
New Generation Computing, 16 (1998) 283-342
OHMSHA, LTD. and Springer-Verlag

(~) OHMSHA, LTD. 1998

Constrained Partial Deduction and
the Preservation of Characteristic Trees

Michael L E U S C H E L and D a n n y D E S C H R E Y E
K.U. Leuven, Department of Computer Science,
Celestijnenlaan 200 A, B-3001 Heverlee, Belgium.

Received 16 October 1995
Revised manuscript received 23 June 1997

Abstract Partial deduction strategies for logic programs often use an
abstraction operator to guarantee the finiteness of the set of goals for which
partial deductions are produced. Finding an abstraction operator which
guarantees finiteness and does not lose relevant information is a difficult
problem. In earlier work Gallagher and Bruynooghe proposed to base the
abstraction operator on characteristic paths and trees, which capture the
structure of the generated incomplete SLDNF-tree for a given goal.

In this paper we exhibit the advantages of characteristic trees over
purely syntactical measures: if characteristic trees can be preserved upon
generalisation, then we obtain an almost perfect abstraction operator,
providing just enough polyvariance to avoid any loss of local specialisation.
Unfortunately, the abstraction operators proposed in earlier work do not
always preserve the characteristic trees upon generalisation. We show that
this can lead to important specialisation losses as well as to non-termination
of the partial deduction algorithm. Furthermore, this problem cannot be
adequately solved in the ordinary partial deduction setting.

We therefore extend the expressivity and precision of the Lloyd and
Shepherdson partial deduction framework by integrating constraints. We
provide formal correctness results for the so obtained generic framework of
constrained partial deduction. Within this new framework we are, among
others, able to overcome the above mentioned problems by introducing an
alternative abstraction operator, based on so called pruning constraints. We
thus present a terminating partial deduction strategy which, for purely
determinate unfolding rules, induces no loss of local specialisation due to the
abstraction while ensuring correctness of the specialised programs.

Keywords: Logic Programming, Program Specialisation, Partial Deduction, Con-
straints.

284 M. Leuschel and D. De Schreye

w Introduction
Partial evaluation has received considerable attention in logic program-

ming 18'29'~3) and functional programming (see e.g. Ref. 25) and references there-
in). In Ref. 28) Komorowski introduced the topic in the logic programming
setting and later, for pure logic programs, first refers to it as partial deduction.
Another milestone is Ref. 43), where firm theoretical foundations for partial
deduction are established. It introduces the notions of independence and closed-
ness, which are properties of the set of atoms for which the partial deduction is
performed. Under these conditions, soundness and completeness of the trans-
formed program are guaranteed. In the ligth of these conditions, a key problem
in partial deduction is: given a set of atoms of interest, A, provide a terminating
procedure that computes a new set of atoms, A', and a partial deduction for the
atoms in A', such that:

every atom in A is an instance o f an atom in A', and
the closedness and independence conditions are satisfied.

Moving from the initial set A to the new set A' requires an abstraction operator.
In addition to the conditions stated above, this abstraction operator should
preserve as much of the specialisation that was (in principle) possible for the
atoms in A.

An approach which tries to achieve all these goals in an elegant and
refined way is that of Gallagher and Bruynooghe. 2~ Its abstraction operator is
based on the notions of characteristic path, characteristic tree and most specific
generalisation. Intuitively, two atoms of A are replaced by their most specific
generalisation in A', i f their (incomplete) SLDNF-trees under the given unfold-
ing rule have an identical structure (this structure is referred to as the characteris-
tic tree). So, the main idea is, instead of using the syntactic structure of the atoms
in A, the abstraction operator examines their specialisation behaviour. Further-
more, if the characteristic trees are preserved by the generalisation then a lot of
the specialisation that was possible within A will still be possible within A'.

Unfortunately, although the approach is conceptually appealing, several
errors turn up in the arguments provided in Refs. 20) and 17). In the current
paper we show that these errors can lead to relevant precision losses and even
to non-termination of the partial deduction process. We will also show that
these problems cannot be solved within the standard partial deduction
approach based on Ref. 43). We therefore extend the standard partial deduction
framework by integrating ideas from constraint logic programming (CLP) so as
to be able to place constraints on the atoms in A. Within this new generic
framework of constrained partial deduction we will be able to (significantly)
adapt the approaches of Refs. 20) and 17) to overcome the above mentioned
problems. This is achieved by introducing an alternative abstraction operator,
which is based on so called pruning constraints expressed using Clark's equality

Constrained Partial Deduction and the Preservation of Characteristic Trees 285

theory (CET). For definite programs and purely determinate unfolding rules,*
this adapted approach allows to solve all problems with the original formula-
tions in Refs. 20) and 17), thus ensuring the claimed termination and precision
properties.

The paper is structured as follows. In Section 2 we introduce partial
deduction from a theoretical viewpoint, expose some of the practical difficulties,
introduce the concepts of local and global precision and define the "control of
polyvariance" problem. We also outline an algorithm for partial deduction and
show the interest of using an abstraction operator. In Section 3 we introduce the
concepts of characteristic paths and trees and exhibit their significance for
partial deduction. This is the first time that, to our knowledge, the interest and
motivations of characteristic trees (or neighbourhoods in supercompilation of
functional programs 67'6a) for that matter) are made explicit. We also make a first
attempt at defining a proper abstraction operator and show its (substantial)
difficulties. We also illustrate the problem with the approaches in Refs. 20) and
17). In Section 4 we introduce the framework for constrained partial deduction
along with a fundamental correctness result. In Section 5 we present a particular
instance of the framework, based on Clark's equality theory, along with an
algorithm and an associated abstraction operator. We show that, for definite
programs and certain unfolding rules, this approach ensures termination while
providing a very precise and fine grained control of polyvariance. In Section 6
we present some results of an implementation of this approach. In the discussion
in Section 7 we point out several ways to extend the method to normal programs
and more powerful unfolding rules. We also discuss related work and other
potential applications of the constrained partial deduction framework of Sec-
tion 4. The conclusion can be found in Section 8.

w Prel iminaries and Mot ivat ions
Throughout this paper, we suppose familiarity with basic notions in logic

programming (see e.g. Refs. l) and 42)). Notat ional conventions are standard
and self-evident. In particular, in programs, we denote variables through strings
starting with (or usually just consisting of) an upper-case symbol, while the
names of constants, functions and predicates begin with a lower-case character.

As common in partial deduction, the notion of SLDNF-trees is extended
to also allow incomplete SLDNF-trees which, in addition to success and failure
leaves, may also contain leaves where no literal has been selected for a further
derivation step. Leaves of the latter kind will be called dangling. 49) Also, a
trivial SLDNF-tree is one whose root is a dangling leaf.

2 . 1 Partial Deduction
Given a logic program P and a goal G, partial deduction produces a new

* This same limitation is also present in Ref. 20). We will, however, show how this limitation can
be lifted in a rather straightforward manner.

286 M. Leuschel and D. De Schreye

program P ' which is P "specialised" to the goal G; the aim being that the
specialised program P ' is more efficient than the original program P for all goals
which are instances of G.

The technique of partial deduction is based on constructing finite, but
possibly incomplete SLDNF-trees for a set o f atoms at. The derivation steps in
these SLDNF-trees correspond to the computat ion steps which have been
performed beforehand by the partial deducer and the clauses of the specialised
program are then extracted from these trees by constructing one specialised
clause per branch. The incomplete SLDNF-trees are obtained by applying an
unfolding rule, defined as follows:

Definition 2.1 (unfolding rule)
An unfolding rule U is a function which, given a program P and a goal G,
returns a finite and non-trivial SLDNF-t ree for P U { G}.

The resulting specialised clauses are extracted from the incomplete
SLDNF-trees in the following manner:

Definition 2.2 (resultants(r))
Let P be a normal program and A an atom. Let r be a finite SLDNF-tree for
P U {~---A}. Let ~ Gx ~--Gn be the goals in the (non-root) leaves of the
non-failed branches of r. Let 01 0n be the computed answers of the deriva-
tions from ~---A to ~ Gx ~--Gn respectively. Then the set o f resultants,
resultants(r), is defined to be {A01 ~ G1 A0n ~-- G~}.

As the goal in the root of r is atomic, the resultants resultants(r) are all
clauses. We can thus formalise partial deduction in the following way.

Definition 2.3 (partial deduction)
Let P be a normal program and A an atom. Let r be a finite, non-trivial
SLDNF-tree for P (.J {~--A}. Then the set of clauses resultants(r) is called a
partial deduction of A in P.

I f A is a finite set of atoms, then a partial deduction of A in P is the union
of one partial deduction for each element of A. A partial deduction of P wrt A
is a normal program obtained from P by replacing the set of clauses in P, whose
head contains one of the predicate symbols appearing in A (called the partially
deduced predicates), with a partial deduct ion of A in P.

Note that i f r is a trivial SLDNF-t ree for P U {~-- A} then resultants(r)
consists of the problematic clause A ~--A and the specialised program of
Definition 2.3 would contain a loop. That is why trivial trees are not allowed
in Definitions 2.1 and 2.3. This is, however, not a sufficient condit ion for
correctness of the specialised programs. In Ref. 43), Lloyd and Shepherdson
presented a fundamental correctness theorem for partial deduction. The two
(additional) basic requirements for correctness of a partial deduction of P wrt
A are the independence and closedness conditions. The independence condit ion

Constrained Partial Deduction and the Preservation of Characteristic Trees 287

guarantees that the specialised program does not produce additional answers
and the closedness condition guarantees that all calls, which might occur during
the execution of the specialised program, are covered by some definition. The
following summarises the correctness result of Ref. 43):

Definition 2.4 (A-closed, independence)
Let S be a set of first order formulas and A a finite set of atoms. Then S is
A-closed iff each atom in S containing a predicate symbol occurring in an atom
in A is an instance of an atom in A. Furthermore we say that A is independent
iff no pair of atoms in A have a common instance.

Theorem 2.5 (correctness of partial deduction 43))
Let P be a normal program, G a normal goal, A a finite, independent set of
atoms, and P ' a partial deduction of P wrt A such that P ' U { G } is A-closed.
Then the following hold:

1. P ' U { G} has an SLDNF-refutat ion with computed answer 0 iff P U { G}
does.

2. P" U { G} has a finitely failed SLDNF-tree iff P U { G} does.

Ref. 3) also proposes an extension of Theorem 2.5 which uses a notion of
coveredness instead of closedness. The basic idea is to restrict the attention to
those parts of the specialised program P" which can be reached from G.

Example 2.6
Let P be the following program:

(1) member(X, [X I T]) ~--
(2) member(X, [Y I T]) , - member(X, T)
(3) inboth(X, LI, L2),----member(X, L1), member(X, L2)

Then the following is a partial deduction wrt A -- (inboth(X, [a, b, c], [c, d,
el)} such that the conditions of Theorem 2.5 are verified for the goal G --'---
inboth(X, [a, b, c], [c, d, e]).

(1) member(X, [XI T]),---
(2) member(X, [YI T]),--member(X, T)
(3') inboth(c, [a, b, c], [c, d, e])

Note that the original unspecialised program P is also a partial deduc-
tion wrt A : {member(X, L), inboth(X, L1, L2)} which furthermore satisfies
the correctness conditions of Theorem 2.5 for any goal G. In other words,
neither Definition 2.3 nor the condit ions of Theorem 2.5 ensure that any
specialisation has actually been performed. Nor do they give any indication on
how to construct a suitable set A and a suitable partial deduction wrt A
satisfying the correctness criteria for a given goal G of interest. These are all
considerations generally delegated to the control of partial deduction, which we

288

discuss next.

M. Leuschel and D. De Schreye

2 . 2 Control of Partial Deduction
In partial deduction one usually distinguishes two levels of controlla'sl):

the global control, in which one chooses the set A, i.e. one decides which
atoms will be partially deduced, and
the local control, in which one constructs the finite (possibly incomplete)
SLDNF-trees for each individual atom in A and thus determines what
the definitions for the partially deduced atoms look like.

In the following we examine how these two levels of control interact. In
fact, when controlling partial deduction the three following, often conflicting,
aspects have to be reconciled:

1. Correctness, i.e. ensuring that Theorem 2.5 or its extension can be applied.
This can be divided into a local condition, requiring the constructing of
non-trivial trees, and into a global one related to the independence and
coveredness (or closedness) conditions.

2. Termination. This aspect can again be divided into a local and a global
one. First, the problem of keeping each SLDNF-tree finite is referred to as
the local termination problem. Secondly keeping the set A finite is referred
to as the global termination problem.

3. Precision. For precision we can again discern two aspects. One which we
might call local precision and which is related to the unfolding rule and to
the fact that (potential for) specialisation can be lost if we stop unfolding
an atom in A prematurely. Indeed, when we stop the unfolding process at
a given goal Q, then all the atoms in Q are treated separately (partial
deductions are defined for sets of atoms and not for sets of goals). For
instance if we stop the unfolding process in Example 2.6 for G =~--
inboth(X, [a, b, c], [c, d, el) at the goal Q =~---member(X, [a, b, c]),
member(X, [c, d, el), partial deduction will not be able to infer that the
only possible answer for Q and G is { X/c}. Another important issue in the
context of local precision and specialisation is the choice of the particular
selected literal.
The second aspect could be called the global precision related to the set A.
In general having a more precise and fine grained set A (with more in-
stantiated atoms) will lead to better specialisation. For instance given the
set A- - - (member (a , [a, b]), member(c, [d])} partial deduction can
perform much more specialisation (i.e. detecting that the goal ~ member(a,
[a, b]) always succeeds exactly once and that ~-- member(c, [d]) fails) than
given the less instantiated set A' = {member(X, [Y I T])}.

A good partial deduction algorithm will ensure correctness and termina-
tion while maximising the precision of point 3.

Constrained Partial Deduction and the Preservation of Characteristic Trees 289

Let us now examine a bit closer how those three conflicting aspects can
be reconciled and combined.

On the side of correctness there are two ways to ensure the independence
condition. One is to apply a generalisation operator like the msg* on all the
atoms in A which are not independent (first proposed in Ref. 3)). Applying this
technique e.g. to the dependent set A - - {member(a, L), member(X, [b])}
yields the independent set {member(X, L)}. This approach also alleviates to
some extent the global termination problem. However, it also diminishes the
global precision and, as can be guessed from the above example, can seriously
diminish the potential for specialisation.

This loss of precision can be completely avoided by using a renaming
transformation to ensure independence. Renaming will map dependent atoms to
new predicate symbols and thus always generates an independent set without
precision loss. For instance the dependent set A above can be transformed into
the independent set A ' = {member(a, L), member'(X, [b])}. The renaming
transformation also has to map the atoms inside the residual program as well as
the partial deduction goal to the correct versions of A' (e.g. rename the goal
G --~-member(a, Ea, c~), member(b, [b]) i n t o ,--member(a, [a, c]), member"
(b, [b])). Renaming can often be combined with argument filtering to improve
the efficiency of the specialised program. For instance, instead of renaming A
into the set A' above, A would be renamed into {mema(L), memb(X)} and the
goal G would be renamed into ,-- mema(Ea, c]), memb(b). For further details
about filtering see e.g. Ref. 20) or Ref. 2) where the filtering phase is performed
as a one-step post-processing renaming. See also Ref. 54), where filtering is
obtained automatically when using folding to simulate partial evaluation.
Filtering has also been referred to as "pushing down meta-arguments" in Ref.
64) or " P D M A " in Ref. 52). In functional programming the term of "arity
raising" has also been used.

Renaming and filtering are used in a lot of practical approaches (e.g.
Refs. 17), 18), 20), 38), 33), 34)) and adapted correctness results can be found in
Ref. 2). See also the more powerful filtering techniques in Ref. 41).

The local control component is encapsulated in the unfolding rule,
defined above. In addition to local correctness, termination and precision, the
requirements on unfolding rules also include avoiding search space explosion as
well as work duplication. One particular class of unfolding rules, addressing the
two latter points, are based on determinacy. 2~ Basically these rules stop
unfolding as soon as a choice-point is encountered. We will define determinate
unfolding rules as follows:

Definition 2.7 (determinate unfolding)
A tree is determinate if the root node is not a leaf node and if each node has

* Most specific generalisation, also known as anti-unification or least general generalisation, see
for instance. 32~

290 M. Leuschel and D. De Schreye

either at most 1 child or has only leaves as its children. An unfolding rule is
(purely) determinate if for every program P and every goal G it returns a
determinate SLDNF-tree. An unfolding rule is lookahead determinate if for
every program P and every goal G it returns an SLDNF-tree r such that the
subtree r - of r, obtained by removing the failed branches, is determinate.

Methods soley based on determinacy, avoid search space explosion and
limit work duplication,* but can be somewhat too conservative. Also, in itself,
determinate unfolding does not guarantee termination, as there can be infinitely
failing determinate computations. Termination can be ensured by imposing a
depth bound, but much more refined approaches to ensure local termination
exist. The methods in Refs. 6), 50), 49) and 46) are based on well-founded orders,
inspired by their usefulness in the context of static termination analysis (see e.g.
Refs. 13), 10)). Instead of well-founded ones, well-quasi orders can be used. 4's8~
Homeomorphic embedding 6s'4~ on selected atoms has recently gained popularity
as the basis for such an order. These techniques ensure termination, while at the
same time allowing unfolding related to the structural aspect of the program and
goal to be partially deduced, by for instance allowing the consumption of
relevant partial input inside the atoms of A.

So if we use renaming to ensure independence and suppose that the local
termination and precision problems have been solved, e.g. by Refs. 6), 50), 49),
and 46), we are still left with the problem of ensuring closedness and global
termination while minimising the global precision loss. We call this combination
of problems the control o f polyvariance problem because it is very closely
related to how many different specialised version of some given predicate should
be put into A.** It is this problem we address in this paper.

Let us examine how the 3 subproblems of the control of polyvariance
problem are related.

Closedness vs. Global Termination
Closedness can be simply ensured by repeatedly adding the uncovered
(i.e. not satisfying Definition 2.4 for A-closedness) atoms to A and
unfolding them. Unfortunately this process generally leads to non-
termination (even when using the msg to ensure independence). The
classical example illustrating this non-termination is the "reverse with
accumulating parameter" program (see Example 3.7 below or e.g. Refs.
46), 50)).
Global Termination vs. Global Precision
To ensure finiteness of A we can repeatedly apply an "abstraction"
operator on A which generates a set of more general atoms. Unfortunately
this induces a loss of global precision.

�9 Under the condition that non-determinate unfolding steps follow the computation rule of the
underlying system.

�9 * A method is called rnonovariant if it allows only one specialised version per predicate.

Constrained Partial Deduction and the Preservation of Characteristic Trees 297

By using the two ideas above to (try to) ensure coveredness and global
termination, we can formulate a generic partial deduction algorithm. First, the
concept of an abstraction has to be defined.

Definition 2.8 (abstraction)
Let A and A' be sets of atoms. Then A' is an abstraction of A iff every a tom in
A is an instance of an atom in A'. An abstraction operator is an operator which

maps every finite set of atoms to a finite abstraction of it.

The above definition of abstract guarantees that any partial deduction
wrt A' is also correct wrt any a tom in A. Note that sometimes an abstraction
operator is also referred to as a generalisation operator.

The following generic scheme, based on a similar one in Refs. 17) and
18), describes the basic layout of practically all algorithms for controlling

partial deduction.

Algorithm 2.9 (standard partial deduction)
input: A program P and a goal G
Output: A specialised program P '
Initialise: i = 0, A0 = {A 1.4 is an a tom in G}

repeat
for each
applying
let A" :=

Ak ~ A;, compute a finite SLDNF-tree rk for P IJ {~-- Ak} by
an unfolding rule U;
Ai U {B, IB, is an a tom in a leaf of some tree r,, such that

B~ is not an instance* of any A~- ~ Ai};
let Ai+I :• abstract(A~); where abstract is an abstraction operator

i : = i + 1
until AI-1 = Ai

Apply a renaming transformation to A~ to ensure independence and then

construct P ' by taking resultants.

In itself the use of an abstraction operator does not yet guarantee global
termination. But, if the above algori thm terminates then closedness (modulo
renaming) is ensured. With this observation we can reformulate the control of
polyvariance problem as one of finding an abstraction operator which minimises
loss of precision and ensures termination.

A very simple abstraction operator which ensures termination can be
obtained by imposing a finite max imum number of atoms in A~ and using the
msg to stick to that finite number. For example, in Ref. 50) one atom per
predicate is enforced by using the msg. However, using the msg in this way can
induce an even bigger loss of precision (compared to using the msg to ensure
independence) because it will now also be applied on independent atoms. For

* Instead of an instance check one can also use a variant check. This gives more precision, at the
cost of an increased danger for non-termination.

292 M. Leuschel and D. De Schreye

instance, calculating the rnsg for the set of atoms {solve(p(a)), solve(q(f(b)))}
yields the atom solve(X) and all potential for specialisation is probably lost.

In Ref. 50) this problem has been remedied to some extent by using a
static pre-processing renaming phase (as defined in Ref. 3)) which will generate
one extra (renamed) version for the top-level atom to be specialised. However,
this technique only works well if all relevant input can be consumed in one go
(i.e. one unfolding) of this top-most atom. Apart from the fact that this huge
unfolding is not always a good idea from a point of view of efficiency (e.g. it can
considerably slow down the program due to search space explosion), in a lot of
cases this simply cannot be accomplished (for instance if partial input is not
consumed but carried along, like the representation of an object-program inside
a meta-interpreter).

The basic goal pursued in the remainder of this paper is to define a
flexible abstraction operator which does not exhibit this dramatic loss of
precision and provides a fine-grained control of polyvariance, while still guar-
anteeing termination of the partial deduction process.

For a recent approach (orthogonal to ours), which tackles this problem
from another perspective, see Ref. 51). In this approach structure is added to the
set of atoms A allowing the abstraction operator to be applied more selectively.
We will discuss how these two approaches can be reconciled in Section 7.

w Abstraction Using Characteristic Trees
In the previous section we have presented the generic partial deduction

Algorithm 2.9. This algorithm is parametrised by an unfolding rule for the local
control and by an abstraction operator for the control of polyvariance. The
abstraction operator examines a set of atoms and then decides which of the
atoms should be abstracted and which ones should be left unmodified. An
abstraction operator like the msg is just based on the syntactic structure of the
atoms to be specialised. This is generally not such a good idea. Indeed, two
atoms can be unfolded and specialised in a very similar way in the context of
one program P~, while in the context of another program Pz their specialisation
behaviour can be drastically different. The syntactic structure of the two atoms
is of course unaffected by the particular context and an operator like the msg
will perform exactly the same abstraction within P~ and Pz, although vastly
different generalisations might be called for.

A better candidate for an abstraction might be to examine the finite
(possibly incomplete) SLDNF-tree generated for these atoms. These trees cap-
ture (to some depth) how the atoms behave computationally in the context of
the respective programs. They also capture (part of) the specialisation that has
been performed on these atoms. An abstraction operator which takes these trees
into account will notice their similar behaviour in the context of P1 and their
dissimilar behaviour within P2, and can therefore take appropriate actions in the
form of different generalisations. The following example illustrates these points.

Constrained Partial Deduction and the Preservation of Characteristic Trees 293

Example 3.1
Let P be the append program:

(1) append(C], Z, Z),--
(2) append([nlx] , Y, [H I Z]) ' - - - append(X, Y, Z)

Note that we have added clause numbers, which we will henceforth take the
liberty to incorporate into illustrations of SLD-trees, in order to clarify which
clauses have been resolved with. To avoid cluttering the figures we will also
drop the substitutions in such figures.

Let A = {B, C} be a set of atoms, with B = append([a], X, Y) and
C = append(X, [a] , Y). Note that A and B have common instances. Typically
a partial deducer will unfold the two atoms of A in the way depicted in Fig. 1,
returning the finite SLD-trees rB and rc. These two trees, as well as the associated
resultants, have a very different structure. The atom append(Ca], X, Y) has
been fully unfolded and we obtain for resultants(rs) the single fact:

append([a], X, Ca[x]) ,--

while for append(X, [a] , Y) we obtain the following set of clauses resul-
tants(rc):

append([], [a] , [a~)~--
append([H]X], [a] , [H I Z]) , - - - (X , Ca], Z)

So, in this case, it is vital to keep separate specialised versions for B and C and
not abstract them by e.g. their msg.
However, it is very easy to come up with another context in which the difference
between atoms with identical structure to B and C is almost indiscernible. Take
for instance the following program P* in which the predicate compos no longer
appends two lists but finds common elements at common positions:

(1") compos([X] Tx], [X I T~.], [X]) ' - -
(2*) compos(CX[Tx], [Y[Tv], E) *--- compos(Tx, Tr, E)

The associated finite SLD-trees r* and r*, depicted in Fig. 2, are now almost
fully identical. In that case, it is not useful to keep different specialised versions
for B * = compos([a], X, Y)and C* = eompos(X, [a], Y)(which, apart from
the predicate symbol, are identical to B and C respectively) because the follow-

append([a], X, Y)

~ ~,~e(D, x, r ')

[]

~-- append(X, [a], Y)

[] , - - . r , ~ (x ' , [,,], r')

Fig. 1 SLD-trees rs and rc for Example 3.1

294 M. Leuschel and D. De Schreye

+- ~omr~4[~], x , Y) +- ~ o r ~ (X, [g, Y)

u +- ~omr,o4fl,rx, E) [] ,-- ~omro~(rx, fl, E)

I
fall fall

Fig. 2 SLD-trees r* and r~' for Example 3.1

ing single set of specialised clauses could be used for B* and C* without
specialisation loss:

compos([al T~], Eal Tz], [a])

This illustrates that the syntactic structures of B, C and B*, C* alone provide
insufficient information for a satisfactory control of polyvariance and that a
refined abstraction operator should also take the associated SLD(NF)-trees into
consideration.

3 . 1 Characteristic Paths and Trees
As motivated above, a refined abstraction operator should only generalise

two (or more) atoms if their associated finite SLDNF-trees are "similar enough".
A crucial question is of course which part of these SLDNF-trees should be taken
into account to decide upon similarity. If everything is taken into account, i.e.
two atoms are abstracted only if their associated trees are identical, this amounts
to performing no abstraction at all. So an abstraction operator should focus on
the "essential" structure of an SLDNF-tree and for instance disregard the
particular substitutions and goals within the tree. The following two definitions,
adapted from Ref. 17), do just that: they characterise the essential structure of
SLDNF-derivations and trees.

Definition 3.2 (characteristic path)
Let Go be a goal and let P be a normal program whose clauses are numbered.
Let Go Gn be the goals of a finite, possibly incomplete SLDNF-derivat ion
of P U { Go}. The characteristic path of the derivation 8 is the sequence (/0 o
Co &_~ o c~-1>, where li is the position of the selected literal in Gi, and cl is
defined as:

if the selected literal is an atom, then ci is the number of the clause chosen
to resolve with G~.
if the selected literal is -~p([), then ci is the predicate p.

The set containing the characteristic paths of all possible finite SLDNF-
derivations for P U { Go} will be denoted by chpaths(P, Go).

For example, the characteristic path of the derivation associated with the
only branch of the SLD-tree rB in Fig. 1 is <1 o 2, 1 o 1>.

Constrained Partial Deduction and the Preservation of Characteristic Trees 295

Recall that an SLDNF-derivat ion D can be either failed, incomplete,
successful or infinite. As we will see below, characteristic paths will only be used
to characterise finite and non-failed derivations of atomic goals, corresponding
to the atoms to be partially deduced. Still, one might wonder why a characteris-
tic path does not contain information on whether the associated derivation is
successful or incomplete. The following proposition gives an answer to that

question.

Proposition 3.3
Let P be a normal program and let G1, Gz be two goals with the same number
of literals. Let ~t, 82 be two non-failed, finite derivations for P (J {Ga} and P
U { G2} respectively. Also let dL and 82 have the same characteristic path p. Then

(1) 81 is successful iff 82 is and
(2) 81 is incomplete iff az is.

Proof
As 81 and 82 can only be successful or incomplete, points (1) and (2) are
equivalent and it is sufficient to prove point (1). Also, as 81 and 82 have the same
characteristic path they must have the same length (i.e. same number of deriva
tion steps) and we will prove the lemma by induction on the length of 81 and 82.
Induction Hypothesis: Proposition 3.3 holds for derivations ~1, 8~ with length
~ n .

Base Case: 81, ~2 have the length 0.
This means that G1 is the final goal of 31 and G2 the final goal of d2. As G1 and
G2 have the same number of literals it is impossible to have that G1 = [] while
G2:4: [] or G1 :# [] while Gz : a , where [] denotes the empty goal.
Induction Step: 81, c~z have length n + 1.
Let R0 Rn+l be the sequence of goals of 81 (with R0 -- G1) and let Q0 Qn+l
be the sequence of goals of 8z (with Q0 = G2). Let 8~ be the suffix of 81 whose
sequence of goals is RI Rn§ Similarly, let ~ be the suff• of 8z whose
sequence of goals is QI, ..., Qn+a. L e t p = (/o o Co In o c~> be the characteris-
tic path of 81 and 8z. There are two possibilities for/o o co, corresponding to
whether a positive or negative literal has been selected. If a negative literal has
been selected then (for both R0 and Qo) one literal has been removed and R1 and
Q~ have the same number of literals. Similarly if a positive literal has been
selected then trivially R~ and Q1 have the same number of literals (because the
same clause cl in the same program P has been used). In both cases R1 and Q1
have the same number of literals and we can therefore apply the induction
hypothesis on 8~ and 8~ to prove that 8(is successful iff 8~ is. Finally, because
81 (respectively 82) is successful iff c~ (respectively 8~) is, the induction step

holds. []

As a corollary of the above lemma we have that, in the context of finite,
non-failed derivations of atomic goals, the information about whether the

296 M. Leuschel and D. De Schreye

derivation associated with a characteristic path is incomplete or successful is
already implicitly present and no further precision would be gained by adding
it.

Also, once the top-level goal is known, the characteristic path is sufficient
to reconstruct all the intermediate goals as well as the final one.

Now that we have characterised derivations, we can characterise goals by
characterising the derivations of their associated finite SLDNF-trees.

Definition 3.4 (characteristic tree)
Let G be a goal and P a normal program and r be a finite SLDNF-tree for P
U { G }. Then the characteristic tree "~ of r is the set containing the characteristic
paths of the non-failed SLDNF-derivations associated with the branches of r. z:
is called a characteristic tree iff it is the characteristic tree of some finite
SLDNF-tree.

Let U be an unfolding rule such that U(P, G) -- r. Then f is also called
the characteristic tree of G (in P) via U. We introduce the notat ion chtree(G,
P, U) = s We also say that f is a characteristic tree of G (in P) if it is the
characteristic tree of G (in P) via some unfolding rule U.

Although a characteristic tree only contains a collection of characteristic
paths, the actual tree structure can be reconstructed without ambiguity. The
"glue" is provided by the clause numbers inside the characteristic paths (branch-
ing in the tree is indicated by differing clause numbers).

Example 3.5
The characteristic trees of the finite SLD-trees rs and rc in Fig. 1 are { (1 o 2,
1 o 1)} and {<1 o 1>, <1 o 2>} respectively. The characteristic trees of the
finite SLD-trees r* and re* in Fig. 2 are both {<1 o 1">}.

The following observation underlines the interest of characteristic trees in
the context of partial deduction. Indeed, the characteristic tree of an atom A
explicitly or implicitly captures the following important aspects of specialisa-
tion:

the branches pruned through the unfolding process (namely those that are
absent from the characteristic tree). For instance by looking at the
characteristic trees, of rB, rc of Examples 3. I and 3.5, we can see that two
branches have been pruned for the atom B (thereby removing recursion)
whereas no pruning could be performed for C.
how deep ~--A has been unfolded and which literals and clauses have
been resolved with each other in that process. This captures the computa-
tion steps that have already been performed at partial deduction time.
the number of clauses in the resultants of A (namely one per characteristic
path) and also (implicitly) which predicates are called in the bodies of
the resultants. As we will see later, this means that a single predicate

Constrained Partial Deduction and the Preservation of Characteristic Trees 297

definition can (in principle) be used for two atoms which have the same
characteristic tree.

In other words, the characteristic tree ra captures all the relevant local
specialisation aspects of A. An aspect that is not explicitly captured by the
characteristic tree ra is how the atoms in the leaves of the associated SLDNF-
tree are further specialised. These call patterns influence the set of atoms to be
partially deduced, i.e. they influence the global control and precision.

Finally, note that characteristic trees only contains paths for the non-
failed branches and therefore do not capture how exactly some branches were
pruned. However, this is of no relevance, because the failing branches do not
materialise within the resultants (i.e. the specialised code generated for the
atoms).

In summary, characteristic trees seem to be an almost ideal vehicle for a
refined control of polyvariance, z~ a fact we will try to exploit in the following
section.

3 . 2 An Abstraction Operator Using Characteristic Trees
The following definition captures a first attempt at using characteristic

trees for the control of polyvariance.

Definition 3.6 (chabsl,,U)
Let P be a normal program, U an unfolding rule and A a set of atoms. For every
characteristic tree r, let A~ be defined as A~ = { A I A ~ S A chtree(,---A, P,
U) = r}. The abstraction operator chabs~,u is then defined as: chabse,u(A) =
(msg(A~)[r is a characteristic tree}.

The following example illustrates the above definition.

Example 3.7
Let P be the program reversing a list using an accumulating parameter:

(1) rev([], Ace, Ace)
(2) rev([HI T3, Ace, Res) ~rev(T , EH[Acc], Res)

We will use chabse,u with a purely determinate unfolding rule U (allow-
ing non-determinate steps only in the root) inside the generic Algorithm 2.9.
When starting out with the set A0 = {rev([al B], [3, R)} the following steps are
performed by Algorithm 2.9:

unfold the atom in A0 (see Fig. 3) and add the atoms in the leaves
yielding A~ = {rev([alB], [], R), rev(B, [a] , R)}.
apply the abstraction operator: A1 = chabse,v(A'o) = {rev([alB], [], R),
rev(B, [a] , R)} because the atoms in A6 have different characteristic
trees.
unfold the atoms in A1 (see Fig. 3) and add the atoms in the leaves

298 M. Leuscbel and D. De Schreye

,-- rev([alB], I], R)
~ (2)

,',,,(B, [,,], R)

[] ,-- rev(T, [H, a], R)

,- .~.(T, [H, ,,], R)

[] ,-- .~(T', [H', H,.], R)

Fig. 3 SLD-trees for Example 3.7

yielding A~ = {rev([alB], [], R), rev(B, [a], R), rev(T, [H, a], R)}.
apply the abstraction operator: A2 = chabse,u(A~) = {rev([a[B], [], R),
rev(T, [A IB], R)}, because rev(B, [a], R) and rev(T, [H, a], R) have
the same characteristic tree (see Fig. 3).
unfold the atoms in A2 and add the atoms in the leaves yielding: A~ =
{rev([alB], [], R), rev(T, [AIB], R), rev(T', [H', AIB], R)}.
apply the abstraction operator: Aa = chabse,v(A~) = A2 and we have
reached a fix-point and thus obtain the following partial deduction
satisfying the coveredness condition (and which is also independent
without renaming):

rev([alB], [], R) ~-- rev(B, [a], R)
rev([], [AIB], [AIB]) ' - -
rev([HI T], [AIB], Res),---rev(T, [H, AIB], Res)

Because of the selective application of the msg, no loss of precision has been
incurred by chabsp,v, i.e. the pruning and pre-computation for e.g. the atom
rev([aIB], [], R) has been preserved. An abstraction operator allowing just
one version per predicate would have lost this local specialisation, while a
method with unlimited polyvariance (also called dynamic renaming, in e.g. Ref.
2)) does not terminate.

For this example, ehabsp, v provides a terminating and fine grained
control of polyvariance, conferring just as many versions as necessary. The
abstraction operator chabsp,v is thus much more flexible than e.g. the static
pre-processing renaming of Refs. 3) and 50)).

The above example is thus very encouraging, and one might hope that
ehabs~,,v always preserves the characteristic trees upon generalisation and that it
might already provide a refined solution to the control of polyvariance problem.
Unfortunately, although for a lot of practical cases ehabse,v performs quite well,
it does not always preserve the characteristic trees, entailing a sometimes quite
severe loss of precision and specialisation. Let us examine an example:

Example 3.8
Let P be the program:

Constrained Partial Deduction and the Preservation of Characteristic Trees 299

(1) p (X) , -
(2) p(c) ,--

Take A = {p(a), p(b)}. Using any non-trivial unfolding, the goals *---p(a) and
~--p(b) have the same characteristic tree r = {<1 o 1>}. Thus chabse,v(S) :
{p(X)} and unfortunately ~--p(X) has the characteristic tree r ' : {<1 o 1>, <1
o 2> } and the pruning that was possible for the atoms p(a) and p(b) has been

lost. More importantly there exists no atom, more general than p(a) and p(b),
which has r as its characteristic tree.

The problem in the above example is that, through generalisation, a new
non-failed derivation has been added (thereby modifying the characteristic tree).
Starting in the next section we will present a solution to this problem by adding
constraints to the generalisation in order to ensure that such new non-failed
derivations cannot arise. For this example, we migth produce as generalisation
the atom p(X) with the added constraint that X is different from c.

Another problem occurs when negative literals are selected by the unfold-
ing rule.

Example 3.9
Let us examine the following program P:

(1) p(X) *-- ~q(X)
(2) q (f (X)) ,--

For this program the goals ~--p(a) and ~ p(b) have the same characteristic tree
{<1 o 1, 1 o q>}. The abstraction operator chabse.v will therefore produce
{p(X)} as a generalisation of {p(a), p(b)}. Again however, ~---p(X) has the
different characteristic tree {<1 o 1>}, because the non-ground literal ~q(X)
cannot be selected in the resolvent of ~---p(X). The problem is that, by gener-
alisation, a previously selectable ground negative literal in a resolvent can
become non-ground and thus no longer selectable by SLDNF.

These losses of precision can have some regrettable consequences in
practice:

important opportunities for specialisation can be lost and
termination of Algorithm 2.9 can be undermined.

Let us illustrate the possible precision losses through two simple, but
more realistic examples.

Example 3.10
Let P be the following program, checking two lists for equality.

(1) eqlist([], 1-])~--
(2) eqlist([H[X], [H I Y]) ~-eqlis t(X, Y)

300 M. Leuschel and D. De Schreye

Given a purely determinate unfolding rule, the atoms A = eqlist([1, 2], L), B =
eqlist(L, [3, 4]) have the same characteristic tree r -- {(1 o 2, 1 o 2, 1 o 1)}.
Unfortunately the abstraction operator chabs~,,u is unable to preserve r. Indeed,
chabs~,.u({A, B)) -- leqlist(X, Y)} whose characteristic tree is {(1 o 1), (1 o
2) } and the precomputat ion and pruning performed on A and B has been lost.

The previous example is taken from Ref. 17), whose abstraction mecha-
nism can solve the example. The fol lowing example can, however, not be solved
by Ref. 17).

Example 3.11
Let P be the well known member program, already encountered in Example 2.6.

(1) member(X, [X] T])
(2) member(X, [Y I T]) ~ member(X, T)

Then both A -- member(a, [b, cl T]) and B -- member(a, [c, d l T]) have the
same characteristic tree r = ((1 o 2, 1 o 2, 1 o 1), (1 o 2, 1 o 2, 1 o 2),

using a purely determinate unfolding rule. However, chabse,v((A, B }) =
{member(a, IX, Y] T])} whose characteristic tree is unfortunately {(1 o I, 1
o 2)}. The precomputat ion and pruning that was possible for A and B has

again not been preserved by chabs~,,u. Applying e.g. Algori thm 2.9, we obtain at
the next iteration the set chabs~,,u({member(a, IX, Y I T]), member(a, [YI
T])}) -- (member(a, [Y I T])} and then the final set chabse,u({ member(a, [Y I
T]) , member(a, T) }) - - { m e m b e r (a , T)}. We thus obtain the following
suboptimal, unpruned program P ' , performing redundant computat ions for
both A and B:

(1') member(a, [a] Z])

(2') member(a, [YI T]),--member(a, T)

Let us discuss the termination aspects next. One might hope that chabs~,,u
ensures termination of partial deduction Algor i thm 2.9 if the number of charac-
teristic trees is finite (which can be ensured by using a depth-bound for charac-
teristic trees* or by the more sophisticated technique of Ref. 40) - - we will
return to this issue in Section 7).

Actually if the characteristic trees are preserved, then the abstraction
operator chabs~,,v does ensure termination of Algori thm 2.9. To prove this we
have to show that when we add a set o f atoms L to Ai, then either chabsp,u(Ai
U L) = A~ (i.e. we have reached a fixpoint in our algorithm) or II chabse,u(A~ U
z)ll < II Ai II for some well-founded measure function II.ll- Such a measure func-
tion is established in Appendix B and the above property is proven.

So, if characteristic trees are preserved by the abstraction operator, then
termination of partial deduction is guaranteed. However, if characteristic trees

* The unfolding rule can still unfold as deep as it wants to! See the discussion in Section 7.

Constrained Partial Deduction and the Preservation of Characteristic Trees 301

are not preserved by the abstraction operator, then the proof of Appendix B no
longer holds and indeed termination is no longer guaranteed (even assuming a
finite number of characteristic trees)! An example illustrating this, can be found
in Ref. 37). The example exploits the non-monotonic nature of Algorithm 2.9.
Indeed, termination of partial deduction based on chabs~,.v and given a finite
number of characteristic trees can also be ensured by making Algorithm 2.9
monotonic, i.e. instead of executing Ai+l := abstract(A;.) we would perform
Ai+1 : : A~ U abstract(At). From a practical point of view, this solution is,
however, not very satisfactory as it might unnecessarily increase the polyvari-
ance, possibly leading to a code explosion of the specialised program as well as
an increase in the transformation complexity. The former can be solved by a
post-processing phase removing unnecessary polyvariance. However, by using an
altogether more precise abstraction operator, preserving characteristic trees,
these two problems will disappear automatically. We will then obtain an
abstraction operator for partial deduction with optimal local precision (in the
sense that all the local specialisation achieved by the unfolding rule is preserved
by the abstraction) and which guarantees termination. This quest is pursued in
the remainder of this paper.

3 . 3 Characteristic Trees in the Literature
Characteristic trees have been introduced in the context of definite pro-

grams and determinate unfolding rules by Gallagher and Bruynooghe in Ref. 20)
and were later refined by Gallagher in Ref. 17) leading to the definitions that we
have presented in this paper. Both Refs. 20) and 17) use a refined version of the
abstraction operator chabse,v and Ref. 17) uses a partial deduction algorithm
very similar to Algorithm 2.9. In both Refs. 20) and 17) termination properties
are claimed. No claim as to the preservation of characteristic trees is made in
Ref. 17). However, the authors of Ref. 20) actually claim in Lemma 4.11 to have
found an operator (namely chcall) which, in the case of definite programs and
purely determinate unfolding rules without lookahead (cf. Definition 2.7),
preserves a structure quite similar to characteristic trees as of Definition 3.4.

Unfortunately this Lemma 4.11 is false and cannot be easily rectified. In
Appendix A we provide a detailed description of a counterexample to this
Lemma 4.11. Furthermore, in a lot of cases, the abstraction operators of Refs. 20)
and 17) behave exactly like chabse,u, and the examples in this paper and in Ref.
37) actually provide counterexamples not only for the precision claim of Ref. 20)
but also for the termination claims of both Refs. 20) and 17). There are in fact
some further problems with the abstraction operator of Ref. 17). For instance the
Example 3.9 with negation poses problems to Ref. 17) (Ref. 20) is restricted to
definite programs, so the problem does not appear there) and unfolding rules
which are not purely determinate can also cause problems. More detailed
descriptions can be found in Ref. 37) as well as in Ref. 36), where the counterex-
ample to Lemma 4.11 of Ref. 20) was first presented. The problems of negative

302 M. Leuschel and D. De Schreye

literals and non-purely determinate unfolding rules will be touched again later
in this paper.

w Constrained Partial Deduction
In the previous chapter we have dwelled upon the appeal of

characteristic trees for controlling polyvariance, but we have also highlighted
the difficulty of preserving characteristic trees in the abstraction process as well
as the ensuing problems concerning termination and precision. We have hinted
briefly at the possibility of using constraints to solve this entanglement. In this
section we present the framework of constrained partial deduction, which will
allow us to incorporate constraints inside partial deduction. In Subsection 4.1
we first present some background on constraint logic programming. In Subsec-
tion 4.2 we present the framework of constrained partial deduction, whose
correctness we then prove in Subsection 4.3.

Also, from now on we will restrict ourselves to definite programs and
goals. We will return to the problem of negative literals in Section 7.

4.1 Constraint Logic Programming
To formalise constraints and their effect, we need some basic terminology

from constraint logic programming (CLP)7 4)
First, the predicate symbols are parti t ioned into two disjoint sets IIc (the

predicate symbols to be used for constraints, notably including " = ") and lib
(the predicate symbols for user-defined predicates). The signature X contains all
predicate and function symbols with their associated arity. A constraint is a
first-order formula whose predicate symbols are all contained in lic. A con-
straint is called primitive iff it contains no connectives or quantifiers (i.e. it is of
the form p (t) where p ~ IIc). A formula, atom or literal whose predicate
symbols are all contained in lib will be called ordinary. We will often use the
connective "[] " (and as usual in standard logic programming ",") in the place
of "A ". A CLP-goal is denoted by ~ c [] B1 Bn, where c is a constraint and
B1 Bn are ordinary atoms. A CLP-clause is denoted by H ~ c [] Bx B~,
where c is a constraint and H, BI Bn are ordinary atoms. Note that, although
we do not allow negation within H , B~ B~, negation can still be used within
the constraint c. A CLP-program is a set of CLP-clause. Note that CLP-
programs will only be required as an intermediary step, the initial and the final
specialised programs will be ordinary programs.

The semantics of constraints is given by a X-structure •, consisting of a
domain D and an assignment of functions and relations on D to function
symbols in X and to predicate symbols in IIc. Given a constraint c, we will
denote by ~ ~ c the fact that c is true under the interpretation provided by 7~.
Also, c will be called D-satisfiable iff z~ ~ ~ (c), where ~ (F) denotes the
existential closure of a formula F. We will also use the standard notation V (F)
for the universal closure of a first-order formula F and ~v(F) (respectively

Constrained Partial Deduction and the Preservation of Characteristic Trees 303

Vv(F)) for the existential (respectively universal) closure of F except for the

variables in the set 1).
Applying a substitution on a constraint is defined inductively as follows:

p(f)O = p(t-0) for p E lie
(F o G) O = F O o GOfor o E { A , V, ~--,---+, ~--~}.

(-~ F)O = --a(FO)
(IiX.F)O = IIX'.(Ftg") where X ' is a new fresh variable not occurring in

F and ~9, and where 8' = { X / X ' } U { x / t [x / t ~ 0 A x :# X} for 1I

~{V, 3}.

Applying a substitution on a constraint is used to make explicit the fact that

certain variables are determined. For example, (V X . - 7 (Y = f (X))) { Y /
g(X)} = VZ. -~ (g (X) = f (Z)) . The following notations for constraints and

CLP-goals will also prove useful:

holds~(c) =D~r V ~ 9(c),
O satv c =per holds~(c~).

vars(c) =per the free variables in e.
mrs(*-c [] Q) =oe, vats(c) U vats(Q).

Note that for CLP-goals ~ c [] Q we will in fact require that vars(c)c
vars(Q)* (meaning that actually vars(~---c [] Q) = vars(Q)). This will be

ensured by applying the existential closure ~varsto)(.) during derivation steps

below (this existential closure makes no difference wrt 19-satisfiability, but it

makes a difference wrt holds~).
We will now define a counterpart to SLD-derivations for CLP-goals. In

our context of partial deduction, the initial and final programs are just ordinary

logic programs (i.e. they can be seen as CLP-programs using just equality
constraints over the structure of feature terms ~'7", see Ref. 44)). In order for our

constraint manipulations to be correct wrt the initial ordinary logic program, we
have to ensure that equality is not handled in an unsound manner in the

intermediate CLP-program. For instance, something like a - - b should not
succeed in the CLP-program. In other words, if there is no SLD-refutation for

P U {*---Q} then there should be no CLP-refutation for any P U {*--c [] Q}
either. To ensure this property we use the following definition of a derivation,
adapted from Ref. 16), in which substitutions are made explicit. This will also

enable us to construct resultants in a straightforward manner.

Definition 4.1
Let CG = ~ c [] L1 Lk a CLP-goal and C = A ~--B~ Bn a program
clause such that k > 1 and n > 0. Then CG' is derived from CG and C in 19

using ~ iff the following conditions hold:

* As the conjunction Q contains no quantifiers, vats(Q) are the free variables of Q.

304 M, Leuschel and D. De Schreye

Lm is an atom, called the selected atom (at position m), in CG.
8 is a relevant and idempotent mgu of Lm and A.
CG' is the goal ~ c' [] Q, where Q = (L1 Lm-1, B1 B~, Lm+l
Lk)8 and c ' = ~rs~o)(cS).
c' is /)-satisfiable.

CG" is called a resolvent of CG and C in /).

Definition 4.2 (complete CLP=(/))-derivation)
Let P be a definite program and CGo a CLP-goal. A complete CLP=(/))-
derivation o f P U {CG0} is a tuple (~ , C, S) consisting of a (finite or infinite)
sequence of CLP-goals ~ -- (CGo, CG~), a sequence C = (C1, Cz > of
variants of program clauses of P and a sequence S -- (81, 02 > of mgu's such
that:

for i > 0, vars(Ci) A vars(CGo) = 0;
for i > j , vats(CO A vars(Cj) = 0;
for i ~ O, CG~+I is derived from CGI and Ci+l in Z~ using 8i+1 and
the sequences # , C, S are maximal (given the choice of the selected
atoms).

A CLP=(/))-refutation is just a complete CLP=(/))-derivation whose last
goal contains no atoms, i.e. it can be written as , - - c m e where e denotes the
empty sequence of atoms. A finitely failed CLP=(/))-derivation is a finite,
complete CLP=(/))-derivation whose last goal is not of the f o r m , - - c [] e.
There are thus 3 forms of complete CLP=(/))-derivations: refutations, finitely
failed ones and infinite derivations.

In the context o f partial deduction we also allow incomplete derivations.
A CLP=(/))-derivation is defined like a complete CLP=(2))-derivation but may,
in addition to leading to success or failure, also lead to a last goal where no
atom has been selected for a further derivation step. Derivations of the latter
kind will be called incomplete.

We can also extend the notion of characteristic paths of SLD-derivations
for ordinary goals to /)-characteristic paths of CLP=(/)) -der ivat ions for
CLP-goals, s imply by replacing in Definition 3.2 the SLDNF-der iva t ion 8 by a
CLP=(/))-derivation. We will denote by ehpathsv(P, CG) the /)-characteristic
paths of all CLP=(/)) -der ivat ions for P U { CG}.

In order to construct resultants we also need the following, where 8Iv
denotes the restriction of the substitution 0 to the set of variables V:

Definition 4.3
The computed answer of a finite, non-failed CLP=(/))-derivation 8 for P U { ~-
c [] G} with the sequence 01 On of mgu's, is the substitution cas(8) = (81 ...
8n)lvarsr Also, the last goal of 8 will be called the resolvent of 8.

The following lemma will prove useful later on.

Constrained Partial Deduction and the Preservation of Characteristic Trees 305

Lemma 4.4
Let P be a definite program and , - - c [] Q be a CLP-goal. If there exists a
CLP=(9)-der iva t ion for P U {~---c [] Q} with computed answer 0 and /~-
characteristic path p then there exists an SLD-derivation for P U {~--- Q} with
the same computed answer and characteristic path.

Proof
Straightforward, by definition of a CLP=(29)-derivation. []

The concept of CLP=(29)-trees can be defined just like the concept of
SLD-trees: its branches are just CLP=(29)-derivations instead of SLD-
derivations. An unfoloding rule is now one which, given a definite program P
and a CLP-goal CG returns a finite CLP=(29)-tree for P U { CG}. Finally, the
29 -characteristic tree of a finite CLP=(29)-tree T is simply obtained by taking
the union of the 29-characteristic paths of the non-failed CLP=(29)-derivations
in T. We will use the notation chtreev(CG, P, U) to refer to the 29-
characteristic tree obtained for the CLP-goal CG via U in P.

4 . 2 A Framework for Constrained Partial Deduction
We will now present a generic partial deduction scheme which, instead of

working on sets of ordinary atoms, will work on sets of constrained atoms. The
richer possibilities conferred by the use of the constraints will notably allows us
to present an abstraction operator which preserves characteristic trees in Section
5. However, the generic framework is not restricted to this particular application
nor the corresponding constraint structure. Amongst others, it can also be used
to "drive negative information" (using the terminology of supercompila-
tion67'68)), handle built-ins (like < / 2 , \ = = / 2) much more precisely and even
make use of type information or argument size relations. We will briefly return
to this issue in Section 7.

Definition 4.5
A constrained atom is formula of the form c [] A where c is a constraint and
A an ordinary atom such that the free variables of c are contained in the
variables of A.

Definition 4.6 (valid~)
Let c [] A be a constrained atom. The set of valid 29-instances of c [] A is
defined as: valid~(c [] A) = {AOI 0 sat~ c}.

By definition of sate, the set of valid 9-instances is downwards-closed (or
closed under substitution, i.e. if A ~ valid9(c [] A) then so is any instance of
A). The constraint within a constrained atom thus specifies a property that holds
for all valid instances, which in our case correspond to the possible runtime

instances.
We also need an instance notion on constrained atoms.

306 M. Leuschel and D. De Schreye

Definition 4.7 (9-instance)
Let c [] A, c ' [] A ' be cons t ra ined atoms. Then c ' [] A ' is a 9 - i n s t a n c e o f c []

A, deno ted by c" [] A ' ~ g c [] A, iff A" ---- A 7 and valid~(c" [] A ') C validv(c

[] A).

F o r example , i n d e p e n d e n t l y o f 9 , -~ (X = c) [] p (X) is a 9 - i n s t a n c e o f

true [] p (X) because every subs t i tu t ion satisfies true. In turn, i f 9 con ta ins e.g.

C la rk ' s equa l i t y t heo ry (CET, see e.g. Refs. 9) and 42)) then true [] p (b) is a

9 - i n s t a n c e o f - ~ (X = c) [] p (X) because { X / b } sat~ - n (X = c) given C E T

(i.e. C E T ~ V (~ (b = c))).

Definition 4.8 (partial deduction of c [] A)
Let P be a p r o g r a m and c [] A a cons t r a ined atom. Let r be a f inite, non- t r iv ia l

and poss ib ly i n c o m p l e t e C L P = (9) - t r e e for P U {~---c [] A} genera ted via the

un fo ld ing rule U and let ,---cl [] Gx ~ cn [] Gn be the C L P - g o a l s in the

leaves o f this tree. Let 01 0n be the c o m p u t e d answers o f the C L P = (9) -

de r iva t ions f rom ~--c [] A to ~--cl [] G1 ~ cn [] Gn respect ively . Then the

set o f CLP- re su l t an t s {AOI ~--ct [] Gt AOn ~--cn [] Gn} is ca l l ed t hepar t ia l

deduction o f c [] A in P (using 9 via U).

Example 4.9
Let us re turn to the p rog ram P f rom E x a m p l e 3.8:

(1) p (X) ~--

(2) p(c) ,--

W h e n using a cons t r a in t s t ructure 9 c o n t a i n i n g C E T (or any o the r s t ructure in

which --1 (c = c) is unsat isf iable) , a pa r t i a l d e d u c t i o n o f ~ (X = c) [] p (X) in

P (using 9 ") is:

(1') p (X) ~-- - ~ (X = c) []

W e n o w genera te pa r t i a l deduc t i ons no t for sets o f a toms, bu t for sets o f

constrained atoms. A s such, the same a t o m A might occur in several cons t r a ined

a toms but wi th different associa ted cons t ra in ts . This means tha t r e n a m i n g as a

way to ensure i n d e p e n d e n c e imposes i t se l f even more than in the s t andard

par t i a l d e d u c t i o n sett ing. In a d d i t i o n to renaming , we wil l also a l l o w a rgument

fil tering, l e ad ing to the fo l lowing def in i t ion .**

Firs t , given a CLP-c lause C = H ~--c [] BI Bn , each cons t ra ined

a tom o f the form ~vars~8,~(c) [] B~ wil l be ca l l ed a constrained body atom o f

C. This n o t i o n extends to C L P - p r o g r a m s by t a k i n g the u n i o n o f the cons t r a ined

b o d y a toms o f the clauses.

* We will often take the liberty to not always explicitly mention the constraint domain /~ which
was used to construct partial deductions and assume that D is fixed and known.

** The more powerful optimisations in Ref. 41), which remove redundant arguments, are not
incorporated in this paper. They can easily be added as a post-processing phase.

Constrained Partial Deduction and the Preservation of Characteristic Trees 307

Definition
An atomic
atom in at

4.10 (atomic renaming, renaming function)
renaming a for a set A of constrained atoms maps each constrained

to an atom such that

for each e [] A ~ A: vars(a(c [] A)) = vars(A)

for CA, CA" ~ A such that CA 4: CA': the predicate symbols of a(CA)
and a(CA') are distinct (but may occur in A).

Let P be a program. A renaming function p~ for A based on a is a mapping
from constrained atoms to atoms such that:

p~(c [] A) = a(c" [] A')O for some e' [] A' ~ A with A = A'O A

c • A < v e ' • A'.

We leave p~(A) undefined if c [] A is not a g-instance of an element in at.

A renaming function p~ can also be applied to constrained goals r [] B1 B,,
by applying it individually to each constrained body atom e; [] Bi. Finally, we

can apply a renaming function also to ordinary goals by defining p~(G) =

p~(true [] G).

Note that if the set of O-instances of two or more elements in A overlap
then p~ must make a choice for the atoms in the intersection of the concretisa-

tions and several renaming functions based on the same a exist.

Definition 4.11 (partial deduction wrt A)
Let P be a program, A = {cl [] A1 Cn [] An} be a finite set of constrained
atoms and let p~ be a renaming for ,4 based on the atomic renaming a. For each

i ~ { 1 n}, let Ri be the partial deduction of c~ [] Ag in P and let/~ : {R,I
i ~ {1 n}}. Then the program {a(cl [] A i) O ~ - p a (c [] Bdy)[AiO ~ - c []
Bdy E R~ A 1 < i < n A p~(e [] Bdy) is defined) is called the partial deduc-

tion o f P wrt at, ~ and p~.

We showed in Example 3.8 that without constraints it is in general
impossible to abstract atoms while still preserving their characteristic trees. Let

us revisit Example 3.8 and see how we can achieve preservation of characteristic

trees using partial dedution of constrained atoms.

Example 4.12
Let P be the program of Examples 3.8 and 4.9. Also let us use the same

constraint structure ~ as in Example 4.9, containing Clark's equality theory. In
the context of P, we can abstract the constrained atoms true [] p(a) and true []

p(b) of Example 3.8 by the more general constrained atom ~ (X : c) [] p (X) ,
having the same g-characteristic tree z- = {<1 [] 1>}. As illustrated in Example
4.9, the additional match with clause (2) is pruned for --I(X = c) [] p(X),
because -~(X = c) { X / c } is unsatisfiable in 79. The partial deduction of
-7(X : e) [] p (X) based on a (- 7 (X = e) [] p (X)) = p ' (X) is thus

308 M. Leuschel and D. De Schreye

(l) p ' (X)* - -

Note that p~(~-- ~ (X : c) D e) : e, i.e. the empty goal. The renaming of the
run-time goal * - p (a) , p(b) is * - p ' (a) , p'(b).

Note that in Definition 4.11 the original program P is completely
"thrown away". This is a actually what a lot of practical partial evaluators for
functional or logic programming languages do, but is unlike e.g. the definitions
in Ref. 43) (cf. Definiton 2.3). However, there is no fundamental difference
between these two approaches: keeping part of the original program can always
be "simulated" very easily in our approach by using (un)constrained atoms of
the form true [] A combined with an atomic renaming a such that a(true []

A) = A .

Also, note that the partial deduction wrt A is an ordinary logic program
without constraints. The coveredness criterion presented in the next subsection,
will ensure that the constraint manipulations have already been incorporated
(by pruning certain resultants) and no additional constraint processing at
run-time is needed.

4 . 3 Correctness of Constrained Partial Deduction
Let us first rephrase the converedness condition of standard partial

deduction in the context of constrained atoms. This definition will also ensure
that the renamings, applied for instance in Definition 4.1 l, are always defined.

Definition 4.13
Let /3 be a CLP-program and ,4 a set of constrained atoms. Then /3 is called ,4,
:D-covered iff each of its constrained body atoms is a /)-instance of a con-
strained atom in .4.

We can extend the above notion also to ordinary programs and goals by
inserting the constraint true (e.g. H *- Bdy is .4, ~-covered iff H ~- true []

Bay is).
The main correctness result for constrained partial deduction is as fol-

lows.

Theorem 4.14
Let P be a definite program, G a definite goal, at a finite set of constrained
atoms, p~ a renaming function for .4 based on a and P ' the partial deduction
of P wrt at, /3 and p~. I f /3 U {G} is ,4, /9-covered then the following hold:

1. P ' U {p~(G)} has an SLD-refutation with computed answer 0 i f f P U { G}
does.

2. P ' U {p~(G)} has a finitely failed SLD-tree iff P U {G} does.

In the remainder of Subsection 4.3 we will prove this theorem in two
successive stages.

Constrained Partial Deduction and the Preservation of Characteristic Trees 309

1. First we will restrict ourselves to unconstrained atoms, i.e. constrained
atoms of the form true [] A. This will allow us to reuse the correctness
results for standard partial deduction with renaming in a rather straight-
forward manner.

2. We will then move on to general constrained atoms. Partial deductions of
such constrained atoms can basically be obtained from partial deductions
of unconstrained atoms by removing certain clauses (this a direct corollary
of Lemma 4.4). We will show that these clauses can be safely removed
without affecting the computed answers nor the finite failure.

The reader not interested in the details of the proof can immediately jump to
Section 5.

{1) Correctness for unconstrained atoms
Note that if .4 is a set of unconstrained atoms we simply have a standard

partial deduction with renaming. We will use this observation as a starting point
for proving correctness of partial deduction for constrained atoms.

The following is an adaption of the correctness of standard partial
deduction with renaming and filtering:

Theorem 4.15
Let P be a definite program, G a definite goal, A a finite set of unconstrained
atoms, p~ a renaming function for .4 based on a and P ' the partial deduction
of P wrt .A~ /3 and pa. I f /3 U { G} is ~ , /)-covered then the following hold:

1. P" 13 {p~(G)} has an SLD-refutation with computed answer 0 i f fP U {G}
does.

2. P ' U {o~(G)} has a finitely failed SLD-tree iff P U {G} does.

Proof
First note that the A, /9-coveredness condition ensures that the renamings
performed to obtain P ' (according to Definition 4.11), as well as the renaming
p , (G) , are defined. The result then follows in a rather straightforward manner
from the Theorems 3.5 and 4.11 in Ref. 2). In Ref. 2) the filtering has been split
into 2 phases: one which does just the renaming to ensure independence (called
partial deduction with dynamic renaming; correctness of this phase is proven in
Theorem 3.5 of Ref. 2)) and one which does the filtering (called post-processing
renaming; the correctness of this phase is proven in Theorem 4.11 of Ref. 2)).
To apply these results we simply have to notice that:

P ' corresponds to partial deduction with dynamic renaming and post-
processing renaming for the set of atoms A --- {A I true [] A E A }.
P ' U {p , (G)} is A-covered because /3 U {G} is A, :D-covered (and
because the original program P is unreachable in the predicate depen-
dency graph from within P" or within p~(G)).

310 M. Leuschel and D. De Schreye

Three minor technical issues have to be addressed in order to reuse the theorems
from Ref. 2):

Theorem 3.5 of Ref. 2) requires that no renaming be performed on G, i.e.
p~(G) must be equal to G. However, without loss of generality, we can
assume that the top-level query is the unrenamed atom new(Xa Xk),

where new is a fresh predicate symbol and vars(G) = {)(1 Xk}. We
just have to add the clause new(X1 Xk) ~ Q, where G - - ~ Q, to the
initial program. Trivially the query ~ new(Xt Xk) and G are equiva-
lent wrt c.a.s, and finite failure (see also Lemma 2.2 in Ref. 19)).
Theorem 4.11 of Ref. 2) requires that G contains no variables or predi-
cates in A. The requirement about the variables is not necessary in our
case because we do not base our renaming on the mgu. The requirement
about the predicates is another way of ensuring that p~(G) must be equal
to G, which can be circumvented in a similar way as for the first point

above.
Theorems 3.5 and 4.11 of Ref. 2) require that the predicates of the
renaming do not occur in the original P. Our Definition 4.10 does not
require this. This is of no importance as the original program is always
"completely thrown away" in our approach. We can still apply these
theorems by using an intermediate renaming p" which satisfies the
requirements o f Theorems 3.5 and 4.I 1 of Ref. 2) and then applying an
addit ional one step post-processing renaming p", with p~ = p'p", along
with an extra application of Theorem 4.11 of Ref. 2). []

~2] Correctness for constrained atoms

Lemma 4.16
Let c [] A be a constrained atom. Let 0 satv c and let ca be unsatisfiable. Then
AO and A a have no common instance.

Proof
Suppose that AO and Aa have a common instance A07 = Aap. But this means
that 07 satv c, i.e. holdsv(c07) while cap is unsatisfiable. Hence we have a
contradiction because cap is identical (up to renaming of the variables used for
the quantifiers) to c07 (because vars(c) c_ vars(A), i.e. 07[~om(c) = gO [aom(c~).

[]

Lemma 4.17
Let P be a definite program and c [] A and true [] A be constrained atoms and
let A ' ~ validv(c [] A) be an ordinary atom. Also let c~ be a CLP=(Z~)-
derivation of P U { ~ true [] A } with characteristic path p q~ chpaths~(P, c []

A) and whose computed answer is 0 (and whose CLP-resultant is AO ~ true o

Bdy). Then A' and A 0 have no common instance.

Constrained Partial Deduction and the Preservation of Characteristic Trees 311

Proof
First, A" ~ validv(c [] A) is by definition equivalent to A" = A T and T sat9 c,

i.e. holdsg(cT). Because p q~ chpathsv(P, c [] A) we know that cO is not
:D-satisfiable. By Lemma 4.16, this means that AO and A T have no common
instance. []

The above shows that it is correct, for valid instances, to remove the
resultants pruned by the constraints. Now, we just need to establish that every
selected literal in the partial deduction is a valid instance of an element in .4.

For this we first need the following lemma.

Lemma 4.18
Let c o A be a constrained atom. Then true [] A < v c [] A iff A ~ valid9(c []

A).

Proof
As anything satisfies true we have that validv(true o A) consists of all instances
of A, and notably A ~ validv(true [] A) . Therefore if true [] A is an instance of
c [] A we have, by Definition 4.7, that A ~ valid9(c [] A). In the other direc-
tion, if A ~ validv(c [] A) we have, by downwards-closedness, that all instances
of A are also in valid9(c [] A), and therefore Definition 4.7 is satisfied because
valid~(true [] A) c_ valid~(c [] A). []

The main correctness result for partial deduction with constrained atoms
can now be proven as follows:

Proof of Theorem 4.14

1. In a first part of the proof we will reuse Theorem 4.15. To that end we have
to relate P ' to a covered partial deduction of unconstrained atoms.
First, as a direct corollary of Lemma 4.4 we know that P ' is a subset of a
partial deduction wrt unconstrained atoms, namely wrt the multiset* .4 ' =
{true [] Ale [] A ~ .a}, and using an atomic renaming a ' such that
a'(true [] A) = a(c [] A) and a renaming function P~" such that pa,(G) ~-

pa(G) for any ordinary or CLP-goal G for which p~(G) is defined. (As ,4'
contains more general constrained atoms than .4, whenever pa is defined
p, , can also be defined.)
Let PrCl denote the clauses pruned by the constraints, i.e. P ' U PrCl is the
above mentioned partial deduction wrt .4' . Unfortunately, although G
remains .4 ' , g-covered (as .4 ' contains more general constrained atoms
than ,4), P is not necessarily ,4', /~-covered. The reason is that new
uncovered body atoms can arise inside PrCl. Let U be these uncovered

Indeed, the same atom could in principle occur in several constrained atoms. This is not a
problem, however, as the results in Ref. 2) carry over to multisets of atoms. Alternatively one
could add an extra unused argument to P', p~(G) and .4 ' and then place different variables in
that new position to transform the multiset -4' into an ordinary set.

312 M. Leuschel and D, De Schreye

atoms. To arrive at a covered partial deduction we simply have to add, for
every predicate symbol p of arity n occurring in U, the unconstrained atom
true [] p(X1 Xn) to A' , where X~ Xn are distinct variables. This will
give us the new set A" ~ .4'. We will unfold the new unconstrained atoms
true [] p(X~ X~) once (and keep the same unfolding for the elements in
.4 ') in order to obtain the set of resultants /3'. Let P " be the partial
deduction of P wrt .4" , /3 , and p,,,, where p~,, is extended from p~, in an
arbitrary way for the new unconstrained atoms. N o w / 3 ' U { G} is trivially
.4", 7~-covered. We can therefore apply the correctness Theorem 4.15 to
deduce that the computat ions for P " U (p~(G)} (as p~(G) z p~,(G) =

p~,,(G)) are total ly correct wrt the computat ions in P U { G}.
Note that, by construction, we have that P ' - P", and thus soundness of the
computed answers (point 1, only- if part) and completeness of finite failure
within P" (point 2, if part) are already established.

2. In the second part of the p roof we will show that by removing the clauses
P~ew -- P " \ P " we do not lose any computed answer nor do we remove any
infinite failure. In other words any complete SLD-derivat ion for P " U
{p~(G)} which uses a clause in P " \ P ' fails finitely. This is sufficient to
establish that P ' is also totally correct.
Let D be an SLD-derivat ion for P " U {p~(G)} which uses at least one
clause in P " \ P ' . Let D ' be the largest prefix SLD-derivat ion of D which
uses only clauses within P ' . Let RG" be the last goal of D ' and let C" E
P " \ P ' be the clause used in the last resolution step. First note that this
clause C " must be a clause for an unconstrained a tom in .4 ' (and not in
. 4 " \ . 4 ') because in D ' we only used clauses from P ' and because the
predicates in . 4 " \ . 4 ' are not reachable in the predicate dependency graph
from within P ' U {p~(G)}.

po(~)

D ! . ~

~ 6',~E PI

Ra ' =~-- ... B_2' �9 �9 �9

I c" e P " \ P '

Now let B ' be the selected literal within RG'. We will show that resolution
of B ' with the clause C" fails. To that end we will use Lemma 4.17.
However, this lemma talks about unification of an unrenamed atom B with
the head of an unrenamed clause (~" E / 3 . Also, to be able to apply the
lemma we need to have that B E valid~(c [] A) for some c [] A ~ -4.

For the top-level goal p~(G) we know that it is a renaming of G such
that p~(G) is defined. Therefore, by definition of a renaming, we can
deduce that each a tom in G, notably the selected one, is a valid

Constrained Partial Deduction and the Preservation of Characteristic Trees 313

5.3.

7~-instance of some c [] A ~ ,4. So if D' is the empty derivation,
then we can directly apply Lemma 4.17 to deduce that resolution of
B with the unrenamed version of C" fails and, because renamings
preserve non-unifiability, we can establish that resolution also fails
for B' and C".
If R G ' is reached after a non-empty derivation D', Lemma 4.17 can
be applied if we are able to prove that R G ' is a renaming of some
goal R G using the atomic renaming a.
An obvious candidate is the renaming function p~. In general,
however, RG' will only be obtainable from a goal R G through some
renaming p~, not necessarily equal to p~ (but based on the same a).
In Appendix C we illustrate this point with an example. We also
prove in Lemma C.2 of Appendix C that such a renaming p~ can
always be constructed (given that /6 U {G} is ,4, :D-covered).
Indeed, Lemma C.2 states the following:

Let D' be a finite SLD-derivation for P ' U { G'} leading to
the resolvent RG'. I f / 3 U {G} is ,4, Z~-covered and G' :
p~(G) then there exists an ordinary goal R G and a renam-
ing function p~ (also based on a) such that RG" = p'~(RG)
and such that R G is ,4, :V-covered.

We now round up the p roof for the case that D' is not empty. By
Definition 4.11 we know that C" is of the form a"(true [] A)O ~--

pa,,(Bdy) for true [] A ~ ,4". By definition of a", we can rewrite this
into a(c [] A)O ~ p~,,(Bdy) for c [] A ~ ,4. Hence the selected
literal B ' in RG" must have the same predicate as a(c [] A). We can
also apply Lemma C.2 (for P ' U {p~(G)} leading to RG') to deduce
that R G ' = p'~(RG) for some ordinary goal R G and renaming
function p~ based on a (for ,4). Hence B' = p'~(B) and also B
valid9(c [] A) (as B' has the same predicate as a(e [] A)).
Let C" be the unrenamed version of C", i.e. C" : H ~ Bdy. We
can now apply Lemma 4.17 (because B ~ validv(c rJ A)) to deduce
that resolution of ~ B with C" fails (immediately). Finally, because
renaming preserves non-unifiability (i.e. if tl and tz do not unify then
neither do their renamings) we can deduce that resolution also fails
for ~ B' with C", and therefore the derivation D fails finitely in P".

[]

We will illustrate this theorem through several examples later in Section

w Preserving Characteristic Trees
Based on the more expressive and powerful framework for cnstrained

314 M. Leuschel and D. De Schreye

partial deduction, we now present a precise abstraction operator, preserving
characteristic trees upon generalisation, as well as a terminating algorithm for
constrained partial deductions satisfying the criteria of Theorem 4.14.

In order to formulate our approach we have to fix the particular con-
straint structure to be used - - this was still left generic in the previous section.
In fact, all we need in order to be able to preserve characteristic trees upon
generalisation, is Clark 's equality theory (CET). More precisely, we will use the
structure ~ -- ~'7" consisting of CET over the domain of finite trees (with
infinitely many functors of every arity*) including all functors in the programs
and queries under consideration. So it is basically the same structure as the one
used for CLP(~-T), as defined e.g. in Ref. 62).** The same theory has also been
used, for different purposes, in the constructive negation techniques (e.g. Refs.
7), 8), 15), 59), 66), 65)). Note that C E T is a complete theory 3~ and we suppose
that we have the required algorithms for satisfiability checking, simplification
and projection at our disposal (see e.g. Refs. 66), 65), 60)).

5 . 1 Pruning Constraints
As we have already seen in Section 3, when taking the msg of two atoms

A and B with the same characteristic tree r, we do not necessarily obtain an
atom C which has the same characteristic tree. The basic idea is now quite
simple. Instead of C, we will generate c • C as the generalisation of A and B,
where the constraint c is designed in such a way as to prune the possible
computat ions of C into the right shape, namely r. Indeed, all the derivations
that were possible for A and B are also possible for C (because we only consider
definite programs and goals) and c only has to ensure that the additional
matches wrt r are pruned off at some point (cf. Fig. 4).

Now, there are possibly infinitely many ways in which these addit ional
matches can be pruned via c for C; one can e.g. vary the depth at which pruning
occurs. Also some of these matches might have also be possible for A or B, but
the unfolding rule has then constructed a finitely failed subtree for the corre-

, - A , - -6 '
/',,,, ,/,-,,,
I/I </I /I",,

Fig. 4 Pruning Constraints

* For a detailed study of the relation between the underlying language and equality theory we refer
the reader to Ref. 59).

* * We will actually restrict ourseleves to a subset o f CLP(~'7-) in which satisfiability can be
decided by simple matching. See Ref. 37) for further details.

Constrained Partial Deduction and the Preservation of Characteristic Trees 315

sponding resolvent. Again there are possibly infinitely many ways in which this
can happen. However, for our constrained partial deduction algorithm, to be
presented later, it is important to come up, for any given atom C and character-
istic tree r, with a finite constraint covering all instances of C which have r as
their characteristic tree. If we allow any unfolding rule then this most specific
constraint will often be an infinite disjunction, and as such is not expressible in
CET. In order to remedy this problem we will first restrict ourselves to a certain
class of unfolding rules in which failure occurs only in a special way (we will
show how this restriction can be lifted by e.g. incorporating failed branches into
the characteristic trees later on). Because there is only one way in which failure
can occur, it is possible to calculate a finite constraint c satisfying the above.

In fact, purely determinate unfolding rules have the property that, if there
is a failing branch, then the goal fails completely and the goal has an empty
characteristic tree. So either there are no failed branches or the characteristic tree
is empty. It turns out that this is exactly the property that we need. Indeed, goals
with empty characteristic trees do not pose any problem for termination of any
partial deduction algorithm, because the partial deductions of the goals are
empty and no atoms in the bodies have to be added to the set of atoms to be
partially deduced. An abstraction operator can thus leave atoms with empty
characteristic trees untouched and for the others it knows that there are no
failing branches at all.

Definition 5.1 (failure preserving unfolding rule)
An unfolding rule is said to be failure preserving iff for every CLP-goal it
returns an incomplete CLP=(7~)-tree r such that r - is either equal to r or equal
to 0, where r - is obtained from r by removing the failed branches (so either all
the branches are failed* or none are).

Proposition 5.2
Any purely determinate unfolding rule is failure preserving.

Proof
Straightforward, by induction on the length of the generated incomplete
SLDNF-tree. []

The class of failure preserving unfolding rules is larger than the one of
purely determinate unfolding rules, albeit only slightly so (e.g. a determinate
unfolding rule with a lookahead is not failure preserving).

We will now formalise a general method to calculate constraints ensuring
the preservation of characteristic trees. For that it will be useful to denote by
mgu*(A, B) a particular idempotent and relevant mgu of {A, B'}, where B ' is
obtained from B by renaming apart (wrt A). The mgu* has the following
interesting property:

* Note that when a selected literal does not unify with a particular clause then this does not
correspond to a failed branch.

316 M. Leuschel and D, De Schreye

Proposition 5.3
Let A, B be two terms. Then mgu*(A, B) = fail iff A and B have no common
instance.

Proof
~ : Suppose mgu*(A, B) = 0 ~ fail. This means that AO = BTO for some 9"
and A and B have a common instance and we have a contradiction.
~ : Suppose that A and B have the common instance A 0 = Ba and let 9" be the
renaming substitution for B used by mgu*. This means that for some 7 -1 we
have BT) ,-1 = B and BT)'-xa = AO. Now as the variables of B)" and A are
disjoint the set of bindings 0* = 0 Iv,,rs(A) U (7-1a)Ivars(Br) is a well defined
substitution and a unifier of A and BT, i.e. mgu*(A, B) ~ fail and we have a
contradiction. []

The following proposit ion characterises a condition which ensures that a
particular characteristic path is pruned. We will later transform this condition
into a constraint expressed using CET.

Proposition 5.4
Let G be a definite goal, 7 a substitution, P a definite program and let 8 be an
SLD-derivation for P U { G} with computed answer 0 and characteristic path

p. Then mgu*(GT, GO) = fail iff p q~ chpaths(P, GT).

Proof
~ : Is a direct consequence of Lemma 4.11 a (for atomic goals) and Lemma 4.11
b (for general goals) in Ref. 43) (G0 can be seen as the head of a resultant which
is constructed from a derivation whose characteristic path is p).
~ : Suppose that p E chpaths(P, GT). Let 8 ' be a derivation for P U { GT} with
computed answer 0 ' and whose characteristic path is p. We have that GO is the
head of the resultant R of the derivation 8 for P U { G}. By Lemma 4.9 of Ref.
43) we can deduce that, because G7 is an instance of G, the resultant R" of 8'
is in turn an instance of R. Hence we know that the head GTO" of R" is also an
instance of GO. Hence G7 and GO have a common instance and by Proposit ion
5.3 we can finally conclude that mgu*(GT, GO) ~ fail. []

Below, we denote finite sequences of elements (in particular, characteris-
tic paths or subsequences thereof) by p, q and r, possibly adorned with sub-
scripts. For two such sequences, p and q, we denote by pq the concatenation of
p and q. In such a concatenation, we will al low p or q or both to denote an
empty sequence of elements, in which case pq denotes p (or q or e).

The following definition will turn out to be useful (and is illustrated in
Fig. 5).

Definition 5.5 (simple extension path)
Let P be a normal program. Let z- be a non-empty ~-characterist ic tree for some
CLP-goal CG in P and let p be a characteristic path. Then p is a simple

Constrained Partial Deduction and the Preservation of Characteristic Trees 317

o

o
(m,c V "'..,(tit,~c0

~2 i O

Fig. 5 Illustrating Definition 5.5 (Simple Extension Paths)

extension path of r i f f

1. Vq we have that pq ~ r and
2. ~ r = r~(lit, cl)r2 ~ r, such that p = r~(lit, ncl) (where cl, ncl are numbers

of clauses belonging to a same predicate definition in P).*

We denote the set of simple extension paths of r in P by extpathse(r).
Each simple extension path of a characteristic tree captures a potential

new clause match. The following proposit ion captures the interesting aspect of
(pruning) simple extension paths in the context of preserving characteristic trees.

Proposition 5.6
Let U be an unfolding rule, P a definite program, CG a CLP-goal and r a
characteristic tree such that r c chpaths~(P, CG). If extpathse(r) N chpaths~
(P, CG) = 0 then r is a 79-characteristic tree of CG in P.

Proof
Straightforward, by induction on the depth of r. []

Example 5.7
We recall the program P from Example 3.8:

(I) p (X) ~--
(2) p(c) ,---

For r - - {<1 o 2>} we have ex tpa thsp(r)= {<1 e 1>}. We also have r c -
chpathssz(P, true [] ~---p(X)) and r c_ chpaths~z(P, ~-- -~(X = c) [] p (X)) .
However, r is not a ~7"-characteristic tree for ,---true [] p (X) in P but is a
YT -characteristic tree for ~ -7 (X = c) [] p (X) in P. And indeed extpathse(r)
n chpaths~(P, ~ true [] p (X)) ~ 0 while extpathsv(r) O chpaths~z(P,

-~(X = c) [] p (X)) = O.

In the following definition we calculate constraints which prune simple
extension paths and hence ensure that the condit ion extpathse(r) N chpathsv(P,
CG) = 0 of Proposit ion 5.6 holds. This is a big step towards preserving charac-
teristic trees. In order to simplify the presentation, will take the liberty to treat

* Note that necessarily ncl #= cl.

318 M. Leuschel and D. De Schreye

a conjunc t ion o f constraints like a set o f constraints and in t roduce the fol lowing
nota t ion case(G, p) to be the computed answer o f an SLD-der iva t ion for P U

{ G} with characterist ic path p (if such a derivat ion exists, otherwise we leave

case(G, p) undefined). Also, given two atoms A and B, we denote by A -- B the
constraint false if A and B have a different arity or predicate symbol , and al --
ba A ... A ak = bk otherwise, where A = p(al a~) and B = p(bx bk).

Definition 5.8 (pruning constraint)
Let P be a definite program, r a non-empty characteristic tree and let A be an

atom. For two atoms A1, Az with the same predicate symbol p, the expression A1

7 c A2 denotes the constra int ~/vars~a,)(~ (A~ = A~)), where A~ has been obtained
from A2 by s tandardis ing apart (wrt A1).

Then we define the pruning constraint for .4 wrt r (and P) by: prunee(A, r) ---

{ A 7 c AO I p ~ chpaths(P, *--A) f) extpathsp(r) and 0 = case(G, p)}.

A constra ined atom o f the form prunep(A, r) [] A will be called nor-
malised.

Suppose that we have two const ra ined atoms ca [] `4, cb [] B both with
~-T-characterist ic tree z-. Using the newly in t roduced concepts, the obvious

generalisation is the normalised constra ined a tom e [] C, where C = msg({A,
B}) and c = prunee(C, r). I f r --- chpaths~T(P, ,---c [] C), then we can apply
Propos i t ion 5.6 and we have achieved preservation o f characteristic trees. All
that remains is then to prove that c [] C is indeed more general than both ca []
A and cb [] B.

However, neither o f these condi t ions is satisfied in general if we use an
arbitrary unfo ld ing rule (to construct r for ea [] `4 and cb m B). In fact, the

pruning constraints prunee(C, r) p rune off each simple extension path immedi-

ately "at the source". But a simple extension path p o f r can in general be a valid
path for ~ Ca D A (i.e. p ~ chpaths77-(P, ~ ca [] A)) and only lead to failure
after further unfolding. In that case ca [] .4 is most likely not an ~ 'T- ins tance
o f c [] C. The fo l lowing example illustrates this.

Example 5.9
Let P be this program:

(1) p(X)*-- -q(X)
(2) p (X) ,-- r (X)
(3) q(s(X)) ~ q (X)
(4) r (X) ~--

Let the negative constra int Ca = cb = ~ and let A = p(0), B = p(s(O)), C --
p(Z) . Let the unfo ld ing rule U be such that chtree77-(~---ca [] A, P, U) =
chtreeTz(,--c~ [] B, P , U) = r = {(1 o 2, 1 o 4>}. Then c = prunee(p(Z),
r) = V X . - ~ (p (Z) = p(X)) .
This constraint is unsatisfiable and hence c [] C is not more general than either

Constrained Partial Deduction and the Preservation of Characteristic Trees 319

true [] p(0) or true [] p(s(O)). Furthermore, r ~ chpathsT~P, ~-- c [] C) and r
is not a ~-:r-characteristic tree o f , - - c • C.

Instead of restricting ourselves to failure preserving unfolding rules, we
could also make the constraint c = prunep(C, r) more general in order to cover
each possible failing behaviour. In general, however, there are infinitely many
different ways in which a branch of an SLD-tree can fail. In that case, the most
specific constraint ensuring that c [] C covers all constrained atoms Ca [] C~"
with .TrT -characteristic tree r would have to consist o f an infinite disjunction.
For instance in the Example 5.9 above, the constraint would have to look like
d = VX.--1 (p (Z) = p (s (X))) V VX.--1 (p (Z) = p (s (s (X)))) V This idea is
very related to the work in Ref. 45) which attempts to construct maximally
general fail substitutions for negation as failure. Indeed for every resolvent goal
G of a simple extension path we can attempt to construct a maximally general
fail constraint ensuring that G fails. This would allow us to handle any
unfolding rule and preserve characteristic trees in the f ramework of constrained
partial deduction of Section 4. However, d [] C does not necessarily have r as
its ~-T -characteristic tree (according to Definition 4.1 of a CLP=(79)-derivation
step), al though all the atoms in validT~(d [] C) do. So one would have to extend
Definition 4.1 to allow more powerful pruning possibilities (allowing, in some
cases, to detect an infinitely failed subtree). Whether this can be done in a
practical way is matter for future research.

Another solution is to consider the failed branches to be part of a
characteristic tree and then prune off simple extension paths of this more
detailed structure. The method presented in the remainder of this section can in
fact be easily adapted in that direction, thus lifting the restriction on unfolding
rules. A post-processing phase could be devised, e.g. based on techniques in
Refs. 56) and 40), to then remove the unnecessary (cf. Section 3) polyvariance
generated by such an approach.

For failure preserving unfolding rules we can always find, for any given
atom C and characteristic tree r, a finite, most general* constraint (namely the
pruning constraint) c such that c m C covers all constrained atoms c~ [] C?
with ~rT -characteristic tree z- (this is a corollary of point i o f Theorem 5.11
proven below). This property in turn, will ensure that the condit ion r -
chpaths~:~(P, ~---prunee(C, r) [] C) always holds (cf. point 2 of Theorem 5.11
below) and guarantee that characteristic trees are preserved (cf. point 3 of
Theorem 5.11 below).

Before proving the preservation of characteristic trees for failure preserv-
ing unfolding rules we need one further lemma.

L e m m a 5.10
Let At, A2 be two atoms. I f mgu*(A17, A2) -- fa i l then 7 sat77- At 7 c A2.

* This property is useful to show that the abstraction operator cannot generate an infinite
sequence of generalisations.

320 M. Leuschel and D. De Schreye

Proof
By definition A1 ?L A2 stands for Vvars~A,)(-~(At = A~)) where A~ has been
obtained by standardising apart (wrt A1). It is well known (see e.g. Ref. 9) or
Lemma 15.2 in Ref. 42)) that if B and C are not unifiable then C E T ~ V(
(B = C)). Now by definition of applying substitutions we have (A1 -/- A2)7 =
Vvars(A,r)('~(Aag" = A~)). Finally, mgu*(A~9", Az) = fail means that A19' and A~
are not unifiable, hence CET ~ V(~(A~9" -: A~)) and therefore 9' sats~- A~ -/-
A2 (because Cr = A~))) is equivalent to V(~(A19 ' = A~)) and
CET is part o f our constraint structure ~-T). []

Theorem 5.11 (preservation of characteristic trees)
Let P be a definite program, c [] A a constrained atom and let B be an ordinary
atom more general than A. Also let r -- chtreeT~-(*--c ~ A, P, U) be a non-
empty characteristic tree for a failure preserving unfolding rule U. Then:

1. c [] A is a ~'7" -instance of prunep(B, r) [] B.
2. r c chpathsT~(p, ~---prunev(B, r) [] B).
3. r is a a r t -charac ter i s t ic tree of ~--prunee(B, r) [] B

Proof
1. Because B is more general than A we have for some substitution T: A = BT.

We have to prove that whenever O satyT- c, then also 9'0 saty~-prunep(B, r).
Let us examine every constraint n = B 7 L Bp ~ prunee(B, r) (cf.
Definition 5.8) and let p E chpaths(P, , - -B) be the corresponding simple
extension path in r with p = case('--B, p).
Either p ~ chpaths(P, ,---A). In that case we can apply Proposi t ion 5.4
(with G = ~ B) and deduce that mgu*(Bg", Bp) -~ fail. Therefore, we have
by Lemma 5.10 that 7 satyT n which is by definition equivalent to ~'T

(n9'), and hence we also have that 9'0 satj:7- n.
Or, p ~ chpaths(P, ,--A). In that case, because r is not empty and U is
failure preserving (and hence no failing branches are possible) and because
no extension o f p is in r, ca must be unsatisfiable, where ~ --- case(,--- A, p).
We have by Lemma 4.16 that AO = B9"O has no common instance with
Aa = Bg'a. By Proposi t ion 5.3 this is equivalent to saying that mgu*(B9"O,
Bg"a) = fail . We can now use Proposi t ion 5.4 (for G = , - - B9') to deduce
that p fL chpaths(P,.~---B9"O). Finally, by reusing Proposi t ion 5.4 in the
other direction (for G =*---B) we can deduce that mgu*(Bg'O, Bp) =-fail
and we can conclude by Lemma 5.10 that 9"0 satl:~- n.
Hence, as 9"0 satisfies every n E prunee(B, r), we can deduce that 9'0 satyr
prunep(B, r).

2. By the (correct version of the) lifting lemma zr'43'~4'~) we can deduce that r ---
chpaths(P, ,--- B). Let us examine every p ~ r. When we take O -- case('--
A, p) we know that cO is satisfiable in ~'7" (because p E chtree~(~-- c []
A, P, U)). So, for some substitution 9" we have that 09' satyr c and by point

Constrained Partial Deduction and the Preservation of Characteristic Trees 321

1 of this proposi t ion we can find a substitution a such a sat:rT-prunee(B,
r) and A07 -- Ba. Again by the lifting lemma we can deduce that there
exists a p such that p : case('-- B, p) and such that AO is an instance of
Bp. This means that prunee(B, r)p must be satisfiable (for 7' such that
BpT" : AO7 = Ba because vars(prunee(B, r)) --- vars(B) and holdsT~-
(prunee(B, z-)a)) and hence we can conclude that prunee(B, r) has not
pruned p, i.e. p ~ chpaths~(P, ~---prunee(B, r) [] B). So we can conclude
that r c chpaths~7.(p ' ~---prunee(B, r) [] B).

3. By Proposi t ion 5.6 and point 2 we only have to prove that: extpathse(r) f]
chpathsT~-(P, ~--prunee(B, r) [] B) = ~1. This is, however, a direct conse-
quence of Definition 5.8 and the fact that BO -/- BO is unsatisfiable. []

Note that if we take the Example 5.9, with its unfolding rule which is not
failure preserving, then none of the points of Theorem 5.11 hold.

5 . 2 A Prec i se Abst rac t ion Ope ra t o r
We are now in a position to formally define our abstraction operator.

Definition 5.12 (chabsce, v)
Let P be a definite program, U a failure preserving unfolding rule and A a set
of constrained atoms.
For any characteristic tree r, let A ~ = {A]c [] A ~ A A chtree~T(~-- c [] A,
P, U) = r}. Then the operator chabsce,v is defined as follows:

chabsce,v(S) : A~ U {prunee(A, r) [] msg(A~)[, r 4 : 0 is a char-
acteristic tree}.

The following proposi t ion establishes that the operator chabsce,v is an
abstraction operator (in the spirit of Definition 2.8).

Proposition 5.13
Let .4 be a finite set of constrained atoms. Then .4 ' = chabsce,u(.4) is a finite
set of constrained atoms such that every constrained a tom in .4 is an
~'7"-instance of a constrained atom in .4'.

Proof
Immediate corollary of Definition 5.12 and point 1 of Theorem 5.11. []

By point 3 of Theorem 5.11 we can deduce that this abstraction operator
preserves the characteristic trees, i.e. after abstraction, r remains a ~ ' T -
characteristic tree for the CLP-goal , - -prunee(A, r) [] A. However, we cannot
conclude that r is the ~ 'T-characteris t ic tree of~---prunee(A, r) [] A for U,
because nothing prevents U from treating that goal completely differently (i.e.
selecting different atoms) from the goals in .43. Such an arbitrary behaviour
does not cause problems for the constrained partial deduction method as such,
except when it comes to termination of chabsce,u (which will be proven below

322 M. Leuschel and D. De Schreye

in Proposition 5.18). To avoid this kind of arbitrary behaviour we need a feature
of "stability" of the unfolding rule for normalised constrained atoms (or use a
monotonic partial deduction algorithm, cf. Section 3.2).

Definition 5.14 (stable unfolding rule)
An unfolding rule U is called stable iff for each atom A' with chtree(~--- A', P,
U) = r 4= r and for each atom A more general than A', we have that chtreey7-
(*--prune~,(A, r) [] A, P, U) = r.

For instance a (purely) determinate unfolding rule U with a static (e.g.
left-to-right) selection of the determinate atoms will not arbitrarily change the
unfolding behaviour and in that case we are able to conclude that chtree~z(~---
prunep(A, r) [] A, P, U) = r.

Proposition 5.15
Any purely determinate unfolding rule with a static selection of the determinate
atoms is stable.

Proof
Straightforward, by induction on the depth of r, because the pruning constraints
preserve determinacy as well as non-determinacy inside r and because the
unfolding rule (due to its staticness) will then select the same literal as in r. []

Also note that in the case that an unfolding rule does not exhibit this
stability we can easily ensure it by simply imposing r as the JrT"-characteristic
tree of the generalisation ~ p r u n e p (A , r) [] A. In a practical algorithm (e.g. the
one implemented for the experiments in Section 6) this amounts to storing the
characteristic tree r with the normalised atoms. Stability also has the added
benefit that unfolding does not have to be re-done for the generalised atoms,
because the resulting characteristic tree is already known. Also see Ref. 34)
which pushes the idea of imposing characteristic trees on the generalisation one
step further.

We can now adapt Algorithm 2.9 by incorporating constrained atoms
into the partial deduction process and by using the abstraction operator of
Definition 5.12.

Algorithm 5.16 (constrained partial deduction)
Let P be a definite program, let U be a failure preserving unfolding rule. Given
a constrained atom CA, we denote by resultantsp,v(CA) the partial deduction of
CA in P when using the unfolding rule U. Also, by CBA(P) we denote the set
of constrained body atoms of a set of CLP-clauses /3. The following defines a
partial deduction algorithm which preserves characteristic trees by using prun-
ing constraints.
Input: A program P and a goal G
Output: A specialised program P '
Initialise: i = O, Ao = chabsc~w({true [] A IA is an atom in G})

Constrained Partial Deduction and the Preservation of Characteristic Trees 323

repeat
let /3; = Uca~a,resultantsp,u(CA);
let -4i+1 = chabsce,v(Ae U CBA(fid);
i := i + 1;

until Ai+I = Ai

Construct a partial deduction P ' of P wrt .4/, fii and some p~.

The following establishes the correctness of the above algorithm.

Proposition 5.17
If Algorithm 5.16 terminates, starting from the original program P and the goal
G, it generates a partial deduction P ' of P wrt .4 i , /3/and some p~ satisfying the
requirements of Theorem 4.14 for any goal G' whose atoms are instances of
atoms in G.

Proof
We just have to show that /3/ U { G'} is ,4i, :D-covered, i.e. each constrained
body atom of t3 or G' should be a :D-instance of an element in .4/. This
condition is clearly satisfied when reaching the fixpoint of Algorithm 5.16.
Indeed, by Proposit ion 5.13, all constrained body atoms o f / 3 / a r e :D-instances
of elements in -4/+1 = -4/. By the same proposition, all atoms in G are also
:D-instances of elements in .4/, because they were :D-instances of elements in .4 0.
Finally, as the atoms in G' are instances of the atoms in G, we can conclude (by
downwards-closedness) that/31 U { G'} is .4;, :D-covered.

We will now prove termination of the above algorithm for stable unfold-
ing rules. In fact, given a (albeit unnatural) unstable unfolding rule, we can
basically reconstruct the pattern of an example in Ref. 37) to obtain an oscillat-
ing behaviour of the partial deduction Algorithm 5.16.

Proposition 5.18
If the set of different characteristic trees is finite and the unfolding rule U is
stable, then Algori thm 5.16 terminates.

Proof
In Appendix D. []

To ensure a finite number of different characteristic trees, we can simply
enforce a depth bound on the unfolding rule used during partial deduction,
thereby also ensuring local termination. It is, however, also possible not to
impose any ad-hoc depth bound on the unfolding rule and to impose the depth
bound only on characteristic paths and trees. A third alternative is presented in
Ref. 40), which gets rid of the depth bound altogether (see also the discussion
in Section 7).

324 M. Leuschel and D. De Schreye

5 .3 Some Examples
In this section we illustrate the workings and the interest of the abstrac-

tion operator chabsce,u along with Algorithm 5.16 on some practical examples.
First note that Algorithm 5.16 solves all the problematic examples in Ref. 36) as
well as the problematic non-termination example in Ref. 37).

Example 5.19
Let us return to the member program and the problematic Example 3.11.

(1) member(X, [X] T]) ~--
(2) member(X, [Y I T]) '--- member(X, T)

Let G --~-- A, B be the goal of interest, where A = member(a, [b, cl T]) and
where B = member(a, [c, d l T]). We start the algorithm with A0 -- chabscp,u
({true [] A, true [] B}). Both true [] A and true [] B have the same ~ 'T-
characteristic tree r = {<1 o 2, 1 o 2, 1 o 1), (1 [] 2, 1 o 2, 1 o 2)} when
using a purely determinate unfolding rule. Hence we calculate C = msg({A,
B}) = member(a, [X, Y I T]) as well as the pruning constraint c = prune~,(C,
r) = VY'VT' .~(member(a , [X, YI T]) = member(a, [a, Y'I T'])) A V X '
V T'.-~(member(a, [X, Y I T]) = member(a, [X, a l T])) (calculated for the
simple extension paths (1 o 1) and <1 o 2, 1 o 1) respectively). (Given a
simplification procedure we could rewrite c into the equivalent constraint

(X = a) A ~(Y---- a).) We now get .40---- {c [] C}. Unfolding c [] C
using the same unfolding rule still results in the ~-T-characteristic tree r, and
the precomputation and pruning that was possible for true [] .4 and true [] B
has been preserved by chabsce.u! The only constrained body atom in the next
step of the algorithm is 3{r}(C) [] member(a, T) which can be simplified to
true [] member(a, T). The ~'7"-characteristic tree of true [] member(a, T) is
{(1 o 1), (1 o 2)}. Thus chabsce.u performs no generalisation and at the next
step of the algorithm we reach the fixpoint ,42 = A1 -- { c [] member(a, [X, Y I
T]) , true [] member(a, T)}. We thus obtain the following partial deduction P '
wrt `4x (using an appropriate atomic renaming e):

(I') mema([X, YI T]) ~---membera(T)
(2') membera([al T]) <--
(Y) member~([Y [T]) ~ membera(T)

Now, for example G1 =~---member(a, [b, c]), member(a, [c, d, e]) is `41,
Z~-covered and, by Theorem 4.14, P ' is correct for the renaming G; --~--mema
([b, c], mem,([c, d, e]). However, although G2 ='---member(a, [b, a]) is also
`41, /~-covered, G~ -- ~-- mema([b, a]) is not a correct renaming of G2 (because
member(a, [b, a]) ~ valid~(c [] member(a, IX, Y I T])) and we cannot apply
Theorem 4.14. And indeed, P ' O { Gg} fails while P U { G2} succeeds. We can,
however, still rename Gz into Gg' --~-- membera([b, a]). Theorem 4.14 can then
applied to deduce that using P ' U { Gg'} is correct.

Constrained Partial Deduction and the Preservation of Characteristic Trees 325

Example 5.20
Let P be the well known "vanilla" solve meta-interpreter (see e.g. Refs. 23), 47),
48)).

(1) solve(empty) ~--
(2) solve(X & Y) ,--- solve(X), solve(Y)
(3) solve(X) ,--- clause(X, B), solve(B)
(4) clause(p(a)) *-
(5) clause(p(b)),---
(6) clause(q(a)),---
(7) clause(q(b)) , -

Let us suppose we use a purely determinate unfolding rule U which allows
non-determinate steps only at the top. Also suppose that we want to specialise
P for the goal G --- ,-- solve(p(X)), solve(q(X)). The characteristic trees of both

these atoms will be r = {<1 o 3>}.
Applying the abstraction operator chabse,v without constraints of

Definition 3.6 (as well as the abstraction operators of Refs. 20) and 17)) will give
us as generalisation chabse,v(S) = {solve(X)} where solve(X) has the character-
istic tree r ' = {<1 o 1>, <1 o 2>, <1 o 3>} and local precision and specialisa-

tion has been lost due to the abstraction.
When using the abstraction operator chabsce,v with constraints we

obtain chabsce,u(S) = ~ (solve(X) = solve(empty)) A V Y V Z. --1 (solve(X) ---
solve(Y & Z)) [] solve(X). The abstraction still has the ~ 'T -characteristic tree
r -- { <1 o 3)} and all the specialisation has been preserved. Using Algori thm
5.16 we obtain the following partial deduction P ' (using a suitable atomic
renaming a; determinate post-unfolding can be used to get rid o f solve_empty).

(1') solve(X) ~ clause(X), so&e_empty
(2') clause(p(a)) ~--
(3') clause(p(b)) ~--
(4') clause(q(a)) *--
(5') c l a u s e (q (b)) ~
(6') solve_empty *---

Example 5.21
The following is the well known reverse with accumulating parameter which we
intend to use on lists of O's and l 's and where a simple type check has been
incorporated (to make it really declarative one would have to add an extra
argument representing the output - - to make it really effective one would have

to add an if-then-else).

(1) rev([], Ace, Ace)~--
(2) rev([H I T] , Ace, Res) ,-- check_list(Ace), rev(T, [H l Acc], Res)
(3) check_list(O) ~--print("type error, not list: 0")

326 M. Leuschel and D. De Schreye

(4) check_list(l) ~---print("type error, not list: 1")
(5) check_list(X) ,---

For the initial goal G =,---rev(L, [], R) and using a purely determinate
unfolding rule the Algorithm 5.16 will generate the following sequence of
constrained atoms (the corresponding SLD-trees can be found in Fig. 6):

I. ,40 = {rev(L, [], R)}
2. CBA(ffo) = {rev(T, [HI, R)}
3. Ax = chabscp,u(Ao U CBA(ffo)) = {c [] rev(L, A, R)}, where c = V L '

VR'.-~(rev(L, A, R) = rev(L', O, R') A VL 'VR ' .~ (rev (L , A, R) - -
rev(L', 1, R')), because chtree(~--rev(L, [], R), P, U) = chtree(~--rev(T,
[H I , R), P, U) = n = {(1 o 1>, <l o 2, 1 o 5>} and extpathsp(rl) = {<1
o 2 , 1 o 3>,(1 o 2,1 o4>}.

4. CBA(fft) = {c" [] rev(T, [HIA] , R)}, where c' = VLVR'.-~(rev([HIT],
A, R) = rev(L, O, R')) A VLVR' . -~(rev([HI T], A, R) = rev(L, 1, R')).

5. Az --- chabsce,u(A1 U CBA(ffl)) -- ,4.1 as chtree77-(*--- c' [] rev(T, [HIA] ,
R), P , U) = r~.

Given an atomic renaming a such that a(c El rev(L, A, R)) = rev(L, A,
R) we obtain the following partial deduction wrt At in which the (albeit
simple) type checking has been completely removed.

(1') rev([], .4cc, .4cc)~-
(2') rev([HI T], Acc, ges)~--rev(T, [HIAcc], ges)

Note that, i f we use a dynamic renaming strategy, then, just like for
Example 3.7, we run into non-termination. If we use a strategy without renaming
and an abstraction operator which allows only one msg per predicate, then

�9 - ,~, , (L, B, R) , - , e~ (L , [~/], R)

D +-- check_list([]), rev(T, [H], R) [] *-- eheck_list([H]), rev(T', [H', H], R)

I(5) I(s)
, - r~ (T , [HI, R) , - ~ (T ' , [H', H], R)

�9 - c o r ~ (T , [HIA], R)

[] ~ e' [] check_list([NIA]), rev(T', [H',//IA], R)

Fig. 6 SLD-trees for Example 5.21

Constrained Partial Deduction and the Preservation of Characteristic Trees 327

partial deduction will not be able to remove the type checking.
If we use the static renaming strategy of Ref. 3) then partial deduction is

in this case able to remove the type checking while guaranteeing termination.
However, this comes at the cost of a larger program (because of unnecessary
polyvariance due to the static guidance). Furthermore the program P can be
slightly adapted such that 3, 4, 5 renamed versions are required to remove the
type checking.

Also, the abstraction operators in Refs. 20) and 17) or the abstraction
operator chabse,u without constraints of Definition 3.6 cannot adequately
handle the above example and are not able to remove the type checking. In fact
chabse,v(Ao) = {rev(L, A, R)} and local precision has been lost and partial
deduction is no longer able to remove the type checking.

In summary, for some more elaborate specialisation examples, it is vital
that the abstraction operator preserves characteristic trees and the augmented
precision of the new partial deduction method pays off in improved specialisa-
tion.

w Some Experimental Results
An automatic partial deduction system, based on Algorithm 5.16, has

been developed in order to check feasibility as well as practical potential of our
approach. However, the extension to any unfolding rule and negation (by
incorporating failed branches and sub-trees into the characteristic tree with an
adequate post-processing phase) has not been implemented yet. So the bench-
marks and experiments were only conducted with purely determinate unfolding
rules and for definite programs (which limits the amount of speedup one can
expect). The particular unfolding rule used in the experiments allows non-
determinate unfolding only at the top (thus guaranteeing that the backtracking
behaviour will never be modified, because the top-level goal is atomic) and
selects determinate literals in a left-to-right fashion.

To provide a fair comparison, we ran experiments for the following three
abstraction operators, each time using exactly the same unfolding rule just

described:

I. onemsg: This is an abstraction operator (already described in Section 2)
which allows just one version per predicate and uses the msg to ensure this.

2. chaba: This is the abstraction operator defined in Definition 3.6 and which
for the examples at hand basically behaves like the abstraction described in

Ref. 20).
3. chabsc: The characteristic tree preserving abstraction operator of Definition

5.12 used inside the constrained partial deduction algorithm described in

this paper.

Note that only onemsg and chabsc guarantee termination.
We compared the three approaches for the Lam & Kusalik benchmarks

328 M. Leuschel and D. De Schreye

(see Ref. 31), they can also be found in Refs. 46) and 57)) without negation and
built-in's: ancestor, depth, transpose. We also experimented with the rev_check-
list program from Example 5.21, which we specialised for the S = {rev(L, E~,
R) }. Another experiment, member, consisted in a slight adaptation of Example
3.11.

The timing results are summarised in Table 1. The first line cantains the
absolute timings, the second line contains the speedup as compared with the
original program. The Total row contains the normalised total time (and the
total speedup in the second line) of all the tests (each test was given the same
weight by dividing by the execution time of the original unspecialised program).
The timings were obtained by using the time~2 predicate of Prolog by BIM on
a Sparc Classic under Solaris. Sufficient memory was given to the Prolog system
to prevent garbage collections. The number of clauses and predicates was also
measured and can be found in Table 2.

Note that in the transpose example the extra version produced by chabsc
(and chabs) was not beneficial which might have been caused by some Sparc
caching behaviour. Also note that Lam & Kusalik benchmarks are not very
sophisticated and the chabs operator had no problem with termination and
precision.

In summary we can say that, even when using a simple unfolding rule, the
abstraction operator chabsc looks very promising and seems to be a good basis
for a flexible polyvariance providing just as many versions as necessary (i.e. only
one version for the rev_checklist example but 5 for the depth example).

Table . 1 Speedup Figures

Test Or ig ina l chabsc chabs onemsg
rev_checklist 0.67 s 0.32 s 0.90 s 0.67 s

1 2.09 0.74 1

member 0.46 s 0.18 s 0.24 s 0.30 s
l 2.56 1.92 1.53

ancestor 6.37s 5.85s 5.85s 5.85s
1 1.09 1.09 1.09

depth 2.38s 2.15s 2.15s 2.38s
l l . l l 1.11 1

transpose 2.00 s 0.43 s 0.43 s 0.41 s
1 4.65 4.65 4.87

Total 5 2.90 3.90 3.77
1 1.72 1.28 1.33

Table. 2 Program Sizes: N u m b e r of clauses and predicates

Test Or ig ina l chabsc chabs onemsg
rev_checklist 5-2 2-1 8-3 5-2

member 4-2 5-3 5-3 4-2

ancestor 15-5 15-5 15-5 5-2

depth 8-3 11-5 1 I-5 8-3

transpose 6-3 4-2 4-2 2-1

Constrained Partial Deduction and the Preservation of Characteristic Trees 329

w Further Improvements, Discussion and Related Work
In previous sections we have already hinted at two possibilities to lift the

restriction to failure preserving unfolding rules. If we want to expand the
method to encompass normal logic programs some further difficulties arise (cf.
Example 3.9).

First, the abstraction operator will often have to ensure that a selected
negative literal ~ A succeeds. In the context of SLDNF, this amounts to
ensuring that A is ground and fails finitely. For the former, some form of
groundness constraint seems to be required (this problem can be avoided if we
use the SLS semantics of Ref. 55)). The latter is very similar to the difficulty
encountered for non-failure preserving unfolding rules (cf. Example 5.9) because
there can also be an infinite number of possibilities in which the subtree for
*--A can be made to fail. So, a first posiibility to solve this problem is to not
only incorporate the failed branches into the characteristic trees, but the sub-
trees for negative literals as well. This will lead to an even bigger polyvariance
(which might be removed by a post-processing phase, but this might be impracti-
cal due to the large amount of polyvariance). A second possibility would be to
extend the expressivity of the constraints. A promising approach in that direc-
tion is to extend the approach of computing fail substitutions. 45)

There is, however, still a third possibility discussed in Ref. 34). This
method follows the same basic principle laid down in this paper, namely to use
and preserve characteristic trees in order to obtain a fine-grained control of
polyvariance, but achieves this without explicitly incorporating constraints into
the partial deduction process. The central idea of Ref. 34) is actually rather
simple (and is a further development of the idea which we used in the previous
section to transform any unfolding rule into a stable one): the method just
imposes a characteristic tree on the generalisation. This characteristic tree acts as
a sort of implicit local constraint. As such the method does not have to impose
any restriction on the unfolding rule, can handle negation (and some built-in's
as well) while still ensuring termination.

However, the simplicity comes at the price of some loss of precision
because the implicit constraints in Ref. 34) are only used locally (the method
here, based on negative constraints, uses the constraints explicitly and propa-
gates them globally via constrained atoms to be partially deduced). Also, the full
instance relation now becomes undecidable, and a computable approximation
has to be used.

Algorithm 5.16 based on chabscp,u (as well as Ref. 34)) still requires an
ad-hoc depth bound on characteristic trees to ensure termination. As a partial
remedy we can easily extend the algorithm so that the precision of the character-
istic trees is limited to a certain depth but the unfolding rule has no a priori
depth bound. Indeed, our abstraction operator chabscp,u ensures that character-
istic trees can be preserved, but does not force the unfolding rule to actually

330 M. Leuschel and D. De Schreye

perform the same unfolding (and the unfolding rule can thus unfold deeper than
the characteristic tree if it wants to).

However, even with that improvement, the precision of characteristic
trees is still limited and the depth bound can result in unsatisfactory, ad-hoc
specialisation (see Refs. 40) and 35)). Fortunately, by combining our approach
with Ref. 51), it is possible to get rid of this ad-hoc depth bound. The basic idea
is to use a refined well-quasi order on characteristic trees which spots potential
sequences of ever growing characteristic trees. The details of this approach have
been elaborated in Refs. 40) and 35) (applied to Ref. 34), but the approach can
be applied in exactly the same manner to the method of this paper).

At first sight, the post-processing abstract interpretation phase of Refs. 12)
and 21), detecting useless clauses, might seem like a viable alternative to using
pruning constraints and the framework of constrained partial deduction.
However, such an approach can not bring back the precomputation that has
been lost by an imprecise abstraction operator - - it might only be able to bring
back part of the pruning. But, when running the method of Refs. 12) and 21) e.g.
on the residual program P ' of Example 3.11, no useless clauses are detected.
Indeed to be able to do so, one needs an analysis which can do some form of
unfolding and in that process preserve characteristic trees - - in other words
exactly the method that we have developed in this paper. So neither of the two
approaches subsumes the other, they are complementary. Another related work
is Ref. 11), which uses abstract substitutions to prune resultants while unfolding.
These abstract substitutions play a role very similar to the constraints in the
current paper. However, no formal correctness or termination result is given in
Ref. 11) (and the issue of preserving characteristic trees is not addressed). Indeed,
as abstract substitutions of Ref. 11) are not necessarily downwards-closed, this
seems to be a much harder task and a normal coveredness condit ion will not
suffice to ensure correctness (for instance the atoms in the bodies of clauses
might be further instantiated at run-time and thus, in the absence of downwards-
closedness, no longer covered). Our paper actually provides a famework within
which correctness of Ref. 11) could be established for abstract substitutions
which are downwards-closed. Another, more technical difference is that neither
the method of Refs. 12) and 21) nor the method of Ref. 11) preserve the finite
failure semantics (i.e. infinite failure might be replaced by finite failure), while
our approach, just like ordinary partial deduction, does.

Another method that might look like a viable alternative to our approach
is the one of Ref. 5), situated within the context of unfold/fold transformations.
In particular, Ref. 5) contains many transformation rules and allows first-order
logic formulas to be used to constrain the specialisation. It is thus a very
powerful framework. But also, because of that power, controll ing it in an
automatic way, as well as ensuring actual efficiency gains, is much more difficult.
A prototype for Ref. 5) exists, but the control heuristics as well as the correctness
proofs are still left to the user.

Constrained Partial Deduction and the Preservation of Characteristic Trees 331

Let us also briefly discuss some further applications of constrained partial
deduction, beyond preserving characteristic trees. For example, a constraint
structure over integers or reals could handle Prolog built-ins like < , > , _<, >
in a much more sophisticated manner than ordinary partial evaluators. Also,
one can provide a very refined treatment of the \ = = Prolog built-in using the
Y-'7" structure (this feature has actually been incorporated in the prototype of

the previous section, but has not been used in the experiments). The following
example illustrates this, where a form of "driving of negative information"
(using the terminology of supercompilation 67'6a~) is achieved by constrained
partial deduction.

Example 7.1
Take the following adaptation of the member program which only succeeds
once.

(1) member(X, [XI T]) ~--
(2) member(X, [Y I T]) ~ X \ = = Y, member(X, T)

Let us start specialisation with the goal*--member(X, [a, Y, a]) . Using a
determinate unfolding rule (even with a lookahead) we would unfold this goal
once and get the resolvent ,---X \ = = a, member(X, [Y, a]) in the second
branch. Ordinary partial deduction would ignore X \ = = a and unfold
member(X, [Y, a]) , thus producing an extra superfluous resultant with the
impossible (given the context) computed answer {X /a} . In the constrained
partial deduction setting, we can incorporate X \ = = a as a constraint and
unfold -7(X -- a) [] member(X, [Y, a]) instead of just member(X, E Y, a])
and thereby prune the superfluous resultant.

The program in the above example is actually almost a CLP-program,
and we could go one step further and also specialise CLP-programs. As
Algorithm 5.16 is based on the structure 57" we conjecture that an adaptation
of our technique might yield a refined specialisation technique for
CLP(Y--7").60,61,62~ Also, it is actually not very difficult to adapt the framework
of Section 4.2 to work on CLP-programs instead of ordinary logic programs - -
we just have to require that equality is handled in the same manner as in logic
programming. However, establishing the correctness will become much more
difficult because one cannot reuse the correctness results of standard partial
deduction. In that context, we would like to mention Ref. 66), which extends
constructive negation for CLP-programs, as well as recent work on the transfor-
mation of CLP-programs. 16) Note, however, that Ref. 16) is situated within the
unfold/fold transformation paradigm and also that no concrete algorithms are
presented.

Finally, let us mention a recent extension of partial deduction, called
conjunctive partial deduction. 39,zz~ Conjunctive partial deduction handles con-
junctions of atoms instead of just atoms. This means that when the unfolding

332 M. Leuschel and D. De Schreye

rule stops, the atoms in the leaves of the SLD(NF)-tree are not automatically
separated and treated in isolation. As such, the local precision problem dis-
appears almost entirely and approaches based on determinate unfolding become
much more viable (recent experiments in Ref. 26) confirm this, where determi-
nate unfolding outperforms more eager unfolding rules based on well-founded
or well-quasi measures). The method of this paper can be easily adapted to work
in that setting, and there might even be no need to extend it to allow non-failure
preserving unfolding rules.

w Conclusion
We have shown that characteristic trees are very useful to obtain a fine

grained control of polyvariance for partial deduction. We have shown that, for
precision and termination, it is crucial that characteristic trees are preserved by
the abstraction operator of a partial deduction algorithm. If this is the case we
can obtain a partial deduction method giving us the right amount of global
precision which avoids any loss of local precision. However, the preservation of
characteristic trees turns out to be a substantial problem, and the approaches in
the literature so far do not exhibit this desirable property.

To overcome this difficulty we have developed the framework of con-
strained partial deduction, based on introducing constraints into the partial
deduction process. We have provided formal correctness results for this frame-
work and have shown that it offers potential beyond the preservation of charac-
teristic trees.

Because of the added expressivity and precision of the constraints we were
able to devise an abstraction operator for constrained partial deduction which
preserves characteristic trees for definite logic programs and failure preserving
unfolding rules (and which can be extended to any unfolding rule by incorporat-
ing the failing branches into the characteristic trees - - other possibilities to
extend the method were also outlined) while at the same time guaranteeing
correctness and termination. The method has been shown to be useful on some
examples leading to enhanced precision and specialisation and some promising
experiments were conducted.

We were thus able to devise a partial deduction algorithm with a very fine
grained control o f polyvariance, no loss of local precision due to the abstraction
while ensuring termination and correctness.

Acknowledgements
Michael Leuschel is supported by Esprit BR-project Compulog II. Danny

De Schreye is senior research associate of the Belgian National Fund for
Scientific Research. We would like to thank Bern Martens for proof-reading
(several versions) of this paper, for his subtle comments and for the stimulating
discussions. We would also like to thank John Gallagher and Maurice

Constrained Partial Deduction and the Preservation of Characteristic Trees 333

Bruynooghe for their helpful remarks. We appreciated interesting discussions

with Wlodek Draben t and Andr6 de Waal. We are also grateful to Marc
Denecker for p rov id ing us with relevant insights into semantical issues and

equal i ty theory. F ina l ly we thank a n o n y m o u s referees for their comments and
chal lenging criticism, which helped to substantial ly improve the paper.

References
1) Apt, K. R., "Introduction to Logic Programming," in Handbook of Theoretical

Computer Science (J. van Leeuwen, ed.), North-Holland, Amsterdam, chapter 10, pp.
495-574, 1990.

2) Benkerimi, K. and Hill, P. M., "Supporting Transformations for the Partial Evaluation
of Logic Programs," Journal of Logic and Computation, 3, 5, pp. 469-486, October
1993.

3) Benkerimi, K. and Lloyd, J. W., "A Partial Evaluation Procedure for Logic Programs,"
in Proceedings of the North American Conference on Logic Programming (S. Debray
and M. Hermenegildo, eds.), MIT Press, pp. 343-358, 1990.

4) Bol, R., "Loop Checking in Partial Deduction," Journal of Logic Programming, 16,
1-2, pp. 25-46, 1993.

5) Bossi, A., Cocco, N., and Dulli, S., "A Method for Specialising Logic Programs," A CM
Transactions on Programming Languages and Systems, 12, 2, pp. 253-302, 1990.

6) Bruynooghe, M., De Schreye, D., and Martens, B., "A General Criterion for Avoiding
Infinite Unfolding during Partial Deduction," New Generation Computing, 11, 1, pp.
47-79, 1992.

7) Chan, D., "Constructive Negation Based on the Completed Database," in Proceedings
of the Joint International Conference and Symposium on Logic Programming,
Seattle, 1988, IEEE, MIT Press, pp. 111-125, 1988.

8) Chan, D. and Wallace, M., "A Treatment of Negation during Partial Evaluation," in
Meta-Programming in Logic Programming, Proceedings of the Meta88 Workshop (H.
Abramson and M. Rogers, eds.), June 1988, MIT Press, pp. 299-318, 1989.

9) Clark, K. L., "Negation as Failure," in Logic and Data Bases (H. Gallaire and J.
Minker, eds.), Plenum Press, pp. 293-322, 1978.

10) De Schreye, D. and Decorte, S., "Termination of Logic Programs: The Never Ending
Story," The Journal of Logic Programming, 19-20, pp. 199-260, May 1994.

1 i) de Waal, D. A. and Gallagher, J., "Specialisation of a Unification Algorithm," in Logic
Program Synthesis and Transformation (T. Clement and K.-K. Lau, eds.), Proceedings
of LOPSTR'91, Manchester, UK, pp. 205-220, 1991.

12) de Waal, D. A. and Gallagher, J., "The Applicability of Logic Program Analysis and
Transformation to Theorem Proving," in Automated Deduction -- CADE-12 (A.
Bundy, ed.), Springer-Verlag, pp. 207-221, 1994.

13) Dershowitz, N. and Manna, Z., "Proving Termination with Multiset Orderings,"
Communications of the ACM, 22, 8, pp. 465-476, 1979.

14) Doets, K., "Levationis laus," Journal of Logic and Computation, 3, 5, pp. 487-516,
1993.

15) Drabent, W., "What Is Failure? An Apporach to Constructive Negation," Acta
Informatica, 32, pp. 27-59, 1995.

16) Etalle, S. and Gabbrielli, M., "A Transformation System for Modular CLP Programs,"
in Proceedings of the 12th International Conference on Logic Programming (L.
Sterling, ed.), MIT Press, pp. 681-695, 1995.

334

17)

18)

M. Leuschel and D. De Schreye

Gallagher, J., "A System for Specialising Logic Programs," Technical Report, TR-91-
32, University of Bristol, November 1991.
Gallagher, J., "Tutorial on Specialisation of Logic Programs," in Proceedings of
PEPM'93, the ACM Sigplan Symposium on Partial Evaluation and Semantics-Based
Program Manipulation, ACM Press, pp. 88-98, 1993.

19) Gallagher, J. and Bruynooghe, M., "Some Low-Level Transformations for Logic
Programs," in Proceedings of Meta90 Workshop on Meta Programming in Logic (M.
Bruynooghe, ed.), Leuven, Belgium, pp. 229-244, 1990.

20) Gallagher, J. and Bruynooghe, M., "The Derivation of an Algorithm for Program
Specialisation," New Generation Computing, 9, 3-4, pp. 305-333, 1991.

21) Gallagher, J. and de Waal, D. A., "Deletion of Redundant Unary Type Predicates from
Logic Programs," in Logic Program Synthesis and Transformation (K.-K. Lau and T.
Clement, eds.), Proceedings of LOPSTR'92, Manchester, UK, pp. 151-167, 1992.

22) G1Qck, R., JCrgensen, J., Martens, B., and SCrensen, M. H., "Controlling Conjunctive
Partial Deduction of Definite Logic Programs," in Proceedings of the International
Symposium on Programming Languages, Implementations, Logics and Programs
(PLILP'96), LNCS 1140 (H. Kuchen and Swierstra, eds.), Aachen, Germany, Septem-
ber 1996, Springer-Verlag, pp. 152-166, 1996.

23) Hill, P. and Gallagher, J., "Meta-Programming in Logic Programming," Technical
Report, 94.22, School of Computer Studies, University of Leeds, 1994. To be published
in Handbook of Logic in Artificial Intelligence and Logic Programming, Vol. 5,
Oxford Science Publications, Oxford University Press.

24) Jaffar, J. and Maher, M. J., "Constraint Logic Programming: A Survey," The Journal
of Logic Programming, 19-20, pp. 503-581, 1994.

25) Jones, N. D., Gomard, C. K., and Sestoft, P., Partial Evaluation and Automatic
Program Generation, Prentice Hall, 1993.

26) JCrgensen, J., Leuschel, M., and Martens, B., "Conjunctive Partial Deduction in
Practice," in Proceedings of the International Workshop on Logic Program Synthesis
and Transformation (LOPSTR'96), LNCS 1207 (J. Gallagher, ed.), Stockholm,
Sweden, August 1996, Springer-Verlag, pp. 59-82, 1996. Also in the Proceedings of
BENELOG'96, extended version as Technical Report, CW 242, K.U. Leuven.

27) Ko, H.-P. and Nadel, M. E., "Substitution and Refutation Revisited," in Logic
Programming: Proceedings of the Eighth International Conference (K. Furukawa,
ed.), MIT Press, pp. 679-692, 1991.

28) Komorowksi, J., "A Specification of an Abstract Prolog Machine and Its Application
to Partial Evaluation," Ph.D. thesis, Link6ping University, Sweden, 1981. Link6ping
Studies in Science and Technology Dissertations 69.

29) Komorowski, J., "An Introduction to Partial Deduction," in Proceedings Meta'92,
LNCS 649 (A. Pettorossi, ed.), Springer-Verlag, pp. 49-69, 1992.

30) Kunen, K., "Answer Sets and Negation as Failure," in Proceedings of the 4th
International Conference on Logic Programming (J.-L. Lassez, ed.), MIT Press, pp.
219-228, 1987.

31) Lam, J. and Kusalik, A., "A Comparative Analysis of Partial Deductors for Pure
Prolog," Technical Report, Department of Computational Science, University of
Saskatchewan, Canada, May 1990. Revised April 1991.

32) Lassez, J.-L., Maher, M., and Marriott, K., "Unification Revisited," in Foundations of
Deductive Databases and Logic Programming (J. Minker, ed.), Morgan-Kaufmann pp.
587-625, 1988.

33) Leuschel, M., "Partial Evaluation of the "Real Thing"," in Logic Program Synthesis
and Transformation -- Meta-Programming in Logic (L. Fribourg and F. Turini, eds.),
Proceedings of LOPSTR'94 and META'94, LNCS 883, Pisa, Italy, June 1994,

Constrained Partial Deduction and the Preservation of Characteristic Trees 335

Springer-Verlag, pp. 122-137, 1994.
34) Leuschel, M., "Ecological Partial Deduction: Preserving Characteristic Trees without

Constraints," in Logic Program Synthesis and Transformation (M. Proietti, ed.),
Proceedings of LOPSTR'95, LNCS 1048, Utrecht, Netherlands, September 1995,
Springer-Verlag, pp. 1-16, 1995.

35) Leuschel, M., "Advanced Techniques for Logic Program Specialisation," Ph.D. thesis,
K.U. Leuven, May 1997. Available at http://www.cs.kuleuven.ac.be/~michael.

36) Leuschel, M. and De Schreye, D., "An Almost Perfect Abstraction Operator for Partial
Deduction," Technical Report, CW 199, Departement Computerwetenschappen, K.U.
Leuven, Belgium, December 1994.

37) Leuschel, M. and De Schreye, D., "An Almost Perfect Abstraction Operation for Partial
Deduction Using Characteristic Trees," Technical Report, CW 215, Departement
Computerwetenschappen, K.U. Leuven, Belgium, October 1995.

38) Leuschel, M. and De Schreye, D., "Towards Creating Specialised Integrity Checks
through Partial Evaluation of Meta-Interpreters," in Proceedings of PEPM'95, the
ACM Sigplan Symposium on Partial Evaluation and Semantics-Based Program
Manipulation, La Jolla, California, June 1995, ACM Press, pp. 253-263, 1995.

39) Leuschel, M., De Schreye, D., and de Waal, A., "A Conceptual Embedding of Folding
into Partial Deduction: Towards a Maximal Integration," in Proceedings of the Joint
International Conference and Symposium on Logic Programming JICSLP'96 (M.
Maher, ed.), Bonn, Germany, September 1996, MIT Press, pp. 319-332, 1996. Extended
version as Technical Report, CW 225, K.U. Leuven. Available at http://www.cs.
kuleuven.ac.be/~lpai.

40) Leuschel, M. and Martens, B., "Global Control for Partial Deduction through Charac-
teristic Atoms and Global Trees," in Proceedings of the 1996 Dagstuhl Seminar on
Partial Evaluation (O. Danvy, R. Glfick, and P. Thiemann, eds.), LNCS 1110, SchloB
Dagstuhl, 1996, Springer-Verlag, pp. 263-283, 1996. Extended version as Technical
Report, CW 220, K.U. Leuven. Available at http://www.cs.kuleuven.ac.be/~lpai.

41) Leuschel, M. and Sr M. H., "Redundant Argument Filtering of Logic Pro-
grams," in Proceedings of the International Workshop on Logic Program Synthesis
and Transformation (LOPSTR'96), LNCS 1207 (J. GaUagher, ed.), Stockholm,
Sweden, August 1996, Springer-Verlag, pp. 83-103, 1996. Extended version as Technical
Report, CW 243, K.U. Leuven.

42) Lloyd, J. W., Foundations of Logic Programming, Springer-Verlag, 1987.
43) Lloyd, J. W. and Shepherdson, J. C., "Partial Evaluation in Logic Programming,"

Journal of Logic Programming, 11, 3-4, pp. 217-242, 1991.
44) Maher, M., "A Logic Programming View of CLP," in Proceedings of the lOth

International Conference on Logic Programming (D. S. Warren, ed.), MIT Press, pp.
737-753, 1993.

45) Maluszyfiski, J. and Naslund, T., "Fail Substitutions for Negation as Failure," in Logic
Programming: Proceedings of the North American Conference (E. L. Lusk and R. A.
Overbeek, eds.), MIT Press, pp. 461-476, 1989.

46) Martens, B., "On the Semantics of Meta-Programming and the Control of Partial
Deduction in Logic Programming," Ph.D. thesis, K.U. Leuven, February 1994.

47) Martens, B. and De Schreye, D., "Two Semantics for Definite Meta-Programs, Using the
Non-Ground Representation," in Meta-logics and Logic Programming (K. R. Apt and
F. Turini, eds.), MIT Press, pp. 57-82, 1995.

48) Martens, B. and De Schreye, D., "Why Untyped Non-Ground Meta-Pogramming Is Not
(Much of) a Problem," Journal of Logic Programming, 22, 1, pp. 47-99, 1995.

49) Martens, B. and De Schreye, D., "Automatic Finite Unfolding Using Well-Founded
Measures," Journal of Logic Programming, 28, 2, pp. 89-146, August 1996.

336

50)

M. Leuschel and D. De Schreye

Martens, B., De Schreye, D., and Horv~th, T., "Sound and Complete Partial Deduction
with Unfolding Based on Well-Founded Measures," Theoretical Computer Science,
122, 1-2, pp. 97-117, 1994.

51) Martens, B. and Gallagher, J., "Ensuring Global Termination of Partial Deduction
while Allowing Flexible Polyvariance," in Proceedings ICLP'95 (L. Sterling, ed.),
Kanagawa, Japan, June 1995, MIT Press, pp. 597-613, 1995. Extended version as
Technical Report, CSTR-94-16, University of Bristol.

52) Owen, S., "Issues in the Partial Evaluation of Meta-Interpreters," in Meta-Programming
in Logic Programming, Proceedings of the Meta88 Workshop (H. Abramson and M.
Rogers, eds.), June 1988, MIT Press, pp. 319-339, 1989.

53) Pettorossi, A. and Proietti, M., "Transformation of Logic Programs: Foundations and
Techniques," Journal of Logic Programming, 19-20, pp. 261-320, May 1994.

54) Proietti, M. and Pettorossi, A., "The Loop Absorption and the Generalization Strat-
egies for the Development of Logic Programs and Partial Deduction," Journal of
Logic Programming, 16, 1-2, pp. 123-162, May 1993.

55) Przymusinksi, T. C., "On the Declarative and Procedural Semantics of Logic Pro-
grams," Journal of Automated Reasoning, 5, 2, pp. 167-205, 1989.

56) Puebla, G. and Hermenegildo, M., "Implementation of Multiple Specialization in Logic
Programs," in Proceedings of PEPM'95, the ACM Sigplan Symposium on Partial
Evaluation and Semantics-Based Program Manipulation, La Jolla, California, June
1995, ACM Press, pp. 77-87, 1995.

57) Sahlin, D., "An Automatic Partial Evaluator for Full Prolog," Ph.D. thesis, Swedish
Institute of Computer Science, March 1991.

58) Sahlin, D., "Mixtus: An Automatic Partial Evaluator for Full Prolog," New Generation
Computing, 12, 1, pp. 7-51, 1993.

59) Shepherdson, J. C., "Language and Equality Theory in Logic Programming," Techni-
cal Report, PM-91-02, University of Bristol, 1991.

60) Smith, D. A., "Constraint Operations for CLP(~ T) , " in Logic Programming: Proceed-
ings of the Eighth International Conference (K. Furukawa, ed.), MIT Press, pp.
760-774, 1991.

61) Smith, D. A., "Partial Evaluation of Pattern Matching in Constraint Logic Program-
ming Languages," in A CM Symposium on Partial Evaluation and Semantics-Based
Program Manipulation, A CM Press Sigplan Notices 26, 9 (N. D. Jones and P. Hudak,
eds.), pp. 62-71, 1991.

62) Smith, D. A. and Hickey, T., "Partial Evaluation of a CLP Language," in Proceedings
of the North American Conference on Logic Programming (S. Debray and M.
Hermenegildo, eds.), MIT Press, pp. 119-138, 1990.

63) SCrensen, M. H. and G1Qck, R., "An Algorithm of Generalization in Positive Super-
compilation," in Proceedings of ILPS'95 (J. W. Lloyd, ed.), the International Logic
Programming Symposium, Portland, USA, December 1995, MIT Press, pp. 465-479,
1995.

64) Sterling, L. and Beer, R. D., "Metainterpreters for Expert System Construction,"
Journal of Logic Programming, 6, 1-2, pp. 163-178, 1989.

65) Stuckey, P. J., "Constructive Negation for Constraint Logic Programming," in Proceed-
ings of Sixth Annual IEEE Symposium on Logic in Computer Science, Amesterdam,
Netherlands, July 1991, IEEE Computer Society Press, pp. 328-339, 1991.

66) Stuckey, P. J., "Negation and Constraint Logic Programming," Information and
Computation, 118, 1, pp. 12-33, April 1995.

67) Turchin, V. F., "The Concept of a Supercompiler," ACM Transactions on Program-
ming Languages and Systems, 8, 3, pp. 292-325, 1986.

68) Turchin, V. F., "Program Transformation with Metasystem Transitions," Journal of

Constrained Partial Deduction and the Preservation of Characteristic Trees

Functional Programming, 3, 3, pp. 283-313, 1993.

337

Appendix A: Counter Example
In this appendix we present a counter example to Lemma 4.11 on page 326 of

Ref. 20). Note that the definitions differ from the ones in Ref. 17) and from the ones
adopted in our paper (for instance what is called chpath in Ref. 20) corresponds more
closely to the concept of a characteristic tree in our paper than to the notion of a
characteristic path).

We take the following program P (similar to Example 3.8, the actual definitions
of r (X) and s (X) are of no importance):

(Cl) p (X) ~-- q (X)
(c2) p(c)
(c~) q (X) ~ r (X)
(c4) q (X) , - - s (X)
(cs) r (X) ~ ...
(c6) s (X) ~-...

Now let the atom A be p(b). Then according to definition 4.5 of Ref. 20) we
have that chpath(A)=- ((cl), {cs, c4}). According to definition 4.10 of Ref. 20) we
obtain: chpaths(A) : {(cl, c3), <cx, c4)}.

The most general resultants (definition 4.6 of Ref. 20)) of the paths in
chpaths(A) is the set {p(Z) ~--r(Z), p (Z) * - s (Z)) .

By definition 4.10 of Ref. 20) we obtain the characteristic call of A: chcall(A) :
msg{p(Z) , p(Z)} : p(Z) .

In Lemma 4.11 of Ref. 20) it is claimed that chpath(chcall(A)) =- chpath(A)
and that chpath(msg{A, chcall(A)}) = chpath(A), i.e. it is claimed that chpath(msg
{A, chcall(A)}) "abstracts" A (finds a more general atom) while preserving the
characteristic path structure. However, in our example we have that:
chpath(chcall(A)) = chpath(msg{A, chcall(A)}) = chpath(p(Z)) = (() , {cl, c2}) 4:
chpath(A) and thus Lemma 4.11 is false.

Appendix B: Termination Property of chabse,v
In this appendix we prove a termination property of the abstraction operator

chabsp,v defined in Definition 3.6.
The following well-founded measure function is taken from Ref. 19) and can

also be found in the extended version of Ref. 51):

Definition B.1
Let Term and Atom denote the sets of terms and atoms, respectively. We define the
function scount: Term U Atom---, z~V counting symbols by:

scount(t) = 1 + scount(tl) + ... + scount(tn) if t = f(t~ tn), n > 0
scount(t) = 1 otherwise

Let the number of distinct variables in a term or atom t be vcount(t).
We now define the function hcount: Term U A t o m - - - , ~ by hcount(t) --

scount(t) - vcount(t).

The well-founded measure function hcount has the property that hcount(t) > 0

338 M. Leuschel and D. De Schreye

for any non-var iab le t. Also if A is an a tom strictly more general than B we have that
hcount(A) < hcount(B) (see Ref. 51)).

Definition B.2 (hveer , p ,u)

Let P be a normal program, U an unfolding rule and let T = < r~, ..., rn> be a finite
vector o f characterist ic trees. Also let S be a set o f atoms. Fo r every characterist ic tree
r~, let .A~, be defined as .A~, = { A I A ~ S /X chtree(~--A, P, U) = r;}.

We then define the weight vector o f S wrt T, P and U, denoted by hvecr,e,u(S),
as: hvecr,p,v(S) = <wl wn> where

w~ = ~a~.A, hcount(A) i f A~, 4:

Weight vectors are part ial ly ordered by the usual order relat ion among vectors
(i.e. <w~ w,> < <v~ v,> iff Wl -< Vl w, < v, and ff < ffiff ff --< r ~ ~ ft.
The set of weight vectors is well founded (no infinitely decreasing sequences exist)
because the weights o f the atoms are well founded.

Proposition B.3 (termination using c h a b s e , u)

Let P be a normal program, U an unfo ld ing rule and let T -- <r~ rn> be a finite
vector of characteris t ic trees.
For every finite set o f atoms A and S such that the characterist ic trees of their atoms
are in T and such that the abstraction opera tor chabse,v preserves the characterist ic
trees (in the sense that, for each A~ in Defini t ion 3.6, the characterist ic tree of msg(A~)
is exactly r) we have that one of the fo l lowing holds:

chabs~.,u(A U S) = A (up to var iable renaming) or
hvecr,e,v(chabse.u(A U S)) < hvecr,e,u(A).

Proof
Again, let (for any finite set o f atoms S and any characterist ic tree r) S~ be defined as
S~ = {A IA ~ S /X chtree(~---A, P, U) = r}. Also let hvecr,e,u(A) = <w~ w,) and
let hvecr,,,u(chabse,u(A 0 S)) = <v~ v,>. Then for every r~. ~ T we have two

cases:

{msg(A~, U S~,)} = A~, (up to var iable renaming). In this case the abstract ion
opera tor performs no modif icat ion for ri and v~ = we.
{M} = {msg(A~, 0 S~,)} 4= A~, (up to var iable renaming). In this case there are
three possibilities:

- - A~, = ~J. In this case v; < w~ -- ~ because the characterist ic tree o f M is
still re.

- - A~, = {A} for gome atom A. In this case M is strictly more general than
A (by defini t ion of msg because M :# A) and hence v~ < w; because M
has r~ as its characterist ic tree.

- - #(A~,) > 1. In this case M is more general (but not necessarily strictly more
general) than any atom in A~,) and v; < we because at least one atom is
removed by the abstaction opera tor and because M has r~ as its characteris-
tic tree.

Note that for three points above it was vital that the abstract ion opera tor
preserves the characterist ic trees.

Constrained Partial Deduction and the Preservation of Characteristic Trees 339

Note that V i C {1 n} we have that vi <-- wi and the new weight vector (vl vn>
will be comparable to the old vector (wl , wn>. So either the abstraction operator
performs no modification at all (and the weight vectors are identical) or the well-
founded measure function hvecr,e,v strictly decreases. []

So, if characteristic trees are preserved by the abstraction operator then termina-
tion of the general partial deduction Algorithm 2.9 is guaranteed. However, if charac-
teristic trees are not preserved by the abstraction operator then the above proof no
longer holds and termination is no longer guaranteed (even assuming a finite number
of characteristic trees, see Ref. 37))!

Appendix C: Lemmas for Proving Correctness of Constrained Partial
Deduction

We extend the concept of valid :D-instances to goals by stating that*-- Q'
valid~(,--- c [] Q) iff there exists a substitution 9" such that Q' = Qy and 7 sat c.

Lemma C.1 (persistence of validity)
Let G be an ordinary goal and CG a CLP-goal. Let G ~ validv(CG). Let CD be a
CLP=(79)-derivation for P U { CG} with :D-characteristic path p and resolvent CG'
and let D be an SLD-derivation for P U { G } with characteristic path p and resolvent
G'. Then G' E validv(CG').

Proof
First, note that if 0 sat c then for any set of variables V we have that 0 sat 3 v(C)

(and even that 0 Iv sat ~ v(C)).
Let us do the proof by induction on the length of D and CD (as they have the same
characteristic path they must be of the same length)
Induction Hypothesis: Lemma C. 1 holds for all derivations D with length < n.
Base Case: (D and CD have length 0). Trivial, as G = G' and R G = RG' .
Induction Step: (D and CD have length n + 1). Let G --~--Al Ak and CG --~---
c [] C1, ..., Ck. We know by definition that A; = C~7 where 9' sat9 c. Let A~ be the
selected literal and C = H ,-- BI , B q be the clause chosen for the first resolution step
of D and CD. Let (71 =~---(AI Ai-x, B~ Bq, A~+~ Ak)O be the goal after the
first resolution step in D where 0 be the first mgu in D (i.e. 0 is an idempotent and
relevant mgu of A; and H). Let CG~ =~---c' [] Q be the CLP-goal after the first
resolution step in CD, where Q = (C~ C~-1, Bt Bq, Ci+x Ck)Oc and where
0c is the first mgu in CD (i.e. 0c is an idempotent and relevant mgu of C~ and H) and
c' = ~vaTs~0)(c0c). By the (correct version) of the lifting lemma* we know that there
exists a substitution/3 such that C~0c/3 = Afl~ f o r j ~ {1 k}** and B~Oc/3 = B~O for
j ~ { 1 q}.
Now, we know that 7 satv c. Hence also yO satv c. Now as GY0 = C~t~d~ for all j we
know that yO and 0c/3 have the same effect on the variables in CG and thus in c. Hence
we also have that 0~/3 sat9 r By definition of satisfaction this is equivalent to saying
that /3 sat~ cOc. This also implies that /3 sat~ ~ (o)(COc). As G1 =*---Q/3 we have
established that G~ ~ validv(CGa). We can now use the induction hypothesis for the

* See e.g. the lifting lemmas in Refs. 27), 14) and 1), but also Ref. 43) whose lifting Lemma 4.1
is different from the incorrect one in Ref. 42).

** The lifting lemma only affirms this for j * i, but it is easy to see that we can always find a
which also satisfies the above for i = j (by simply applying the lifting lemma to clause C' in
which we add H as a body atom to the clause C) because C~O~ = HOc.

3dO M. Leuschel and D. De Schreye

remaining n steps of D and CD. []

The previous lemma talks about unrenamed goals and derivations in the original
(unrenamed) program. For the general correctness theorem we have to reason on
derivations of r e n a m e d goals in the (renamed) specialised program. The following
lemma affirms, under certain conditions, that for every renamed goal we might possibly
obtain in the specialised program we can always find some unrenamed goal of which
it is a valid renaming (i.e. satisfying Definition 4.10).

Lemma C.2
Let P ' be a part ial deduction of P wrt A, /3 and p~ such that A is a finite set of
constrained atoms and let G be an ordinary goal such that /3 U {G} is A , /)-covered.
Also let G" = p~(G), where p~ is a renaming function based on a. Let D" be a finite
SLD-derivation for P ' U {G'} leading to the resolvent R G ' . Then there exists an
ordinary goal R G and a renaming function p~ based on a such that RG" = p'~(RG)

and such that R G is A , 79-covered.

Proof
First note that, if p'~(RG) is defined, R G must by definition be .,4, D-covered.
We can prove the lemma by induction on the length of D'.
Induction Hypothesis: Lemma C.2 holds for all derivations D with length <~ n.
Base Case: (D ' has length 0). Trivial, we simply take R G = G and p~ = p~.
Induction Step: (D" has length n + 1). Let G =~-- AI At Ak and let p'~(Ai) be
the literal in G ' = O's(G) which is selected by D'. Let C ' = a(e [] A)O ,-- p~(e" [] B1,

.... Bq) with c D A ~ .4 be the clause in P ' used in the first resolution step of D'. Let
G[=~-(p~(A1) p'~(A~-~), p~(B1) p~(Bq), p'~(Ai+l) p'~(Ak))a be the goal
obtained after the first resolution step for G ' in D ' and let G1 ='---(A~ Ai_~, B~, ...,
Bq, Ai+l A k) (7 where a is the first m g u in D'. We will show that it is possible to
rename G1 into G~'.
Because p'~(G) is defined we know that true [] A t is a 79-instance of c [] A. Further-
more, by Lemma 4.18 this means that A t ~ val idv(e [] A). Let 6" = AO *--- e' [] B~ ,

Bq be the unrenamed version of C ' in ft. By construction of t~, we know the there is
a CLP=(~D)-derivation for P U {~--e G A} with computed answer 0 and resolvent c'
[] Bx Bq. We can now apply Lemma C. 1 (persistence of validity) to deduce that the

atoms ~-- Baa, ..., Bq~ ~ valid9(~--- e' = Bx Bq). This implies that each B~a is a valid
7)-instance of the corresponding constrained body atom of C', i.e. B~a ~ valid9

(3wrs(B,)(e') [] Bi). Now as each constrained body atom ~vars(8,)(e') [] Bi of C is in
turn an instance of a constrained atom CA~ in .4 with p~(B~) -- a(CAi)I3~ (because/3
is -4, 79-covered and by definition of a renaming function), we simply construct a
renaming p~ such that P~(B~a) -- p~(B~)cr and such that p'd(A~a) -- p'~(A~)6. We thus
have constructed a renaming p~ and a goal G~ such that p~((71) -- G~' and we can apply
the induction hypothesis for the remaining n steps of D'. []

One might wonder why three different renaming functions (p~, p~, p~) are
needed in the above lemma. Usually the top-level goal G' will be renamed using p~ and
one might think that it is possible to prove that R G ' is the renaming of some goal R G

under p~, i.e. R G ' = p~(RG) . Unfortunately, in general, no such goal R G exists! The
reason is that in the course of performing resolution steps atoms might become more
instantiated, meaning that the renaming function p~ would, based on this instantiation,
rename differently. Take for example the set -4 = { true [] p(X) , true [] p(a)} of

Constrained Partial Deduction and the Preservation of Characteristic Trees 341

unconstrained atoms, the goal G - - , - - p (X) , p (X) and take a such that or(true []
p (X)) = p ' (X) , or(true [] p(a)) = p~. Then p~(G) =~--p ' (X) , p ' (X) . Also assume
that p~(p(a)) : p~. Now suppose that the clause p'(a) ~-- is in the partial deduction P '
wrt an original P and the set .4. Then after one resolution step for P ' I) p~(G) we
obtain the goal ~---p'(a) and for no goal RG we have that p~(RG) =~--p'(a). Indeed
p~(,-- p(a)) = ~-- pa ~ ~-- P'(a). However, we can construct another renaming function
p: such that p~(~--p(a)) = ~--p'(a). So Lemma C.2 holds (and three, possibly distinct
renaming functions are needed if we want to repeatedly apply the lemma).

Appendix D: Terminat ion of Constra ined Part ia l Deduct ion
In this appendix we prove Proposition 5.18.

Proposition 5.18
If the set of different characteristic trees is finite and the unfolding rule U is stable, then
Algorithm 5.16 terminates.

Proof
The proof is very similar to the one in Appendix B (and stability of the unfolding rule
ensures that the characteristic tree of the generalisation of A~ is exactly r). First we
have to extend the definition of hcount in Appendix B to constained atoms: hcount(c
[] A) = hcount(A). Then we extend the definition of hvecr,p,u to sets of constrained
atoms by taking, for each characteristic tree r, hcount of the normalined constrained
atoms only (and ~ if there are none). Note that after the first step of the algorithm, .Ai
will only contain normalised constrained atoms. We now prove in a very similar way
to Proposition B.3 that for every finite set of constrained atoms Newi and A ~, where we
define New; = {CA ~ Newzl chtree(CA, P, U) 4= ~}, we have the following:

either chabsce,v(A~ U New~.) = ,4~
or hvecr w,o(chabscp,u(A ~ U New;)) < hvecr,e,u(A~).

This is sufficient to prove termination, as constrained atoms with empty characteristic
trees are kept unchanged by chabscp,u and do not lead to further constrained body
atoms that have to be added. In other words, if we reach a point where chabsce,u(.A~
U N e w [) = A~, then at the next step of the Algorithm 5.16 we reach a point where
A/+x -- chabsce,u(Ai+l U NeWi+l). D

Michael Leuschel, Ph.D: He currently works as a postdoctoral
researcher at the Department of Computer Science of the Katholieke
Universiteit Leuven. His present research focuses on program transfor-
mation and specialisation for declarative programming languages.
Other research interests include abstract interpretation, optimised integ-
rity checking and meta-programming. He received his degree
("Licence") in Computer Science from the Universit6 Libre de Brux-
elles in 1990 and a Master of Artificial Intelligence from the Katholieke
Universiteit Leuven in 1993, where he also received his Ph.D in 1997.

3d2 M. Leuschel and D. De Schreye

Danny De Sehreye, Ph.D: He is a professor at the Department of
Computer Science of the Katholieke Universiteit Leuven and a senior
research associate of the Belgian National Fund for Scientific Research.
He obtained his Ph.D from K.U. Leuven in 1983, on the topic of
operator algebras. His research interests are in the field of Logic
Programming, and include program transformation and termination,
knowledge representation and reasoning, and constraint programming.

