For  instance, M can be expressed in terms of  the 
immediate consequence operator29~: 

T~(I) = {a[a~-b l ,  ..., bn ~ ground(P) A {b, ... . .  b,} - I} U I 

by defining 

M = Te "~ co(H) 

that is M is the least fixpoint of  the Te operator starting from the set of  
hypotheses H .  

The fact that the admissible models of  a program are a subset of  the 
Herbrand models of  the program is best illustrated by defining M as an intersec- 
tion of  Herbrand models of  the program: 

M =  N { M ' I M ' ~  P A H ~- M'}  

= N { M ' [ M ' ~ P A M ' ~ H }  
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Notice that if the admissibility condit ion on the hypotheses would be relaxed, 
we would obtain the set of  all Herbrand models of  a program (as in Ref. 7). 

R e m a r k  2.4 
Definition 2.3 allows one to determine the admissible models among the 
Herbrand models of  a program. Given a program P, for each admissible set of  
hypotheses H there is a unique Herbrand model of  P which is admissible under 
H (by Definition 2.3). The converse is not necessarily true: an Herbrand model 
of  a program can be admissible under possibly several different sets of  hypoth-  
eses. Consider the following program P: 

p * - q  
q ~ - p  

The Herbrand models of  P are { } and {p, q }. Trivially, { } is admissible under 
the empty set of  hypotheses, while the model {p, q} is admissible under three 
different sets of  hypotheses: {p}, {q} and {p, q}. [] 

Notat ion  
In the rest of  the paper, A H M ( P )  will stand for the set of  admissible Herbrand 
models of  the program P. The notations M /f  H and M "  will be interchangea- 
bly used as shorthands for "M is an admissible Herbrand model under the 
hypotheses H". 

In the standard model theory of logic programming,  a program is denoted 
by its minimal  Herbrand model. Notably,  such a denotat ion also characterises 
the operat ional  behaviour of  a program. A well known result TM states the 
equivalence of the operational and of the model-theoretic semantics of  logic 
programming.  The success set of  a program P (SS(P)), that is the set of  ground 
atomic formulae which can be derived in P, coincides with the minimal  
Herbrand model of  P, i.e. A4p = SS(P). 

On the other hand, the minimal Herbrand model does not contain 
enough information on the program to model possible composit ions with other 
programs. To address composi t ional i ty  issues, a program is here denoted by a set 
of  Herbrand models, that is: 

[[P] = AHM(P).  

Roughly, denoting a program with a set of  models rather than with a single 
model corresponds to interpreting the program as an incomplete rather than a 
complete chunk of knowledge. In other words, a program is viewed as "open"  
rather than "closed" with respect to possible additions of  new knowledge (via 
composi t ions with other programs).  The set of  admissible models of  a program 
characterises the set of  possible behaviours of  the program in presence of  
different possible extensions. A model M for a program P which is admissible 
under the hypotheses H is the minimal Herbrand model of  the program 
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obtained extending P with H .  Thanks to the equivalence between the opera- 
t ional  and model-theoretic semantics of  logic programs, TM M also coincides 
with the success set of  P U H,  that is: 

M = .Ae~po H : S S ( P  U H). 

It is worth observing that the admissible models of  a program also 
characterise the semantics of  the program viewed as "closed" with respect to 
possible composit ions with other programs. In other words, it is possible to 
identify the minimal Herbrand model of  a program among the admissible 
models  of  the program. Actually, the minimal Herbrand model is admissible 
under the empty set of  hypotheses and can be obtained by intersecting the 
admissible models of  the program. 

Proposition 2.5 
For  any program P: 

M p :  N { M I M  ~[~P~} 

Proof 
Immediate  since .A4p E ~'P]] and since Herbrand models are closed under intersec- 
t ion?  9) D 

w Composition of Logic Programs 
We now turn our attention to composi t ional i ty  issues. We show how to 

determine the semantics of  the union of two programs (lIP U Q]]) from the 
semantics of  the two separate programs ~P]] and [[Q]]). This corresponds to 
proving that the following diagram commutes 

P,Q ul 
P u Q  

Fig. 1 

' [P],IQ~ 

where " e "  is the composi t ion operation on the semantics of  programs corre- 
sponding to the composi t ion operation U on the syntax of programs. 

Since each program is denoted by the set of  its admissible Herbrand 
models, the composi t ion of  the semantics of  the programs corresponds to a 
function working on sets of  admissible models. A composit ion operator  r is 
introduced, which works on a set of  (admissible) Herbrand models and maps 
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Herbrand interpretations into Herbrand interpretations. 

Definition 3.1 (Composi t ion Operator r) 
Let S be a set of  admissible Herbrand models, the composit ion operator  r 
mapping  Herbrand interpretations into Herbrand interpretations is defined as 

follows: 

rs(1) = (U { M I M  n ~  S and H c i})  U I [] 

The operator r is monotonic  and continuous (see Appendix, Proposi t ion 
7.1), and its powers are defined as usual1): 

r 1' 0(I)  = I 
r 1" (n + 1) ( I )  -- r ( r  ? n(1)) 
r 1" co(I) = U n<w r 1' n(I) 

The definition of  rs parallels the definition of  the immediate consequence 
operator  Tp. Both Te and rs map Herbrand interpretations into Herbrand 
interpretations. While Te is defined in terms of  programs,' rs is defined in terms 
of  admissible Herbrand models. A program P is a set of  clauses, that is of  
implications of  the form A i f  B. Given an interpretation I, Te(I) yields all the 
atoms A whose premise B in P is true in I .  Similarly, a set of  admissible models 
S can be viewed as a set of  implications of  the form: M if  H. Given an 
interpretation I ,  Z's(/) yields the union of  the models M whose premise H 

(hypothesis) is true in I .  

Proposition 3.2 
Given two programs P and Q, let H be an admissible set of  hypotheses for P 
U Q. M is an admissible Herbrand model o f P  U Q under the set of  hypotheses 

H if and only if M = r~p]uEe~ 1" w(H). 

Proof 
See Appendix. [] 

Notice that the condit ion "let H be an admissible set of  hypotheses for 
P U Q" in the former Proposi t ion 3.2 can be entirely expressed in terms of  the 
semantics of  the programs. Given two programs P and Q, the set K of  all the 
admissible hypotheses for P U Q is defined as follows: 

K = U { H I M "  ~ [Fe~ U [FQ]]}. 

Then, H is an admissible set of  hypotheses for P U Q is and only if H c K. 

The �9 composi t ion operation is defined as follows. 

Definition 3.3 (Composi t ion � 9  
Given two programs P and Q, let K be the set of  all the admissible hypotheses 

for P U Q: 



8 A. Brogi, E. Lamma, P. Mello 

EP] �9 [[Q]]= { M I M  = rE,]uio~ t w(H), H c_ K}. [] 

Finally, the following proposition states the compositionality result of  
the admissible model semantics. 

Proposition 3.4 
Given two programs P and Q: 

ITP U Q~ = [[P]] �9 [[Q]] �9 

Proof  
Immediate by Proposition 3.2. [] 

consider a simple example of program composition. 

following two programs. 

P Q 
p*-- r ~ -  
q~--r s , - - t  

The sets of admissible Herbrand models of  P and Q are, respectively: 

AHM(P) AHM(Q) 
{p} i f{} {r} i f{} 
{p, q, r} i f{r} {r, s, t} i f { t}  

To determine the set of  admissible models of  P U Q, we can apply the r 
operator. Let us consider the empty set of  hypotheses. We obtain (let S = [P]] 

U [~Q]]): 

r~ t o ( { } ) =  {}  
r~ t I ( { } )  = {p, ~} 
rs t 2({})=  {p, q, r} 
rs 1' 3({})=  {p, q, r} 

Proposit ion 3.2 states that {p, q, r} is an admissible Herbrand model of P U Q 
under the hypotheses { }. The other admissible Herbrand models are derived 
analogously. For instance, for the set { t} of hypotheses we have: 

rs 1' O ( { t } ) =  { t }  
rs t l({t}) = {p, r, s, t} 
rs t 2({t}) = {p, q, r, s, t} 
rs I' 3({t}) = {p, q, r, s, t} 

Then {p, q, r, s, t} if {t} is an admissible Herbrand model of P U Q. [] 

In Ref. 12) the authors have studied the problem of compositionality in 
the semantics of  logic programs, by adopting the definition that "a semantics is 

Let us 

Example 3.5 
Consider the 
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composi t ional  if equivalent program parts exhibit equal behaviours in all 
contexts". The denotation of  a program induces an equivalence relation on 
programs, which states that two programs are equivalent if and only if they have 
the same denotation. Formally:  

p ---- O <=~ [~p~ : [~Q]] 

Let Ob be a function which associates with every program P an object Ob(P) 
which is the observable behaviour  of  P. 

Definition 3.6 (Composi t ional i ty)  
Let P, Q, R be programs. An equivalence relation ~= is composit ional  if: 

(1) P =-- Q ~  Ob(P) : Ob(Q) 
(2) P : ~ Q ~ P U R - ~ Q U R  

We consider [~P]] : AHM(P)  and the corresponding equivalence rela- 

tion: 

P =--a Q ~ AHM(P)  = AHM(Q) 

which states that two programs are equivalent if  and only if they have the same 
admissible Herbrand models. It is easy to show that the admissible Herbrand 
model semantics satisfies the former definition of  composit ionali ty.  According 
to the standard semantics of  logic programming,  m6'zg) we consider the ground 
atoms which are derivable from a program P (i.e. the success set of  P) as the set 
of  observables Ob(P) of  P. 

Proposition 3.7 
The equivalence relation ------A is compositional.  

Proof 
Suppose that P ------A Q. 

(1) Oh(P) 
: {since Ob(P) : SS(P) : .Mp} 

Mp 
= {by Proposit ion 2.5} 

A { M I M  ~[[P]]} 
= {since P ~A Q} 

n { M I M  ~ EQ]} 
= {by Proposit ion 2.5} 

MQ 

: {since O b ( Q ) :  S S ( Q ) =  .MQ} 
Ob(Q) 

(2) lIP U R]] : [rP] �9 [[R]] : [[Q]] �9 [~R]] : [~Q U R]] [] 
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w Admissible Models and Abduction 
So far, admissible Herbrand models have been introduced to cope with 

program composit ion issues, and the hypotheses support ing a model intend to 
denote the possible addit ion of  new knowledge, viewed as a program composi-  
tion. The admissibility of  an Herbrand model relies on a set of  hypotheses, 
which when assumed to hold support the model itself. The explicit relation 
between Herbrand models and the hypotheses support ing them enables to model 
a form of abduction. 8'23) 

A simplified notion of  abductive reasoning can be formulated as 
follows15,zz): 

Given a program P and a possible conclusion C, an abductive 
explanation of C is a set of  sentences A such that: P U A ~ C. 

Let us consider a simple example showing how abduction is a natural  
procedure for performing fault diagnosis. Consider the following example 
(taken from Ref. 15)) describing some of  the causes of  bicycle faults. 

wobbly_wheel ~-- flat_tyre 
wobbly_wheel ,-- broken_spokes 
flat_tyre ~-- leaky_valve 

The minimal Herbrand model of  the former program is empty. Thus, for 
instance, the sentence wobbly_wheel cannot be derived from the program. 
However,  several abductive explanations of  wobbly_wheel can be determined by 
reasoning backward and extending the standard deduction mechanism of  logic 
programming.  The goal ,-- wobbly_wheel can be proved by assuming any of  the 

(normally) failing sub-goals 

flat_tyre 
broken_spokes 
leaky_valve 

to hold as hypotheses. Abduct ion provides a simple way of determining answers 
possibly conditioned by the assumption of  some hypotheses. In this example, the 
answers to the query ,~ wobbly_wheel include: 

yes if flat_tyre 
yes if broken_spokes 
yes if leaky_valve 

It is easy to observe the strict correspondence between such condit ional  
(abductive) answers and admissible Herbrand models. For instance, the condi- 
t ional answer 

yes if flat_tyre 
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corresponds to the admissible model: 

{ wobbly_wheel, flat_tyre} if {flat_tyre} 

The strict relation between abduction in logic programming and admis- 
sible Herbrand models best shows the significance of  the admissiblilty condit ion 
imposed on Herbrand models. In general, only some predicates of  an abductive 
theory are designed as abducible. TM The declaration of the set of abducible 
predicates can be modelled by imposing a further constraint on the set of  
admissible hypotheses of  a program. Let abducible(P) be the set of  abducible 
predicates in a program P, then the constraint p(t) E H ~ p ~ abducible(P) is 
added to the Definition 2.2 of  the set of admissible hypotheses of  a program. 

In this section, we have referred to a simplified notion of abductive 
reasoning without taking into account integrity constraints, which play a crucial 
role in that setting. Actually, the set of  possible abductive explanations A for a 
conclusion C with respect to a program P is restricted by a set of integrity 
constrains IC which A must satisfy. TM A discussion of  the modelisation of  
abductive reasoning with integrity constraints is outside the scope of  this paper 
(see e.g. Ref. 14)). The interested reader may refer to Ref. 4) where a 
composit ional model-theoretic semantics for abduction in logic programming 
has been defined in terms of  admissible Herbrand models. 

w Admissible Models and Negation 
Admissible models can be applied for characterising the class of  general 

logic programs, that is programs containing negation in the bodies of clauses. In 
this section, we try to describe this application by discussing the generality and 
the advantages of  the approach, and by summarising the main results. A 
complete treatment of the semantics of  general logic programs through admis- 
sible models is outside the scope of this paper, and is reported in Ref. 5). 

Unfortunately, there is no common agreement on what the intended 
meaning of a general logic program is, as shown by the number of different 
semantics which have been proposed for general programs. Among others, we 
mention: 

Well-founded semantics TM 

Stable model semantics TM and its extensions such as partial stable 
models, 27) P-stable models, TM and 3-valued stable models 24) 
Preferential semantics 1~ 
Stationary semantics? s) 

Although some relations between these semantics are intuitively clear, 
formal comparisons are not easy to be drawn mainly because of  the different 
constructions which are used in the definitions. Moreover, as far as 
compositionality problems are concerned, they are not addressed in the above 
mentioned approaches. It is not clear in general how to determine the models of 
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a program with negation from the models of  its components.  The following 
example suffices to show that, for instance, the stable models of  the union of  two 
programs cannot be obtained in a composit ional  way from the stable models of  
the two separate programs. Indeed, the two programs p r not q and p ~-- have 
the same stable model (i.e, {p}). However, if these programs are composed with 
the program q ~ we obtain two programs which have different stable models 
({q} and {p, q}, respectively). 

In Ref. 5) we have studied the semantics of  general programs in terms of 
admissible Herbrand models. According to Refs. 10), 11) and 25), general 
programs are treated as positive programs by considering each negative literal of  
the kind "not  A"  as a new positive literal " n o t _ A ' .  Each program can be thus 
denoted by the set of  its admissible Herbrand models. The core of  this study 
consists of  relating admissible models with other semantics which have been 
proposed for general programs. 

As we have discussed in Section 3, the intended meaning of  a positive 
logic program when considered as "closed" is its minimal Herbrand model. TM 

We have also shown how the minimal Herbrand model of  a program can be 
identified among the admissible models of  the program itself (see Proposit ion 2. 
5). This corresponds to defining a function ~b which given the denotation of  a 
program as open (w.r.t. possible composit ions with other programs) yields the 
minimal  Herbrand model o f  the program. 

~b: A H M ( P )  ~ Adp 

The situation is obviously different when considering the class of  general 
logic programs, as there is no agreement on what the intended meaning of  a 
programs is. Fol lowing this remark, in Ref. 5) we have shown the correspon- 
dence between admissible models and several different semantics for general 
programs. We have considered a number of  different semantics: well-founded 
models, s~ stable models, TM 3-valued stable models, 24) preferential semantics 1~ 

and stationary semantics. TM For  each semantics S, we have defined a suitable 
function ~bs which given the admissible models of  a program P yields the models 
S ( P )  of  the semantics S. 

~s: A H M ( P )  ~, S ( P )  

A first advantage of  this approach is that different semantics for general 
programs are defined in terms of  the Herbrand models of  programs, rather than 
in terms of  the syntax of programs. This actually simplifies in many cases the 
formulat ion of the various semantics. For example, the definition of  models 
given through syntactic transformations over programs is reformulated in terms 
of simple properties on Herbrand models of  programs. 

The main advantage of  the approach is the possibility of  drawing com- 
parisons between different semantics for negation in logic programming.  
Equivalencies between different model-theoretic semantics can be proved as well 
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as differences can be formally clarified. Notably, these comparisons are drawn in 
terms of  the functions Cs which are used to define the various semantics through 
properties on the Herbrand models of  the program. In other words, to compare  
two different semantics S1 and $2, we simply compare the corresponding 
functions Cs~ and r For  example, in Ref. 5) we have shown the equivalence 
between complete scenaria by Dung 1~ and stationary expansions by 
Przymusinski)  s) 

Ano the r  in teres t ing pe r spec t ive  o f  the a p p r o a c h  c o n c e r n s  
composit ional i ty issues. As general programs are denoted by their admissible 
models, the methodology defined in this paper for positive programs applies to 
general programs as well. The admissible models of  the union of  two general 
programs can be determined by the admissible models of  the separate programs. 

This property induces interesting results on the equivalence of general 
programs. Actually, it is not clear when two general programs should be 
considered equivalent. The composit ionali ty of  admissible model semantics 
together with the correspondences Cs do induce an interesting equivalence 
relation on general programs. Programs which have the same admissible models 
also have the same stable models, the same preferential models, three-valued 
models, and so on for all the semantics S for which a Cs is defined. Such a 
notion of  equivalence--as  any composi t ional  notion of equivalence (see 
Definition 3 .6 ) - suppor t s  ways of  reasoning on programs and to transform 
them. For  example, a part  P of  a program can be replaced by a syntactically 
different part Q without changing the intended semantics of  the whole program, 
provided that P and Q are equivalent. 

To give an example of  the results contained in Ref. 5), we now show the 
relation between admissible and stable models, as a case study. 

5 . 1  Stable Models  and Admissible  Models  
Let us first give some notations which are introduced to treat general 

programs as positive programs according to Refs. 10), 1 I) and 25). 

Nota t ions  
Let P be a general logic program and Be the Herbrand base of  P. The positive 
version P '  of  P is obtained by replacing each negative literal not A in P by a 
new literal not A. The Herbrand base of  P '  is obtained by extending Be with 
not_Be = {no t_A]A  ~ Be}. With abuse of notation, we will not distinguish 
any further between P and its positive version P ' ,  and we will denote directly 
by P its positive version. An interpretation I for a program P is any subset of  
Be U not_Be. We denote by I + and by I the positive and the negative part  of  
I ,  respectively. Formally: I + = I A Be and I -  = I 0 not_Be. Given a set of  
positive atoms I ~ Be, the complement  /- of  I w.r.t. Be is the set of  negative 
atoms which do not occur positively in I ,  i.e.: i- = {not_A ]A ~ Bp A A ~ I} .  

Given a program P and an interpretation I _c Be U not_Be: I is inconsistent if 
3 A: A ~ I A not_A ~ I, it is consistent otherwise. I is total if VA ~ Be: A 
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I X~ not_A ~ I. 

The definition of  stable models was introduced by Gelfond and 
Lifschitz TM by means of  a syntactic transformation of programs. It can be 

equivalently stated in terms of  the least fixed point of the immediate conse- 

quence operator as follows (see Refs. 10) and 11)). 

Definition 5.1 (Stable Model) 
Let P be a general logic program. 
M c_ Bp is a stable model for P iff M U ~t = TPo~ ~ co [] 

Example 5.2 
Let us consider the program P: 

p ,--- not_q 

The only stable model of  P is M = {p}. In fact M = {not_q} and M U A1 = 

TpU-M ~ co = {p, not_q}. [] 

In Ref. 5), the condit ion of admissibility on hypotheses for a program is 

a relaxation of  that given in Definition 2.2: any subset of the Herbrand base of 
a general program P (i.e. Bp U not_Bp) is an admissible set of hypotheses. 

Each general program is associated with the set of its admissible models. 

We now show how to identify the stable models of  a program P among the 
admissible models of  P. Put another way, this corresponds to defining a function 

~bsg such that 

(;SM(~P~ = Stable Models(P) 

for any general program P. (Notice that for those programs which do not have 

any stable model, the function ~bsu will give the empty set as result.) 
We first state the existing correspondence between admissible and stable 

models of a program. 

Proposition 5.3 
Let P be a general logic program. 
M _c Bp is a stable model for P iff N is an admissible Herbrand model for P 

under the hypotheses H such that: 

H + =  ~b 
N is consistent and total 

N + = M .  

(l) 
(2) 
(3) 

Proof 
( ~ )  By definition of stable model M U M = TPo~- $ co. Notice that: M = 
(Tpo~ 1' co) +. Consider now the Herbrand model N for P which is admissible 
under hypotheses _M (it always exists by definition of admissible model). 
Obviously (M) + = ~ since M _c Bp. Moreover: N = Tpu~ $ co = M U M. 
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We observe that N is consistent and total since N = M U At. Finally N + = 

M. 
( ~ )  Notice that by definition of admissible model H -- N- .  Since N is 

consistent and total: N = N + U N +. Then since N + = M: M U At = N + U 
N + = N = T p u ~  ~ (.0. [] 

Example 5.4 
Consider again the program P of Example 5.2: 

p ~- not_q 

To determine the stable models of  P, we have to look at the Herbrand models 
of  P which are admissible under a (possibly empty) set of negative hypotheses 
(see Proposit ion 5.3, condit ion (1)). Such admissible models are: 

{} if {} 
{not_p} i f  {not_p} 
{p, not_q} i f  {not_q} 
{p, not_p, not_q } i f  { not_p, not_q } 

We observe that only the third model satisfies all the conditions required by 
Proposi t ion 5.3, as the first two models are not total and the fourth one is 
inconsistent. Therefore the only stable model for P is {p} = {p, not_q} +. [] 

The definition of the function CsM directly follows by Proposit ion 5.3. 

Definition 5.5 (r 
Let P be a general program. 

CsM(~P~ = {MI  N ~ [[P~ admissible under H 
A H + = r  
A N is consistent and total 
A N + = M } .  [] 

w Related Work 
Admissible Herbrand models have been exploited in Ref. 6) to model the 

representation of incomplete, possibly evolving, knowledge with logic. On one 
hand, evolving knowledge can be modelled by suitable metalevel operators for 
the dynamic composi t ion of  logic programs (see Refs. 7), 19) and 21)). On the 
other hand, the Open World Assumption adequately models the incompleteness 
of  knowledge in a logic program. In this perspective, the notion of  open program 
is introduced in Ref. 6) to denote an incomplete chunk of knowledge, along 
with two metalevel operators on programs: union and close. The former sup- 
ports the composit ion of (possible open) programs, while the latter allows the 
enforcement of  the Closed World Assumption on programs. Admissible Her- 
brand models provide a semantical counterpart  for open programs, whereas 
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union and close operators are mapped onto corresponding functions on admis- 
sible models. In a knowledge representation perspective, it is shown that these 
two metalevel operators suffice to reconstruct a number of policies for structur- 
ing logic programs, including modules with import /export  declarations, forms 
of hypothetical reasoning 19~ and contextual logic programming. TM. 

As already mentioned, the sematics presented here is strongly related to 
that proposed in Ref. 7). They denote each program with the set of all its 
Herbrand models, and prove that given two programs P, Q: 

M ~  P U Qce+ M ~  P A M ~  Q 

As a consequence, the minimal Herbrand model of  the union of  two programs 
turns out to be the minimal Herbrand model which is a model for both 
programs. Since different programs may have different vocabularies, to cope 
with the composition of programs, the Herbrand base of each program is 
determined by the union of  the sets of  function and predicate symbols of  all the 
programs being considered. More generally, the existence of  a set <F, l-I> of  
function and predicate symbols including all the function and predicate symbols 
of the programs being considered is assumed. Our semantics refines the semantics 
of Ref. 7) in two directions. First, each program is denoted by a subset o f -  
instead than by a l l - t h e  Herbrand models of  a program. Second, the assumption 
on the set of predicate symbols of a program to be considered is relaxed. In the 
admissible Herbrand model semantics, to determine the Herbrand base of  a 
program, there is no need for considering predicate symbols not occurring in it. 
A further major advantage of  considering the admissible Herbrand models with 
respect to Ref. 7) is to provide a unified semantic framework for modelling 
program composition, abduction and negation. 

Kakas and Mancarella 141 have defined a semantics for abduction by 
characterising each abductive program with a set of  models, called generalized 
stable models (obtaind as suitable extensions of stable modelsl31). The definition 
of generalized stable models is motivated by the view that abducibles represent 
basic possible beliefs, and Kakas and Mancarella show a close connection 
between their semantics and autoepistemic logic. A direct correspondence 
between admissible Herbrand models and generalized stable models can be 
easily defined. The admissible Herbrand models of  a program correspond to the 
pre-generalized stable models of  the program, where integrity constaints are not 
dealt with. Generalized stable models are obtained by considering only those 
pre-generalized models which satisfy the integrity constraints, as strongly admis- 
sible models are derived the same way in Ref. 4). 

The problem of  modelling the composition by union of programs has 
also been studied in Ref. 3). The main contribution of  the paper is to study a 
notion of  observable behaviour of  programs richer than the standard notion of 
success set defined in Ref. 29). To capture this richer notion of  behaviour, 
programs are denoted by programs (obtained through unfolding) rather than by 
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Herbrand models (as in Ref. 29) and here). 

/7 

w Conclusions 
The major result of the paper is the definition of a compositional 

model-theoretic semantics of  logic programs. Rather than introducing ad hoc 

models to capture the composition by union of  programs, the standard Her- 
brand model semantics is retained. Moreover, admissible models support a 

uniform treatment of  other mechanisms, such as abduction and modules with 
import/export declarations. Most interesting, admissible models have been 
applied to the class of logic programs with negation. 
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A p p e n d i x  

The proofs of the propositions referred in the paper are reported in this 
appendix. All the proofs are given by slightly adapting corresponding proofs well- 
known from the theory of logic programming. For  example, the skeleton of the proof  
of monotonicity and continuity of  the r operator is the same of that of the Tp operator 
(see Ref. 16)). To simplify the proofs, we will use the following definition of r: 

( * )  rs(/) = U { M I M "  ~ S and H c I }  

which resembles the definition of  Tp more closely than Definition 3.t. According to 
Definition 3.2, the admissible Herbrand model of  P U Q under a set of hypotheses H 
is determined by the formula M = rs '~ co(H) (where S = [[P]] U [[Q]]). It is easy to see 
that this is equivalent to the formula M = rsu~m~,,~ t co(~b) where the ( * ) definition of  
r is used. Intuitively, the set of hypotheses H is represented as an admissible Herbrand 
model under the empty set of  hypotheses. This guarantees that V i  > 0: H _crs $ i(~b) 
(it is thus superfluous to add I at each step of r). 

Proposition 7.1 (Monotonicity and Continuity of r) 
Let S be a set of admissible Herbrand models, the composition operator r mapping 
Herbrand interpretations into Herbrand interpretations is monotonic and continuous. 

Proof 
(Monotonicity): trivial. 
(Continuity): Let X be a chain. To prove that rs is continuous we have to show that: 
rs(lub(X)) = lub(rs(X)). We have that: 

A E rs(lub(X)) 
r 

3 M  n ~ S s. t. A ~ M A H c lub(X)  
r 

~ I c X .  s . t .  3 M t t E S A A ~ M  A H c_I 

I ~ X .  s. t. A E rs(1) 
r 

A ~ lub(rs(X)) [] 
The following lemma is used to prove proposit ion 3.2 (see below). 

Lemma 7.2 
Let P and Q be two programs, H an admissible set of  hypotheses for P g Q, and let 
S = [[P~ U EQ]] U {H ()} 
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rs(1) c I <::> I is an Herbrand model of  P U Q UH.  

Proof 
( ~ )  Assume that I is not a model of P U Q U H.  Then there exists a clause a *-- 
bl . . . . .  b, in P (or Q) such that: {bl ... . .  bn} c I and a ~ I .  Therefore there exists also 
an admissible Herbrand model M ~b~,,bn~ of  P (or Q) such that: {bl ... . .  b,} _c I and M 

I .  We have that: rs(1) g: I which contradicts the hypothesis. 
( ~ ) Assume that rs(1) ~ I .  Then there exists an admissible Herbrand model M '~' of 
P (or Q) such that: H '  c I and M '  ~ 1. Since M '  = A4puH, then I is not a model for 
P U H' .  This means that I is not a model for P (since I ~ P U H '  <==> I ~ P and I 
b H'7))- [] 

Proposition 3.2 (Composit ion of  Admissible Herbrand Models) 
Given two programs P and Q, let H be an admissible set of  hypotheses of P U Q. Let 
S : [[P] U [[Q]] U {H{}}. M is an admissible Herbrand model for P U Q under the 
hypotheses H if and only if M = rs t w(~). 

Proof 
The structure of the proof  is analogous to Proposition 6.5. in Ref. 16). 

M : MPuQuH 
: glb { I l l  is an Herbrand model of  P U Q U H} 
: gib { I I rs(1) _c I } (by Lemma 7.2) 
: l fp rs (by Proposit ion 7.1 and 5.1 of Ref. 16)) 
-- rs t co(~b) (by Proposit ion 7.1) [] 
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