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Abstract Partial deduction strategies for logic programs often use an 
abstraction operator to guarantee the finiteness of the set of  goals for which 
partial deductions are produced. Finding an abstraction operator which 
guarantees finiteness and does not lose relevant information is a difficult 
problem. In earlier work Gallagher and Bruynooghe proposed to base the 
abstraction operator on characteristic paths and trees, which capture the 
structure of  the generated incomplete SLDNF-tree for a given goal. 

In this paper we exhibit the advantages of  characteristic trees over 
purely syntactical measures: if characteristic trees can be preserved upon 
generalisation, then we obtain an almost perfect abstraction operator, 
providing just enough polyvariance to avoid any loss of  local specialisation. 
Unfortunately, the abstraction operators proposed in earlier work do not 
always preserve the characteristic trees upon generalisation. We show that 
this can lead to important specialisation losses as well as to non-termination 
of  the partial deduction algorithm. Furthermore, this problem cannot be 
adequately solved in the ordinary partial deduction setting. 

We therefore extend the expressivity and precision of  the Lloyd and 
Shepherdson partial deduction framework by integrating constraints. We 
provide formal correctness results for the so obtained generic framework of  
constrained partial deduction. Within this new framework we are, among 
others, able to overcome the above mentioned problems by introducing an 
alternative abstraction operator, based on so called pruning constraints. We 
thus present a terminating partial deduction strategy which, for purely 
determinate unfolding rules, induces no loss of local specialisation due to the 
abstraction while ensuring correctness of the specialised programs. 

Keywords: Logic Programming, Program Specialisation, Partial Deduction, Con- 
straints. 
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w Introduction 
Partial evaluation has received considerable attention in logic program- 

ming 18'29'~3) and functional programming (see e.g. Ref. 25) and references there- 
in). In Ref. 28) Komorowski  introduced the topic in the logic programming 
setting and later, for pure logic programs, first refers to it as partial deduction. 
Another milestone is Ref. 43), where firm theoretical foundations for partial 
deduction are established. It introduces the notions of  independence and closed- 
ness, which are properties of the set of  atoms for which the partial deduction is 
performed. Under these conditions, soundness and completeness of  the trans- 
formed program are guaranteed. In the ligth of  these conditions, a key problem 
in partial deduction is: given a set of  atoms of  interest, A, provide a terminating 
procedure that computes a new set of  atoms, A', and a partial deduction for the 
atoms in A', such that: 

every atom in A is an instance o f  an atom in A', and 
the closedness and independence conditions are satisfied. 

Moving from the initial set A to the new set A' requires an abstraction operator. 
In addition to the conditions stated above, this abstraction operator should 
preserve as much of  the specialisation that was (in principle) possible for the 
atoms in A. 

An approach which tries to achieve all these goals in an elegant and 
refined way is that of  Gallagher and Bruynooghe. 2~ Its abstraction operator is 
based on the notions of  characteristic path, characteristic tree and most specific 
generalisation. Intuitively, two atoms of  A are replaced by their most specific 
generalisation in A', i f  their (incomplete) SLDNF-trees under the given unfold- 
ing rule have an identical structure (this structure is referred to as the characteris- 
tic tree). So, the main idea is, instead of  using the syntactic structure of  the atoms 
in A, the abstraction operator examines their specialisation behaviour. Further- 
more, if the characteristic trees are preserved by the generalisation then a lot of  
the specialisation that was possible within A will still be possible within A'. 

Unfortunately, although the approach is conceptually appealing, several 
errors turn up in the arguments provided in Refs. 20) and 17). In the current 
paper we show that these errors can lead to relevant precision losses and even 
to non-termination of  the partial deduction process. We will also show that 
these problems cannot be solved within the standard partial deduction 
approach based on Ref. 43). We therefore extend the standard partial deduction 
framework by integrating ideas from constraint logic programming (CLP) so as 
to be able to place constraints on the atoms in A. Within this new generic 
framework of  constrained partial deduction we will be able to (significantly) 
adapt the approaches of  Refs. 20) and 17) to overcome the above mentioned 
problems. This is achieved by introducing an alternative abstraction operator, 
which is based on so called pruning constraints expressed using Clark's equality 
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theory (CET). For  definite programs and purely determinate unfolding rules,* 
this adapted approach allows to solve all problems with the original formula- 
tions in Refs. 20) and 17), thus ensuring the claimed termination and precision 
properties. 

The paper is structured as follows. In Section 2 we introduce partial 
deduction from a theoretical viewpoint, expose some of the practical difficulties, 
introduce the concepts of local and global precision and define the "control of  
polyvariance" problem. We also outline an algorithm for partial deduction and 
show the interest of  using an abstraction operator. In Section 3 we introduce the 
concepts of  characteristic paths and trees and exhibit their significance for 
partial deduction. This is the first time that, to our knowledge, the interest and 
motivations of  characteristic trees (or neighbourhoods in supercompilation of 
functional programs 67'6a) for that matter) are made explicit. We also make a first 
attempt at defining a proper abstraction operator and show its (substantial) 
difficulties. We also illustrate the problem with the approaches in Refs. 20) and 
17). In Section 4 we introduce the framework for constrained partial deduction 
along with a fundamental correctness result. In Section 5 we present a particular 
instance of the framework, based on Clark's equality theory, along with an 
algorithm and an associated abstraction operator. We show that, for definite 
programs and certain unfolding rules, this approach ensures termination while 
providing a very precise and fine grained control of  polyvariance. In Section 6 
we present some results of an implementation of this approach. In the discussion 
in Section 7 we point  out several ways to extend the method to normal programs 
and more powerful unfolding rules. We also discuss related work and other 
potential applications of the constrained partial deduction framework of  Sec- 
tion 4. The conclusion can be found in Section 8. 

w Prel iminaries  and Mot ivat ions  
Throughout  this paper, we suppose familiarity with basic notions in logic 

programming (see e.g. Refs. l) and 42)). Notat ional  conventions are standard 
and self-evident. In particular, in programs, we denote variables through strings 
starting with (or usually just consisting of) an upper-case symbol, while the 
names of  constants, functions and predicates begin with a lower-case character. 

As common in partial deduction, the notion of SLDNF-trees is extended 
to also allow incomplete SLDNF-trees which, in addition to success and failure 
leaves, may also contain leaves where no literal has been selected for a further 
derivation step. Leaves of the latter kind will be called dangling. 49) Also, a 
trivial SLDNF-tree is one whose root  is a dangling leaf. 

2 . 1  Partial Deduction 
Given a logic program P and a goal G, partial deduction produces a new 

* This same limitation is also present in Ref. 20). We will, however, show how this limitation can 
be lifted in a rather straightforward manner. 
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program P '  which is P "specialised" to the goal G; the aim being that the 
specialised program P '  is more efficient than the original program P for all goals 
which are instances of  G. 

The technique of partial deduction is based on constructing finite, but 
possibly incomplete SLDNF-trees for a set o f  atoms at. The derivation steps in 
these SLDNF-trees  correspond to the computat ion steps which have been 
performed beforehand by the partial deducer and the clauses of  the specialised 
program are then extracted from these trees by constructing one specialised 
clause per branch. The incomplete SLDNF-trees  are obtained by applying an 
unfolding rule, defined as follows: 

Definition 2.1 (unfolding rule) 
An unfolding rule U is a function which, given a program P and a goal G, 
returns a finite and non-trivial SLDNF-t ree  for P U { G}. 

The resulting specialised clauses are extracted from the incomplete 
SLDNF-trees in the following manner: 

Definition 2.2 (resultants(r)) 
Let P be a normal  program and A an atom. Let r be a finite SLDNF-tree  for 
P U {~---A}. Let ~ Gx . . . . .  ~--Gn be the goals in the (non-root)  leaves of  the 
non-failed branches of  r. Let 01 ..... 0n be the computed answers of  the deriva- 
tions from ~---A to ~ Gx . . . . .  ~--Gn respectively. Then the set o f  resultants, 
resultants(r), is defined to be {A01 ~ G1 .... .  A0n ~-- G~}. 

As the goal in the root of  r is atomic, the resultants resultants(r) are all 
clauses. We can thus formalise partial deduction in the following way. 

Definition 2.3 (partial deduction) 
Let P be a normal  program and A an atom. Let r be a finite, non-trivial 
SLDNF-tree  for P (.J {~--A}. Then the set of  clauses resultants(r) is called a 
partial deduction of  A in P. 

I f A  is a finite set of  atoms, then a partial  deduction of  A in P is the union 
of one partial deduction for each element of  A. A partial deduction of  P wrt A 
is a normal program obtained from P by replacing the set of  clauses in P, whose 
head contains one of  the predicate symbols appearing in A (called the partially 
deduced predicates), with a partial deduct ion of  A in P. 

Note  that i f  r is a trivial SLDNF-t ree  for P U {~-- A} then resultants(r) 
consists of  the problematic  clause A ~--A and the specialised program of  
Definition 2.3 would contain a loop. That  is why trivial trees are not allowed 
in Definitions 2.1 and 2.3. This is, however, not a sufficient condit ion for 
correctness of  the specialised programs. In Ref. 43), Lloyd and Shepherdson 
presented a fundamental  correctness theorem for partial deduction. The two 
(additional) basic requirements for correctness of  a partial deduction of P wrt 
A are the independence and closedness conditions. The independence condit ion 
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guarantees that the specialised program does not produce additional answers 
and the closedness condition guarantees that all calls, which might occur during 
the execution of  the specialised program, are covered by some definition. The 
following summarises the correctness result of  Ref. 43): 

Definition 2.4 (A-closed, independence) 
Let S be a set of  first order formulas and A a finite set of  atoms. Then S is 
A-closed iff each atom in S containing a predicate symbol occurring in an atom 
in A is an instance of  an atom in A. Furthermore we say that A is independent 
iff no pair of  atoms in A have a common instance. 

Theorem 2.5 (correctness of partial deduction 43)) 
Let P be a normal program, G a normal goal, A a finite, independent set of  
atoms, and P '  a partial deduction of  P wrt A such that P '  U { G } is A-closed. 
Then the following hold: 

1. P '  U { G} has an SLDNF-refutat ion with computed answer 0 iff P U { G} 
does. 

2. P" U { G} has a finitely failed SLDNF-tree iff P U { G} does. 

Ref. 3) also proposes an extension of  Theorem 2.5 which uses a notion of  
coveredness instead of  closedness. The basic idea is to restrict the attention to 
those parts of  the specialised program P" which can be reached from G. 

Example 2.6 
Let P be the following program: 

(1) member(X, [X  I T ] )  ~-- 
(2) member(X, [ Y I T]) , -  member(X, T) 
(3) inboth(X, LI, L2),----member(X, L1), member(X, L2) 

Then the following is a partial deduction wrt A -- (inboth(X, [a, b, c], [c, d, 
el)} such that the conditions of  Theorem 2.5 are verified for the goal G --'--- 
inboth(X, [a, b, c], [c, d, e]). 

(1) member(X, [XI  T]),---  
(2) member(X, [YI T]),--member(X, T) 
(3') inboth(c, [a, b, c], [c, d, e])  

Note that the original unspecialised program P is also a partial deduc- 
tion wrt A : {member(X, L), inboth(X, L1, L2)} which furthermore satisfies 
the correctness conditions of  Theorem 2.5 for any goal G. In other words, 
neither Definition 2.3 nor the condit ions of Theorem 2.5 ensure that any 
specialisation has actually been performed. Nor do they give any indication on 
how to construct a suitable set A and a suitable partial deduction wrt A 
satisfying the correctness criteria for a given goal G of  interest. These are all 
considerations generally delegated to the control of partial deduction, which we 
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2 . 2  Control of Partial Deduction 
In partial deduction one usually distinguishes two levels of controlla'sl): 

the global control, in which one chooses the set A, i.e. one decides which 
atoms will be partially deduced, and 
the local control, in which one constructs the finite (possibly incomplete) 
SLDNF-trees for each individual atom in A and thus determines what 
the definitions for the partially deduced atoms look like. 

In the following we examine how these two levels of control interact. In 
fact, when controlling partial deduction the three following, often conflicting, 
aspects have to be reconciled: 

1. Correctness, i.e. ensuring that Theorem 2.5 or its extension can be applied. 
This can be divided into a local condition, requiring the constructing of 
non-trivial trees, and into a global one related to the independence and 
coveredness (or closedness) conditions. 

2. Termination. This aspect can again be divided into a local and a global 
one. First, the problem of keeping each SLDNF-tree finite is referred to as 
the local termination problem. Secondly keeping the set A finite is referred 
to as the global termination problem. 

3. Precision. For precision we can again discern two aspects. One which we 
might call local precision and which is related to the unfolding rule and to 
the fact that (potential for) specialisation can be lost if we stop unfolding 
an atom in A prematurely. Indeed, when we stop the unfolding process at 
a given goal Q, then all the atoms in Q are treated separately (partial 
deductions are defined for sets of  atoms and not for sets of  goals). For 
instance if  we stop the unfolding process in Example 2.6 for G =~-- 
inboth(X, [a, b, c], [c, d, el)  at the goal Q =~---member(X, [a, b, c]), 
member(X, [c, d, el), partial deduction will not be able to infer that the 
only possible answer for Q and G is { X/c}.  Another important issue in the 
context of local precision and specialisation is the choice of the particular 
selected literal. 
The second aspect could be called the global precision related to the set A. 
In general having a more precise and fine grained set A (with more in- 
stantiated atoms) will lead to better specialisation. For instance given the 
set A- - - (member (a ,  [a, b]), member(c, [d])} partial deduction can 
perform much more specialisation (i.e. detecting that the goal ~ member(a, 
[a, b] ) always succeeds exactly once and that ~-- member(c, [d] ) fails) than 
given the less instantiated set A' = {member(X, [ Y I T])}. 

A good partial deduction algorithm will ensure correctness and termina- 
tion while maximising the precision of  point 3. 
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Let us now examine a bit closer how those three conflicting aspects can 
be reconciled and combined. 

On the side of  correctness there are two ways to ensure the independence 
condition. One is to apply a generalisation operator like the msg* on all the 
atoms in A which are not independent (first proposed in Ref. 3)). Applying this 
technique e.g. to the dependent set A - -  {member(a, L), member(X, [b])} 
yields the independent set {member(X, L)}. This approach also alleviates to 
some extent the global termination problem. However, it also diminishes the 
global precision and, as can be guessed from the above example, can seriously 
diminish the potential for specialisation. 

This loss of  precision can be completely avoided by using a renaming 
transformation to ensure independence. Renaming will map dependent atoms to 
new predicate symbols and thus always generates an independent set without 
precision loss. For  instance the dependent set A above can be transformed into 
the independent set A ' =  {member(a, L), member'(X, [b])}. The renaming 
transformation also has to map the atoms inside the residual program as well as 
the partial deduction goal to the correct versions of A' (e.g. rename the goal 
G --~-member(a, Ea, c~), member(b, [ b ] ) i n t o  ,--member(a, [a, c]), member" 
(b, [b])).  Renaming can often be combined with argument filtering to improve 
the efficiency of  the specialised program. For  instance, instead of  renaming A 
into the set A' above, A would be renamed into {mema(L), memb(X)} and the 
goal G would be renamed into ,-- mema(Ea, c]), memb(b). For  further details 
about filtering see e.g. Ref. 20) or Ref. 2) where the filtering phase is performed 
as a one-step post-processing renaming. See also Ref. 54), where filtering is 
obtained automatically when using folding to simulate partial evaluation. 
Filtering has also been referred to as "pushing down meta-arguments" in Ref. 
64) or " P D M A "  in Ref. 52). In functional programming the term of  "arity 
raising" has also been used. 

Renaming and filtering are used in a lot of  practical approaches (e.g. 
Refs. 17), 18), 20), 38), 33), 34)) and adapted correctness results can be found in 
Ref. 2). See also the more powerful filtering techniques in Ref. 41). 

The local control component  is encapsulated in the unfolding rule, 
defined above. In addition to local correctness, termination and precision, the 
requirements on unfolding rules also include avoiding search space explosion as 
well as work duplication. One particular class of  unfolding rules, addressing the 
two latter points, are based on determinacy. 2~ Basically these rules stop 
unfolding as soon as a choice-point is encountered. We will define determinate 
unfolding rules as follows: 

Definition 2.7 (determinate unfolding) 
A tree is determinate if  the root node is not a leaf node and if each node has 

* Most specific generalisation, also known as anti-unification or least general generalisation, see 
for instance. 32~ 
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either at most 1 child or has only leaves as its children. An unfolding rule is 
(purely) determinate if  for every program P and every goal G it returns a 
determinate SLDNF-tree.  An unfolding rule is lookahead determinate if for 
every program P and every goal G it returns an SLDNF-tree r such that the 
subtree r -  of  r, obtained by removing the failed branches, is determinate. 

Methods soley based on determinacy, avoid search space explosion and 
limit work duplication,* but can be somewhat too conservative. Also, in itself, 
determinate unfolding does not guarantee termination, as there can be infinitely 
failing determinate computations. Termination can be ensured by imposing a 
depth bound, but much more refined approaches to ensure local termination 
exist. The methods in Refs. 6), 50), 49) and 46) are based on well-founded orders, 
inspired by their usefulness in the context of  static termination analysis (see e.g. 
Refs. 13), 10)). Instead of well-founded ones, well-quasi orders can be used. 4's8~ 
Homeomorphic  embedding 6s'4~ on selected atoms has recently gained popularity 
as the basis for such an order. These techniques ensure termination, while at the 
same time allowing unfolding related to the structural aspect of  the program and 
goal to be partially deduced, by for instance allowing the consumption of 
relevant partial input inside the atoms of  A. 

So if we use renaming to ensure independence and suppose that the local 
termination and precision problems have been solved, e.g. by Refs. 6), 50), 49), 
and 46), we are still left with the problem of  ensuring closedness and global 
termination while minimising the global precision loss. We call this combination 
of  problems the control o f  polyvariance problem because it is very closely 
related to how many different specialised version of some given predicate should 
be put into A.** It is this problem we address in this paper. 

Let us examine how the 3 subproblems of the control of  polyvariance 
problem are related. 

Closedness vs. Global Termination 
Closedness can be simply ensured by repeatedly adding the uncovered 
(i.e. not satisfying Definition 2.4 for A-closedness) atoms to A and 
unfolding them. Unfortunately this process generally leads to non- 
termination (even when using the msg to ensure independence). The 
classical example illustrating this non-termination is the "reverse with 
accumulating parameter" program (see Example 3.7 below or e.g. Refs. 
46), 50)). 
Global Termination vs. Global Precision 
To ensure finiteness of  A we can repeatedly apply an "abstraction" 
operator on A which generates a set of  more general atoms. Unfortunately 
this induces a loss of  global precision. 

�9 Under the condition that non-determinate unfolding steps follow the computation rule of the 
underlying system. 

�9 * A method is called rnonovariant if it allows only one specialised version per predicate. 
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By using the two ideas above to (try to) ensure coveredness and global 
termination, we can formulate a generic partial deduction algorithm. First, the 
concept of  an abstraction has to be defined. 

Definition 2.8 (abstraction) 
Let A and A'  be sets of  atoms. Then A'  is an abstraction of  A iff every a tom in 
A is an instance of  an atom in A'. An abstraction operator is an operator which 

maps every finite set of  atoms to a finite abstraction of  it. 

The above definition of abstract guarantees that any partial deduction 
wrt A'  is also correct wrt any a tom in A. Note that sometimes an abstraction 
operator is also referred to as a generalisation operator. 

The following generic scheme, based on a similar one in Refs. 17) and 
18), describes the basic layout of  practically all algorithms for controlling 

partial deduction. 

Algorithm 2.9 (standard partial deduction) 
input: A program P and a goal G 
Output: A specialised program P '  
Initialise: i = 0, A0 = {A 1.4 is an a tom in G} 

repeat 
for each 
applying 
let A" :=  

Ak ~ A;, compute  a finite SLDNF-tree  rk for P IJ {~-- Ak} by 
an unfolding rule U; 
Ai U {B, IB, is an a tom in a leaf of  some tree r,, such that 

B~ is not an instance* of any A~- ~ Ai}; 
let Ai+I :• abstract(A~); where abstract is an abstraction operator 

i : = i + 1  
until AI-1 = Ai 

Apply  a renaming transformation to A~ to ensure independence and then 

construct P '  by taking resultants. 

In itself the use of  an abstraction operator does not yet guarantee global 
termination. But, if the above algori thm terminates then closedness (modulo 
renaming) is ensured. With this observation we can reformulate the control of 
polyvariance problem as one of  finding an abstraction operator which minimises 
loss of precision and ensures termination. 

A very simple abstraction operator  which ensures termination can be 
obtained by imposing a finite max imum number  of  atoms in A~ and using the 
msg to stick to that finite number. For  example, in Ref. 50) one atom per 
predicate is enforced by using the msg. However, using the msg in this way can 
induce an even bigger loss of precision (compared to using the msg to ensure 
independence) because it will now also be applied on independent atoms. For  

* Instead of  an instance check one can also use a variant check. This gives more precision, at the 
cost of an increased danger for non-termination. 
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instance, calculating the rnsg for the set of atoms {solve(p(a)), solve(q(f(b)))} 
yields the atom solve(X) and all potential for specialisation is probably lost. 

In Ref. 50) this problem has been remedied to some extent by using a 
static pre-processing renaming phase (as defined in Ref. 3)) which will generate 
one extra (renamed) version for the top-level atom to be specialised. However, 
this technique only works well if all relevant input can be consumed in one go 
(i.e. one unfolding) of this top-most atom. Apart from the fact that this huge 
unfolding is not always a good idea from a point of view of efficiency (e.g. it can 
considerably slow down the program due to search space explosion), in a lot of 
cases this simply cannot be accomplished (for instance if partial input is not 
consumed but carried along, like the representation of an object-program inside 
a meta-interpreter). 

The basic goal pursued in the remainder of this paper is to define a 
flexible abstraction operator which does not exhibit this dramatic loss of 
precision and provides a fine-grained control of polyvariance, while still guar- 
anteeing termination of the partial deduction process. 

For a recent approach (orthogonal to ours), which tackles this problem 
from another perspective, see Ref. 51). In this approach structure is added to the 
set of atoms A allowing the abstraction operator to be applied more selectively. 
We will discuss how these two approaches can be reconciled in Section 7. 

w Abstraction Using Characteristic Trees 
In the previous section we have presented the generic partial deduction 

Algorithm 2.9. This algorithm is parametrised by an unfolding rule for the local 
control and by an abstraction operator for the control of polyvariance. The 
abstraction operator examines a set of atoms and then decides which of the 
atoms should be abstracted and which ones should be left unmodified. An 
abstraction operator like the msg is just based on the syntactic structure of the 
atoms to be specialised. This is generally not such a good idea. Indeed, two 
atoms can be unfolded and specialised in a very similar way in the context of 
one program P~, while in the context of another program Pz their specialisation 
behaviour can be drastically different. The syntactic structure of the two atoms 
is of course unaffected by the particular context and an operator like the msg 
will perform exactly the same abstraction within P~ and Pz, although vastly 
different generalisations might be called for. 

A better candidate for an abstraction might be to examine the finite 
(possibly incomplete) SLDNF-tree generated for these atoms. These trees cap- 
ture (to some depth) how the atoms behave computationally in the context of 
the respective programs. They also capture (part of) the specialisation that has 
been performed on these atoms. An abstraction operator which takes these trees 
into account will notice their similar behaviour in the context of P1 and their 
dissimilar behaviour within P2, and can therefore take appropriate actions in the 
form of different generalisations. The following example illustrates these points. 
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Example 3.1 
Let P be the append program: 

(1) append(C], Z, Z),-- 
(2) append([nlx] ,  Y, [ H I Z ] ) ' - - -  append(X, Y, Z) 

Note that we have added clause numbers, which we will henceforth take the 
liberty to incorporate into illustrations of  SLD-trees, in order to clarify which 
clauses have been resolved with. To avoid cluttering the figures we will also 
drop the substitutions in such figures. 

Let A = {B, C} be a set of atoms, with B = append([ a], X, Y) and 
C = append(X, [a ] ,  Y). Note that A and B have common instances. Typically 
a partial deducer will unfold the two atoms of A in the way depicted in Fig. 1, 
returning the finite SLD-trees rB and rc. These two trees, as well as the associated 
resultants, have a very different structure. The atom append(Ca], X, Y) has 
been fully unfolded and we obtain for resultants(rs) the single fact: 

append([a], X,  Ca[ x ] )  ,-- 

while for append(X, [a] ,  Y) we obtain the following set of  clauses resul- 
tants( rc): 

append([], [a] ,  [a~)~-- 
append([H]X], [a] ,  [ H I  Z] ) , - - - (X ,  Ca], Z)  

So, in this case, it is vital to keep separate specialised versions for B and C and 
not abstract them by e.g. their msg. 
However, it is very easy to come up with another context in which the difference 
between atoms with identical structure to B and C is almost indiscernible. Take 
for instance the following program P* in which the predicate compos no longer 
appends two lists but finds common elements at common positions: 

(1") compos([X] Tx], [X I T~.], [ X ] ) ' - -  
(2*) compos(CX[ Tx], [ Y[ Tv], E) *--- compos(Tx, Tr, E )  

The associated finite SLD-trees r* and r*, depicted in Fig. 2, are now almost 
fully identical. In that case, it is not useful to keep different specialised versions 
for B * =  compos([ a], X, Y)and C* = eompos(X, [a], Y)(which, apart from 
the predicate symbol, are identical to B and C respectively) because the follow- 

append([a], X, Y) 

~ ~,~e(D, x,  r ' )  

[] 

~-- append(X, [a], Y) 

[] , - - . r , ~ ( x ' ,  [,,], r') 

Fig. 1 SLD-trees rs and rc for Example 3.1 
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+- ~omr~4[~], x ,  Y) +- ~ o r ~ (  X, [g, Y) 

u +- ~omr,o4fl,rx, E) [] ,-- ~omro~(rx, fl, E) 

I 
fall fall  

Fig. 2 SLD-trees r* and r~' for Example 3.1 

ing single set of  specialised clauses could be used for B* and C* without 
specialisation loss: 

compos([al T~], Eal Tz], [ a ] )  

This illustrates that the syntactic structures of  B, C and B*, C* alone provide 
insufficient information for a satisfactory control of  polyvariance and that a 
refined abstraction operator should also take the associated SLD(NF)-trees into 
consideration. 

3 . 1  Characteristic Paths and Trees 
As motivated above, a refined abstraction operator should only generalise 

two (or more) atoms if their associated finite SLDNF-trees are "similar enough". 
A crucial question is of  course which part of  these SLDNF-trees should be taken 
into account to decide upon similarity. If  everything is taken into account, i.e. 
two atoms are abstracted only if their associated trees are identical, this amounts 
to performing no abstraction at all. So an abstraction operator should focus on 
the "essential" structure of  an SLDNF-tree  and for instance disregard the 
particular substitutions and goals within the tree. The following two definitions, 
adapted from Ref. 17), do just that: they characterise the essential structure of  
SLDNF-derivations and trees. 

Definition 3.2 (characteristic path) 
Let Go be a goal and let P be a normal program whose clauses are numbered. 
Let Go ..... Gn be the goals of  a finite, possibly incomplete SLDNF-derivat ion 
of  P U { Go}. The characteristic path of  the derivation 8 is the sequence (/0 o 
Co ..... &_~ o c~-1>, where li is the position of  the selected literal in Gi, and cl is 
defined as: 

if the selected literal is an atom, then ci is the number of  the clause chosen 
to resolve with G~. 
if the selected literal is -~p([), then ci is the predicate p. 

The set containing the characteristic paths of all possible finite SLDNF-  
derivations for P U { Go} will be denoted by chpaths(P, Go). 

For example, the characteristic path of  the derivation associated with the 
only branch of  the SLD-tree rB in Fig. 1 is <1 o 2, 1 o 1>. 
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Recall that an SLDNF-derivat ion D can be either failed, incomplete, 
successful or infinite. As we will see below, characteristic paths will only be used 
to characterise finite and non-failed derivations of  atomic goals, corresponding 
to the atoms to be partially deduced. Still, one might wonder why a characteris- 
tic path does not contain information on whether the associated derivation is 
successful or incomplete. The following proposition gives an answer to that 

question. 

Proposition 3.3 
Let P be a normal program and let G1, Gz be two goals with the same number 
of  literals. Let ~t, 82 be two non-failed, finite derivations for P (J {Ga} and P 
U { G2} respectively. Also let dL and 82 have the same characteristic path p. Then 

(1) 81 is successful iff 82 is and 
(2) 81 is incomplete iff az is. 

Proof 
As 81 and 82 can only be successful or incomplete, points (1) and (2) are 
equivalent and it is sufficient to prove point  (1). Also, as 81 and 82 have the same 
characteristic path they must have the same length (i.e. same number of  deriva 
tion steps) and we will prove the lemma by induction on the length of  81 and 82. 
Induction Hypothesis: Proposition 3.3 holds for derivations ~1, 8~ with length 
~ n .  

Base Case: 81, ~2 have the length 0. 
This means that G1 is the final goal of  31 and G2 the final goal of  d2. As G1 and 
G2 have the same number of literals it is impossible to have that G1 = [] while 
G2:4: [] or G1 :# [] while Gz : a ,  where [] denotes the empty goal. 
Induction Step: 81, c~z have length n + 1. 
Let R0 ..... Rn+l be the sequence of  goals of  81 (with R0 -- G1) and let Q0 ..... Qn+l 
be the sequence of  goals of 8z (with Q0 = G2). Let 8~ be the suffix of 81 whose 
sequence of  goals is RI ..... Rn§ Similarly, let ~ be the suff• of 8z whose 
sequence of  goals is QI, ..., Qn+a. L e t p  = (/o o Co ..... In o c~> be the characteris- 
tic path of  81 and 8z. There are two possibilities for/o o co, corresponding to 
whether a positive or negative literal has been selected. If a negative literal has 
been selected then (for both R0 and Qo) one literal has been removed and R1 and 
Q~ have the same number of  literals. Similarly if a positive literal has been 
selected then trivially R~ and Q1 have the same number of  literals (because the 
same clause cl in the same program P has been used). In both cases R1 and Q1 
have the same number of literals and we can therefore apply the induction 
hypothesis on 8~ and 8~ to prove that 8( is successful iff 8~ is. Finally, because 
81 (respectively 82) is successful iff c~ (respectively 8~) is, the induction step 

holds. [] 

As a corollary of  the above lemma we have that, in the context of  finite, 
non-failed derivations of  atomic goals, the information about  whether the 
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derivation associated with a characteristic path is incomplete or successful is 
already implicitly present and no further precision would be gained by adding 
it. 

Also, once the top-level goal is known, the characteristic path is sufficient 
to reconstruct all the intermediate goals as well as the final one. 

Now that we have characterised derivations, we can characterise goals by 
characterising the derivations of their associated finite SLDNF-trees. 

Definition 3.4 (characteristic tree) 
Let G be a goal and P a normal program and r be a finite SLDNF-tree for P 
U { G }. Then the characteristic tree "~ of  r is the set containing the characteristic 
paths of the non-failed SLDNF-derivations associated with the branches of r. z: 
is called a characteristic tree iff it is the characteristic tree of  some finite 
SLDNF-tree. 

Let U be an unfolding rule such that U(P,  G) -- r. Then f is also called 
the characteristic tree of G (in P)  via U. We introduce the notat ion chtree(G, 
P, U) = s We also say that f is a characteristic tree of  G (in P)  if it is the 
characteristic tree of  G (in P)  via some unfolding rule U. 

Although a characteristic tree only contains a collection of  characteristic 
paths, the actual tree structure can be reconstructed without ambiguity. The 
"glue" is provided by the clause numbers inside the characteristic paths (branch- 
ing in the tree is indicated by differing clause numbers). 

Example 3.5 
The characteristic trees of  the finite SLD-trees rs and rc in Fig. 1 are { (1 o 2, 
1 o 1)} and {<1 o 1>, <1 o 2>} respectively. The characteristic trees of  the 
finite SLD-trees r* and re* in Fig. 2 are both {<1 o 1">}. 

The following observation underlines the interest of  characteristic trees in 
the context of  partial deduction. Indeed, the characteristic tree of  an atom A 
explicitly or implicitly captures the following important aspects of  specialisa- 
tion: 

the branches pruned through the unfolding process (namely those that are 
absent from the characteristic tree). For  instance by looking at the 
characteristic trees, of  rB, rc of  Examples 3. I and 3.5, we can see that two 
branches have been pruned for the atom B (thereby removing recursion) 
whereas no pruning could be performed for C. 
how deep ~--A has been unfolded and which literals and clauses have 
been resolved with each other in that process. This captures the computa- 
tion steps that have already been performed at partial deduction time. 
the number of  clauses in the resultants of  A (namely one per characteristic 
path) and also (implicitly) which predicates are called in the bodies of  
the resultants. As we will see later, this means that a single predicate 
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definition can (in principle) be used for two atoms which have the same 
characteristic tree. 

In other words, the characteristic tree ra captures all the relevant local 
specialisation aspects of A. An aspect that is not explicitly captured by the 
characteristic tree ra is how the atoms in the leaves of  the associated SLDNF-  
tree are further specialised. These call patterns influence the set of  atoms to be 
partially deduced, i.e. they influence the global control and precision. 

Finally, note that characteristic trees only contains paths for the non- 
failed branches and therefore do not capture how exactly some branches were 
pruned. However, this is of no relevance, because the failing branches do not 
materialise within the resultants (i.e. the specialised code generated for the 
atoms). 

In summary, characteristic trees seem to be an almost ideal vehicle for a 
refined control of  polyvariance, z~ a fact we will try to exploit in the following 
section. 

3 . 2  An Abstraction Operator Using Characteristic Trees 
The following definition captures a first attempt at using characteristic 

trees for the control  of polyvariance. 

Definition 3.6 (chabsl,,U) 
Let P be a normal program, U an unfolding rule and A a set of  atoms. For  every 
characteristic tree r, let A~ be defined as A~ = { A I A ~ S A chtree(,---A, P, 
U) = r}. The abstraction operator chabs~,u is then defined as: chabse,u(A) = 
(msg(A~)[r is a characteristic tree}. 

The following example illustrates the above definition. 

Example 3.7 
Let P be the program reversing a list using an accumulating parameter: 

(1) rev([], Ace, Ace) 
(2) rev([HI T3, Ace, Res) ~rev(T ,  EH[Acc], Res) 

We will use chabse,u with a purely determinate unfolding rule U (allow- 
ing non-determinate steps only in the root) inside the generic Algorithm 2.9. 
When starting out with the set A0 = {rev([al B], [3, R)} the following steps are 
performed by Algorithm 2.9: 

unfold the atom in A0 (see Fig. 3) and add the atoms in the leaves 
yielding A~ = {rev([alB], [],  R), rev(B, [a] ,  R)}. 
apply the abstraction operator: A1 = chabse,v(A'o) = {rev([alB], [], R), 
rev(B, [a ] ,  R)} because the atoms in A6 have different characteristic 
trees. 
unfold the atoms in A1 (see Fig. 3) and add the atoms in the leaves 
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,-- rev([alB], I], R) 
~ (2) 

,',,,(B, [,,], R) 

[] ,-- rev(T, [H, a], R) 

,-  .~.(T, [H, ,,], R) 

[] ,-- .~(T', [H', H,.], R) 

Fig. 3 SLD-trees for Example 3.7 

yielding A~ = {rev([alB], [], R), rev(B, [a], R), rev(T, [H, a], R)}. 
apply the abstraction operator: A2 = chabse,u(A~) = {rev([a[B], [], R), 
rev(T, [A IB], R)}, because rev(B, [a], R) and rev(T, [H, a], R) have 
the same characteristic tree (see Fig. 3). 
unfold the atoms in A2 and add the atoms in the leaves yielding: A~ = 
{rev([alB], [], R), rev(T, [AIB],  R), rev(T', [H', AIB],  R)}. 
apply the abstraction operator: Aa = chabse,v(A~) = A2 and we have 
reached a fix-point and thus obtain the following partial deduction 
satisfying the coveredness condition (and which is also independent 
without renaming): 

rev([alB], [], R) ~-- rev(B, [a], R) 
rev([], [AIB],  [AIB] ) ' - -  
rev([HI T], [AIB],  Res),---rev(T, [H, AIB], Res) 

Because of the selective application of the msg, no loss of precision has been 
incurred by chabsp,v, i.e. the pruning and pre-computation for e.g. the atom 
rev([aIB], [], R) has been preserved. An abstraction operator allowing just 
one version per predicate would have lost this local specialisation, while a 
method with unlimited polyvariance (also called dynamic renaming, in e.g. Ref. 
2)) does not terminate. 

For this example, ehabsp, v provides a terminating and fine grained 
control of polyvariance, conferring just as many versions as necessary. The 
abstraction operator chabsp,v is thus much more flexible than e.g. the static 
pre-processing renaming of Refs. 3) and 50)). 

The above example is thus very encouraging, and one might hope that 
ehabs~,,v always preserves the characteristic trees upon generalisation and that it 
might already provide a refined solution to the control of polyvariance problem. 
Unfortunately, although for a lot of practical cases ehabse,v performs quite well, 
it does not always preserve the characteristic trees, entailing a sometimes quite 
severe loss of precision and specialisation. Let us examine an example: 

Example 3.8 
Let P be the program: 
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(1) p ( X )  , -  
(2) p(c) ,-- 

Take A = {p(a),  p(b)}. Using any non-trivial unfolding, the goals *---p(a) and 
~--p(b) have the same characteristic tree r = {<1 o 1>}. Thus chabse,v(S) : 
{p(X)} and unfortunately ~--p(X) has the characteristic tree r '  : {<1 o 1>, <1 
o 2> } and the pruning that was possible for the atoms p(a) and p(b) has been 

lost. More importantly there exists no atom, more general than p(a) and p(b), 
which has r as its characteristic tree. 

The problem in the above example is that, through generalisation, a new 
non-failed derivation has been added (thereby modifying the characteristic tree). 
Starting in the next section we will present a solution to this problem by adding 
constraints to the generalisation in order to ensure that such new non-failed 
derivations cannot  arise. For  this example, we migth produce as generalisation 
the atom p(X) with the added constraint that X is different from c. 

Another  problem occurs when negative literals are selected by the unfold- 
ing rule. 

Example 3.9 
Let us examine the following program P: 

(1) p(X) *-- ~q(X)  
(2) q ( f  (X) )  ,-- 

For this program the goals ~--p(a) and ~ p(b) have the same characteristic tree 
{<1 o 1, 1 o q>}. The abstraction operator chabse.v will therefore produce 
{p(X)} as a generalisation of  {p(a), p(b)}. Again however, ~---p(X) has the 
different characteristic tree {<1 o 1>}, because the non-ground literal ~q(X)  
cannot be selected in the resolvent of  ~---p(X). The problem is that, by gener- 
alisation, a previously selectable ground negative literal in a resolvent can 
become non-ground and thus no longer selectable by SLDNF.  

These losses of  precision can have some regrettable consequences in 
practice: 

important  opportunities for specialisation can be lost and 
termination of  Algorithm 2.9 can be undermined. 

Let us illustrate the possible precision losses through two simple, but 
more realistic examples. 

Example 3.10 
Let P be the following program, checking two lists for equality. 

(1) eqlist([], 1-])~-- 
(2) eqlist([H[X], [ H I  Y]) ~-eqlis t(X,  Y) 
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Given a purely determinate unfolding rule, the atoms A = eqlist([ 1, 2], L), B = 
eqlist(L, [3, 4]) have the same characteristic tree r -- {(1 o 2, 1 o 2, 1 o 1)}. 
Unfortunately the abstraction operator  chabs~,,u is unable to preserve r. Indeed, 
chabs~,.u({A, B ) )  -- leqlist(X, Y)} whose characteristic tree is {(1 o 1), (1 o 
2) } and the precomputat ion and pruning performed on A and B has been lost. 

The previous example is taken from Ref. 17), whose abstraction mecha- 
nism can solve the example. The fol lowing example can, however, not be solved 
by Ref. 17). 

Example 3.11 
Let P be the well known member program, already encountered in Example 2.6. 

(1) member(X, [X] T] )  
(2) member(X, [ Y I T]) ~ member(X, T) 

Then both A -- member(a, [b, cl T ] )  and B -- member(a, [c, d l T]) have the 
same characteristic tree r = ((1 o 2, 1 o 2, 1 o 1), (1 o 2, 1 o 2, 1 o 2), 

using a purely determinate unfolding rule. However, chabse,v((A, B } ) =  
{member(a, IX, Y] T] )}  whose characteristic tree is unfortunately {(1 o I, 1 
o 2)}. The precomputat ion and pruning that was possible for A and B has 

again not been preserved by chabs~,,u. Applying  e.g. Algori thm 2.9, we obtain at 
the next iteration the set chabs~,,u({member(a, IX, Y I T]), member(a, [YI 
T])})  -- (member(a, [ Y I T])}  and then the final set chabse,u( { member( a, [ Y I 
T]) ,  member(a, T ) } ) - - { m e m b e r ( a ,  T)}. We thus obtain the following 
suboptimal,  unpruned program P ' ,  performing redundant  computat ions  for 
both A and B: 

(1') member(a, [a] Z] )  

(2') member(a, [YI T]),--member(a, T) 

Let us discuss the termination aspects next. One might hope  that chabs~,,u 
ensures termination of  partial deduction Algor i thm 2.9 if the number  of  charac- 
teristic trees is finite (which can be ensured by using a depth-bound for charac- 
teristic trees* or by the more sophisticated technique of  Ref. 40) - -  we will 
return to this issue in Section 7). 

Actually if  the characteristic trees are preserved, then the abstraction 
operator chabs~,,v does ensure termination of  Algori thm 2.9. To prove this we 
have to show that when we add a set o f  atoms L to Ai, then either chabsp,u(Ai 
U L) = A~ (i.e. we have reached a fixpoint in our algorithm) or II chabse,u(A~ U 
z)ll < II Ai II for some well-founded measure function II.ll- Such a measure func- 
tion is established in Appendix B and the above property is proven. 

So, if  characteristic trees are preserved by the abstraction operator,  then 
termination of  partial  deduction is guaranteed. However, if  characteristic trees 

* The unfolding rule can still unfold as deep as it wants to! See the discussion in Section 7. 
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are not preserved by the abstraction operator, then the proof of Appendix B no 
longer holds and indeed termination is no longer guaranteed (even assuming a 
finite number of characteristic trees)! An example illustrating this, can be found 
in Ref. 37). The example exploits the non-monotonic nature of Algorithm 2.9. 
Indeed, termination of partial deduction based on chabs~,.v and given a finite 
number of characteristic trees can also be ensured by making Algorithm 2.9 
monotonic, i.e. instead of executing Ai+l := abstract(A;.) we would perform 
Ai+1 : :  A~ U abstract(At). From a practical point of view, this solution is, 
however, not very satisfactory as it might unnecessarily increase the polyvari- 
ance, possibly leading to a code explosion of the specialised program as well as 
an increase in the transformation complexity. The former can be solved by a 
post-processing phase removing unnecessary polyvariance. However, by using an 
altogether more precise abstraction operator, preserving characteristic trees, 
these two problems will disappear automatically. We will then obtain an 
abstraction operator for partial deduction with optimal local precision (in the 
sense that all the local specialisation achieved by the unfolding rule is preserved 
by the abstraction) and which guarantees termination. This quest is pursued in 
the remainder of this paper. 

3 . 3  Characteristic Trees in the Literature 
Characteristic trees have been introduced in the context of definite pro- 

grams and determinate unfolding rules by Gallagher and Bruynooghe in Ref. 20) 
and were later refined by Gallagher in Ref. 17) leading to the definitions that we 
have presented in this paper. Both Refs. 20) and 17) use a refined version of the 
abstraction operator chabse,v and Ref. 17) uses a partial deduction algorithm 
very similar to Algorithm 2.9. In both Refs. 20) and 17) termination properties 
are claimed. No claim as to the preservation of characteristic trees is made in 
Ref. 17). However, the authors of Ref. 20) actually claim in Lemma 4.11 to have 
found an operator (namely chcall) which, in the case of definite programs and 
purely determinate unfolding rules without lookahead (cf. Definition 2.7), 
preserves a structure quite similar to characteristic trees as of Definition 3.4. 

Unfortunately this Lemma 4.11 is false and cannot be easily rectified. In 
Appendix A we provide a detailed description of a counterexample to this 
Lemma 4.11. Furthermore, in a lot of cases, the abstraction operators of Refs. 20) 
and 17) behave exactly like chabse,u, and the examples in this paper and in Ref. 
37) actually provide counterexamples not only for the precision claim of Ref. 20) 
but also for the termination claims of both Refs. 20) and 17). There are in fact 
some further problems with the abstraction operator of Ref. 17). For instance the 
Example 3.9 with negation poses problems to Ref. 17) (Ref. 20) is restricted to 
definite programs, so the problem does not appear there) and unfolding rules 
which are not purely determinate can also cause problems. More detailed 
descriptions can be found in Ref. 37) as well as in Ref. 36), where the counterex- 
ample to Lemma 4.11 of Ref. 20) was first presented. The problems of negative 
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literals and non-purely determinate unfolding rules will be touched again later 
in this paper. 

w Constrained Partial  Deduction 
In the previous chapter we have dwelled upon the appeal of  

characteristic trees for controlling polyvariance, but we have also highlighted 
the difficulty of  preserving characteristic trees in the abstraction process as well 
as the ensuing problems concerning termination and precision. We have hinted 
briefly at the possibility of using constraints to solve this entanglement. In this 
section we present the framework of  constrained partial deduction, which will 
allow us to incorporate constraints inside partial deduction. In Subsection 4.1 
we first present some background on constraint logic programming. In Subsec- 
tion 4.2 we present the framework of  constrained partial deduction, whose 
correctness we then prove in Subsection 4.3. 

Also, from now on we will restrict ourselves to definite programs and 
goals. We will return to the problem of  negative literals in Section 7. 

4.1  Constraint Logic Programming 
To formalise constraints and their effect, we need some basic terminology 

from constraint logic programming ( CLP)7 4) 
First, the predicate symbols are parti t ioned into two disjoint sets IIc (the 

predicate symbols to be used for constraints, notably including " = " )  and lib 
(the predicate symbols for user-defined predicates). The signature X contains all 
predicate and function symbols with their associated arity. A constraint is a 
first-order formula whose predicate symbols are all contained in lic. A con- 
straint is called primitive iff it contains no connectives or quantifiers (i.e. it is of  
the form p ( t )  where p ~ IIc). A formula, atom or literal whose predicate 
symbols are all contained in lib will be called ordinary. We will often use the 
connective "[] " (and as usual in standard logic programming ",") in the place 
of  "A ". A CLP-goal is denoted by ~ c [] B1 ..... Bn, where c is a constraint and 
B1 ..... Bn are ordinary atoms. A CLP-clause is denoted by H ~ c [] Bx ..... B~, 
where c is a constraint and H, BI ..... Bn are ordinary atoms. Note that, although 
we do not allow negation within H ,  B~ ..... B~, negation can still be used within 
the constraint c. A CLP-program is a set of  CLP-clause. Note that CLP- 
programs will only be required as an intermediary step, the initial and the final 
specialised programs will be ordinary programs. 

The semantics of  constraints is given by a X-structure •, consisting of  a 
domain D and an assignment of  functions and relations on D to function 
symbols in X and to predicate symbols in IIc. Given a constraint c, we will 
denote by ~ ~ c the fact that c is true under the interpretation provided by 7~. 
Also, c will be called D-satisfiable iff z~ ~ ~ (c), where ~ (F)  denotes the 
existential closure of  a formula F.  We will also use the standard notation V (F)  
for the universal closure of  a first-order formula F and ~v(F) (respectively 
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Vv(F)) for the existential (respectively universal) closure of  F except for the 

variables in the set 1). 
Applying a substitution on a constraint is defined inductively as follows: 

p(f )O = p(t-0) for p E lie 
(F o G ) O = F O  o GOfor  o E { A ,  V, ~--,---+, ~--~}. 

(-~ F)O = --a(FO) 
(IiX.F)O = IIX'.(Ftg") where X '  is a new fresh variable not occurring in 

F and ~9, and where 8'  = { X / X ' }  U { x / t [ x / t  ~ 0 A x :# X} for 1I 

~{V, 3}. 

Applying a substitution on a constraint is used to make explicit the fact that 

certain variables are determined. For  example, ( V X . - 7 ( Y  = f ( X ) ) ) {  Y /  
g(X)} = VZ. -~ (g (X)  = f ( Z ) ) .  The following notations for constraints and 

CLP-goals will also prove useful: 

holds~(c) =D~r V ~ 9(c), 
O satv c =per holds~(c~). 

vars(c) =per the free variables in e. 
mrs(*-c  [] Q) =oe, vats(c) U vats(Q). 

Note that for CLP-goals ~ c [] Q we will in fact require that vars(c)c  
vars(Q)* (meaning that actually vars(~---c [] Q ) =  vars(Q)). This will be 

ensured by applying the existential closure ~varsto)(.) during derivation steps 

below (this existential closure makes no difference wrt 19-satisfiability, but it 

makes a difference wrt holds~). 
We will now define a counterpart to SLD-derivations for CLP-goals. In 

our context of  partial deduction, the initial and final programs are just ordinary 

logic programs (i.e. they can be seen as CLP-programs using just equality 
constraints over the structure of  feature terms ~'7", see Ref. 44)). In order for our 

constraint manipulations to be correct wrt the initial ordinary logic program, we 
have to ensure that equality is not handled in an unsound manner in the 

intermediate CLP-program. For instance, something like a - - b  should not 
succeed in the CLP-program. In other words, if there is no SLD-refutation for 

P U {*---Q} then there should be no CLP-refutation for any P U {*--c [] Q} 
either. To ensure this property we use the following definition of  a derivation, 
adapted from Ref. 16), in which substitutions are made explicit. This will also 

enable us to construct resultants in a straightforward manner. 

Definition 4.1 
Let CG = ~  c [] L1 . . . . .  Lk a CLP-goal and C = A ~--B~ . . . . .  Bn a program 
clause such that k > 1 and n > 0. Then CG' is derived from CG and C in 19 

using ~ iff the following conditions hold: 

* As the conjunction Q contains no quantifiers, vats(Q) are the free variables of Q. 
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Lm is an atom, called the selected atom (at position m), in CG. 
8 is a relevant and idempotent mgu of Lm and A. 
CG' is the goal ~ c'  [] Q, where Q = (L1 ..... Lm-1, B1 ..... B~, Lm+l ..... 
Lk)8 and c ' =  ~rs~o)(cS). 
c'  is /)-satisfiable. 

CG" is called a resolvent of CG and C in /). 

Definition 4.2 (complete CLP=(/))-derivation) 
Let P be a definite program and CGo a CLP-goal.  A complete CLP=(/))- 
derivation o f P  U {CG0} is a tuple ( ~ ,  C, S )  consisting of  a (finite or infinite) 
sequence of  CLP-goals  ~ -- (CGo, CG~ . . . .  ), a sequence C = (C1, Cz . . . .  > of  
variants of  program clauses of  P and a sequence S -- (81, 02 .... > of  mgu's such 
that: 

for i > 0, vars( Ci) A vars( CGo) = 0; 
for i > j ,  vats(CO A vars( Cj) = 0; 
for i ~ O, CG~+I is derived from CGI and Ci+l in Z~ using 8i+1 and 
the sequences # ,  C, S are maximal  (given the choice of  the selected 
atoms). 

A CLP=(/) )-refutation is just a complete CLP=( /) )-derivation whose last 
goal contains no atoms, i.e. it can be written as , - - c  m e where e denotes the 
empty sequence of  atoms. A finitely failed CLP=( /) )-derivation is a finite, 
complete CLP=( /) )-derivation whose last goal is not of the f o r m , - - c  [] e. 
There are thus 3 forms of  complete CLP=( /) )-derivations: refutations, finitely 
failed ones and infinite derivations. 

In the context o f  partial deduction we also allow incomplete derivations. 
A CLP=( /) )-derivation is defined like a complete CLP=( 2))-derivation but may, 
in addition to leading to success or failure, also lead to a last goal where no 
atom has been selected for a further derivation step. Derivations of  the latter 
kind will be called incomplete. 

We can also extend the notion of  characteristic paths of  SLD-derivations 
for ordinary goals to /)-characteristic paths of  CLP=(/) ) -der ivat ions  for 
CLP-goals, s imply by replacing in Definition 3.2 the SLDNF-der iva t ion  8 by a 
CLP=( /) )-derivation. We will denote by ehpathsv(P, CG) the /)-characteristic 
paths of  all CLP=(/) ) -der ivat ions  for P U { CG}. 

In order to construct resultants we also need the following, where 8Iv 
denotes the restriction of  the substitution 0 to the set of  variables V: 

Definition 4.3 
The computed answer of  a finite, non-failed CLP=( /) )-derivation 8 for P U { ~- 
c [] G} with the sequence 01 ..... On of  mgu's, is the substitution cas(8) = (81 ... 
8n)lvarsr Also, the last goal of  8 will be called the resolvent of  8. 

The following lemma will prove useful later on. 
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Lemma 4.4 
Let P be a definite program and , - - c  [] Q be a CLP-goal. If  there exists a 
CLP=(9)-der iva t ion  for P U {~---c [] Q} with computed answer 0 and /~- 
characteristic path p then there exists an SLD-derivation for P U {~--- Q} with 
the same computed answer and characteristic path. 

Proof 
Straightforward, by definition of  a CLP=( 29 )-derivation. [] 

The concept of  CLP=( 29 )-trees can be defined just like the concept of 
SLD-trees: its branches are just CLP=( 29 )-derivations instead of  SLD- 
derivations. An unfoloding rule is now one which, given a definite program P 
and a CLP-goal  CG returns a finite CLP=( 29 )-tree for P U { CG}. Finally, the 
29 -characteristic tree of  a finite CLP=( 29 )-tree T is simply obtained by taking 
the union of  the 29-characteristic paths of  the non-failed CLP=( 29)-derivations 
in T. We will use the notation chtreev(CG, P, U) to refer to the 29- 
characteristic tree obtained for the CLP-goal  CG via U in P. 

4 . 2  A Framework for Constrained Partial Deduction 
We will now present a generic partial deduction scheme which, instead of  

working on sets of  ordinary atoms, will work on sets of  constrained atoms. The 
richer possibilities conferred by the use of  the constraints will notably allows us 
to present an abstraction operator which preserves characteristic trees in Section 
5. However, the generic framework is not restricted to this particular application 
nor the corresponding constraint structure. Amongst others, it can also be used 
to "drive negative information" (using the terminology of  supercompila- 
tion67'68)), handle built-ins (like < / 2 ,  \ = = / 2 )  much more precisely and even 
make use of  type information or argument size relations. We will briefly return 
to this issue in Section 7. 

Definition 4.5 
A constrained atom is formula of  the form c [] A where c is a constraint and 
A an ordinary atom such that the free variables of  c are contained in the 
variables of  A. 

Definition 4.6 (valid~) 
Let c [] A be a constrained atom. The set of  valid 29-instances of  c [] A is 
defined as: valid~(c [] A) = {AOI 0 sat~ c}. 

By definition of  sate, the set of  valid 9-instances is downwards-closed (or 
closed under substitution, i.e. if  A ~ valid9(c [] A) then so is any instance of  
A). The constraint within a constrained atom thus specifies a property that holds 
for all valid instances, which in our case correspond to the possible runtime 

instances. 
We also need an instance notion on constrained atoms. 
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Definition 4.7 (9-instance)  
Let c [] A, c '  [] A '  be cons t ra ined  atoms.  Then  c '  [] A '  is a 9 - i n s t a n c e  o f  c [] 

A, deno ted  by  c" [] A '  ~ g c  [] A, iff A" ---- A 7  and valid~(c" [] A ' )  C validv(c 

[] A). 

F o r  example ,  i n d e p e n d e n t l y  o f  9 ,  -~ ( X  = c) [] p ( X )  is a 9 - i n s t a n c e  o f  

true [] p ( X )  because  every subs t i tu t ion  satisfies true. In turn,  i f  9 con ta ins  e.g. 

C la rk ' s  equa l i t y  t heo ry  (CET,  see e.g. Refs. 9) and  42)) then true [] p (b )  is a 

9 - i n s t a n c e  o f  - ~ ( X  = c) [] p ( X )  because  { X / b }  sat~ - n ( X  = c) given C E T  

(i.e. C E T  ~ V ( ~ (b = c))). 

Definition 4.8 (partial deduction of c [] A) 
Let P be a p r o g r a m  and c [] A a cons t r a ined  atom. Let  r be a f inite,  non- t r iv ia l  

and  poss ib ly  i n c o m p l e t e  C L P = ( 9 ) - t r e e  for  P U {~---c [] A} genera ted  via  the  

un fo ld ing  rule  U and  let ,---cl [] Gx . . . . .  ~ cn [] Gn be the  C L P - g o a l s  in the 

leaves o f  this  tree. Let  01 . . . . .  0n be the  c o m p u t e d  answers o f  the  C L P = ( 9 ) -  

de r iva t ions  f rom ~--c  [] A to ~--cl [] G1 . . . . .  ~ cn [] Gn respect ively .  Then  the 

set o f  CLP- re su l t an t s  {AOI ~--ct [] Gt .. . . .  AOn ~--cn [] Gn} is ca l l ed  t hepar t ia l  

deduction o f  c [] A in P (using 9 via U).  

Example 4.9 
Let  us re turn  to the  p rog ram P f rom E x a m p l e  3.8: 

(1) p ( X )  ~-- 

(2) p(c )  ,-- 

W h e n  using a cons t r a in t  s t ructure 9 c o n t a i n i n g  C E T  (or  any  o the r  s t ructure  in 

which  --1 (c = c) is unsat isf iable) ,  a pa r t i a l  d e d u c t i o n  o f  ~ ( X  = c) [] p ( X )  in 

P (using 9 " )  is: 

(1') p ( X )  ~-- - ~ ( X  = c) [] 

W e  n o w  genera te  pa r t i a l  deduc t i ons  no t  for sets o f  a toms,  bu t  for sets o f  

constrained atoms.  A s  such, the same a t o m  A might  occur  in several  cons t r a ined  

a toms but  wi th  different  associa ted  cons t ra in ts .  This  means  tha t  r e n a m i n g  as a 

way to ensure i n d e p e n d e n c e  imposes  i t se l f  even more  than  in the  s t andard  

par t i a l  d e d u c t i o n  sett ing.  In  a d d i t i o n  to renaming ,  we wil l  also a l l o w  a rgument  

fil tering, l e ad ing  to the  fo l lowing  def in i t ion .**  

Firs t ,  given a CLP-c lause  C = H ~--c [] BI . . . . .  Bn ,  each cons t ra ined  

a tom o f  the  form ~vars~8,~(c) [] B~ wil l  be  ca l l ed  a constrained body  atom o f  

C.  This  n o t i o n  extends  to  C L P - p r o g r a m s  by  t a k i n g  the u n i o n  o f  the  cons t r a ined  

b o d y  a toms  o f  the  clauses.  

* We will often take the liberty to not always explicitly mention the constraint domain /~ which 
was used to construct partial deductions and assume that D is fixed and known. 

** The more powerful optimisations in Ref. 41), which remove redundant arguments, are not 
incorporated in this paper. They can easily be added as a post-processing phase. 
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Definition 
An atomic 
atom in at 

4.10 (atomic renaming, renaming function) 
renaming a for a set A of  constrained atoms maps each constrained 

to an atom such that 

for each e [] A ~ A: vars(a(c [] A)) = vars(A) 

for CA, CA" ~ A such that CA 4: CA': the predicate symbols of  a( CA) 
and a(CA' )  are distinct (but may occur in A). 

Let P be a program. A renaming function p~ for A based on a is a mapping 
from constrained atoms to atoms such that: 

p~(c [] A)  = a(c" [] A')O for some e' [] A'  ~ A with A = A'O A 

c • A < v e ' •  A'. 

We leave p~(A) undefined if c [] A is not a g-instance of  an element in at. 

A renaming function p~ can also be applied to constrained goals r [] B1 ..... B,, 
by applying it individually to each constrained body atom e; [] Bi. Finally, we 

can apply a renaming function also to ordinary goals by defining p~(G) = 

p~( true [] G). 

Note that if the set of O-instances of  two or more elements in A overlap 
then p~ must make a choice for the atoms in the intersection of  the concretisa- 

tions and several renaming functions based on the same a exist. 

Definition 4.11 (partial deduction wrt A) 
Let P be a program, A = {cl [] A1 ..... Cn [] An} be a finite set of constrained 
atoms and let p~ be a renaming for ,4 based on the atomic renaming a. For each 

i ~ { 1 ..... n}, let Ri be the partial deduction of  c~ [] Ag in P and let/~ : {R,I 
i ~ {1 . . . . .  n}}. Then the program {a(cl  [] A i ) O ~ - p a ( c  [] Bdy)[AiO ~ - c  [] 
Bdy  E R~ A 1 < i < n A p~(e [] Bdy )  is defined) is called the partial deduc- 

tion o f  P wrt at, ~ and p~. 

We showed in Example 3.8 that without constraints it is in general 
impossible to abstract atoms while still preserving their characteristic trees. Let 

us revisit Example 3.8 and see how we can achieve preservation of  characteristic 

trees using partial dedution of  constrained atoms. 

Example 4.12 
Let P be the program of Examples 3.8 and 4.9. Also let us use the same 

constraint structure ~ as in Example 4.9, containing Clark's equality theory. In 
the context of  P, we can abstract the constrained atoms true [] p(a)  and true [] 

p(b) of Example 3.8 by the more general constrained atom ~ (X : c) [] p ( X ) ,  
having the same g-characteristic tree z- = {<1 [] 1>}. As illustrated in Example 
4.9, the additional match with clause (2) is pruned for --I(X = c) [] p(X),  
because -~(X = c ) { X / c }  is unsatisfiable in 79. The partial deduction of 
-7(X : e) [] p ( X )  based on a ( - 7 ( X  = e) [] p ( X ) )  = p ' ( X )  is thus 
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(l)  p ' (X )* - -  

Note that p~(~-- ~ (X : c) D e) : e, i.e. the empty goal. The renaming of  the 
run-time goal * - p ( a ) ,  p(b) is * - p ' ( a ) ,  p'(b). 

Note that in Definition 4.11 the original program P is completely 
"thrown away". This is a actually what a lot of practical partial evaluators for 
functional or logic programming languages do, but is unlike e.g. the definitions 
in Ref. 43) (cf. Definiton 2.3). However, there is no fundamental difference 
between these two approaches: keeping part of  the original program can always 
be "simulated" very easily in our approach by using (un)constrained atoms of 
the form true [] A combined with an atomic renaming a such that a(true [] 

A ) = A .  

Also, note that the partial deduction wrt A is an ordinary logic program 
without constraints. The coveredness criterion presented in the next subsection, 
will ensure that the constraint manipulations have already been incorporated 
(by pruning certain resultants) and no additional constraint processing at 
run-time is needed. 

4 . 3  Correctness of Constrained Partial Deduction 
Let us first rephrase the converedness condition of  standard partial 

deduction in the context of constrained atoms. This definition will also ensure 
that the renamings, applied for instance in Definition 4.1 l, are always defined. 

Definition 4.13 
Let /3  be a CLP-program and ,4 a set of  constrained atoms. Then /3  is called ,4, 
:D-covered iff each of  its constrained body atoms is a /)-instance of  a con- 
strained atom in .4. 

We can extend the above notion also to ordinary programs and goals by 
inserting the constraint true (e.g. H *- Bdy  is .4, ~-covered iff H ~- true [] 

Bay is). 
The main correctness result for constrained partial deduction is as fol- 

lows. 

Theorem 4.14 
Let P be a definite program, G a definite goal, at a finite set of  constrained 
atoms, p~ a renaming function for .4 based on a and P '  the partial deduction 
of  P wrt at, /3 and p~. I f /3  U {G} is ,4, /9-covered then the following hold: 

1. P '  U {p~(G)} has an SLD-refutation with computed answer 0 i f f P  U { G} 
does. 

2. P '  U {p~(G)} has a finitely failed SLD-tree iff P U {G} does. 

In the remainder of  Subsection 4.3 we will prove this theorem in two 
successive stages. 
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1. First we will restrict ourselves to unconstrained atoms,  i.e. constrained 
atoms of  the form true [] A.  This will allow us to reuse the correctness 
results for standard partial deduction with renaming in a rather straight- 
forward manner. 

2. We will then move on to general constrained atoms. Partial deductions of 
such constrained atoms can basically be obtained from partial deductions 
of  unconstrained atoms by removing certain clauses (this a direct corollary 
of Lemma 4.4). We will show that these clauses can be safely removed 
without affecting the computed answers nor the finite failure. 

The reader not interested in the details of  the proof  can immediately jump to 
Section 5. 

{1) Correctness for unconstrained atoms 
Note that if .4 is a set of  unconstrained atoms we simply have a standard 

partial deduction with renaming. We will use this observation as a starting point 
for proving correctness of partial deduction for constrained atoms. 

The following is an adaption of  the correctness of standard partial 
deduction with renaming and filtering: 

Theorem 4.15 
Let P be a definite program, G a definite goal, A a finite set of  unconstrained 
atoms, p~ a renaming function for .4 based on a and P '  the partial deduction 
of P wrt .A~ /3 and pa. I f /3  U { G} is ~ ,  /)-covered then the following hold: 

1. P" 13 {p~(G)}  has an SLD-refutation with computed answer 0 i f fP  U {G} 
does. 

2. P '  U {o~(G)} has a finitely failed SLD-tree iff P U {G} does. 

Proof 
First note that the A, /9-coveredness condition ensures that the renamings 
performed to obtain P '  (according to Definition 4.11), as well as the renaming 
p , (G) ,  are defined. The result then follows in a rather straightforward manner 
from the Theorems 3.5 and 4.11 in Ref. 2). In Ref. 2) the filtering has been split 
into 2 phases: one which does just the renaming to ensure independence (called 
partial deduction with dynamic renaming; correctness of  this phase is proven in 
Theorem 3.5 of  Ref. 2)) and one which does the filtering (called post-processing 
renaming; the correctness of  this phase is proven in Theorem 4.11 of Ref. 2)). 
To apply these results we simply have to notice that: 

P '  corresponds to partial deduction with dynamic renaming and post- 
processing renaming for the set of  atoms A --- {A I true [] A E A }. 
P '  U {p , (G)}  is A-covered because /3 U {G} is A, :D-covered (and 
because the original program P is unreachable in the predicate depen- 
dency graph from within P" or within p~(G)).  
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Three minor  technical issues have to be addressed in order to reuse the theorems 
from Ref. 2): 

Theorem 3.5 of  Ref. 2) requires that no renaming be performed on G, i.e. 
p~(G) must be equal to G. However,  without loss of  generality, we can 
assume that the top-level query is the unrenamed atom new(Xa ..... Xk), 

where new is a fresh predicate symbol and vars(G) = {)(1 . . . . .  Xk}. We 
just have to add the clause new(X1 ..... Xk) ~ Q, where G - - ~  Q, to the 
initial program. Trivially the query ~ new(Xt ..... Xk) and G are equiva- 
lent wrt c.a.s, and finite failure (see also Lemma 2.2 in Ref. 19)). 
Theorem 4.11 of  Ref. 2) requires that G contains no variables or predi- 
cates in A. The requirement about  the variables is not necessary in our 
case because we do not base our renaming on the mgu. The requirement 
about  the predicates is another way of  ensuring that p~(G) must be equal 
to G, which can be circumvented in a similar way as for the first point 

above. 
Theorems 3.5 and 4.11 of  Ref. 2) require that the predicates of  the 
renaming do not occur in the original P. Our Definition 4.10 does not 
require this. This is of  no importance as the original program is always 
"completely thrown away" in our approach.  We can still apply these 
theorems by using an intermediate renaming p" which satisfies the 
requirements o f  Theorems 3.5 and 4.I 1 of  Ref. 2) and then applying an 
addit ional one step post-processing renaming p", with p~ = p'p", along 
with an extra application of  Theorem 4.11 of  Ref. 2). [] 

~2] Correctness for constrained atoms 

Lemma 4.16 
Let c [] A be a constrained atom. Let 0 satv c and let ca be unsatisfiable. Then 
AO and A a  have no common instance. 

Proof 
Suppose that AO and Aa  have a common  instance A07 = Aap. But this means 
that 07 satv c, i.e. holdsv(c07) while cap is unsatisfiable. Hence we have a 
contradiction because cap is identical (up to renaming of  the variables used for 
the quantifiers) to c07 (because vars(c) c_ vars(A), i.e. 07[~om(c) = gO [aom(c~). 

[] 

Lemma 4.17 
Let P be a definite program and c [] A and true [] A be constrained atoms and 
let A ' ~  validv(c [] A) be an ordinary atom. Also let c~ be a CLP=(Z~)- 
derivation of  P U { ~ true [] A } with characteristic path p q~ chpaths~(P, c [] 

A) and whose computed  answer is 0 (and whose CLP-resultant  is AO ~ true o 

Bdy).  Then A'  and A 0 have no common  instance. 
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Proof  
First, A" ~ validv(c [] A)  is by definition equivalent to A" = A T  and T sat9 c, 

i.e. holdsg(cT). Because p q~ chpathsv(P,  c [] A)  we know that cO is not 
:D-satisfiable. By Lemma 4.16, this means that AO and A T  have no common 
instance. [] 

The above shows that it is correct, for valid instances, to remove the 
resultants pruned by the constraints. Now,  we just need to establish that every 
selected literal in the partial deduction is a valid instance of an element in .4. 

For  this we first need the following lemma. 

Lemma 4.18 
Let c o A be a constrained atom. Then true [] A < v c [] A iff A ~ valid9( c [] 

A). 

Proof  
As anything satisfies true we have that validv(true o A)  consists of  all instances 
of  A, and notably A ~ validv(true [] A) .  Therefore if true [] A is an instance of 
c [] A we have, by Definition 4.7, that A ~ valid9(c [] A).  In the other direc- 
tion, if  A ~ validv(c [] A)  we have, by downwards-closedness, that all instances 
of  A are also in valid9(c [] A), and therefore Definition 4.7 is satisfied because 
valid~(true [] A )  c_ valid~(c [] A).  [] 

The main correctness result for partial  deduction with constrained atoms 
can now be proven as follows: 

Proof  of  Theorem 4.14 

1. In a first part  of  the proof  we will reuse Theorem 4.15. To  that end we have 
to relate P '  to a covered partial deduction of unconstrained atoms. 
First, as a direct corollary of  Lemma  4.4 we know that P '  is a subset of  a 
partial deduction wrt unconstrained atoms, namely wrt the multiset* .4 '  = 
{true [] Ale [] A ~ .a}, and using an atomic renaming a '  such that 
a'( true [] A )  = a(c  [] A)  and a renaming function P~" such that pa,(G) ~- 

pa(G)  for any ordinary or CLP-goal  G for which p~(G)  is defined. (As ,4'  
contains more general constrained atoms than .4, whenever pa is defined 
p, ,  can also be defined.) 
Let PrCl  denote the clauses pruned by the constraints, i.e. P '  U PrCl is the 
above mentioned partial deduction wrt .4' .  Unfortunately,  although G 
remains .4 ' ,  g-covered (as .4 '  contains more general constrained atoms 
than ,4), P is not necessarily ,4', /~-covered. The reason is that new 
uncovered body atoms can arise inside PrCl. Let U be these uncovered 

Indeed, the same atom could in principle occur in several constrained atoms. This is not a 
problem, however, as the results in Ref. 2) carry over to multisets of atoms. Alternatively one 
could add an extra unused argument to P', p~(G) and .4 '  and then place different variables in 
that new position to transform the multiset -4' into an ordinary set. 
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atoms. To  arrive at a covered partial  deduction we simply have to add, for 
every predicate symbol p of  arity n occurring in U, the unconstrained atom 
true [] p(X1 ..... Xn) to A' ,  where X~ ..... Xn are distinct variables. This will 
give us the new set A"  ~ .4'. We will unfold the new unconstrained atoms 
true [] p(X~ .... .  X~) once (and keep the same unfolding for the elements in 
.4 ')  in order to obtain the set of  resultants /3'. Let P "  be the partial 
deduction of  P wrt .4" , /3 ,  and p,,,, where p~,, is extended from p~, in an 
arbitrary way for the new unconstrained atoms. N o w / 3 '  U { G} is trivially 
.4", 7~-covered. We can therefore apply the correctness Theorem 4.15 to 
deduce that the computat ions for P "  U (p~(G)} (as p~(G) z p~,(G) = 

p~,,(G)) are total ly correct wrt the computat ions  in P U { G}. 
Note that, by construction, we have that  P '  - P",  and thus soundness of  the 
computed answers (point 1, only- if  part)  and completeness of  finite failure 
within P" (point  2, if  part) are already established. 

2. In the second part  of  the p roof  we will show that by removing the clauses 
P~ew -- P " \ P "  we do not lose any computed  answer nor do we remove any 
infinite failure. In other words any complete SLD-derivat ion for P "  U 
{p~(G)} which uses a clause in P " \ P '  fails finitely. This is sufficient to 
establish that  P '  is also totally correct. 
Let D be an SLD-derivat ion for P "  U {p~(G)} which uses at least one 
clause in P " \ P ' .  Let D '  be the largest prefix SLD-derivat ion of  D which 
uses only clauses within P ' .  Let RG" be the last goal of  D '  and let C"  E 
P " \ P '  be the clause used in the last resolution step. First note that this 
clause C "  must be a clause for an unconstrained a tom in .4 '  (and not in 
. 4 " \ . 4 ' )  because in D '  we only used clauses from P '  and because the 
predicates in . 4 " \ . 4 '  are not reachable in the predicate dependency graph 
from within P '  U {p~(G)}. 

po(~) 

D !  . ~  

~ 6',~E PI 

Ra '  =~-- ...  B_2' �9 �9 �9 

I c"  e P " \ P '  

Now let B '  be the selected literal within RG'.  We will show that resolution 
of  B '  with the clause C" fails. To  that  end we will use Lemma 4.17. 
However, this lemma talks about  unification of  an unrenamed atom B with 
the head of  an unrenamed clause (~" E / 3 .  Also, to be able to apply the 
lemma we need to have that B E valid~(c [] A) for some c [] A ~ -4. 

For  the top-level goal p~(G) we know that it is a renaming of G such 
that p~(G) is defined. Therefore, by definition of  a renaming, we can 
deduce that  each a tom in G, notably the selected one, is a valid 
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5.3. 

7~-instance of some c [] A ~ ,4. So if D'  is the empty derivation, 
then we can directly apply Lemma 4.17 to deduce that resolution of 
B with the unrenamed version of  C"  fails and, because renamings 
preserve non-unifiability, we can establish that resolution also fails 
for B'  and C". 
If R G '  is reached after a non-empty derivation D', Lemma 4.17 can 
be applied if we are able to prove that R G '  is a renaming of  some 
goal R G  using the atomic renaming a. 
An obvious candidate is the renaming function p~. In general, 
however, RG'  will only be obtainable from a goal R G  through some 
renaming p~, not necessarily equal to p~ (but based on the same a). 
In Appendix C we illustrate this point with an example. We also 
prove in Lemma C.2 of  Appendix C that such a renaming p~ can 
always be constructed (given that /6 U {G} is ,4, :D-covered). 
Indeed, Lemma C.2 states the following: 

Let D'  be a finite SLD-derivation for P '  U { G'} leading to 
the resolvent RG'.  I f / 3  U {G} is ,4, Z~-covered and G' : 
p~(G) then there exists an ordinary goal R G  and a renam- 
ing function p~ (also based on a) such that RG" = p'~(RG) 
and such that R G  is ,4, :V-covered. 

We now round up the p roof  for the case that D'  is not empty. By 
Definition 4.11 we know that C" is of  the form a"(true [] A)O ~-- 

pa,,(Bdy) for true [] A ~ ,4". By definition of  a", we can rewrite this 
into a(c [] A)O ~ p~,,(Bdy) for c [] A ~ ,4. Hence the selected 
literal B '  in RG" must have the same predicate as a(c [] A). We can 
also apply Lemma C.2 (for P '  U {p~(G)} leading to RG')  to deduce 
that R G ' =  p'~(RG) for some ordinary goal R G  and renaming 
function p~ based on a (for ,4). Hence B'  = p'~(B) and also B 
valid9(c [] A) (as B'  has the same predicate as a(e [] A)). 
Let C"  be the unrenamed version of  C", i.e. C" : H ~ Bdy.  We 
can now apply Lemma 4.17 (because B ~ validv(c rJ A)) to deduce 
that resolution of  ~ B with C"  fails (immediately). Finally, because 
renaming preserves non-unifiability (i.e. if  tl and tz do not unify then 
neither do their renamings) we can deduce that resolution also fails 
for ~ B'  with C", and therefore the derivation D fails finitely in P". 

[] 

We will illustrate this theorem through several examples later in Section 

w Preserving Characteristic Trees 
Based on the more expressive and powerful framework for cnstrained 
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partial deduction, we now present a precise abstraction operator,  preserving 
characteristic trees upon generalisation, as well as a terminating algorithm for 
constrained partial  deductions satisfying the criteria of  Theorem 4.14. 

In order to formulate our approach we have to fix the particular con- 
straint structure to be used - -  this was still left generic in the previous section. 
In fact, all we need in order to be able to preserve characteristic trees upon 
generalisation, is Clark 's  equality theory (CET).  More precisely, we will use the 
structure ~ -- ~'7" consisting of  CET over the domain of  finite trees (with 
infinitely many functors of  every arity*) including all functors in the programs 
and queries under consideration. So it is basically the same structure as the one 
used for CLP(  ~-T ), as defined e.g. in Ref. 62).** The same theory has also been 
used, for different purposes, in the constructive negation techniques (e.g. Refs. 
7), 8), 15), 59), 66), 65)). Note that C E T  is a complete theory 3~ and we suppose 
that we have the required algorithms for satisfiability checking, simplification 
and projection at our  disposal (see e.g. Refs. 66), 65), 60)). 

5 . 1  Pruning Constraints 
As we have already seen in Section 3, when taking the msg of  two atoms 

A and B with the same characteristic tree r, we do not necessarily obtain an 
atom C which has the same characteristic tree. The basic idea is now quite 
simple. Instead of  C,  we will generate c • C as the generalisation of  A and B, 
where the constraint c is designed in such a way as to prune the possible 
computat ions of  C into the right shape, namely r. Indeed, all the derivations 
that were possible for A and B are also possible for C (because we only consider 
definite programs and goals) and c only has to ensure that the additional 
matches wrt r are pruned off at some point  (cf. Fig. 4). 

Now, there are possibly infinitely many ways in which these addit ional 
matches can be pruned via c for C; one can e.g. vary the depth at which pruning 
occurs. Also some of  these matches might have also be possible for A or B, but 
the unfolding rule has then constructed a finitely failed subtree for the corre- 

, - A  , - -6 '  
/',,,, ,/,-,,, 
I/I </I /I",, 

Fig. 4 Pruning Constraints 

* For a detailed study of the relation between the underlying language and equality theory we refer 
the reader to Ref. 59). 

* *  We will actually restrict ourseleves to a subset o f  CLP( ~'7- ) in which satisfiability can be 
decided by simple matching. See Ref. 37) for further details. 
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sponding resolvent. Again there are possibly infinitely many ways in which this 
can happen. However, for our constrained partial deduction algorithm, to be 
presented later, it is important to come up, for any given atom C and character- 
istic tree r, with a finite constraint covering all instances of  C which have r as 
their characteristic tree. If we allow any unfolding rule then this most specific 
constraint will often be an infinite disjunction, and as such is not expressible in 
CET. In order to remedy this problem we will first restrict ourselves to a certain 
class of  unfolding rules in which failure occurs only in a special way (we will 
show how this restriction can be lifted by e.g. incorporating failed branches into 
the characteristic trees later on). Because there is only one way in which failure 
can occur, it is possible to calculate a finite constraint c satisfying the above. 

In fact, purely determinate unfolding rules have the property that, if there 
is a failing branch, then the goal fails completely and the goal has an empty 
characteristic tree. So either there are no failed branches or the characteristic tree 
is empty. It turns out that this is exactly the property that we need. Indeed, goals 
with empty characteristic trees do not pose any problem for termination of  any 
partial deduction algorithm, because the partial deductions of  the goals are 
empty and no atoms in the bodies have to be added to the set of  atoms to be 
partially deduced. An abstraction operator can thus leave atoms with empty 
characteristic trees untouched and for the others it knows that there are no 
failing branches at all. 

Definition 5.1 (failure preserving unfolding rule) 
An unfolding rule is said to be failure preserving iff for every CLP-goal it 
returns an incomplete CLP=(7~)-tree r such that r -  is either equal to r or equal 
to 0, where r -  is obtained from r by removing the failed branches (so either all 
the branches are failed* or none are). 

Proposition 5.2 
Any purely determinate unfolding rule is failure preserving. 

Proof 
Straightforward, by induction on the length of  the generated incomplete 
SLDNF-tree. [] 

The class of  failure preserving unfolding rules is larger than the one of  
purely determinate unfolding rules, albeit only slightly so (e.g. a determinate 
unfolding rule with a lookahead is not failure preserving). 

We will now formalise a general method to calculate constraints ensuring 
the preservation of  characteristic trees. For  that it will be useful to denote by 
mgu*(A, B) a particular idempotent and relevant mgu of  {A, B'}, where B '  is 
obtained from B by renaming apart (wrt A). The mgu* has the following 
interesting property: 

* Note that when a selected literal does not unify with a particular clause then this does not 
correspond to a failed branch. 
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Proposition 5.3 
Let A, B be two terms. Then mgu*(A, B) = fail iff A and B have no common 
instance. 

Proof 
~ :  Suppose mgu*(A, B) = 0 ~ fail. This means that AO = BTO for some 9" 
and A and B have a common instance and we have a contradiction. 
~ :  Suppose that A and B have the common instance A 0 = Ba and let 9" be the 
renaming substitution for B used by mgu*. This means that for some 7 -1 we 
have BT) ,-1 = B and BT)'-xa = AO. Now as the variables of  B)" and A are 
disjoint the set of  bindings 0* = 0 Iv,,rs(A) U (7-1a)Ivars(Br) is a well defined 
substitution and a unifier of  A and BT, i.e. mgu*(A, B) ~ fail and we have a 
contradiction. [] 

The following proposit ion characterises a condition which ensures that a 
particular characteristic path is pruned. We will later transform this condition 
into a constraint expressed using CET. 

Proposition 5.4 
Let G be a definite goal, 7 a substitution, P a definite program and let 8 be an 
SLD-derivation for P U { G} with computed  answer 0 and characteristic path 

p. Then mgu*(GT, GO) = fail iff p q~ chpaths(P, GT). 

Proof 
~ :  Is a direct consequence of  Lemma 4.11 a (for atomic goals) and Lemma 4.11 
b (for general goals) in Ref. 43) (G0 can be seen as the head of a resultant which 
is constructed from a derivation whose characteristic path is p). 
~ :  Suppose that p E chpaths(P, GT). Let 8 '  be a derivation for P U { GT} with 
computed answer 0 '  and whose characteristic path is p. We have that GO is the 
head of  the resultant R of the derivation 8 for P U { G}. By Lemma  4.9 of  Ref. 
43) we can deduce that, because G7 is an instance of  G, the resultant R" of  8'  
is in turn an instance of R. Hence we know that the head GTO" of  R" is also an 
instance of  GO. Hence G7 and GO have a common  instance and by Proposit ion 
5.3 we can finally conclude that mgu*(GT, GO) ~ fail. [] 

Below, we denote finite sequences of  elements (in particular, characteris- 
tic paths or subsequences thereof) by p, q and r, possibly adorned with sub- 
scripts. For  two such sequences, p and q, we denote by pq the concatenation of  
p and q. In such a concatenation, we will al low p or q or both to denote an 
empty sequence of  elements, in which case pq denotes p (or q or e). 

The following definition will turn out to be useful (and is illustrated in 
Fig. 5). 

Definition 5.5 (simple extension path) 
Let P be a normal  program. Let z- be a non-empty ~-characterist ic tree for some 
CLP-goal  CG in P and let p be a characteristic path. Then p is a simple 
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o 
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Fig. 5 Illustrating Definition 5.5 (Simple Extension Paths) 

extension path of  r i f f  

1. Vq  we have that pq ~ r and 
2. ~ r = r~(lit, cl)r2 ~ r, such that p = r~(lit, ncl) (where cl, ncl are numbers 

of clauses belonging to a same predicate definition in P).* 

We denote the set of  simple extension paths of r in P by extpathse(r). 
Each simple extension path of  a characteristic tree captures a potential 

new clause match. The following proposit ion captures the interesting aspect of  
(pruning) simple extension paths in the context of  preserving characteristic trees. 

Proposition 5.6 
Let U be an unfolding rule, P a definite program, CG a CLP-goal  and r a 
characteristic tree such that r c chpaths~(P, CG). If extpathse(r) N chpaths~ 
(P, CG) = 0 then r is a 79-characteristic tree of  CG in P. 

Proof 
Straightforward, by induction on the depth of  r. [] 

Example 5.7 
We recall the program P from Example 3.8: 

(I) p ( X )  ~-- 
(2) p(c)  ,--- 

For r - -  {<1 o 2>} we have ex tpa thsp(r )= {<1 e 1>}. We also have r c -  
chpathssz(P, true [] ~---p(X)) and r c_ chpaths~z(P, ~-- -~(X = c) [] p (X) ) .  
However, r is not a ~7"-characteristic tree for ,---true [] p ( X )  in P but is a 
YT -characteristic tree for ~ -7 ( X  = c) [] p ( X )  in P. And indeed extpathse(r) 
n chpaths~(P,  ~ true [] p ( X ) )  ~ 0 while extpathsv(r) O chpaths~z(P, 

-~(X = c) [] p ( X ) )  = O. 

In the following definition we calculate constraints which prune simple 
extension paths and hence ensure that the condit ion extpathse(r) N chpathsv(P, 
CG) = 0 of  Proposit ion 5.6 holds. This is a big step towards preserving charac- 
teristic trees. In order to simplify the presentation, will take the liberty to treat 

* Note that necessarily ncl #= cl. 



318 M. Leuschel and D. De Schreye 

a conjunc t ion  o f  constraints  like a set o f  constraints  and in t roduce the fol lowing 
nota t ion case(G, p) to be the computed  answer o f  an SLD-der iva t ion  for P U 

{ G} with characterist ic path p (if such a derivat ion exists, otherwise we leave 

case(G, p) undefined).  Also, given two atoms A and B, we denote  by A -- B the 
constraint  false if  A and B have a different arity or predicate symbol ,  and al -- 
ba A ... A ak = bk otherwise, where A = p(al ..... a~) and B = p(bx ... . .  bk). 

Definition 5.8 (pruning constraint) 
Let P be a definite program,  r a non-empty  characteristic tree and let A be an 

atom. For  two atoms A1, Az with the same predicate symbol  p,  the expression A1 

7 c A2 denotes the constra int  ~/vars~a,)( ~ (A~ = A~)), where A~ has been obtained 
from A2 by s tandardis ing apart  (wrt A1). 

Then we define the pruning constraint for .4 wrt r (and P)  by: prunee(A, r) --- 

{ A 7 c AO I p ~ chpaths(P, *--A) f) extpathsp( r) and 0 = case(G, p)}. 

A constra ined atom o f  the form prunep(A, r) [] A will be called nor- 
malised. 

Suppose that  we have two const ra ined atoms ca [] `4, cb [] B both  with 
~-T-characterist ic  tree z-. Using the newly in t roduced concepts,  the obvious  

generalisation is the normalised constra ined a tom e [] C,  where C = msg({A, 
B}) and c = prunee(C, r). I f  r --- chpaths~T(P, ,---c [] C), then we can apply 
Propos i t ion  5.6 and we have achieved preservation o f  characteristic trees. All 
that remains is then to prove that c [] C is indeed more general than  both  ca [] 
A and cb [] B. 

However,  neither o f  these condi t ions  is satisfied in general if  we use an 
arbitrary unfo ld ing  rule (to construct  r for ea [] `4 and cb m B). In fact, the 

pruning constraints  prunee(C, r) p rune  off  each simple extension path  immedi- 

ately "at  the source". But a simple extension path  p o f  r can in general be a valid 
path for ~ Ca D A (i.e. p ~ chpaths77-(P, ~ ca [] A)) and only  lead to failure 
after further unfolding.  In that case ca [] .4 is most  likely not  an ~ 'T- ins tance  
o f  c [] C. The  fo l lowing example illustrates this. 

Example 5.9 
Let P be this program:  

(1) p(X)*-- -q(X)  
(2) p ( X )  ,-- r ( X )  
(3) q(s(X))  ~ q ( X )  
(4) r (X)  ~-- 

Let the negative constra int  Ca = cb = ~ and let A = p(0), B = p(s(O)), C -- 
p(Z) .  Let the unfo ld ing  rule U be such that  chtree77-(~---ca [] A, P, U ) =  
chtreeTz(,--c~ [] B,  P ,  U ) =  r = {(1 o 2, 1 o 4>}. Then  c = prunee(p(Z), 
r) = V X . - ~ ( p ( Z )  = p(X)) .  
This constraint  is unsatisfiable and hence c [] C is not  more  general than either 
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true [] p(0) or true [] p(s(O)). Furthermore,  r ~ chpathsT~P, ~-- c [] C)  and r 
is not a ~-:r-characteristic tree o f , - - c  • C. 

Instead of  restricting ourselves to failure preserving unfolding rules, we 
could also make the constraint c = prunep(C,  r) more general in order to cover 
each possible failing behaviour. In general, however, there are infinitely many 
different ways in which a branch of an SLD-tree can fail. In that case, the most 
specific constraint ensuring that c [] C covers all constrained atoms Ca [] C~" 
with .TrT -characteristic tree r would have to consist o f  an infinite disjunction. 
For instance in the Example 5.9 above, the constraint would have to look like 
d = VX.--1 (p (Z )  = p ( s ( X ) ) )  V VX.--1 (p (Z)  = p ( s ( s (X ) ) ) )  V .... This idea is 
very related to the work in Ref. 45) which attempts to construct maximally 
general fail substitutions for negation as failure. Indeed for every resolvent goal 
G of a simple extension path we can attempt to construct a maximally general 
fail constraint ensuring that G fails. This would allow us to handle any 
unfolding rule and preserve characteristic trees in the f ramework of  constrained 
partial deduction of  Section 4. However,  d [] C does not necessarily have r as 
its ~-T -characteristic tree (according to Definition 4.1 of  a CLP=( 79 )-derivation 
step), al though all the atoms in validT~(d [] C)  do. So one would have to extend 
Definition 4.1 to allow more powerful pruning possibilities (allowing, in some 
cases, to detect an infinitely failed subtree). Whether this can be done in a 
practical way is matter for future research. 

Another  solution is to consider the failed branches to be part of  a 
characteristic tree and then prune off simple extension paths of  this more 
detailed structure. The method presented in the remainder of  this section can in 
fact be easily adapted in that direction, thus lifting the restriction on unfolding 
rules. A post-processing phase could be devised, e.g. based on techniques in 
Refs. 56) and 40), to then remove the unnecessary (cf. Section 3) polyvariance 
generated by such an approach. 

For  failure preserving unfolding rules we can always find, for any given 
atom C and characteristic tree r, a finite, most general* constraint  (namely the 
pruning constraint) c such that c m C covers all constrained atoms c~ [] C? 
with ~rT -characteristic tree z- (this is a corollary of  point  i o f  Theorem 5.11 
proven below). This property in turn, will ensure that the condit ion r -  
chpaths~:~(P, ~---prunee(C, r) [] C)  always holds (cf. point  2 of  Theorem 5.11 
below) and guarantee that characteristic trees are preserved (cf. point 3 of  
Theorem 5.11 below). 

Before proving the preservation of  characteristic trees for failure preserv- 
ing unfolding rules we need one further lemma. 

L e m m a  5.10 
Let At, A2 be two atoms. I f  mgu*(A17, A2) -- fa i l  then 7 sat77- At 7 c A2. 

* This property is useful to show that the abstraction operator cannot generate an infinite 
sequence of generalisations. 
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Proof 
By definition A1 ?L A2 stands for Vvars~A,)(-~(At = A~)) where A~ has been 
obtained by standardising apart (wrt A1). It is well known (see e.g. Ref. 9) or 
Lemma 15.2 in Ref. 42)) that if B and C are not unifiable then C E T  ~ V( 
(B = C)). Now by definition of applying substitutions we have (A1 -/- A2)7 = 
Vvars(A,r)('~(Aag" = A~)). Finally, mgu*(A~9", Az) = fail  means that A19' and A~ 
are not unifiable, hence CET ~ V(~(A~9" -:  A~)) and therefore 9' sats~- A~ -/- 
A2 (because Cr = A~))) is equivalent to V(~(A19 '  = A~)) and 
CET is part o f  our constraint structure ~-T ). [] 

Theorem 5.11 (preservation of characteristic trees) 
Let P be a definite program, c [] A a constrained atom and let B be an ordinary 
atom more general than A. Also let r -- chtreeT~-(*--c ~ A, P, U) be a non- 
empty characteristic tree for a failure preserving unfolding rule U. Then: 

1. c [] A is a ~'7" -instance of  prunep(B, r) [] B. 
2. r c chpathsT~(p, ~---prunev(B, r) [] B). 
3. r is a a r t -charac ter i s t ic  tree of  ~--prunee(B, r) [] B 

Proof 
1. Because B is more general than A we have for some substitution T: A = BT. 

We have to prove that whenever O satyT- c, then also 9'0 saty~-prunep(B, r). 
Let us examine every constraint n = B 7 L Bp ~ prunee(B, r) (cf. 
Definition 5.8) and let p E chpaths(P, , - -B)  be the corresponding simple 
extension path in r with p = case('--B, p). 
Either p ~ chpaths(P, ,---A). In that case we can apply Proposi t ion 5.4 
(with G = ~ B)  and deduce that mgu*(Bg", Bp) -~ fail.  Therefore, we have 
by Lemma 5.10 that  7 satyT n which is by definition equivalent to ~'T 

(n9'), and hence we also have that  9'0 satj:7- n. 
Or, p ~ chpaths(P, ,--A).  In that  case, because r is not empty and U is 
failure preserving (and hence no failing branches are possible) and because 
no extension o f p  is in r, ca must be unsatisfiable, where ~ --- case(,--- A, p). 
We have by Lemma  4.16 that AO = B9"O has no common  instance with 
Aa  = Bg'a. By Proposi t ion 5.3 this is equivalent to saying that  mgu*(B9"O, 
Bg"a) = fail .  We can now use Proposi t ion 5.4 (for G = , - -  B9') to deduce 
that p fL chpaths(P,.~---B9"O). Finally, by reusing Proposi t ion 5.4 in the 
other direction (for G =*---B) we can deduce that mgu*(Bg'O, Bp) =-fail 
and we can conclude by Lemma 5.10 that  9"0 satl:~- n. 
Hence, as 9"0 satisfies every n E prunee(B, r), we can deduce that 9'0 satyr 
prunep(B, r). 

2. By the (correct version of  the) lifting lemma zr'43'~4'~) we can deduce that r --- 
chpaths(P, ,--- B). Let us examine every p ~ r. When we take O -- case('-- 
A, p) we know that cO is satisfiable in ~'7" (because p E chtree~(~-- c [] 
A, P, U)). So, for some substitution 9" we have that 09' satyr c and by point  
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1 of  this proposi t ion we can find a substitution a such a sat:rT-prunee(B, 
r) and A07 -- Ba. Again by the lifting lemma we can deduce that there 
exists a p such that p : case('-- B, p) and such that AO is an instance of  
Bp. This means that prunee(B, r )p  must be satisfiable (for 7' such that 
BpT" : AO7 = Ba because vars(prunee(B, r)) --- vars(B) and holdsT~- 
(prunee(B, z-)a)) and hence we can conclude that prunee(B, r) has not 
pruned p, i.e. p ~ chpaths~(P, ~---prunee(B, r) [] B). So we can conclude 
that r c chpaths~7.(p ' ~---prunee(B, r) [] B). 

3. By Proposi t ion 5.6 and point  2 we only have to prove that: extpathse(r) f] 
chpathsT~-(P, ~--prunee(B, r) [] B) = ~1. This is, however, a direct conse- 
quence of  Definition 5.8 and the fact that BO -/- BO is unsatisfiable. [] 

Note  that if  we take the Example  5.9, with its unfolding rule which is not 
failure preserving, then none of  the points of  Theorem 5.11 hold. 

5 . 2  A Prec i se  Abst rac t ion  Ope ra t o r  
We are now in a position to formally define our abstraction operator. 

Definition 5.12 ( chabsce, v) 
Let P be a definite program, U a failure preserving unfolding rule and A a set 
of  constrained atoms. 
For  any characteristic tree r, let A ~ = {A]c [] A ~ A A chtree~T( ~-- c [] A, 
P, U) = r}. Then the operator  chabsce,v is defined as follows: 

chabsce,v(S) : A~ U {prunee(A, r) [] msg(A~)[, r 4 : 0  is a char- 
acteristic tree}. 

The following proposi t ion establishes that the operator  chabsce,v is an 
abstraction operator  (in the spirit of  Definition 2.8). 

Proposition 5.13 
Let .4 be a finite set of  constrained atoms. Then .4 '  = chabsce,u(.4) is a finite 
set of  constrained atoms such that every constrained a tom in .4 is an 
~'7"-instance of  a constrained atom in .4'. 

Proof 
Immediate  corollary of  Definition 5.12 and point  1 of  Theorem 5.11. [] 

By point  3 of  Theorem 5.11 we can deduce that this abstraction operator 
preserves the characteristic trees, i.e. after abstraction, r remains a ~ ' T -  
characteristic tree for the CLP-goal  , - -prunee(A,  r) [] A. However,  we cannot 
conclude that r is the ~ 'T-characteris t ic  tree of~---prunee(A, r) [] A for U, 
because nothing prevents U from treating that goal completely differently (i.e. 
selecting different atoms) from the goals in .43. Such an arbitrary behaviour 
does not cause problems for the constrained partial deduction method as such, 
except when it comes to termination of  chabsce,u (which will be proven below 
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in Proposition 5.18). To avoid this kind of  arbitrary behaviour we need a feature 
of "stability" of the unfolding rule for normalised constrained atoms (or use a 
monotonic partial deduction algorithm, cf. Section 3.2). 

Definition 5.14 (stable unfolding rule) 
An unfolding rule U is called stable iff for each atom A' with chtree(~--- A', P, 
U) = r 4= r and for each atom A more general than A', we have that chtreey7- 
(*--prune~,(A, r) [] A, P, U) = r. 

For  instance a (purely) determinate unfolding rule U with a static (e.g. 
left-to-right) selection of the determinate atoms will not arbitrarily change the 
unfolding behaviour and in that case we are able to conclude that chtree~z(~--- 
prunep(A, r) [] A, P, U) = r. 

Proposition 5.15 
Any purely determinate unfolding rule with a static selection of the determinate 
atoms is stable. 

Proof 
Straightforward, by induction on the depth of  r, because the pruning constraints 
preserve determinacy as well as non-determinacy inside r and because the 
unfolding rule (due to its staticness) will then select the same literal as in r. [] 

Also note that in the case that an unfolding rule does not exhibit this 
stability we can easily ensure it by simply imposing r as the JrT"-characteristic 
tree of  the generalisation ~ p r u n e p ( A ,  r) [] A. In a practical algorithm (e.g. the 
one implemented for the experiments in Section 6) this amounts to storing the 
characteristic tree r with the normalised atoms. Stability also has the added 
benefit that unfolding does not have to be re-done for the generalised atoms, 
because the resulting characteristic tree is already known. Also see Ref. 34) 
which pushes the idea of  imposing characteristic trees on the generalisation one 
step further. 

We can now adapt Algorithm 2.9 by incorporating constrained atoms 
into the partial deduction process and by using the abstraction operator of  
Definition 5.12. 

Algorithm 5.16 (constrained partial deduction) 
Let P be a definite program, let U be a failure preserving unfolding rule. Given 
a constrained atom CA, we denote by resultantsp,v(CA) the partial deduction of  
CA in P when using the unfolding rule U. Also, by CBA(P) we denote the set 
of  constrained body atoms of  a set of  CLP-clauses /3. The following defines a 
partial deduction algorithm which preserves characteristic trees by using prun- 
ing constraints. 
Input: A program P and a goal G 
Output: A specialised program P '  
Initialise: i = O, Ao = chabsc~w({true [] A IA is an atom in G}) 
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repeat 
let /3; = Uca~a,resultantsp,u(CA); 
let -4i+1 = chabsce,v( Ae U CBA(fid); 
i :=  i + 1; 

until Ai+I = Ai  

Construct a partial deduction P '  of P wrt .4/, fii and some p~. 

The following establishes the correctness of the above algorithm. 

Proposition 5.17 
If Algorithm 5.16 terminates, starting from the original program P and the goal 
G, it generates a partial deduction P '  of  P wrt .4 i , /3/and some p~ satisfying the 
requirements of  Theorem 4.14 for any goal G' whose atoms are instances of 
atoms in G. 

Proof 
We just have to show that /3/ U { G'} is ,4i, :D-covered, i.e. each constrained 
body atom of  t3 or G' should be a :D-instance of  an element in .4/. This 
condition is clearly satisfied when reaching the fixpoint of  Algorithm 5.16. 
Indeed, by Proposit ion 5.13, all constrained body atoms o f / 3 / a r e  :D-instances 
of elements in -4/+1 = -4/. By the same proposition, all atoms in G are also 
:D-instances of  elements in .4/, because they were :D-instances of  elements in .4 0. 
Finally, as the atoms in G' are instances of  the atoms in G, we can conclude (by 
downwards-closedness) that/31 U { G'} is .4;, :D-covered. 

We will now prove termination of  the above algorithm for stable unfold- 
ing rules. In fact, given a (albeit unnatural) unstable unfolding rule, we can 
basically reconstruct the pattern of  an example in Ref. 37) to obtain an oscillat- 
ing behaviour of  the partial deduction Algorithm 5.16. 

Proposition 5.18 
If the set of different characteristic trees is finite and the unfolding rule U is 
stable, then Algori thm 5.16 terminates. 

Proof 
In Appendix D. [] 

To ensure a finite number of  different characteristic trees, we can simply 
enforce a depth bound on the unfolding rule used during partial deduction, 
thereby also ensuring local termination. It is, however, also possible not to 
impose any ad-hoc depth bound on the unfolding rule and to impose the depth 
bound only on characteristic paths and trees. A third alternative is presented in 
Ref. 40), which gets rid of the depth bound altogether (see also the discussion 
in Section 7). 
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5 .3  Some Examples 
In this section we illustrate the workings and the interest of  the abstrac- 

tion operator chabsce,u along with Algorithm 5.16 on some practical examples. 
First note that Algorithm 5.16 solves all the problematic examples in Ref. 36) as 
well as the problematic non-termination example in Ref. 37). 

Example 5.19 
Let us return to the member program and the problematic Example 3.11. 

(1) member(X, [X]  T] )  ~-- 
(2) member(X, [ Y I T]) '--- member(X, T) 

Let G --~-- A, B be the goal of  interest, where A = member(a, [b, cl T])  and 
where B = member(a, [c, d l T]). We start the algorithm with A0 -- chabscp,u 
({true [] A, true [] B}). Both true [] A and true [] B have the same ~ 'T-  
characteristic tree r = {<1 o 2, 1 o 2, 1 o 1), (1 [] 2, 1 o 2, 1 o 2)} when 
using a purely determinate unfolding rule. Hence we calculate C = msg({A, 
B}) = member(a, [X, Y I T])  as well as the pruning constraint c = prune~,(C, 
r) = VY'VT' .~(member(a ,  [X, YI T ] ) =  member(a, [a, Y'I T' ] ) )  A V X '  
V T'.-~(member(a, [X, Y I T ] )  = member(a, [X, a l T] ) )  (calculated for the 
simple extension paths (1 o 1) and <1 o 2, 1 o 1) respectively). (Given a 
simplification procedure we could rewrite c into the equivalent constraint 

(X = a) A ~(Y---- a).) We now get .40---- {c [] C}. Unfolding c [] C 
using the same unfolding rule still results in the ~-T-characteristic tree r, and 
the precomputation and pruning that was possible for true [] .4 and true [] B 
has been preserved by chabsce.u! The only constrained body atom in the next 
step of the algorithm is 3{r}(C) [] member(a, T) which can be simplified to 
true [] member(a, T). The ~'7"-characteristic tree of  true [] member(a, T) is 
{(1 o 1), (1 o 2)}. Thus chabsce.u performs no generalisation and at the next 
step of the algorithm we reach the fixpoint ,42 = A1 -- { c [] member(a, [ X, Y I 
T]) ,  true [] member(a, T)}. We thus obtain the following partial deduction P '  
wrt `4x (using an appropriate atomic renaming e): 

(I') mema([X, YI T] )  ~---membera(T) 
(2') membera([al T] )  <-- 
(Y) member~([ Y [ T]) ~ membera(T) 

Now, for example G1 =~---member(a, [b, c]),  member(a, [c, d, e])  is `41, 
Z~-covered and, by Theorem 4.14, P '  is correct for the renaming G; --~--mema 
([b, c], mem,([c, d, e]). However, although G2 ='---member(a,  [b, a] )  is also 
`41, /~-covered, G~ -- ~-- mema([b, a]) is not a correct renaming of  G2 (because 
member(a, [b, a] )  ~ valid~(c [] member(a, IX, Y I T])) and we cannot apply 
Theorem 4.14. And indeed, P '  O { Gg} fails while P U { G2} succeeds. We can, 
however, still rename Gz into Gg' --~-- membera([b, a]).  Theorem 4.14 can then 
applied to deduce that using P '  U { Gg'} is correct. 
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Example 5.20 
Let P be the well known "vanilla" solve meta-interpreter (see e.g. Refs. 23), 47), 
48)). 

(1) solve(empty) ~-- 
(2) solve(X & Y)  ,--- solve(X), solve(Y)  
(3) solve(X) ,--- clause(X, B), solve(B) 
(4) clause(p(a)) *- 
(5) clause(p(b)),--- 
(6) clause(q(a)),--- 
(7) clause(q(b)) , -  

Let us suppose we use a purely determinate unfolding rule U which allows 
non-determinate steps only at the top. Also suppose that we want to specialise 
P for the goal G --- ,-- solve(p(X)),  solve(q(X)).  The characteristic trees of  both 

these atoms will be r = {<1 o 3>}. 
Applying the abstraction operator  chabse,v without  constraints of  

Definition 3.6 (as well as the abstraction operators of  Refs. 20) and 17)) will give 
us as generalisation chabse,v(S) = {solve(X)} where solve(X) has the character- 
istic tree r '  = {<1 o 1>, <1 o 2>, <1 o 3>} and local precision and specialisa- 

tion has been lost due to the abstraction. 
When using the abstraction operator  chabsce,v with constraints we 

obtain chabsce,u(S) = ~ (solve(X) = solve(empty)) A V Y V Z.  --1 (solve(X) --- 
solve( Y & Z) )  [] solve(X). The abstraction still has the ~ 'T -characteristic tree 
r -- { <1 o 3)} and all the specialisation has been preserved. Using Algori thm 
5.16 we obtain the following partial deduction P '  (using a suitable atomic 
renaming a; determinate post-unfolding can be used to get rid o f  solve_empty). 

(1') solve(X) ~ clause(X), so&e_empty 
(2') clause(p(a)) ~-- 
(3') clause(p(b)) ~-- 
(4') clause(q(a)) *-- 
(5') c l a u s e ( q ( b ) ) ~  
(6') solve_empty *--- 

Example  5.21 
The following is the well known reverse with accumulating parameter  which we 
intend to use on lists of  O's and l 's  and where a simple type check has been 
incorporated (to make it really declarative one would have to add an extra 
argument representing the output  - -  to make it really effective one would have 

to add an if-then-else). 

(1) rev([], Ace, Ace)~-- 
(2) rev([ H I T] ,  Ace, Res) ,-- check_list(Ace), rev( T, [ H l Acc], Res) 
(3) check_list(O) ~--print("type error, not list: 0") 
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(4) check_list(l) ~---print("type error, not list: 1") 
(5) check_list(X) ,--- 

For the initial goal G =,---rev(L, [], R) and using a purely determinate 
unfolding rule the Algorithm 5.16 will generate the following sequence of  
constrained atoms (the corresponding SLD-trees can be found in Fig. 6): 

I. ,40 = {rev(L, [], R)} 
2. CBA(ffo) = {rev(T, [HI, R)} 
3. Ax = chabscp,u(Ao U CBA(ffo)) = {c [] rev(L, A, R)}, where c = V L '  

VR'.-~(rev(L, A, R ) =  rev(L', O, R') A VL 'VR ' .~ ( rev (L ,  A, R ) - -  
rev(L', 1, R')), because chtree(~--rev(L, [], R), P, U) = chtree(~--rev(T, 
[ H I ,  R), P, U) = n = {(1 o 1>, <l o 2, 1 o 5>} and extpathsp(rl) = {<1 
o 2 , 1  o 3>,(1 o 2,1 o4>}.  

4. CBA(fft) = {c" [] rev(T, [HIA] ,  R)}, where c' = VLVR'.-~(rev([HIT], 
A, R) = rev(L, O, R')) A VLVR' . -~(rev([HI  T], A, R) = rev(L, 1, R')). 

5. Az --- chabsce,u(A1 U CBA(ffl)) -- ,4.1 as chtree77-(*--- c' [] rev(T, [HIA] ,  
R),  P ,  U )  = r~. 

Given an atomic renaming a such that a(c El rev(L, A, R)) = rev(L, A, 
R) we obtain the following partial deduction wrt At in which the (albeit 
simple) type checking has been completely removed. 

(1') rev([], .4cc, .4cc)~- 
(2') rev([HI T], Acc, ges)~--rev(T, [HIAcc],  ges) 

Note that, i f  we use a dynamic renaming strategy, then, just like for 
Example 3.7, we run into non-termination. If  we use a strategy without renaming 
and an abstraction operator which allows only one msg per predicate, then 

�9 - ,~, , (L,  B, R)  , -  , e~ (L ,  [~/], R) 

D +-- check_list([]), rev(T, [H], R) [] *-- eheck_list([H]), rev(T', [H', H], R) 

I(5) I(s) 
, -  r~ (T ,  [HI, R) , -  ~ ( T ' ,  [H', H], R) 

�9 - c o r ~ ( T ,  [HIA], R)  

[] ~ e' [] check_list([NIA]), rev(T', [H',//IA], R) 

Fig. 6 SLD-trees for Example 5.21 
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partial deduction will not be able to remove the type checking. 
If we use the static renaming strategy of Ref. 3) then partial deduction is 

in this case able to remove the type checking while guaranteeing termination. 
However, this comes at the cost of a larger program (because of unnecessary 
polyvariance due to the static guidance). Furthermore the program P can be 
slightly adapted such that 3, 4, 5 .... renamed versions are required to remove the 
type checking. 

Also, the abstraction operators in Refs. 20) and 17) or the abstraction 
operator chabse,u without constraints of Definition 3.6 cannot adequately 
handle the above example and are not able to remove the type checking. In fact 
chabse,v(Ao) = {rev(L, A, R)} and local precision has been lost and partial 
deduction is no longer able to remove the type checking. 

In summary, for some more elaborate specialisation examples, it is vital 
that the abstraction operator preserves characteristic trees and the augmented 
precision of the new partial deduction method pays off in improved specialisa- 
tion. 

w Some Experimental Results 
An automatic partial deduction system, based on Algorithm 5.16, has 

been developed in order to check feasibility as well as practical potential of our 
approach. However, the extension to any unfolding rule and negation (by 
incorporating failed branches and sub-trees into the characteristic tree with an 
adequate post-processing phase) has not been implemented yet. So the bench- 
marks and experiments were only conducted with purely determinate unfolding 
rules and for definite programs (which limits the amount of speedup one can 
expect). The particular unfolding rule used in the experiments allows non- 
determinate unfolding only at the top (thus guaranteeing that the backtracking 
behaviour will never be modified, because the top-level goal is atomic) and 
selects determinate literals in a left-to-right fashion. 

To provide a fair comparison, we ran experiments for the following three 
abstraction operators, each time using exactly the same unfolding rule just 

described: 

I. onemsg: This is an abstraction operator (already described in Section 2) 
which allows just one version per predicate and uses the msg to ensure this. 

2. chaba: This is the abstraction operator defined in Definition 3.6 and which 
for the examples at hand basically behaves like the abstraction described in 

Ref. 20). 
3. chabsc: The characteristic tree preserving abstraction operator of Definition 

5.12 used inside the constrained partial deduction algorithm described in 

this paper. 

Note that only onemsg and chabsc guarantee termination. 
We compared the three approaches for the Lam & Kusalik benchmarks 
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(see Ref. 31), they can also be found in Refs. 46) and 57)) without negation and 
built-in's: ancestor, depth, transpose. We also experimented with the rev_check- 
list program from Example 5.21, which we specialised for the S = {rev(L, E~, 
R) }. Another experiment, member, consisted in a slight adaptation of Example 
3.11. 

The timing results are summarised in Table 1. The first line cantains the 
absolute timings, the second line contains the speedup as compared with the 
original program. The Total row contains the normalised total time (and the 
total speedup in the second line) of all the tests (each test was given the same 
weight by dividing by the execution time of the original unspecialised program). 
The timings were obtained by using the time~2 predicate of Prolog by BIM on 
a Sparc Classic under Solaris. Sufficient memory was given to the Prolog system 
to prevent garbage collections. The number of clauses and predicates was also 
measured and can be found in Table 2. 

Note that in the transpose example the extra version produced by chabsc 
(and chabs) was not beneficial which might have been caused by some Sparc 
caching behaviour. Also note that Lam & Kusalik benchmarks are not very 
sophisticated and the chabs operator had no problem with termination and 
precision. 

In summary we can say that, even when using a simple unfolding rule, the 
abstraction operator chabsc looks very promising and seems to be a good basis 
for a flexible polyvariance providing just as many versions as necessary (i.e. only 
one version for the rev_checklist example but 5 for the depth example). 

Table .  1 Speedup  Figures  

Test Or ig ina l  chabsc chabs onemsg 
rev_checklist 0.67 s 0.32 s 0.90 s 0.67 s 

1 2.09 0.74 1 

member 0.46 s 0.18 s 0.24 s 0.30 s 
l 2.56 1.92 1.53 

ancestor 6.37s 5.85s 5.85s 5.85s 
1 1.09 1.09 1.09 

depth 2.38s 2.15s 2.15s 2.38s 
l l . l l  1.11 1 

transpose 2.00 s 0.43 s 0.43 s 0.41 s 
1 4.65 4.65 4.87 

Total 5 2.90 3.90 3.77 
1 1.72 1.28 1.33 

Table. 2 Program Sizes: N u m b e r  of  clauses and  predicates  

Test  Or ig ina l  chabsc chabs onemsg 
rev_checklist 5-2 2-1 8-3 5-2 

member 4-2 5-3 5-3 4-2 

ancestor 15-5 15-5 15-5 5-2 

depth 8-3 11-5 1 I-5 8-3 

transpose 6-3 4-2 4-2 2-1 
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w Further Improvements, Discussion and Related Work 
In previous sections we have already hinted at two possibilities to lift the 

restriction to failure preserving unfolding rules. If we want to expand the 
method to encompass normal logic programs some further difficulties arise (cf. 
Example 3.9). 

First, the abstraction operator will often have to ensure that a selected 
negative literal ~ A  succeeds. In the context of  SLDNF,  this amounts to 
ensuring that A is ground and fails finitely. For  the former, some form of  
groundness constraint seems to be required (this problem can be avoided if we 
use the SLS semantics of Ref. 55)). The latter is very similar to the difficulty 
encountered for non-failure preserving unfolding rules (cf. Example 5.9) because 
there can also be an infinite number of  possibilities in which the subtree for 
*--A can be made to fail. So, a first posiibility to solve this problem is to not 
only incorporate the failed branches into the characteristic trees, but the sub- 
trees for negative literals as well. This will lead to an even bigger polyvariance 
(which might be removed by a post-processing phase, but this might be impracti- 
cal due to the large amount of polyvariance). A second possibility would be to 
extend the expressivity of the constraints. A promising approach in that direc- 
tion is to extend the approach of computing fail substitutions. 45) 

There is, however, still a third possibility discussed in Ref. 34). This 
method follows the same basic principle laid down in this paper, namely to use 
and preserve characteristic trees in order to obtain a fine-grained control of  
polyvariance, but achieves this without explicitly incorporating constraints into 
the partial deduction process. The central idea of Ref. 34) is actually rather 
simple (and is a further development of  the idea which we used in the previous 
section to transform any unfolding rule into a stable one): the method just 
imposes a characteristic tree on the generalisation. This characteristic tree acts as 
a sort of  implicit local constraint. As such the method does not have to impose 
any restriction on the unfolding rule, can handle negation (and some built-in's 
as well) while still ensuring termination. 

However, the simplicity comes at the price of  some loss of precision 
because the implicit constraints in Ref. 34) are only used locally (the method 
here, based on negative constraints, uses the constraints explicitly and propa- 
gates them globally via constrained atoms to be partially deduced). Also, the full 
instance relation now becomes undecidable, and a computable approximation 
has to be used. 

Algorithm 5.16 based on chabscp,u (as well as Ref. 34)) still requires an 
ad-hoc depth bound on characteristic trees to ensure termination. As a partial 
remedy we can easily extend the algorithm so that the precision of  the character- 
istic trees is limited to a certain depth but the unfolding rule has no a priori 
depth bound. Indeed, our abstraction operator chabscp,u ensures that character- 
istic trees can be preserved, but does not force the unfolding rule to actually 



330 M. Leuschel and D. De Schreye 

perform the same unfolding (and the unfolding rule can thus unfold deeper than 
the characteristic tree if it wants to). 

However, even with that improvement, the precision of  characteristic 
trees is still limited and the depth bound can result in unsatisfactory, ad-hoc 
specialisation (see Refs. 40) and 35)). Fortunately, by combining our approach 
with Ref. 51), it is possible to get rid of  this ad-hoc depth bound. The basic idea 
is to use a refined well-quasi order on characteristic trees which spots potential 
sequences of  ever growing characteristic trees. The details of  this approach have 
been elaborated in Refs. 40) and 35) (applied to Ref. 34), but the approach can 
be applied in exactly the same manner to the method of  this paper). 

At first sight, the post-processing abstract interpretation phase of  Refs. 12) 
and 21), detecting useless clauses, might seem like a viable alternative to using 
pruning constraints and the framework of  constrained partial deduction. 
However, such an approach can not bring back the precomputation that has 
been lost by an imprecise abstraction operator - -  it might only be able to bring 
back part of  the pruning. But, when running the method of  Refs. 12) and 21) e.g. 
on the residual program P '  of Example 3.11, no useless clauses are detected. 
Indeed to be able to do so, one needs an analysis which can do some form of  
unfolding and in that process preserve characteristic trees - -  in other words 
exactly the method that we have developed in this paper. So neither of  the two 
approaches subsumes the other, they are complementary. Another  related work 
is Ref. 11), which uses abstract substitutions to prune resultants while unfolding. 
These abstract substitutions play a role very similar to the constraints in the 
current paper. However, no formal correctness or termination result is given in 
Ref. 11) (and the issue of  preserving characteristic trees is not addressed). Indeed, 
as abstract substitutions of  Ref. 11) are not necessarily downwards-closed, this 
seems to be a much harder task and a normal coveredness condit ion will not 
suffice to ensure correctness (for instance the atoms in the bodies of  clauses 
might be further instantiated at run-time and thus, in the absence of  downwards- 
closedness, no longer covered). Our paper actually provides a famework within 
which correctness of  Ref. 11) could be established for abstract substitutions 
which are downwards-closed. Another,  more technical difference is that neither 
the method of  Refs. 12) and 21) nor the method of  Ref. 11) preserve the finite 
failure semantics (i.e. infinite failure might be replaced by finite failure), while 
our approach, just like ordinary partial deduction, does. 

Another  method that might look like a viable alternative to our  approach 
is the one of  Ref. 5), situated within the context of  unfold/fold transformations. 
In particular, Ref. 5) contains many transformation rules and allows first-order 
logic formulas to be used to constrain the specialisation. It is thus a very 
powerful framework. But also, because of  that power, controll ing it in an 
automatic way, as well as ensuring actual efficiency gains, is much more difficult. 
A prototype for Ref. 5) exists, but the control heuristics as well as the correctness 
proofs are still left to the user. 
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Let us also briefly discuss some further applications of  constrained partial 
deduction, beyond preserving characteristic trees. For example, a constraint 
structure over integers or reals could handle Prolog built-ins like < ,  > ,  _<, > 
in a much more sophisticated manner than ordinary partial evaluators. Also, 
one can provide a very refined treatment of  the \ =  = Prolog built-in using the 
Y-'7" structure (this feature has actually been incorporated in the prototype of 

the previous section, but has not been used in the experiments). The following 
example illustrates this, where a form of  "driving of negative information" 
(using the terminology of  supercompilation 67'6a~) is achieved by constrained 
partial deduction. 

Example 7.1 
Take the following adaptation of  the member program which only succeeds 
once. 

(1) member(X, [XI  T] )  ~-- 
(2) member(X, [ Y I T]) ~ X \ =  = Y, member(X, T) 

Let us start specialisation with the goal*--member(X,  [a, Y, a]) .  Using a 
determinate unfolding rule (even with a lookahead) we would unfold this goal 
once and get the resolvent ,---X \ =  = a, member(X, [ Y, a] )  in the second 
branch. Ordinary partial deduction would ignore X \ =  = a and unfold 
member(X, [ Y, a]) ,  thus producing an extra superfluous resultant with the 
impossible (given the context) computed answer {X /a} .  In the constrained 
partial deduction setting, we can incorporate X \ =  = a as a constraint and 
unfold -7(X -- a) [] member(X, [ Y, a])  instead of just member(X, E Y, a])  
and thereby prune the superfluous resultant. 

The program in the above example is actually almost a CLP-program, 
and we could go one step further and also specialise CLP-programs. As 
Algorithm 5.16 is based on the structure 57" we conjecture that an adaptation 
of our technique might yield a refined specialisation technique for 
CLP( Y--7" ).60,61,62~ Also, it is actually not very difficult to adapt the framework 
of Section 4.2 to work on CLP-programs instead of ordinary logic programs - -  
we just have to require that equality is handled in the same manner as in logic 
programming. However, establishing the correctness will become much more 
difficult because one cannot reuse the correctness results of  standard partial 
deduction. In that context, we would like to mention Ref. 66), which extends 
constructive negation for CLP-programs, as well as recent work on the transfor- 
mation of CLP-programs. 16) Note, however, that Ref. 16) is situated within the 
unfold/fold transformation paradigm and also that no concrete algorithms are 
presented. 

Finally, let us mention a recent extension of partial deduction, called 
conjunctive partial deduction. 39,zz~ Conjunctive partial deduction handles con- 
junctions of atoms instead of  just atoms. This means that when the unfolding 
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rule stops, the atoms in the leaves of  the SLD(NF)-tree are not automatically 
separated and treated in isolation. As such, the local precision problem dis- 
appears almost entirely and approaches based on determinate unfolding become 
much more viable (recent experiments in Ref. 26) confirm this, where determi- 
nate unfolding outperforms more eager unfolding rules based on well-founded 
or well-quasi measures). The method of this paper can be easily adapted to work 
in that setting, and there might even be no need to extend it to allow non-failure 
preserving unfolding rules. 

w Conclusion 
We have shown that characteristic trees are very useful to obtain a fine 

grained control of  polyvariance for partial deduction. We have shown that, for 
precision and termination, it is crucial that characteristic trees are preserved by 
the abstraction operator of a partial deduction algorithm. If this is the case we 
can obtain a partial deduction method giving us the right amount of  global 
precision which avoids any loss of  local precision. However, the preservation of  
characteristic trees turns out to be a substantial problem, and the approaches in 
the literature so far do not exhibit this desirable property. 

To overcome this difficulty we have developed the framework of con- 
strained partial deduction, based on introducing constraints into the partial 
deduction process. We have provided formal correctness results for this frame- 
work and have shown that it offers potential beyond the preservation of  charac- 
teristic trees. 

Because of  the added expressivity and precision of  the constraints we were 
able to devise an abstraction operator for constrained partial deduction which 
preserves characteristic trees for definite logic programs and failure preserving 
unfolding rules (and which can be extended to any unfolding rule by incorporat- 
ing the failing branches into the characteristic trees - -  other possibilities to 
extend the method were also outlined) while at the same time guaranteeing 
correctness and termination. The method has been shown to be useful on some 
examples leading to enhanced precision and specialisation and some promising 
experiments were conducted. 

We were thus able to devise a partial deduction algorithm with a very fine 
grained control o f  polyvariance, no loss of  local precision due to the abstraction 
while ensuring termination and correctness. 
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Appendix A: Counter Example 
In this appendix we present a counter example to Lemma 4.11 on page 326 of 

Ref. 20). Note that the definitions differ from the ones in Ref. 17) and from the ones 
adopted in our paper (for instance what is called chpath in Ref. 20) corresponds more 
closely to the concept of a characteristic tree in our paper than to the notion of a 
characteristic path). 

We take the following program P (similar to Example 3.8, the actual definitions 
of r ( X )  and s ( X )  are of no importance): 

(Cl) p ( X )  ~-- q ( X )  
(c2) p(c) 
(c~) q ( X )  ~ r ( X )  
(c4) q ( X )  , - - s (X )  
(cs) r ( X )  ~ ... 
(c6) s ( X )  ~-... 

Now let the atom A be p(b). Then according to definition 4.5 of Ref. 20) we 
have that chpath(A)=- ((cl), {cs, c4}). According to definition 4.10 of Ref. 20) we 
obtain: chpaths(A) : {(cl, c3), <cx, c4)}. 

The most general resultants (definition 4.6 of Ref. 20)) of the paths in 
chpaths(A) is the set {p(Z) ~--r(Z),  p ( Z )  * - s ( Z ) ) .  

By definition 4.10 of Ref. 20) we obtain the characteristic call of A: chcall(A) : 
msg{p(Z) ,  p(Z)}  : p(Z) .  

In Lemma 4.11 of Ref. 20) it is claimed that chpath(chcall(A)) =- chpath(A) 
and that chpath(msg{A, chcall(A)}) = chpath(A), i.e. it is claimed that chpath(msg 
{A, chcall(A)}) "abstracts" A (finds a more general atom) while preserving the 
characteristic path structure. However, in our example we have that: 
chpath(chcall(A)) = chpath(msg{A, chcall(A)}) = chpath(p(Z))  = (() ,  {cl, c2}) 4: 
chpath(A) and thus Lemma 4.11 is false. 

Appendix B: Termination Property of chabse,v 
In this appendix we prove a termination property of the abstraction operator 

chabsp,v defined in Definition 3.6. 
The following well-founded measure function is taken from Ref. 19) and can 

also be found in the extended version of Ref. 51): 

Definition B.1 
Let Term and Atom denote the sets of terms and atoms, respectively. We define the 
function scount: Term U Atom---, z~V counting symbols by: 

scount(t) = 1 + scount(tl) + ... + scount(tn) if t = f( t~ ..... tn), n > 0 
scount(t) = 1 otherwise 

Let the number of distinct variables in a term or atom t be vcount(t). 
We now define the function hcount: Term U A t o m - - - , ~  by hcount( t) -- 

scount( t) - vcount( t). 

The well-founded measure function hcount has the property that hcount(t) > 0 
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for any non-var iab le  t. Also if A is an a tom strictly more general  than B we have that 
hcount(A) < hcount(B) (see Ref. 51)). 

Definition B.2 ( hveer ,  p ,u)  

Let P be a normal  program, U an unfolding rule and let T = < r~, ..., rn> be a finite 
vector o f  characterist ic trees. Also let S be a set o f  atoms. Fo r  every characterist ic tree 
r~, let .A~, be defined as .A~, = { A I A  ~ S /X chtree(~--A, P,  U)  = r;}. 

We  then define the weight vector o f S  wrt  T,  P and U,  denoted by hvecr,e,u(S), 
as: hvecr,p,v(S) = <wl ..... wn> where 

w~ = ~a~.A, hcount(A) i f  A~, 4: 

Weight  vectors are part ial ly ordered by the usual order  relat ion among  vectors 
(i.e. <w~ .. . . .  w,> < <v~ . . . . .  v,> iff Wl -< Vl . . . .  w, < v, and ff < ffiff ff --< r  ~ ~ ft. 
The set of  weight  vectors is well founded  (no infinitely decreasing sequences exist) 
because the weights o f  the atoms are well  founded. 

Proposition B.3 (termination using c h a b s e , u )  

Let P be a normal  program, U an unfo ld ing  rule and let T -- <r~ . . . . .  rn> be a finite 
vector of  characteris t ic  trees. 
For  every finite set o f  atoms A and S such that  the characterist ic trees of  their atoms 
are in T and such that the abstraction opera tor  chabse,v preserves the characterist ic 
trees (in the sense that, for each A~ in Defini t ion 3.6, the characterist ic tree of  msg(A~) 
is exactly r)  we have  that one of  the fo l lowing  holds: 

chabs~.,u(A U S)  = A (up to var iable  renaming)  or  
hvecr,e,v(chabse.u(A U S))  < hvecr,e,u(A). 

Proof 
Again,  let (for any finite set o f  atoms S and any characterist ic tree r) S~ be defined as 
S~ = {A IA ~ S /X chtree(~---A, P,  U)  = r}. Also  let hvecr,e,u(A) = <w~ ..... w,) and 
let hvecr,,,u(chabse,u(A 0 S))  = <v~ . . . . .  v,>. Then  for every r~. ~ T we have two 

cases: 

{msg(A~, U S~,)} = A~, (up to var iable  renaming).  In this case the abstract ion 
opera tor  performs no modif icat ion for ri and v~ = we. 
{M} = {msg(A~, 0 S~,)} 4= A~, (up to var iable  renaming).  In this case there are 
three possibilities: 

- -  A~, = ~J. In this case v; < w~ -- ~ because the characterist ic tree o f  M is 
still re. 

- -  A~, = {A} for gome atom A. In this case M is strictly more  general than 
A (by defini t ion of  msg because M :# A) and hence v~ < w; because M 
has r~ as its characterist ic tree. 

- -  #(A~,) > 1. In this case M is more  general  (but not  necessarily strictly more 
general)  than any atom in A~,) and v; < we because at least one  atom is 
removed by the abstaction opera tor  and because M has r~ as its characteris- 
tic tree. 

Note  that for three points above it was vital that the abstract ion opera tor  
preserves the characterist ic trees. 
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Note that V i  C {1 ..... n} we have that vi <-- wi and the new weight vector (vl ..... vn> 
will be comparable to the old vector (wl . . . .  , wn>. So either the abstraction operator 
performs no modification at all (and the weight vectors are identical) or the well- 
founded measure function hvecr,e,v strictly decreases. [] 

So, if characteristic trees are preserved by the abstraction operator then termina- 
tion of the general partial deduction Algorithm 2.9 is guaranteed. However, if charac- 
teristic trees are not preserved by the abstraction operator then the above proof no 
longer holds and termination is no longer guaranteed (even assuming a finite number 
of characteristic trees, see Ref. 37))! 

Appendix C: Lemmas for Proving Correctness of Constrained Partial 
Deduction 

We extend the concept of valid :D-instances to goals by stating that*-- Q' 
valid~(,--- c [] Q) iff there exists a substitution 9" such that Q'  = Qy and 7 sat c. 

Lemma C.1 (persistence of validity) 
Let G be an ordinary goal and CG a CLP-goal. Let G ~ validv(CG). Let CD be a 
CLP=(79)-derivation for P U { CG}  with :D-characteristic path p and resolvent CG'  
and let D be an SLD-derivation for P U { G } with characteristic path p and resolvent 
G'. Then G' E validv( CG').  

Proof 
First, note that if 0 sat c then for any set of variables V we have that 0 sat 3 v(C) 

(and even that 0 Iv sat  ~ v(C)). 
Let us do the proof by induction on the length of D and CD (as they have the same 
characteristic path they must be of the same length) 
Induction Hypothesis: Lemma C. 1 holds for all derivations D with length < n. 
Base Case: (D and CD have length 0). Trivial, as G = G'  and R G  = RG' .  
Induction Step: (D and CD have length n + 1). Let G --~--Al ..... Ak and CG --~--- 
c [] C1, ..., Ck. We know by definition that A; = C~7 where 9' sat9 c. Let A~ be the 
selected literal and C = H ,-- BI .... , B q  be the clause chosen for the first resolution step 
of D and CD. Let (71 =~---(AI . . . . .  Ai-x, B~ . . . . .  Bq, A~+~ .. . . .  Ak)O be the goal after the 
first resolution step in D where 0 be the first mgu in D (i.e. 0 is an idempotent and 
relevant mgu of A; and H). Let CG~ =~---c' [] Q be the CLP-goal after the first 
resolution step in CD, where Q = (C~ ..... C~-1, Bt . . . . .  Bq, Ci+x . . . . .  Ck)Oc and where 
0c is the first mgu  in CD (i.e. 0c is an idempotent and relevant mgu of C~ and H)  and 
c' = ~vaTs~0)(c0c). By the (correct version) of the lifting lemma* we know that there 
exists a substitution/3 such that C~0c/3 = Afl~ f o r j  ~ {1 ..... k}** and B~Oc/3 = B~O for 
j ~ { 1  ..... q}. 
Now, we know that 7 satv c. Hence also yO satv c. Now as GY0 = C~t~d~ for all j we 
know that yO and 0c/3 have the same effect on the variables in CG and thus in c. Hence 
we also have that 0~/3 sat9 r By definition of satisfaction this is equivalent to saying 
that /3 sat~ cOc. This also implies that /3 sat~ ~ . . . .  (o)(COc).  As G1 =*---Q/3 we have 
established that G~ ~ validv(CGa). We can now use the induction hypothesis for the 

* See e.g. the lifting lemmas in Refs. 27), 14) and 1), but also Ref. 43) whose lifting Lemma 4.1 
is different from the incorrect one in Ref. 42). 

** The lifting lemma only affirms this for j * i, but it is easy to see that we can always find a 
which also satisfies the above for i = j (by simply applying the lifting lemma to clause C' in 
which we add H as a body atom to the clause C) because C~O~ = HOc. 
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remaining n steps of  D and CD. [] 

The previous lemma talks about unrenamed goals and derivations in the original 
(unrenamed) program. For  the general correctness theorem we have to reason on 
derivations of  r e n a m e d  goals in the (renamed) specialised program. The following 
lemma affirms, under certain conditions, that for every renamed goal we might possibly 
obtain in the specialised program we can always find some unrenamed goal of which 
it is a valid renaming (i.e. satisfying Definition 4.10). 

Lemma C.2 
Let P '  be a part ial  deduction of P wrt A,  /3 and p~ such that A is a finite set of 
constrained atoms and let G be an ordinary goal such that /3  U {G} is A ,  /)-covered. 
Also let G" = p~(G), where p~ is a renaming function based on a. Let D" be a finite 
SLD-derivation for P ' U  {G'} leading to the resolvent R G ' .  Then there exists an 
ordinary goal R G  and a renaming function p~ based on a such that RG"  = p'~(RG) 

and such that R G is A ,  79-covered. 

Proof 
First note that, if p'~(RG) is defined, R G  must by definition be .,4, D-covered. 
We can prove the lemma by induction on the length of D'. 
Induction Hypothesis:  Lemma C.2 holds for all derivations D with length <~ n. 
Base Case: (D '  has length 0). Trivial, we simply take R G  = G and p~ = p~. 
Induction Step: (D" has length n + 1). Let G =~-- AI .. . . .  At . . . . .  Ak and let p'~(Ai) be 
the literal in G '  = O's(G) which is selected by D'. Let C '  = a(e  [] A)O ,-- p~(e" [] B1, 

.... Bq) with c D A ~ .4 be the clause in P '  used in the first resolution step of D'. Let 
G[ =~-(p~(A1)  . . . . .  p'~(A~-~), p~(B1) . . . . .  p~(Bq), p'~(Ai+l) . . . . .  p'~(Ak))a be the goal 
obtained after the first resolution step for G '  in D '  and let G1 ='---(A~ .. . . .  Ai_~, B~, ..., 
Bq, Ai+l . . . . .  A k ) ( 7  where a is the first m g u  in D'. We will show that it is possible to 
rename G1 into G~'. 
Because p'~(G) is defined we know that true [] A t  is a 79-instance of  c [] A. Further- 
more, by Lemma 4.18 this means that A t  ~ val idv(e [] A).  Let 6" = AO *--- e' [] B~ .. . .  , 

Bq be the unrenamed version of  C '  in ft. By construction of  t~, we know the there is 
a CLP=(~D)-derivation for P U {~--e G A} with computed answer 0 and resolvent c'  
[] Bx . . . . .  Bq. We can now apply Lemma C. 1 (persistence of validity) to deduce that the 

atoms ~-- Baa, ..., Bq~ ~ valid9(~--- e' = Bx . . . .  Bq). This implies that each B~a is a valid 
7)-instance of the corresponding constrained body atom of  C', i.e. B~a ~ valid9 

(3wrs(B,)(e') [] Bi). Now as each constrained body atom ~vars(8,)(e') [] Bi of  C is in 
turn an instance of  a constrained atom CA~ in .4 with p~(B~) -- a(CAi)I3~ (because/3 
is -4, 79-covered and by definition of a renaming function), we simply construct a 
renaming p~ such that P~(B~a) -- p~(B~)cr and such that p'd(A~a) -- p'~(A~)6. We thus 
have constructed a renaming p~ and a goal G~ such that p~((71) -- G~' and we can apply 
the induction hypothesis for the remaining n steps of D'. [] 

One might wonder why three different renaming functions (p~, p~, p~) are 
needed in the above lemma. Usually the top-level goal G'  will be renamed using p~ and 
one might think that it is possible to prove that R G '  is the renaming of some goal R G  

under p~, i.e. R G '  = p~(RG) .  Unfortunately, in general, no such goal R G  exists! The 
reason is that in the course of performing resolution steps atoms might become more 
instantiated, meaning that the renaming function p~ would, based on this instantiation, 
rename differently. Take for example the set -4 = { true [] p(X) ,  true [] p(a)}  of 
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unconstrained atoms, the goal G - - , - - p ( X ) ,  p ( X )  and take a such that or(true [] 
p ( X ) )  = p ' (X) ,  or(true [] p(a))  = p~. Then p~(G) =~--p ' (X) ,  p ' (X ) .  Also assume 
that p~(p(a)) : p~. Now suppose that the clause p'(a) ~-- is in the partial deduction P '  
wrt an original P and the set .4. Then after one resolution step for P '  I) p~(G) we 
obtain the goal ~---p'(a) and for no goal RG we have that p~(RG) =~--p'(a). Indeed 
p~(,-- p(a))  = ~-- pa ~ ~-- P'(a). However, we can construct another renaming function 
p:  such that p~(~--p(a)) = ~--p'(a). So Lemma C.2 holds (and three, possibly distinct 
renaming functions are needed if we want to repeatedly apply the lemma). 

Appendix D: Terminat ion  of  Constra ined  Part ia l  Deduct ion  
In this appendix we prove Proposition 5.18. 

Proposition 5.18 
If the set of different characteristic trees is finite and the unfolding rule U is stable, then 
Algorithm 5.16 terminates. 

Proof 
The proof is very similar to the one in Appendix B (and stability of the unfolding rule 
ensures that the characteristic tree of the generalisation of A~ is exactly r). First we 
have to extend the definition of hcount in Appendix B to constained atoms: hcount(c 
[] A) = hcount(A). Then we extend the definition of hvecr,p,u to sets of constrained 
atoms by taking, for each characteristic tree r, hcount of the normalined constrained 
atoms only (and ~ if there are none). Note that after the first step of the algorithm, .Ai 
will only contain normalised constrained atoms. We now prove in a very similar way 
to Proposition B.3 that for every finite set of constrained atoms Newi and A ~, where we 
define New; = {CA ~ Newzl chtree(CA, P, U) 4= ~}, we have the following: 

either chabsce,v( A~ U New~.) = ,4~ 
or hvecr w,o( chabscp,u( A ~ U New;)) < hvecr,e,u( A~). 

This is sufficient to prove termination, as constrained atoms with empty characteristic 
trees are kept unchanged by chabscp,u and do not lead to further constrained body 
atoms that have to be added. In other words, if we reach a point where chabsce,u( .A~ 
U N e w [ ) =  A~, then at the next step of the Algorithm 5.16 we reach a point where 
A/+x -- chabsce,u(Ai+l U NeWi+l). D 
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