
New Generation Computing, 4 (1986) 273-285
OHMSHA, LTD. and Springer-Verlag

�9 OHMSHA, LTD. 1986

The Alexander M e t h o d - - A Technique for The
Processing of Recursive Axioms in Deductive
Databases*

J. R O H M E R , R. L E S C O E U R and J. M. K E R I S I T
Centre de Recherche Bull
6~ Route de Versailles, 78430 Louveciennes, France.

Received 29 July 1985
Revised manuscript received 26 June 1986

Abstract We propose a technique for handling recursive axioms in
deductive databases. More precisely, we solve the following problem:

Given a relational query including virtual relations defined from
axioms (Horn clauses, with variables in the conclusion predefined in the
hypotheses), which can be recursive, how to translate this query into a
relational program, i. e. a set of relational operations concerning only real
relations (not virtual). Our solution has the following properties:

the program to evaluate the query always terminates,
the relational program is produced by a pure compilation of a source
query and of the axioms, and is independent of the data values (there
is no run-time),
the relational operations are optimized: they focus towards the
computation of the query, without needless computations.

As far as we know, the Alexander Method is the first solution exhibiting all
these properties.
This work is partly funded by Esprit Project 112 (KIMS).

Keywords: R~cursion, Logic, Deductive Database, Saturation

w I n t r o d u c t i o n
Given a relat ional query inc luding virtual relat ions defined from axioms

(Horn clauses, with variables in the conclus ion predefined in the hypotheses),

which can be recursive, how to translate this query into a relational program,
i. e. a set o f relat ional opera t ions concerning only real (not virtual) relations.

* This work is partly funded by Esprit Project 112 (KIMS).

274 J. Rohmer, R. Lescoeur and J. M. Kerisit

This problem is central in the research on deductive databases 9) and more
generally in the domain of the relationship between logic and database?)

The objective is to avoid, given a very large deductive database, to just
store data as Prolog clauses, since one knows that the backtrack policy of Prolog
performs the operations one tuple at a time, with the worst case for join
operations, i. e. nested loops.

The idea is to take advantage of the optimization techniques developed
for database management systems. We want to use these techniques, and only
these techniques, to access data, instead of backtracking. Numerous authors
have addressed these problems, but no complete solutions has been published at
present time.

In Ref. 2), one distinguishes two choices for non-recursive axioms:
"enumeration", consisting of expanding the query down to basic (real)
relational expressions.
the other one, consisting of creating a sequence of calls to the database.
These two approaches are not able to deal with recursive axioms since

they yield either infinite expressions or infinite calls.
Several authors give partial solutions for some subsets of recursions, a's)

Other authors solve the whole problem, 9' 10,12) but at the price of the generation
of a lot of useless facts, due for instance to a "forward chaining" strategy,
without focusing on the very query.

A rigorous formalization of the problem, and a partial solution can be
found in Ref. 8).

The solution detailed in this paper is as following:

(1) The initial query is first considered as a goal "~ la Prolog", to be solved in
backward chaining.

(2) This query is t rans la ted into a set of clauses to be processed in forward
chaining.

(3) This last set of forward clauses is itself translated into pure relational
operations.

This last transformation (point 3) was studied earlier in our group in the
framework of an inference engine: BOUM, 1~ which uses what we call a Delta-
Driven Mechanism, to s a t u r a t e in forward chaining a set of Horn clauses.
BOUM compiles strictly (gtatically) a set of Horn clauses into a relational
program which cyclically saturates the set of conclusions. Automatic elimina-
tion of duplicates en~sures termination of the saturation. 9) Some examples of this
transformation are given in annex to this paper.

The translation from backward chaining into forward chaining (point 2)
is the subject of this paper, and we call it the " A L E X A N D E R METHOD". Why
this name?

The problem of recursive axioms in deductive database is in some sort
the Gordian knot of databases. For instance, the naive and native method to

The Alexander Method 275

deal with recursion, i. e. backward chaining with backtrack and several stacks,
really looks like a knot.

On the contrary, forward chaining exhibits many interesting properties of
simplicity. But forward chaining has the drawback of computing all the possible
answers to all possible queries, without focusing on the minimal calculus to
compute the answer to one particular query.

For instance if we want to know the ancestors of someone, it is useless
to compute first all the ancestors of everybody, then to retain just the ancestors
of this person.

The idea will be, for a given query, to compute a new set of clauses,
which, when processed in forward chaining, will produce only the useful
information. In some sense, we will use forward chaining to s imulate backward
chaining.

To cut the Gordian knot, we shall cut a recursive goal into two pieces:
one problem
solutions.

For instance, the goal Ancestor(Jean, x) will be cut into:
- - a literal like Pb_Ancestor(Jean) which can be interpreted as "The problem of
finding the successors of Jean exists",
- - literals like Sol_Ancestor(Jean, Louis) which can be interpreted as "Louis is
a solution to the problem Pb_Ancestor(Jean)".

To go from backward chaining to forward chaining, we need clauses
which will handle Pb_Ancestor and Sol__Ancestor literals.

Examples:

Pb_Ancestor(x), Q ~ R
"if there is the problem of finding the successors of x, and if Q is true,
then ..."
A --* Sol_Ancestor(x, y)
" i f A is true, then y is a solution"

With these intuitive ideas in mind, let us process an example by hand: the
goal Ancestor(Jean, x).

The axioms are:.

(1) Father(x, y) ~ Ancestor(x, y)
(2) Father(x, y), Ancestor(y, z) ~ Ancestor(x, z)

The rule (1) gives:

(1.1) Pb_Ancestor(x), Father(x, y) ~ Sol_Ancestor(x, y)
"If there is the problem of finding the successors of x, and if x is the
father of y, then a solution is y."

The rule (2) gives:

276 J. Rohmer, R. Lescoeur and J. M. Kerisit

(2.1) Pb_Ancestor(x), Father(x, y), Ancestor(y, z) --~ Sol_Ancestor(x, z)
"If there is the problem of finding the successors of x, and if x is the
father of y, and if y is an ancestor of z, then a solution is z."

But this rule contains itself a goal Ancestor(y, z), thus it must itself be transform-
ed. This goal will itself be cut into two pieces, yielding two new rules : (2.2)
and (2.3).

(2.2) Pb_Ancestor(x), Father(x, y) --~ Pb_Ancestor@)
"If there is the problem of finding the successor of x, and if x is the
father of y, then there exists the problem of finding the successor of y".

This rule generates new Pb_Ancestor, which, through for instance rule 1.1), will
generate new Sol_Ancestor.

(2.3) Sol_Ancestor(y, z) --~ Sol_Ancestor(x, z)

which expresses that the solutions to the "y" problem are also solutions to the
"x" problem.

In fact, this rule (2.3) is not correct, since x appears in conclusion and not
in hypotheses. Thus, we must transmit information x between rules (2.2) and
(2.3). For that purpose, we create a new predicate named context or continuation.

The final version of (2.2) and (2.3) is now:

(2.2') Pb_Ancestor(x), Father(x, y) --~ Pb_Ancestor(y), Cont(y, x)
(2.3') Sol_Ancestor(y, z), Cont(y, x) ~ Sol_Ancestor(x, z)

In a second step, as explained in Annex 1, such forward rules can be
translated into pure relational programs.

w The Transformation Algorithm
Let E be a set of Horn clauses such that variables in the conclusion also

appear as variables in the hypotheses.
The names of the literals are parti t ioned into two classes:
the ones to be evaluated in forward chaining (FCL)
the ones to be evaluated in backward chaining (BCL)

We want to sa tu ra te in this set of clauses only the literals belonging to
FCL.

Example:

The set E consists of:

P(x) Ancestor(x, y) --~ OK(y)
Father(x, y) --~ Ancestor(x, y)
Father(x, y) Ancestor(y, z) --~ Ancestor(x, z)

FCL = P, OK, Father

The Alexander Method 277

BCL -- Ancestor

We want to find all the OK literals, without finding all the Ancestors, but
only the ones needed for the computa t ion of the OK literals.

N o t e : This is a superset of the problem of querying a deductive database.
Example,

Consider the query: find all the successors of Jean?
We associate to this query a new clause Ancestor(Jean, x) ~ Answer(x),

and we declare that the literal Ancestor belongs to BCL and Answer to FCL.

The detail of the t ransformation algorithm follows:

Notations:

X, XI , Y, Y1, Z, Z1, W represent sequences of literals in clauses.
A and B represent individual literals.

The transformation process concerns a couple of clauses:
- - the first one, noted as C1, uses a BCL literal in hypothesis, i. e. is of

the form:

C1 = X A Y ~ Z where A belongs to BCL

- - the second one, noted as C2, has a BCL literal as a conclusion, i. e. is
of the form:

C2 = W ~ B where B belongs to BCL

The transformation happens if and only if literals A and B are unifiable.
I f s is the corresponding substitution, let

Goa l = s(A) -- s(B)

Let g be a symbol coding Goal in a unique manner (a number or a string
for instance). This coding is explained in the next paragraph.

From C1 and C2, we first build two rules, by applying the substitution
s to them:

s(C1) = X1 Goal Y1 ~ Z I
and s(C2) = Wl ~ Goal

We cut s(C1) into two new rules:

Cl_left_g = X1 ~ Pb__g(iv) Cont_Cl_g(iv, cv)
Cl_right_g = Sol_g(iv, ov) Cont CLg(iv , cv) Y1 ~ Z1

This needs some explanation of the notations.
" C l _ l e f t ~ " represents a symbol built by replacing C1 and g by their

string value.

278 J. Rohmer, R. Lescoeur and J. M. Kerisit

A third new rule is obtained from s(C2):

C2_def_g = Pb_g(iv) Wl ~ Sol_g(iv, ov)

The meanings of iv, ov, cv are the following:

iv: set of the variables common to X1 and Goal (input variables)
ov: set of the variables common to Goal and (Y1 or Z1) and not in

iv (output variables)

cv: set of the variables common to X1 and (Y1 or Z1) but not belonging

to Goal (continuation variables)

These new three rules (Cl_left_g, Cl_right~g, C2_def_g) are added to the

set E.
Then a new transformation process is attempted, by choosing another

couple of rules C1 and C2 in E.

The process terminates when no new rules can be generated.

Proofs of termination, correctness and completeness of the transformation have

been given in Ref 6).

w Computation of the Unique Name of a Goal
During the transformation between:

X A Y ~ Z

and W ~ B,
we must give a unique name g to the unifier of A and B.

Moreover, we must characterize the goal according to the input and

output status of its variables. For instance:

- - in P(x) Ancestor(x, y) ... ~ ...
the goal is to compute the successors of x

- - in P(x, y) Ancestor(x, y) ... ~ ...

the goal is to check if x is the ancestor of y

In the first case, the name of the problem will be Ancestor.l.0. In the

second case, it will be Ancestor.l.1.
We put a "1" for the input parameters and a "0" for the output parame-

ters.
If a literal has n arguments, it can generate up to 2 power n goal names.

One can differentiate the goals not only by the input /output mode of the

parameters, but also by the presence and value of constants.

Example:

RI ---- X(y) A("max", x, y) ~ Z(x, y)

R2 = W(a, b) ~ A(a, b, "joe")

The Alexander Method 279

Unification gives:

a ---- "max", x ---- b, y = "joe"

and the rules after substitution are:

X(" joe") A("max", x, " joe") -~ Z(x, "joe")
W("max" , b) -~ A("max", b, "joe")

We can incorporate the constant values into the name of the goal, which
becomes, with evident notations:

A. max . O. j o e

Here iv (input variables) is empty and ov (output variables) corresponds
to x (and b).

Consequently, the final transformed rules are:

X(" joe") -~ Pb_A. m a x . O. j o e Cont R1 A. m a x . O. j o e

Sol_A. m a x . O. j o e (x) Cont_Rl_A. m a x . O. j o e -~ Z(x, "joe")
Pb_A. m a x . O. j o e W("max" , b) --~ Sol_A. m a x . O. j oe (b)

Here, we have performed a precompilat ion of the unification, by propagat ing the
constants into the rules, and by making them implicit in the predicate names.

Note: This strategy may not always be interesting. We could just consider that
constants in hypotheses are input variables, and constants in conclusions are
output variables.

w A Detai led Example of Transformation
Let us consider our standard example:

RA = P(a) A(a, b) -~ OK(b)
RB = F(x, y) --~ A(x, y)
RC = F (x ,y) A (y , z) - ~ A(x , z)

We shall follow the steps and notations of Section 2.

First step

C1 = RA = P(a) A (a , b) - - ~ OK(b)
C2 = RB -- F(x, y) -~ A(x, y)

The substitution s is (x = a, y = b)

Goal = A(a, b) = A(x, y)

i v = a = x
o v = b = y
cv = empty

280 J. Rohmer, R. Lescoeur and J. M. Kerisit

The goal name g is A.1.0

Transformed rules:

RA_left_A.1.0 = P(a) ~ Pb_A.1.0(a) Cont_RA_A.1.0(a)
RA_right A.1.0 = Sol_A.1.0(a, b) Cont RA_A.1.0(a)-~ OK(b)
RB_def_A. 1.0 : Pb_A. 1.0(x) F(x, y) ~ Sol_A. 1.0(x, y)

Second step
Another transformation is possible between rules RA and RC.

CI = R A = P (a) A (a , b) - - , OK(b)
C 2 = R C = F(x ,y) A(y , z) ~ A (x , z)

Substitution s = (a = x, b = z)

Goal name g = A. 1.0
It is the same goal name as in the first step, thus rule RA needs not to be

transformed again. But rule RC is transformed, giving:

RC_def_A.1.0 = Pb A.l.0(x) F(x, y) A(y, z) --~ Sol_A.1.0(x, z)

This rule contains A in hypothesis, and must be cut ! To shorten the
names, let us give it the name RD in place of RC_def_A.1.0 (in practice, all
these names are internally coded, as in the examples shown in Annex 2).

This RD rule must be transformed with rules RB and RC, as what
happened with RA in the first step. In both cases, the goal name g is still A.1.0,
thus RB and RC need not be transformed again. But rules RD has to be transform-
ed:

i v = y o v = z c v = x

RD_left A. 1.0 = Pb_A. 1.0(x) F(x, y) --* PB_A. 1.0(y) Cont_RD_A. 1.0(y, x)
RD right_A.l.0 = Sol_A. 1.0(y, z) Cont_RD_A. 1.0(y, x) ~ Sol_A. 1.0(x, z)

Finally, we have replaced the set of clauses (RA, RB, RC) by a set of five
forward rules:

RA_left_A. 1.0
RA_right_A. 1.0
RB_def_A. ~.0
RD_left_A. 1.0
RD_right__A. 1.0

w Conclusion
We think that the Alexander Method propose the first complete solution

to transform by a strict compilation process recursive axioms into pure
relational algebra operations.

Since the submission of the paper, other methods have appeared (Refs. 1,

The Alexander Method 281

7, 13)) wh ich dea l wi th the same p rob lem; as far as we know, on ly the last one

has been implemented .

As for any c o m p i l i n g techniques , there are m a n y o p p o r t u n i t i e s for local

and g loba l o p t i m i z a t i o n o f source and objec t code. Th i s w o r k is n o w under

progress.

The interest o f the A l e x a n d e r M e t h o d is to t r ans fo rm a complex p r o b l e m

in to s imple r ones (fo rward cha in ing , r e l a t i ona l a lgebra) . I t a l lows to a d d new

faci l i t ies to exis t ing software packages without modi fy ing them: a d d i n g back-

w a r d cha in ing to an inference engine wi th deduc t ive faci l i t ies , and a d d i n g

recursive ax ioms to c lass ical D B M S ...

References
1) Bancilhon, Maier, Sagiv, Ullman, "Magic Sets and other strange ways to implement

Logic Programming," MCC Technical Report number DB 121-85, Oct., 1985.
2) Chakravarthy, U. S., Minker J. and Tran D., "Interfacing predicate logic languages and

relational, " Proc. 1st Int. Conf. on Logic Programming, Marseille, 1982.
3) Chang, "Deduce 2. Further investigations of deduction in Relational Databases," in

Ref. 4), pp. 201-236.
4) Gallaire, H. and Minker, J. (eds.), Logic and Databases, Plenum Press, New York,

1978.
5) Henschien, L. J. and Naqui, S. A., "On compiling queries in Recursive first order

Databases, " CACM, Jan., 1984.
6) Kerisit, "Preuve de la Methode d'Alexander par une approche alg6brique," BULL

rapport interne, May 1986.
7) Lozinskii, "Evaluating queries in Deductive Databases by generating," IJCAI, 1985.
8) Marque-Pucheux, G., "Interfacing Prolog and Relational Data Base Management

System," ICOD-2, Sept., 1983.
9) Nicolas, J. M. and Yazdanian, K., "An outline of B.D.G.E.N.: a deductive DBMS, "

Information Processing, IFIP, 1983.
10) Pugin, J. M. and Jamier, R., "Le Moteur d'Inf6rence BOUM," Rapport de DEA, Ecole

Centrale de Paris, Juin, 1983.
11) Reiter, R., "Deductive Question-Answering on relational Databases," in Logic and

Databases, Plenum Press, pp 149-177, 1978.
12) Shapiro, J. D., Principles of Database Systems- 2nd Edition, Computer Science

Press, 1982.
13) Vieille, L.,"Recursive Axioms in Deducti.ve Databases. The Query-Subquery approach,"

Expert Database System Conference, Charleston, Apr. 1986.

A N N E X 1
Transformation of a set of forward rules into relational operations:

Delta driven mechanism

Saturation of a set of rules is processed as follows:

�9 INIT
- - for each rule R: P1 , P n - ~ C ,

one computes: ,dCR -- P1 join P2 ... jo in Pn

282 J. Rohmer, R. Lescoeur and J. M. Kerisit

- - for each literal C in conclusion of at least 1 rule,
one computes AC = Un i o n of all A C R

where C is a conclusion of R

�9 E N C O R E

- - for each rule R: P1, ..., Pn --, C,
one computes:

_CRI - P1 jo in P2 ... j o in Pn

_CRi : P1 jo in ... j o in APi ... j o in Pn

_ C R n --- P1 jo in P2 ... j o in A P n
- - t h e n _ C R = U n i o n of ACRi
- - for each literal C in conclusion of at least 1 rule,

one computes:
AC = U n i o n of all A C R

where C is a conclusion of R
AC = C Difference AC

C = C U n i o n A C

�9 T E S T
if not all AC are empty goto E N C O R E else FIN.

A N N E X 2
E x a m p l e s o f t h e A l e x a n d e r T r a n s f o r m a t i o n o n s o m e d i f f e r e n t r u l e b a s e s

1) "Ancestor" defined as follows:

Father(x, y) --, Ancestor(x, y)
Father(x, y), Ancestor(y, z) --~ Ancestor(x, z)

with a goal rule:

Ques(x), Ancestor(x, y) ---, Ancestor-of-ques(x, y)

After t ransformations (seen in fourth part of the article), the rules to be saturated are:

r l : Ques(x) --- Pb_Ancestor . l .0(x) , Cont 0(x)
r2: Sol_Ancestor. l .0(x, y), Cont 0(x) -~ Ancestor-of-ques(x, y)
r3: Pb_Ancestor . l .0(x) , Father(x, y) --~ Sol_Ancestor. l .0(x, y)
r4: Pb_Ancestor . 1.0(x), Father(x, z) --, Pb_Ancestor. 1.0(z), Cont_ l (z , x)
rS: Sol_Ancestor. l .0(y, z), Cont_ l (y , x) ~ Sol_Ancestor.l .0(x, z)

(See in annex 3, an example of saturat ion of this rule Base on a Facts
Base)

2) "Ancestor" defined as follows:

Father(x, y) --, Ancestor(x, y)
Ancestor(x, y), Ancestor(y, z) --, Ancestor(x, z)

with the same goal rule as in 1).
After t ransformations, the rules will be:

The Alexander Method 283

Ques(x) ~ Pb_Ancestor.l.0(x), Cont 0(x)
Sol_Ancestor.l.0(x, y), Cont 0(x) --~ Ancestor-of-ques(x, y)
Pb_Ancestor. 1.0(x), Father(x, y) ~ Sol_Ancestor. 1.0(x, y)
Pb_Ancestor. 1.0(x) ~ Pb_Ancestor. 1.0(x), Cont_l(x)
Sol_Ancestor. 1.0(x, y), Cont_l (x) --~ Pb_Ancestor. 1.0(y), Cont_2(y, x)
Sol_Ancestor.l.0(y, z), Cont 2(z, x) ~ Sol_Ancestor.l.0(x, z)

After some evident simplifications on Cont 0 and Cont 1, the rule Base to be saturated
will be:

r l: Ques(x) ~ Pb_Ancestor.l.0(x)
r2: Sol _Ancestor.l.0(x, y), Pb_Ancestor.l.0(x) ~ Ancestor-of-ques(x, y)
r3: Pb Ancestor.l.0(x), Father(x, y) ~ Sol_Ancestor.l.0(x, y)
r4: Sol_Ancestor. 1.0(x, y), Pb_Ancestor. 1.0(x)

Pb_Ancestor.l.0(y), Cont_2(y, x)
r5: SoYAncestor.l.0(y, z), Cont 2(z, x) ~ Sol_Ancestor.l.0(x, z)

(NB: r2 and r4 have the same hypotheses and can be replaced by:

r6: Sol_Ancestor. 1.0(x, y), Pb_Ancestor. 1.0(x)---~
Ancestor-of-ques(x, y), Pb_Ancestor.l.0(y), Cont 2(y, x)

but it's not the purpose of this article to develop such optimizations.

3) "Family Friends" defined as:

Friend(x, y) ~ Ancfr(x, y)
Father(x, y), Ancfr(y, z) ~ Ancfr(x, z)

with the goal rule:

Ancfr(leo, y) ~ Fam-friend(y)

where leo is a constant.

The transformed rule Base will be:

rl: ~ Pb_Ancfr.l.0(/eo)
r2: Sol_Ancfr. 1.O(leo, y) ~ Fam-friend(y)
r3: Pb Ancfr.l.0(x), Friend(x, y) ~ Sol_Ancfr.l.0(x, y)
r4: Pb Ancfr.l.0(x), Father(x, y) --~ Pb_Ancfr.l.0(y), Cont 0(y, x)
r5: Sol_Ancfr.l.0(y, z), Cont 0(y, x) ---> Sol_Ancfr.l.0(x, z)

A N N E X 3
Execution of example of 1 in annex 2.

The Facts base is:

Father(remi, lisa)
Father(remi, julie)
Father(jeanic, remi)
Father(paul, jeanic)
Father(charles, paul)
Father(oto, rita)

28,1 J. Rohmer, R. Lescoeur and J. M. Kerisit

Father(rita, julie)

Ques (paul)
Ques (oto)

From 1), the executable Rules, with an obvious renumbering, will be:

r l: Ques(x) ~ Pb_Ancestor.l.0(x)
r2: Sol_Ancestor.l.0(x, y), Ques--~ Ancestor-of-ques(x, y)
r3: Pb Ancestor.l.0(x), Father(x, y)

Sol_Ancestor.l.0(x, y), Pb_Ancestor.l.0(y), ConLl(y , x)
r4: Sol_Ancestor.l.0(y, z), Cont_l(y, x)--~ Sol_Ancestor.l.0(x, z)

Delta-saturation on these rules gives the following intermediate results, cycle after cycle:

Cycle 1:
rl:

Cycle 2:
r3:

Cycle 3:
r2:

r3:

Cycle 4:
r3:

r4:

Cycle 5:
r2:

r4:

Cycle 6:
r4:

Cycle 7:
r2:

Pb Ancestor.l.0 : (oto), (paul)

Sol_Ancestor.l.0 : (paul jeanic), (oto rita)
Pb_Ancestor.l.0 : (jeanic), (rita)
Cont_l : (jeanic paul), (rita oto)

Ancestor-of-ques : (paul jeanic), (oto rita)

Sol Ancestor.l.0 : (jeanic remi), (rita julie)
Pb Ancestor.l.0 : (remi), (julie)
Cont_l : (remi jeanic), (julie rita)

Sol_Ancestor.l.0 : (remi lisa), (remi julie)
Pb_Ancestor.l.0 :(lisa)
Cont_l : (lisa remi), (julie remi)

Sol Ancrstor.l.0 : (paul remi), (oto julie)

Ancestor-of-ques : (paul remi), (oto julie)

Sol_Ancestor.l.0 : (jeanic lisa) (jeanic julie)

Sol Ancestor.l.0 : (paul lisa), (paul julie)

The Alexander Method 285

Cycle 8:

END.

Ancestor-of-ques : (paul lisa), (paul julie)

Nothing New To Be Produced ...

