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Abstract We propose a technique for handling recursive axioms in 
deductive databases. More precisely, we solve the following problem: 

Given a relational query including virtual relations defined from 
axioms (Horn clauses, with variables in the conclusion predefined in the 
hypotheses), which can be recursive, how to translate this query into a 
relational program, i. e. a set of relational operations concerning only real 
relations (not virtual). Our solution has the following properties: 

the program to evaluate the query always terminates, 
the relational program is produced by a pure compilation of  a source 
query and of  the axioms, and is independent of  the data values (there 
is no run-time), 
the relational operations are optimized: they focus towards the 
computation of  the query, without needless computations. 

As far as we know, the Alexander Method is the first solution exhibiting all 
these properties. 
This work is partly funded by Esprit Project 112 (KIMS). 

Keywords: R~cursion, Logic, Deductive Database, Saturation 

w I n t r o d u c t i o n  
Given a relat ional  query inc luding virtual relat ions defined from axioms 

(Horn  clauses, with variables in the conclus ion  predefined in the hypotheses),  

which can be recursive, how to translate this query into a relational program, 
i. e. a set o f  relat ional  opera t ions  concerning  only  real (not  virtual) relations. 

* This work is partly funded by Esprit Project 112 (KIMS). 
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This problem is central in the research on deductive databases 9) and more 
generally in the domain of  the relationship between logic and database? ) 

The objective is to avoid, given a very large deductive database, to just 
store data as Prolog clauses, since one knows that the backtrack policy of  Prolog 
performs the operations one tuple at a time, with the worst case for join 
operations, i. e. nested loops. 

The idea is to take advantage of  the optimization techniques developed 
for database management systems. We want to use these techniques, and only 
these techniques, to access data, instead of backtracking. Numerous authors 
have addressed these problems, but no complete solutions has been published at 
present time. 

In Ref. 2), one distinguishes two choices for non-recursive axioms: 
"enumeration",  consisting of  expanding the query down to basic (real) 
relational expressions. 
the other one, consisting of  creating a sequence of  calls to the database. 
These two approaches are not able to deal with recursive axioms since 

they yield either infinite expressions or infinite calls. 
Several authors give partial solutions for some subsets of  recursions, a's) 

Other authors solve the whole problem, 9' 10,12) but at the price of  the generation 
of  a lot of useless facts, due for instance to a "forward chaining" strategy, 
without focusing on the very query. 

A rigorous formalization of the problem, and a partial solution can be 
found in Ref. 8). 

The solution detailed in this paper is as following: 

(1) The initial query is first considered as a goal "~ la Prolog", to be solved in 
backward chaining. 

(2) This query is t rans la ted  into a set of  clauses to be processed in forward 
chaining. 

(3) This last set of  forward clauses is itself translated into pure relational 
operations. 

This last transformation (point 3) was studied earlier in our group in the 
framework of  an inference engine: BOUM, 1~ which uses what we call a Delta- 
Driven Mechanism, to s a t u r a t e  in forward chaining a set of  Horn clauses. 
BOUM compiles strictly (gtatically) a set of  Horn clauses into a relational 
program which cyclically saturates the set of  conclusions. Automatic elimina- 
tion of duplicates en~sures termination of  the saturation. 9) Some examples of this 
transformation are given in annex to this paper. 

The translation from backward chaining into forward chaining (point 2) 
is the subject of  this paper, and we call it the " A L E X A N D E R  METHOD".  Why 
this name? 

The problem of  recursive axioms in deductive database is in some sort 
the Gordian knot  of  databases. For  instance, the naive and native method to 
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deal with recursion, i. e. backward chaining with backtrack and several stacks, 
really looks like a knot. 

On the contrary, forward chaining exhibits many interesting properties of  
simplicity. But forward chaining has the drawback of  computing all the possible 
answers to all possible queries, without focusing on the minimal calculus to 
compute the answer to one particular query. 

For  instance if we want to know the ancestors of  someone, it is useless 
to compute first all the ancestors of everybody, then to retain just the ancestors 
of this person. 

The idea will be, for a given query, to compute a new set of  clauses, 
which, when processed in forward chaining, will produce only the useful 
information. In some sense, we will use forward chaining to s imulate backward 
chaining. 

To cut the Gordian knot, we shall cut a recursive goal into two pieces: 
one problem 
solutions. 

For  instance, the goal Ancestor(Jean, x) will be cut into: 
- - a  literal like Pb_Ancestor(Jean) which can be interpreted as "The problem of  
finding the successors of  Jean exists", 
- -  literals like Sol_Ancestor(Jean, Louis) which can be interpreted as "Louis  is 
a solution to the problem Pb_Ancestor(Jean)". 

To go from backward chaining to forward chaining, we need clauses 
which will handle Pb_Ancestor and Sol__Ancestor literals. 

Examples:  

Pb_Ancestor(x), Q ~ R 
"if  there is the problem of  finding the successors of  x, and if Q is true, 
then ..." 
A --* Sol_Ancestor(x, y) 
" i f  A is true, then y is a solution" 

With these intuitive ideas in mind, let us process an example by hand: the 
goal Ancestor(Jean, x). 

The axioms are:. 

(1) Father(x, y) ~ Ancestor(x, y) 
(2) Father(x, y), Ancestor(y, z) ~ Ancestor(x, z) 

The rule (1) gives: 

(1.1) Pb_Ancestor(x), Father(x, y) ~ Sol_Ancestor(x, y) 
"If  there is the problem of  finding the successors of  x, and if x is the 
father of  y, then a solution is y." 

The rule (2) gives: 
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(2.1) Pb_Ancestor(x), Father(x, y), Ancestor(y, z) --~ Sol_Ancestor(x, z) 
"If  there is the problem of  finding the successors of  x, and if x is the 
father of  y, and if y is an ancestor of  z, then a solution is z." 

But this rule contains itself a goal Ancestor(y, z), thus it must itself be transform- 
ed. This goal will itself be cut into two pieces, yielding two new rules : (2.2) 
and (2.3). 

(2.2) Pb_Ancestor(x), Father(x, y) --~ Pb_Ancestor@) 
"If  there is the problem of  finding the successor of  x, and if x is the 
father of  y, then there exists the problem of  finding the successor of y". 

This rule generates new Pb_Ancestor, which, through for instance rule 1.1), will 
generate new Sol_Ancestor. 

(2.3) Sol_Ancestor(y, z) --~ Sol_Ancestor(x, z) 

which expresses that the solutions to the "y" problem are also solutions to the 
"x" problem. 

In fact, this rule (2.3) is not correct, since x appears in conclusion and not 
in hypotheses. Thus, we must transmit information x between rules (2.2) and 
(2.3). For that purpose, we create a new predicate named context or continuation. 

The final version of  (2.2) and (2.3) is now: 

(2.2') Pb_Ancestor(x), Father(x, y) --~ Pb_Ancestor(y), Cont(y, x) 
(2.3') Sol_Ancestor(y, z), Cont(y, x) ~ Sol_Ancestor(x, z) 

In a second step, as explained in Annex 1, such forward rules can be 
translated into pure relational programs. 

w The Transformation Algorithm 
Let E be a set of  Horn clauses such that variables in the conclusion also 

appear as variables in the hypotheses. 
The names of  the literals are parti t ioned into two classes: 
the ones to be evaluated in forward chaining (FCL) 
the ones to be evaluated in backward chaining (BCL) 

We want to sa tu ra te  in this set of  clauses only the literals belonging to 
FCL. 

Example: 

The set E consists of: 

P(x) Ancestor(x, y) --~ OK(y) 
Father(x, y) --~ Ancestor(x, y) 
Father(x, y) Ancestor(y, z) --~ Ancestor(x, z) 

FCL = P, OK, Father 



The Alexander Method 277 

BCL -- Ancestor 

We want to find all the OK literals, without finding all the Ancestors, but 
only the ones needed for the computa t ion  of  the OK literals. 

N o t e :  This is a superset of  the problem of querying a deductive database. 
Example, 

Consider the query: find all the successors of  Jean? 
We associate to this query a new clause Ancestor(Jean, x) ~ Answer(x), 

and we declare that the literal Ancestor belongs to BCL and Answer to FCL.  

The detail of  the t ransformation algorithm follows: 

Notations: 

X, XI ,  Y, Y1, Z, Z1, W represent sequences of  literals in clauses. 
A and B represent individual literals. 

The transformation process concerns a couple of  clauses: 
- -  the first one, noted as C1, uses a BCL literal in hypothesis, i. e. is of  

the form: 

C1 = X A Y ~ Z where A belongs to BCL 

- -  the second one, noted as C2, has a BCL literal as a conclusion, i. e. is 
of  the form: 

C2 = W ~ B where B belongs to BCL 

The transformation happens if and only if literals A and B are unifiable. 
I f  s is the corresponding substitution, let 

Goa l  = s(A) -- s(B) 

Let g be a symbol coding Goal  in a unique manner  (a number  or a string 
for instance). This coding is explained in the next paragraph. 

From C1 and C2, we first build two rules, by applying the substitution 
s to them: 

s(C1) = X1 Goal  Y1 ~ Z I  
and s(C2) = Wl  ~ Goal  

We cut s(C1) into two new rules: 

Cl_left_g = X1 ~ Pb__g(iv) Cont_Cl_g(iv,  cv) 
Cl_right_g = Sol_g(iv, ov) Cont  CLg( iv ,  cv) Y1 ~ Z1 

This needs some explanation of  the notations. 
" C l _ l e f t ~ "  represents a symbol built by replacing C1 and g by their 

string value. 
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A third new rule is obtained from s(C2): 

C2_def_g = Pb_g(iv) Wl  ~ Sol_g(iv, ov) 

The meanings of  iv, ov, cv are the following: 

iv: set of  the variables common to X1 and Goal (input variables) 
ov: set of  the variables common to Goal and (Y1 or Z1) and not in 

iv (output variables) 

cv: set of  the variables common to X1 and (Y1 or Z1) but not belonging 

to Goal  (continuation variables) 

These new three rules (Cl_left_g, Cl_right~g, C2_def_g) are added to the 

set E. 
Then a new transformation process is attempted, by choosing another 

couple of rules C1 and C2 in E. 

The process terminates when no new rules can be generated. 

Proofs of  termination, correctness and completeness of the transformation have 

been given in Ref 6). 

w Computation of the Unique Name of a Goal 
During the transformation between: 

X A Y ~ Z  

and W ~ B, 
we must give a unique name g to the unifier of  A and B. 

Moreover, we must characterize the goal according to the input and 

output status of  its variables. For instance: 

- -  in P(x) Ancestor(x, y) ... ~ ... 
the goal is to compute the successors of  x 

- -  in P(x, y) Ancestor(x, y) ... ~ ... 

the goal is to check if x is the ancestor of  y 

In the first case, the name of  the problem will be Ancestor.l.0. In the 

second case, it will be Ancestor.l.1. 
We put a "1" for the input parameters and a "0" for the output parame- 

ters. 
If  a literal has n arguments, it can generate up to 2 power n goal names. 

One can differentiate the goals not only by the input /output  mode of  the 

parameters, but also by the presence and value of  constants. 

Example: 

RI ---- X(y) A("max",  x, y) ~ Z(x, y) 

R2 = W(a, b) ~ A(a, b, "joe") 
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Unification gives: 

a ---- "max",  x ---- b, y = "joe" 

and the rules after substitution are: 

X(" joe")  A("max",  x, " joe")  -~ Z(x, "joe") 
W("max" ,  b) -~ A("max",  b, "joe") 

We can incorporate the constant values into the name of  the goal, which 
becomes, with evident notations: 

A.  max .  O. j o e  

Here iv ( input variables) is empty and ov (output variables) corresponds 
to x (and b). 

Consequently,  the final transformed rules are: 

X(" joe")  -~ Pb_A. m a x .  O. j o e  Cont R1 A. m a x .  O. j o e  

Sol_A. m a x .  O. j o e ( x )  Cont_Rl_A.  m a x .  O. j o e  -~ Z(x, "joe") 
Pb_A. m a x .  O. j o e  W("max" ,  b) --~ Sol_A. m a x .  O. j oe (b )  

Here, we have performed a precompilat ion of  the unification, by propagat ing the 
constants into the rules, and by making them implicit  in the predicate names. 

Note: This strategy may not always be interesting. We could just consider that 
constants in hypotheses are input variables, and constants in conclusions are 
output  variables. 

w A Detai led Example of  Transformation 
Let us consider our standard example: 

RA = P(a) A(a, b) -~ OK(b)  
RB = F(x, y) --~ A(x, y) 
RC = F (x ,y )  A ( y , z ) - ~  A(x , z )  

We shall follow the steps and notations of  Section 2. 

First step 

C1 = RA = P(a) A ( a , b ) - - ~  OK(b) 
C2 = RB -- F(x, y) -~ A(x, y) 

The substitution s is (x = a, y = b) 

Goal  = A(a, b) = A(x, y) 

i v = a = x  
o v = b = y  
cv = empty 



280 J. Rohmer, R. Lescoeur and J. M. Kerisit 

The goal name g is A.1.0 

Transformed rules: 

RA_left_A.1.0 = P(a) ~ Pb_A.1.0(a) Cont_RA_A.1.0(a) 
RA_right A.1.0 = Sol_A.1.0(a, b) Cont RA_A.1.0(a)-~ OK(b) 
RB_def_A. 1.0 : Pb_A. 1.0(x) F(x, y) ~ Sol_A. 1.0(x, y) 

Second step 
Another transformation is possible between rules RA and RC. 

CI = R A = P ( a )  A ( a , b ) - - ,  OK(b) 
C 2 = R C =  F(x ,y )  A(y , z )  ~ A ( x , z )  

Substitution s = ( a  = x, b = z) 

Goal  name g = A. 1.0 
It is the same goal name as in the first step, thus rule RA needs not to be 

transformed again. But rule RC is transformed, giving: 

RC_def_A.1.0 = Pb A.l.0(x) F(x, y) A(y, z) --~ Sol_A.1.0(x, z) 

This rule contains A in hypothesis, and must be cut ! To shorten the 
names, let us give it the name RD in place of RC_def_A.1.0 (in practice, all 
these names are internally coded, as in the examples shown in Annex 2). 

This RD rule must be transformed with rules RB and RC, as what 
happened with RA in the first step. In both cases, the goal name g is still A.1.0, 
thus RB and RC need not be transformed again. But rules RD has to be transform- 
ed: 

i v = y  o v = z  c v = x  

RD_left A. 1.0 = Pb_A. 1.0(x) F(x, y) --* PB_A. 1.0(y) Cont_RD_A. 1.0(y, x) 
RD right_A.l.0 = Sol_A. 1.0(y, z) Cont_RD_A. 1.0(y, x) ~ Sol_A. 1.0(x, z) 

Finally, we have replaced the set of  clauses (RA, RB, RC) by a set of  five 
forward rules: 

RA_left_A. 1.0 
RA_right_A. 1.0 
RB_def_A. ~.0 
RD_left_A. 1.0 
RD_right__A. 1.0 

w Conclusion 
We think that the Alexander Method propose the first complete solution 

to transform by a strict compilation process recursive axioms into pure 
relational algebra operations. 

Since the submission of the paper, other methods have appeared (Refs. 1, 
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7, 13)) wh ich  dea l  wi th  the  same p rob lem;  as far as we know,  on ly  the last  one  

has  been implemented .  

As  for  any  c o m p i l i n g  techniques ,  there  are m a n y  o p p o r t u n i t i e s  for  local  

and  g loba l  o p t i m i z a t i o n  o f  source and  objec t  code.  Th i s  w o r k  is n o w  under  

progress.  

The  interest  o f  the A l e x a n d e r  M e t h o d  is to t r ans fo rm a complex  p r o b l e m  

in to  s imple r  ones  ( fo rward  cha in ing ,  r e l a t i ona l  a lgebra) .  I t  a l lows  to a d d  new 

faci l i t ies  to  exis t ing software packages  without  modi fy ing  them: a d d i n g  back-  

w a r d  cha in ing  to an inference engine  wi th  deduc t ive  faci l i t ies ,  and  a d d i n g  

recursive ax ioms  to c lass ical  D B M S  ... 
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A N N E X  1 
Transformation of a set of forward rules into relational operations: 

Delta  driven mechanism 

Saturation of  a set of  rules is processed as follows: 

�9 INIT 
- -  for each rule R: P1 . . . .  , P n - ~ C ,  

one computes: ,dCR -- P1 join  P2 ... jo in  Pn 
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- -  for each literal C in conclusion of  at least 1 rule, 
one computes AC = Un i o n  of  all A C R  

where C is a conclusion of R 

�9 E N C O R E  

- -  for each rule R: P1, ..., Pn  --, C, 
one computes: 

_CRI  - P1 jo in  P2 ... j o in  Pn 

_CRi  : P1 jo in  ... j o in  APi  ... j o in  Pn  

_ C R n  --- P1 jo in  P2 ... j o in  A P n  
- - t h e n _ C R  = U n i o n  of ACRi  
- -  for each literal C in conclusion of  at least 1 rule, 

one computes: 
AC = U n i o n  of all A C R  

where C is a conclusion of  R 
AC = C Difference AC 

C =  C U n i o n A C  

�9 T E S T  
if not  all AC are empty goto E N C O R E  else FIN. 

A N N E X  2 
E x a m p l e s  o f  t h e  A l e x a n d e r  T r a n s f o r m a t i o n  o n  s o m e  d i f f e r e n t  r u l e  b a s e s  

1) "Ancestor" defined as follows: 

Father(x, y) --, Ancestor(x, y) 
Father(x,  y), Ancestor(y, z) --~ Ancestor(x,  z) 

with a goal rule: 

Ques(x), Ancestor(x, y) ---, Ancestor-of-ques(x, y) 

After t ransformations (seen in fourth part  of  the article), the  rules to be saturated are: 

r l :  Ques(x) --- Pb_Ancestor . l .0(x) ,  Cont  0(x) 
r2: Sol_Ancestor. l .0(x,  y), Cont  0(x) -~ Ancestor-of-ques(x, y) 
r3: Pb_Ancestor . l .0(x) ,  Father(x, y) --~ Sol_Ancestor. l .0(x,  y) 
r4: Pb_Ancestor .  1.0(x), Father(x, z) --, Pb_Ancestor.  1.0(z), Cont_ l (z ,  x) 
rS: Sol_Ancestor. l .0(y,  z), Cont_ l (y ,  x) ~ Sol_Ancestor.l .0(x, z) 

(See in annex 3, an example of saturat ion of this rule Base on a Facts 
Base) 

2) "Ancestor" defined as follows: 

Father(x,  y) --, Ancestor(x, y) 
Ancestor(x, y), Ancestor(y, z) --, Ancestor(x, z) 

with the same goal rule as in 1). 
After t ransformations,  the rules will be: 
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Ques(x) ~ Pb_Ancestor.l.0(x), Cont 0(x) 
Sol_Ancestor.l.0(x, y), Cont 0(x) --~ Ancestor-of-ques(x, y) 
Pb_Ancestor. 1.0(x), Father(x, y) ~ Sol_Ancestor. 1.0(x, y) 
Pb_Ancestor. 1.0(x) ~ Pb_Ancestor. 1.0(x), Cont_l(x) 
Sol_Ancestor. 1.0(x, y), Cont_l (x) --~ Pb_Ancestor. 1.0(y), Cont_2(y, x) 
Sol_Ancestor.l.0(y, z), Cont 2(z, x ) ~  Sol_Ancestor.l.0(x, z) 

After some evident simplifications on Cont 0 and Cont 1, the rule Base to be saturated 
will be: 

r l: Ques(x) ~ Pb_Ancestor.l.0(x) 
r2: Sol _Ancestor.l.0(x, y), Pb_Ancestor.l.0(x) ~ Ancestor-of-ques(x, y) 
r3: Pb Ancestor.l.0(x), Father(x, y ) ~  Sol_Ancestor.l.0(x, y) 
r4: Sol_Ancestor. 1.0(x, y), Pb_Ancestor. 1.0(x) 

Pb_Ancestor.l.0(y), Cont_2(y, x) 
r5: SoYAncestor.l.0(y, z), Cont 2(z, x ) ~  Sol_Ancestor.l.0(x, z) 

(NB: r2 and r4 have the same hypotheses and can be replaced by: 

r6: Sol_Ancestor. 1.0(x, y), Pb_Ancestor. 1.0(x)---~ 
Ancestor-of-ques(x, y), Pb_Ancestor.l.0(y), Cont 2(y, x) 

but it's not the purpose of this article to develop such optimizations. 

3) "Family Friends" defined as: 

Friend(x, y) ~ Ancfr(x, y) 
Father(x, y), Ancfr(y, z) ~ Ancfr(x, z) 

with the goal rule: 

Ancfr(leo, y) ~ Fam-friend(y) 

where leo is a constant. 

The transformed rule Base will be: 

rl: ~ Pb_Ancfr.l.0(/eo) 
r2: Sol_Ancfr. 1.O(leo, y) ~ Fam-friend(y) 
r3: Pb Ancfr.l.0(x), Friend(x, y) ~ Sol_Ancfr.l.0(x, y) 
r4: Pb Ancfr.l.0(x), Father(x, y) --~ Pb_Ancfr.l.0(y), Cont 0(y, x) 
r5: Sol_Ancfr.l.0(y, z), Cont 0(y, x) ---> Sol_Ancfr.l.0(x, z) 

A N N E X  3 
Execution of example of 1 in annex 2. 

The Facts base is: 

Father(remi, lisa) 
Father(remi, julie) 
Father(jeanic, remi) 
Father(paul, jeanic) 
Father(charles, paul) 
Father(oto, rita) 
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Father(rita, julie) 

Ques (paul) 
Ques (oto) 

From 1), the executable Rules, with an obvious renumbering, will be: 

r l: Ques(x) ~ Pb_Ancestor.l.0(x) 
r2: Sol_Ancestor.l.0(x, y), Ques--~ Ancestor-of-ques(x, y) 
r3: Pb Ancestor.l.0(x), Father(x, y) 

Sol_Ancestor.l.0(x, y), Pb_Ancestor.l.0(y), ConLl(y ,  x) 
r4: Sol_Ancestor.l.0(y, z), Cont_l(y, x)--~ Sol_Ancestor.l.0(x, z) 

Delta-saturation on these rules gives the following intermediate results, cycle after cycle: 

Cycle 1: 
rl: 

Cycle 2: 
r3: 

Cycle 3: 
r2: 

r3: 

Cycle 4: 
r3: 

r4: 

Cycle 5: 
r2: 

r4: 

Cycle 6: 
r4: 

Cycle 7: 
r2: 

Pb Ancestor.l.0 : (oto), (paul) 

Sol_Ancestor.l.0 : (paul jeanic), (oto rita) 
Pb_Ancestor.l.0 : (jeanic), (rita) 
Cont_l : (jeanic paul), (rita oto) 

Ancestor-of-ques : (paul jeanic), (oto rita) 

Sol Ancestor.l.0 : (jeanic remi), (rita julie) 
Pb Ancestor.l.0 : (remi), (julie) 
Cont_l : (remi jeanic), (julie rita) 

Sol_Ancestor.l.0 : (remi lisa), (remi julie) 
Pb_Ancestor.l.0 :(lisa) 
Cont_l : (lisa remi), (julie remi) 

Sol Ancrstor.l.0 : (paul remi), (oto julie) 

Ancestor-of-ques : (paul remi), (oto julie) 

Sol_Ancestor.l.0 : (jeanic lisa) (jeanic julie) 

Sol Ancestor.l.0 : (paul lisa), (paul julie) 



The Alexander Method 285 

Cycle 8: 

END. 

Ancestor-of-ques : (paul lisa), (paul julie) 

Nothing New To Be Produced ... 


