
New Generation Computing, 4 (1986) 67-95
OHMSHA, LTD. and Springer-Verlag

�9 OHMSHA, LTD. 1986

A Logic-based Calculus of Events

R o b e r t K O W A L S K I and M a r e k S E R G O T
Department of Computing,
Imperial College of Science and Technology,
University of London,
180 Queen's Gate, London SW7 2BZ, UK.

Received 27 May 1985
Revised manuscript received 6 December 1985

Abstract We outline an approach for reasoning about events and
time within a logic programming framework. The notion of event is taken
to be more primitive than that of time and both are represented explicitly by
means of Horn clauses augmented with negation by failure.

The main intended applications are the updating of databases and
narrative understanding. In contrast with conventional databases which
assume that updates are made in the same order as the corresponding events
occur in the real world, the explicit treatment of events allows us to deal with
updates which provide new information about the past.

Default reasoning on the basis of incomplete information is obtained
as a consequence of using negation by failure. Default conclusions are
automatical ly withdrawn if the addit ion of new information renders them
inconsistent.

Because events are differentiated from times, we can represent events
with unknown times, as well as events which are part ial ly ordered and
concurrent.

Keywords: Event Calculus, Logic Programming, PROLOG, Temporal Logic,
Database Updates, Default Reasoning.

w Introduction
F o r m a l Log ic can be used to represent k n o w l e d g e o f many k inds for

m a n y purposes . I t can be used to fo rma l i ze p rog rams , p r o g r a m speci f ica t ions ,

da tabases , l eg i s la t ion and n a t u r a l l anguage in genera l . F o r m a n y such a p p l i c a -

t ions o f log ic a r ep re sen t a t i on o f t ime is necessary.

A l t h o u g h there have been several a t tempts to fo rma l i ze the no t i on o f t ime

in c lass ica l f i rs t -order logic , it is st i l l w ide ly be l i eved tha t c lass ical logic is n o t

68 R. Kowalski, and M. Sergot

adequate for the representation of time and that some form of non-classical
Tempora l Logic is needed. In this paper, we shall out l ine a treatment of time,
based on the notion of event, formalized in the Horn clause subset of classical
logic augmented with negation as failure. The resulting formalizat ion is executa-
ble as a logic program.

We use the term "event calculus" to relate it to the well-known "si tuat ion
calculus". 5) The main difference between the two is conceptual: The situation
calculus deals with global states whereas the event calculus deals with local
events and time periods. Like the event calculus, the situation calculus can be
formalized by means of Horn clauses augmented with negation by failure. 4)

The main intended appl icat ions investigated in this paper are the updat-
ing o f databases and narrative understanding. In order to treat both cases
uniformly we have taken the view that an update consists of the addition of new
knowledge to a knowledge base. The effect of explicit deletion of informat ion
in conventional databases is obta ined without deletion by adding new knowl-
edge about the end of the per iod of time for which the information holds.

w A Simplified Example
A simple, informal example will illustrate the general idea. Consider the

fol lowing narrative:

(1) Mary was hired as a lecturer on 10 May 1970.
(2) John left as lecturer on 1 June 1975.
(3) Mary left as professor on 1 October 1980.
(4) Mary was promoted f rom lecturer to professor on 1 June 1975.

Each sentence in the narrative can be considered as an update which adds new
knowledge, starting from an initially empty knowledge base. In the spirit o f
many natural language processing systems, the meaning of the new knowledge
can be formulated in terms of event descriptions. Formula ted in event descrip-
t ion terms, the sequence of updates becomes:

(1) E1 is an event in which
Mary is hired as lecturer.
E1 has time 10 May 1970.

(2) E2 is an event in which
John leaves as lecturer.
E2 has t ime 1 June 1975.

(3) E3 is an event in which
Mary leaves as professor,
E3 has t ime 1 October 1980.

(4) E4 is an event in which
Mary is promoted f rom lecturer to professor.
E4 has t ime 1 June 1975.

A Logic-based Calculus of Events 69

A typical event causes the start o f several (zero or more) periods o f t ime
and the end o f several others. For example:

An event e o f h i r ing x as y

starts a per iod o f t ime
for which x has r ank y.

This can be formulated as a H o r n clause

x has rank y for per iod after(e)

if e is an event in which x is hi red as y.

Here the term after(e) names the time per iod as a funct ion o f e. The start o f
after(e) can be defined by a condi t ionless H o r n clause:

The start o f after(e) is e.

The end o f after(e) is undefined but might be determined by means o f
add i t iona l in format ion later. Similar H o r n clauses can be used to express tha t

an event e o f x leaving as y
ends a per iod o f t ime
for which x has r ank y;

an event e o f p r o m o t i n g x f rom y to z
ends a per iod o f t ime
for which x has rank y and
starts a per iod o f t ime
for which x has rank z.

By means o f these rules it is possible to conc lude after update (1) that

Mary has rank lecturer for per iod after(E1)
which starts 10 Ma y 1970.

This can be represented pic tor ia l ly as shown in Fig. 1.

time

E1 o
Mary lecturer

I
10 May 1970

Fig. 1 After update (1)

Similar ly after updates (2), (3) and (4), it is possible to make the
conc lus ions shown in pictorial terms in Figs. 2-4 respectively.

70 R. Kowalski, and M. Sergot

E l o

time I

Mary lecturer

I

10 May 1970

John lecturer
o E2

I
1 June 1975

Fig. 2 After update (2)

E1 o
Mary lecturer

* o E2
John lecturer

Mary professor

time { { [
10 May 1970 1 June 1975

Fig. 3 After update (3)

E1 o t _

Mary lecturer

- o E2

o E 3

John lecturer

- o E 3
Mary professor

u O m

Mary lecturer E4 Mary professor

time] [[

1 Oct 1980

10 May 1970 1 June 1975 1 Oct 1980

Fig. 4 After update (4)

After update (4) it would be natural to conclude that the event E4 of
Mary's promotion ends her previous period after(E1) of lectureship and starts
her previously identified, future period before(E3) of professorship. This can be
pictured as Fig. 5:

E4
E1 o o o E3

Mary lecturer Mary professor

�9 o E2
John lecturer

time [[}
10 May 1970 1 June 1975 1 Oct 1980

F i g . 5

The conclusions illustrated in Fig. 5 can be justified if we can prove the
equalities:

A Logic-based Calculus of Events 71

after(E1) = before(E4)
after(E4) = before(E3).

Together with the rules of equali ty and the fact that E4 ends before(E4) and
starts after(E4), these equalities imply that

E4 ends after(El) and
E4 starts before(E3).

The two equalities can be derived by means of a rule which expresses that

two periods of time are identical
if the same individual holds the same rank for both periods,
and one period starts before the other ends,
and it cannot be shown that an event has occurred, which affects

the individual 's rank, after the start of the first period and
before the end of the second.

This rule uses default reasoning in the expression "cannot be shown",
which can be formalized by negation as failure. Such default reasoning is
"non-monoton ic" in the sense that conclusions derived with its assistance are
automatical ly withdrawn if contradictory new informat ion is later made avail-
able. This might happen in the present example if it were discovered, for
instance, that Mary left temporar i ly in January 1978 and was rehired in October
1979.

Mary 's rank at a time instant t can be determined by finding a period of
t ime containing t and determining her rank during that period. This too can be
expressed as a Horn clause

x has rank y at t ime t
if x has rank y for period p
and t in p.

Thus after assimilating our example narrative it should be possible to
conclude that

Mary has rank lecturer on 11 May 1970 and
Mary has rank professor on 16 Feb. 1978.

Whether it should also be possible, however, to conclude that

John has rank lecturer on 30 May 1975,

for example, is more problematic. We shall deal with these and related problems
later.

The simple example narrative already illustrates several general character-
istics of the event calculus approach.

(1) Updates are additive in that they add but do not delete information

72 R. Kowalski, and M. Sergot

about events. That a relationship no longer holds is represented by
adding information which implies the end of the time period for which
the relationship holds rather than by deleting the relationship. This is
consistent with our use of classical logic without explicit destructive
assignment.

(2) Conventional database systems, in contrast, allow arbitrary additions and
deletions of relationships, qualified only by the requirement that integrity
constraints be preserved. It might be permissible, for example, to replace
the relationship "John has rank lecturer" by the relationship "Mary has
rank professor" whether or not this corresponds to any meaningful real
world event. The derivation of starts and ends of relationships from event
descriptions imposes an extra level of semantic structure on database
updates.

(3) Past and future are treated symmetrically. Therefore event descriptions
can be assimilated in any order, independently of the order in which the
events themselves actually take place. This facilitates dealing with incom-
plete information, both with new knowledge about the past as well as
with hypothetical possibilities for the future. In the example, this is
illustrated by the second update which records John's leaving without
there being any previous record of his employment.
In a conventional database system the only way to express

"if a person leaves then he must already be employed"

is to formulate an integrity constraint which would reject as inconsistent
any update which records an event of leaving without there already being
an appropriate record of employment in the database. But such an
integrity constraint combines (and confuses) two different kinds of state-
ment: an object-level statement (about the world), that leaving implies a
preceding period of employment, with a metalevel statement (about the
database) that the database contains a complete record of relevant infor-
mation about the past. In this paper we ignore problems concerned with
the treatment of integrity constraints and preconditions of events.

(4) In the example narrative, a numerical time is associated with every event.
In the general case this is not essential; rather it is the relative ordering
of events which is important. Knowing the time at which events take
place, of course, allows us to define an ordering relation " < " on events
in a particularly simple way:

e < e" if Time(e t) and Time(e' t')
and t is (chronologically) earlier than t'

In other cases, the event ordering relation can be defined explicitly,
without reference to time. Indeed, in many cases it may not be possible
to associate explicit times with events at all. For example, the meaning of

A Logic-based Calculus of Events 73

(5)

(6)

the sentence

"John went to the theatre
after he came home from work."

can be represented by the event descriptions:

E1 is an event in which

John goes from work to home;
E2 is an event in which
John goes from home to the theatre;

together with a relative ordering of the two events

E1 < E 2 .

In the sequel we shall use the symbol " < " to signify both the ordering
relation for events and the chronological (or other) ordering relation on

times, and let context disambiguate between the two.
The distinction between events, time periods and time instants makes it
possible to deal with concurrent events. In our simple narrative we have
such an example. The two events E2 and E4 are distinct even though they

take place simultaneously.
Although all the events considered in this paper can be treated as taking

place instantaneously, we want to leave open the possibility that events
can also have duration. For this reason we do not want time periods to
contain wholly the events which start or end them. This is not quite the
same as treating time periods as open intervals. Consider for example, an

event of moving a block x from place y to place z, which consists in turn
of five subevents: grasping, lifting, transporting, lowering and ungrasping
the block. The period for which x is at y ends when x is lifted and the

period for which x is at z starts when x is lowered. The relationship
between the event and time periods which we previously pictured (Fig. 6)

x at y x at z
0

m o v e X

from y to z

Fig. 6

can now be pictured (Fig. 7).

x a t y x a t z

move x
from y to z

Fig. 7

74 R. Kowalski, and M. Sergot

To cater for this possibili ty it suffices to adopt the convention that events
occur "after" the periods they end, "before" those they start and are not
whol ly contained within them.

(7) Our formalization of events is intended as a formal analysis of the
concepts rather than as a program or even as a program specification.
Nonetheless, because it can be expressed by means of Horn clauses
augmented with negation by failure, it is an executable analysis which in
certain circumstances, after appropriate equivalence preserving transfor-
mations, runs as a P R O L O G program.

(8) The most established alternative treatment of states and actions in classi-
cal, first-order logic is the situation calculus, s~ Time varying relationships
are qualified by a si tuation parameter, which can be regarded as a global,
instantaneous time slice. Events transform one global situation into
another.
Because situations are global, it is not possible to deal with simultaneous
and partially ordered events. In the usual formalizations, it is difficult
also to deal with incomplete information about a situation, and therefore
to assimilate new informat ion about the past.
The situation calculus, like the calculus of events, can be formalized by
means of Horn clauses augmented with negation as failure 4~ and therefore
can be executed as a P R O L O G program. However, execution of the
situation calculus gives rise to the f r ame problem, the need to reason that
a relat ionship which holds in a situation and is not affected by an event
continues to hold in the following situation. This explicit deduction,
which is a consequence of the use o f global situations, is so
computat ional ly inefficient as to be intolerable.
The event calculus was developed, to a large extent, in order to avoid the
frame problem. It does so by qualifying relat ionships with time periods
instead of with global situations. Time periods associated with different
relationships have different names even if they have the same duration.

(9) There is a vast, related literature 3~ concerned with the formalization of
time. Our presentation o f the event calculus is similar to those treatments
of t ime which are based on the use of time periods rather than on t ime
instants. Among these, the approach of Allen l'z~ is closest, not only
because of its use of t ime periods, but more important ly because of its
emphasis on events and the time periods they start and end. (Since
writing this paper, we have discovered the still more closely related work
of Lee, Coelho and Cotta, 8) which is also formulated within a logic
programming framework.)
We have avoided the use of non-classical logic for two reasons: to obta in
greater expressive power, and to exploit the p roof procedures which have
been developed for classical first-order logic in general and for logic
programming in particular. Expressive power is gained by treating t ime

A Logic-based Calculus of Events 75

and events explicitly rather than implicitly through the use of natural, but
weak modal operators for notions such as "future", "since" and "while".
We have potentially sacrificed the greater conciseness of modal logic for
the greater expressiveness of an explicit treatment of time and events.

The
general rules:

Rank(x y after(e)) if Hire(x y e)
Rank(x y before(e)) if Leave(x y e)
Rank(x y before(e)) if Promote(x y z e)
Rank(x z after(e)) if Promote(x y z e)

Start(after(e) e)
End(before(e) e)

w The Promotion Example in Detail
Before considering the general case, we shall investigate the promot ion

example in greater detail.
The sequence of updates starting from the initially empty knowledge base

can be represented by assertions:

Hire (Mary lecturer E l)
Time (El 10.May. 1970)
Leave (John lecturer E2)
Time (E2 1.June. 1975)
Leave (Mary professor E3)
Time (E3 1.Oct. 1980)
Promote (Mary lecturer professor E4)
Time (E4 1.June. 1975)

relationships which start or end as the result of events are defined by

P1
P2
P3
P4

P5
P6

Notice that we have assumed for the time being that event descriptions
are complete. In many cases incomplete event descriptions, such as

E2 is an event
in which John leaves,
E4 is an event
in which Mary is promoted to professor,

would be more natural. The advantage of complete event descriptions for the
present is that they allow us to derive both started and ended relationships from
the event descriptions alone. We shall deal with incomplete event descriptions
later.

In order to conclude that

End(after(E 1) E4)
End(after(E4) E3)

76

Start(before(E4) E 1)
Start(before(E3) E4)

we need additional rules

End(after(e) e')
Start(before(e') e)

To derive that

after(E1) = before(E4)
after(E4) = before(E3)

we use the general rule

after(e) = before(e') if

where

pl << p2

R. Kowalski, and M. Sergot

if after(e) = before(e')
if after(e) = before(e').

P7
P8

Rank(x y after(e))
and Rank(x y before(e'))
and e < e"
and not after(e) << before(e')

Tempi

expresses that periods pl and p2 are disjoint, with the end o f p l occurring before
the start of p2.

In fact, this rule (and several of the earlier rules) will be generalised later
in Section 10 to separate general axioms about events and time from those which
are application specific. We shall introduce an axiom which expresses a general
property of periods in the event calculus:

any two periods associated with the same relationship
are either identical, or they are disjoint.

(Note that Allen uses the same axiom.) Remembering that periods do not
contain their end points, we can formalize the not ion of disjoint periods as
follows:

pl << p2 if End(p l e) and Start(p2 e') and e <_ e' Temp2

Pictorially, the definition is illustrated in Fig. 8.

0 C

pl e e' p2

Fig. 8

Here e <_ e' means that e occurs before or at the same time as e'.
Note that we allow the case where an event ends and starts the same

relationship. For example the event of Mary's taking a sabattical can be regard-

A Logic-based Calculus of Events 77

ed as ending one period of lectureship and starting another.
The negative condit ion in Templ can be interpreted either classically or

by means of negation by failure. Interpreting it by negation as failure has the
consequence that time periods are assumed to be equal by default, if they cannot
be shown to be different.

w Execution of the Promotion Example
Clauses P1-8 and Templ-2 are in a form which can be executed as a

PROLOG program. Unfortunately, when executed by PROLOG, the program
goes into an infinite, non-terminating loop. Suppose for example that we have
just the two event descriptions

Hire(Mary lecturer El)
Promote(Mary lecturer professor E4)
El < E4

and pose the query

End(after(E1) x) ? Q1

using P1-8, Templ-2 and an appropriate definition of _<. The first three condi-
tions of clause Templ are solved without difficulty, leaving the query

not alter(El) << before(E4) ? Q2

To show this succeeds we must show that the query

after(E1) << before(E4) ~ Q3

fails. There is only one clause we can use, Temp2, and so we must show that the
query

End(after(E1) e ') and Start(before(E4) e*) and e" <_ e* ? Q4

fails. PROLOG tries to solve the first condition first. But this is just like the
original query, and PROLOG goes into a non-terminating loop.

It is possible to eliminate the loop, either by employing a more intelligent
problem-solver than PROLOG or by using program transformation techniques.
Before presenting a loop-free variant of the "program", however, we have a more
serious problem to consider.

w Incompleteness and Incorrectness of Start and End
Negation by failure is a form of the closed world assumption, that the

"knowledge base" is complete:

not p is judged to hold if all ways of showing p fail.

If the characterization of p is incomplete then not p may be judged to
hold even though it does not. Unfortunately, our characterization of the "Start"

78 R. Kowalski, and M. Sergot

and " E n d " predicates is incomplete. Consequently negation by failure can give
incorrect results, allowing us to conclude that two t ime periods are equal when
they are not.

Suppose, for example, that we are given the two event descriptions

Hire(Jack professor J1)
Hire(Jack professor J2)
J1 < J2

and nothing more (Fig. 9).

J1 o
Jack professor

m

J2 o
Jack professor

Fig. 9

Clearly some event, as yet unreported, must have occurred somewhere
between J1 and J2 to end Jack 's first period of professorship. Our existing rules
could never find such an end for after(J1). Even if they did not loop, they would
only be able to find ends which correspond to named, reported events. The rules
we have for "End" are incomplete therefore ; by symmetry, so are the ones for
"Start".

The rule Tem pl , by which we conclude that two periods are equal, relies
on the completeness of the program for " < < ". The program for "<< ", Temp2,
relies in turn on the completeness of "Start" and "End" . This means that T e m p l
may lead us to conclude that two periods are equal, when in fact we should not.

Suppose, for example, we add to the event descriptions above the infor-
mat ion that

Leave(Jack professor J3)
J2 < J3.

Pictorially, we have the situation shown in Fig. 10.

J l o
Jack professor

m

J2 o
Jack professor

o J3
Jack professor

Fig. 10

Even if we eliminated loops, our existing rules could not find an end to
after(J1), as argued above. Therefore, we could not show that periods after (J1)

A Logic-based Calculus of Events 79

and before(J3) are disjoint, and so Templ would conclude they are equal.
Clearly they are not.

The obvious solution is to complete the definition of the "End" and
"Start" predicates. In this example we need rules which allow us to conclude
that there exists some end j o f after(J1), such that J1 < j <_ J2 (Fig. 11).

J l o o j

J2 o

o J3

Fig. I t

In fact, as we shall see later, we need similar rules to conclude the
existence of ends and starts o f time periods in many other cases. In the mean-
while, however, we remark that the problems of incorrectness and looping can
both be solved without having first to solve the problem of incompleteness.

I f the predicate " < < " is not required for any other purpose, we can solve
the problem by finding an alternative program fer " < < ", which does not rely on
the completeness of "Start" and "End". With such a program, the rules we have
for "Star t" and "End" would still be incomplete but now they would be correct.

Fortunately, there is such a program. It can be shown that, whenever

Rank(x y after(e))
Rank(x y before(e '))
e < e '

all hold, the condit ion

after(e) << before(e ')

can be replaced by

[Rank(x y' after(e*)) or Rank(x y' before(e*))] and e < e* < e'.

In other words the two time periods are disjoint if (and only if) some other event
e* which affects the relat ionship takes place in between the start of one period
and the end of the other.

Notice that the use of the variably y" instead of y implicitly incorporates
the "integrity constraint" that no person can hold more than one rank at the
same time. We shall deal with such " incompat ib le" relationships in greater
detail later when we deal with the general case.

With this result, we can dispense with the explicit definition o f " << ", and
write instead

after(e) = before(e ') if Rank(x y after(e)) P9
and Rank(x y before(e '))

80 R, Kowalski, and M. Sergot

This is equivalent to

after(e) = before(e')

and e < e'
and not ([Rank(x y" after(e*)) or

Rank(x y" before(e*))]
a n d e < e * < e ')

if Rank(x y after(e))
and Rank(x y before(e'))
and e < e'
and no t [Rank(x y' after(e*)) and e < e* and e* < e'~
and no t [Rank(x y' before(e*)) and e < e* and e* < e'~

This alternative to Temp 1-2 solves both the problem of looping and the problem
of incorrectness.

Not ice that rule P9 does not cover the case where the events e and e' are
too far apart in t ime for x to have rank y continuously f rom e to e'. To deal with
this case we would need to add another condit ion to P9, such as

not Too-far-apart(e e ')

and define it appropriately.

w Time Instants
Using P1-9 P R O L O G can be used to determine the time periods for

which relationships hold. To determine that a relat ionship holds at a t ime
instant, however, we need addi t ional rules such as

RankAt(x y t) if Rank(x y p) P10
and t in p

t in p if Start(p e l) and End(p e2) P l l
and Time(e l t t) and Time(e2 t2)
a n d t l < t a n d t < t 2

Given the rules P I - l l , an appropriate definition of < for t ime instants,
and the description of events E l -E4 in our simple narrative, we can conclude
using P R O L O G that, for example,

RankAt(Mary lecturer 11.May. 1970)
RankAt(Mary professor 16.Feb.1978).

The rules work for t ime periods which have a determined start and end.
They do not work for periods which have no start or end, or for periods whose
starts or ends are implied by other information but are not explicitly determined.
These cases can be dealt with in a variety of ways and we shall return to them
when we come to consider the general case,

A Logic-based Calculus of Events 8l

w A Special Case of the Promotion Example
The event calculus approach, the main features of which have been

outl ined above, may appear more complicated than necessary by comparison
with conventional approaches to the treatment of database updates. This is
partly because conventional databases deal with a special ease: events are
assimilated in the order in which they take place and the database is assumed to
contain a complete record of all relevant past events. It is instructive, therefore,
to see what simplifications can be made in the event calculus when we restrict
ourselves to the same special case.

One of the most important simplifications is that P1-9 now constitute a
complete definition of the troublesome "Start" and "End" predicates. This is
because all relationships are first derived in the form

Rank(x y after(e))

before they are (redundantly) re-derived in the form

Rank(x y before(e)).

The existing definitions of "Start" and "End" cover this case. Moreover,
as a further simplification, we can avoid the redundancy of deriving the same
relationship twice, by restricting attention to the derivation of predicates of the
form

Rank(x y after(e))
Start(after(e) e)
End(after(e) e')

which are needed to characterize time periods of the form after(e). Clauses P 1-9
can be replaced for these purposes by the clauses

Rank(x y after(e)) if Hire(x y e) PI
Rank(x z after(e)) if Promote(x y z e) P4
Start(after(e) e) P5
End(after(e) e') if Rank(x y after(e)) and Leave(x y e') P2"

and e < e'
and not [Rank(x y' after(e*)) and e < e* < e']

End(after(e) e') if Rank(x y after(e)) and Promote(x y z e') P3'
and e < e'
and not [Rank(x y' after(e*)) and e < e* < e']

This is a significant simplification over P1-9.
The rules P10 and P11 express that a relationship holds at a particular

time instant if it holds after the start of the relationship and before its end. It is
appropriate in this special case to assume in addition that a relationship holds

82 R. Kowalski, and M. Sergot

after it has started, provided it has not already ended:

t in p if Start(p e) PI2
and Time(e t')
and t' < t
and not End(p e')

Here, because the definition of "End" is complete for this special case, the
negative condition in P12 does not lead to incorrect results, as it might in the
more general case. (These rules are similar to those of Lee, Coelho, and Cotta, 6)
who also use negation by failure, but restrict themselves to this special case.)

w Incomplete Event Descriptions
For the purpose of simplicity we have assumed that event descriptions are

sufficiently complete to derive, directly from the event description alone, the
relationships which are started and ended by the event. In many cases, however,
incomplete event descriptions such as

E2 is an event in which John leaves,

where there is insufficient information to determine directly what John's rank
was when he left, are more natural.

The analysis of natural language by means of semantic networks and
semantic cases suggests a way of dealing with such incomplete event descrip-
tions. An event such as

"John gave the book to Mary",

for example, can be represented as a network (Fig. 12)

A c t o r j John

~ Act = a Give

R e c i ~ omect NNN~o

Mary Book

Fig. 12

which can be formalized in turn by using constant symbols to represent nodes
and binary predicates to represent arcs:

Actor(E John)
Act(E Give)
Object(E Book)

A Logic-based Calculus of Events 83

Recipient(E Mary).

Missing information can be dealt with by representing only the informa-
tion which is known and ignoring that which is unknown. For example, to
represent that Mary was promoted on 1 June 1975:

Act(E4 Promote)
Object(E4 Mary)
Time(E4 1.June. 1975).

The advantages of using semantic networks to describe events and of
representing such networks in formal logic have been discussed by several
authors. The discussion in Ref. 4) is especially relevant here.

The clauses P1-4 which presently require complete event descriptions can
be modified so that they use the minimum number of conditions needed to
establish the conclusion. P1-4 can then be replaced by

Rank(x y after(e)) if Act(e hire) PI"
and Object(e x)
and Destination(e y)

Rank(x y before(e)) if Act(e leave) P2'
and Object(e x)
and Source(e y)

Rank(x y before(e)) if Act(e promote) P3'
and Object(e x)
and Source(e y)

Rank(x y after(e)) if Act(e promote) P4'
and Object(e x)
and Destination(e y)

Thus, for example, P4' does not require the condition

Source(e z)

which identifies the "object's" rank immediately before promotion. The remain-
ing clauses are not affected by this reformulation.

Notice that the new formulation is still symmetric with respect to past
and future. However, whereas a complete event description allows us to deduce
all possible relationships which are started or ended by an event, an incomplete
description might not contain sufficient information to allow such deductions.
Nonetheless, it may be possible to complete such an event description by default
reasoning.

Suppose, for example, that we are given complete descriptions of the
events El, E2 and E3 as before and then an incomplete description of E4:

Act(E4 promote)
Object(E4 Mary)

84

Time(E4 l.June. 1975).

Pictorially the situation is shown in Fig. 13.

EIo m
Mary lecturer

O

E4

R. Kowalski, and M. Sergot

�9 * o E3
Mary professor

o E4

o E2
John lecturer

Fig. 14

-* o E3
Mary professor

Mary's ranks during periods after(E1) and before(E4) may be different, or they

situation in Fig. 14.

E1 o
Mary lecturer

Mary ?

~, o E2
John lecturer

Fig. 13

The information about E4 is insufficient to allow the derivation of the
conclusion

Rank(Mary lecturer before(E4))

by means of P3' and therefore of the further conclusion

End(after(E 1) E4).

We can derive these conclusions, however, if we can find a means of

completing the event description by deducing

Source(E4 lecturer).

We can do so by adding extra information about promotions: in every event of
promot ion there must be a "source", even though it may be unknown.

This extra information allows us to deduce that, in event E4, Mary must
have been promoted from some rank, and therefore that Mary holds some

(unknown) rank throughout the period before(E4). Pictorially we have the

A Logic-based Calculus of Events 85

may be the same.
It is a natural extension of our previous use of default reasoning to

assume now that

two ranks are identical
if we cannot show they are different.

This argument justifies adding the extra rule:

Source(e y) if Act(e promote)
and Object(e x)
and Rank(x y after(e'))
and e' < e
and not ([Rank(x y' after(e*)) or

Rank(x y' before(e*))]
ande" < e* < e)

which uses the negative condi t ion to reason by default.
Similarly we can use the addit ional informat ion that every event of

p romot ion has a "dest inat ion" (persons are promoted to some rank) to justify
the extra rule:

Destination(e y) if Act(e promote)
and Object(e x)
and Rank(x y before(e'))
and e < e"
and not ([Rank(x y' after(e*)) or

Rank(x y' before(e*))~
a n d e < e * < e ')

This allows us to deduce

Destination(E4 professor)
Start(before(E3) E4)
End(after(E4) E3).

These conclusions are shown pictorially in Fig. 15.

E1 c, o
Mary lecturer E4 Mary professor

O

John lecturer E2

Fig. 15

oE3

As usual, conclusions based on default assumptions may be automati-
cally withdrawn after the assimilation of new information.

86 R. Kowalski, and M. Sergot

w Another Example
Before turning to the general case, it is useful to consider an example in

which an event starts and ends more than one relationship. Consider the
following narrative:

John exchanged his orange for Mary's apple.
Then Mary exchanged the orange for a pear.

An act of exchanging has two actors and two objects. Suppose we call
them the actor, coactor, object and coobject. We can then formalize the narrative
by the clauses

Act(E1 exchange)
Actor(E 1 John)
Object(E1 orange)
Coactor(E 1 Mary)
Coobject(E1 apple)

Act(E2 exchange)
Actor(E2 Mary)
Object(E2 orange)
Coobject(E2 pear)
E1 < E 2

Notice that since each exchange event e starts and ends two relationships
we need to distinguish the two periods associated with the relationships. We can
do so by using terms before(e x) and after(e x), where the second parameter x
distinguishes between the two periods. One of the easiest ways of doing this is
to use the name of the actor or coactor as the second parameter.

Possesses(x y before(e x))

Possesses(x y before(e x))

Possesses(x y after(e x))

Possesses(x y after(e x))

if Act(e exchange) Exl
and Actor(e x)
and Object(e y)
if Act(e exchange) Ex2
and Coactor(e x)
and Coobject(e y)
if Act(e exchange) Ex3
and Coactor(e x)
and Object(e y)
if Act(e exchange) Ex4
and Actor(e x)
and Coobject(e y)

In the given example, these clauses allow us to derive

Possesses(John orange before(E1 John))
Possesses(Mary apple before(E1 Mary))
Possesses(John apple after(E1 John))
Possesses(Mary orange after(E1 Mary))
Possesses(Mary orange before(E2 Mary))
Possesses(Mary pear after(E2 Mary))

To derive starts and ends of time periods we need, to begin with, the

A Logic-based Calculus of Events

clauses

Start(after(e x) e)
End(before(e x) e).

To conclude

after(E1 Mary) = before(E2 Mary)

and therefore that

End(after(E1 Mary) E2)
Start(before(E2 Mary) E 1)

we need the clauses

after(e x) -- before(e' x) if

End(after(e x) e')
Start(before(e' x) e)

87

Ex5
Ex6

Possesses(x y after(e x)) Ex7
and Possesses(x y before(e r x))
and e < e'
and not(EPossesses(x' y after(e* x')) or

Possesses(x' y before(e* x'))]
a n d e < e * < e ')

if after(e x) = before(e" x) Ex8
if after(e x) = before(e' x) Ex9

Here the negative condition in Ex7 also incorporates the constraint that more
than one person cannot "possess" an object at one time.

w The General Case
We are now in a position to generalize the preceding examples and

consider the general case. For this purpose, in order to deal uniformly with
events which start or end more than one relationship, it is convenient to name
time periods by means of terms

after(e u) and before(e u)

where the second parameter u names the relationship associated with the time
period. Moreover, instead of treating time periods as a parameter of time-varying
relations, it is convenient to use a general predicate

Holds(p)

which expresses that the relationship associated with p holds for the time period
p. Thus we will now write

Holds(before(E2 rank(John lecturer)))

instead of the earlier, simpler notation

Rank(John lecturer before(E2)).

88 R. Kowalski, and M. Sergot

Although in most cases the new notation will be more complicated than
necessary, it has the advantage of greater generality. This notation is similar to
one we have used elsewhere for the situation calculus. 4~

Instead of writing rules such as

Holds(before(e rank(x y))) if Act(e leave)
and Object(e x)
and Source(e y)

Holds(before(e possesses(x y))) if Act(e exchange)
and Actor(e x)
and Object(e y)

similar to those we have written before, we can write a single general rule and
several specific rules for different applications:

Holds(before(e u)) if Terminates(e u) G1
Terminates(e rank(x y)) if Act(e leave)

and Object(e x)
and Source(e y)

Terminates(e possesses(x y)) if Act(e exchange)
and Actor(e x)
and Object(e y).

Similarly

Holds(after(e u)) if Initiates(e u) G2

Initiates(e rank(x y)) if Act(e hire)
and Object(e x)
and Destination(e y)

Initiates(e possesses(x y)) if Act(e exchange)
and Actor(e x)
and Coobject(e y)

Notice, however, that to achieve such generality we have had to introduce the
new predicates "Initiates" and "Terminates".

The remaining rules are very similar to those we have used for the
preceding examples:

Start(after(e u) e) G3
End(before(e u) e) G4
Start(before(e' u) e) if after(e u) = before(e' u) G5
End(after(e u) e') if after(e u) = before(e' u) G6

after(e u) = before(e" u) if Holds(after(e u)) G7
and Holds(before(e' u))
and e < e'

A Logic-based Calculus of Events 89

and not Broken(e u e')
Broken(e u e') if Holds(after(e* u*)) and Exclusive(u u*) G8

a n d e < e * < e '

Broken(e u e') if Holds(before(e* u*)) and Exclusive(u u*) G9
a n d e < e * < e '

Here "Broken" has been introduced largely as an abbreviation for reuse later on.
It is intended that the predicate Exclusive(u u') holds when the relationships u
and u' are either identical or incompatible in the sense that not both can hold
simultaneously, i. e.

Exclusive(u u)
Exclusive(u u') if Incompatible(u u')

The predicate "Incompatible" needs to be defined by specific rules for
particular applications. For example

Incompatible(rank(x y) rank(x y')) if not y = y"
Incompatible(possesses(x y) possesses(x" y)) if not x = x'

y = y .

(Notice that to deal with the case that e and e" are too far apart for u to hold
continuously from e to e' we could add extra application-specific rules for the
"Broken" predicate.)

To determine that a relationship holds at a time instant we need to
modify P10:

HoldsAt(u t) if Holds(after(e u))
and t in after(e u)

HoldsAt(u t) if Holds(before(e u))
and t in before(e u)

The rule P11

t in p if Start(p e l) and End(p e2)
and Time(el t l) and Time(e2 t2)
a n d t l < t a n d t < t 2

is adequate as it stands. As before, the rule P12

t i n p i f Start(p e)
and Yime(e t')
and not End(p e')

is appropriate and not incorrect for the special case where events are recorded
in the order in which they occur and the database contains a complete record of
all relevant past events (and the time between t and t' is not too long for the

90 R. Kowalski, and M. Sergot

relationship concerned to hold continuously). However it is incorrect in the
general case because our definition of the "End" (as well as "Start") predicate
is incomplete. We shall attempt to remedy this defect now.

w O t h e r C a s e s o f t h e S t a r t and E n d P r e d i c a t e s
So far we have rules for the cases

Start(after(e u) e)
End(before(e u) e).

We also have rules which derive end points when time periods are
identical (Fig. 16):

e o

Fig. 16

It

U
o e '

Case 0.

There are other, more difficult, cases which we shall now consider.
Pictorially these are shown in Figs. 17-19.

U
o e

1j'
q o e

Fig. 17 Case 1.

In Fig. 17 u and u' are "exclusive" in the sense defined in Section 10.

e c

e o

Fig. 18 Case 2.

D

U '

In Fig. 18 u and u' are exclusive. (This case is symmetric to case 1.)

e o

u
,,I O e '

Fig. 19 Case 3.

A Logic-based Calculus of Events 91

In Fig. 19 u and u' are "incompatible".
It can be argued that these four cases exhaust all the situations where time

periods interact to imply the existence of end points. In fact, the rules for
determining end points in all four cases 0-3 can be systematically derived from
a small number of general principles, the most important of which are:

pl = p 2 o r pl << p 2 o r p2 << pl if pl instance o f u l Axl
and p2 instance of u2
and Exclusive(ul u2)

notEpl = p2] if pl instance of ul Ax2
and p2 instance of u2
and Incompatible(ul u2)

after(e u) instance of u if Holds(after(e u)) Ax3
before(e u) instance of u if Holds(before(e u)) Ax4

x < y if Start(p x) and End(p y) Ax5

pl << p2 if and only if Ax6
there exist el and e2 EEnd(pl e l) and

Start(p2 e2) and
el _< e2]

Notice that we have previously made use of the " i f hal f" of Ax6 to determine
end points in case 0. To determine end points in cases 1-3 we need to use the
"only if half". We will not show the derivation of the rules here, but only
present the rules themselves.

In Case 1, there must exist a start i of before(e' u'), at or after e.
Pictorially it is shown in Fig. 20.

o e

LI'
i o o e '

Fig. 20

The new end point can be named as a function of the time period, say
init(before(e' u')), and the end point can be derived by the general rule

EStart(before(e' u ') init(before(e' u')))
and

e <_ init(before(e" u'))~
if Holds(before(e u))
and Holds(before(e ' u'))
and Exclusive(u u')

92 R, Kowalski, and M. Sergot

and e < e'
and not Broken(e u' e')

Here we have used the notation

[A and B] i f C

as shorthand for the two clauses

A i f C
B i fC .

Case 2 is similar to case 1:

[End(after(e u) fin(after(e u)))
and

fin(after(e u)) <_ e']
if Holds(after(e u))
and Holds(after(e' u'))
and Exclusive(u u')
and e < e'
and not Broken(e u e')

Notice that an attractive consequence of the use of negation as failure is that the
implicit end point derived by these rules disappears if new information makes
it possible to derive the end point explicitly.

Case 3 is similar to cases 1 and 2 but slightly more complicated. In this
case there exists an end of after(e u) at or before the start of before(e' u'). These
implicit start and end points are shown pictorially in Fig. 21.

eo o f

i o O e

I3-

Fig. 21

[fin(after(e u))
and

Start(before(e'
and

End(after(e u)
if
and
and
and
and

-< init(before(e' u'))

i') init(before(e' u')))

fin(after(e u)))]
Holds(after(e u))
Holds(before(e' u'))
Incompatible(u u')
e < e '
not Broken(e u e')

A Logic-based Calculus of Events 93

These clauses complete the definition of the "Start" and "End" predicates.
Notice, however, that our treatment in cases 1 and 2 of both identical and

incompat ible relationships in the same way suggests the possibility of extending
case 3 to include the case where u and u' are identical.

This would mean that in the situation (Fig. 22)

U
e o .

i o e '

Fig. 22

where we earlier concluded that

after(e u) = before(e ' u)

we would need non-Horn clause logic to express that either the equality holds,
or the period after(e u) ends before the period before(e' u) starts. Such an
expression would have the form

(A or B) if C

where A and B are mutual ly exclusive. The approach we have taken so far,
which rewrites the statement in the form

A i f C and not B

and interprets negation as failure, gives disjunction an asymmetric interpreta-
tion:

prefer conclusion A to conclusion B
unless it is inconsistent to do so.

w Conclusion
The event calculus attempts to provide a general framework for reasoning

abou t t ime and events. It is based upon general axioms concerning the not ions
of events, relationships, and the periods for which they hold. In this paper, we
have presented some consequences of these axioms which can be executed as a
P R O L O G program.

In order to deal with simultaneous and part ial ly ordered events, and to
impose semantic structure on knowledge base transitions, events are treated as
primitive concepts, and knowledge base states are derived from event descrip-
tions. Event descriptions are symmetric with respect to past and future, implying
informat ion about past states as well as about future ones.

In this paper we have concentrated on applicat ions of the event calculus
to assimilating both database updates and simple narratives. In particular, we

94 R. Kowalski, and M. Sergot

stressed how default reasoning, implemented by negation as failure, deals with
the case in which event descriptions are assimilated independently of the order
in which they occur. When an update description conflicts with information
derived by default reasoning, the update is accepted and the conflicting informa-
tion previously derived by default is automatically and non-monotonical ly
withdrawn.

In contrast, conventional databases choose to reject updates which are
inconsistent with information already in the database. This strategy is appropri-
ate only when updates are reported and assimilated in the order in which they
occur, and when the database can be assumed to hold complete information
about the past. Making explicit these extra assumptions in the event calculus
simplifies the treatment significantly. We have not discussed, however, the
processing which is necessary in these circumstances to validate attempted
updates and to avoid the violat ion of database integrity.

These two contrasting approaches to database updates represent extreme
ends of a spectrum of possibilities. In general, database systems faced with an
attempted update inconsistent with their contents could choose to restore
consistency either by rejecting the update or by withdrawing some of the
information in the database.

The clauses we presented for assimilating updates and narratives run
reasonably efficiently as a PROLOG program. However, they should be regard-
ed not as a program but as a specification. In practice, the clauses would be
further transformed and optimized to run more efficiently in specific applica-
tions.

A number of extensions can be incorporated straightforwardly into the
event calculus. In particular, it is possible to extend the representation of periods
to deal with information like

"Mary was a professor when Jim was promoted"

where neither the start nor the end of her period of professorship is known.
Important extensions which do need further investigation include the representa-
tion of negated facts, and the ability to associate arbitrary sentences, not just
conditionless facts, with the periods for which they hold.

Our formalization of the event calculus is deliberately neutral with
respect to whether or not events have duration. Fariba Sadri has investigated the
treatment of events which have duration, so that we can say, for example, that
one event occurs completely, or partially, while another is taking place.

Somewhat more speculatively perhaps, we believe that the assimilation of
updates without explicit deletion will contribute to the problem of updating
data structures without destructive assignment in logic programming itself.
These and other applications remain to be investigated in greater detail.

A Logic-based Calculus of Events 95

Acknowledgements
We are indebted to Fa r iba Sadri for her va luab le comments , par t icular ly

those concerned with comple t ing the definit ions o f the "Star t" and " E n d "
predicates. We also owe thanks to D o v G a b b a y for his useful and s t imula t ing
discussions about tempora l logic and its re la t ionship with classical logic.

This research was suppor ted by the Science and Engineer ing Research

Counci l .

References
1) Allen, J. F., "Maintaining knowledge about temporal intervals," TR-86, Computer

Science Dept., Univ. of Rochester, January, 1981; also in Commun. ACM, 26 pp.
832-843, 1983.

2) Allen, J. F., "Towards a General Theory of Action and Time," Artificial Intelligence,
23, pp. 123-154, 1984.

3) Bolour, A., Anderson, T. L., Dekeyser, L. J., and Wong, H. K. T., "The role of time in
information processing: a survey," ACM SIGMOD Review, Vol. 12, No. 3, April, 1982.

4) Kowalski, R. A., Logic for Problem Solving, North-Holland/Elsevier, New York, .1979.
5) McCarthy, J. and Hayes, P. J., "Some philosophical problems from the standpoint of

artificial intelligence," in Machine Intelligence, 4 (B. Meltzer and D. Michie, eds.),
Edinburgh University Press, Edinburgh, 1969.

6) Lee, R.M., Coelho, H. and Cotta, J.C., "Temporal Inferencing on Administrative
Databases." Information Systems, Vol. 10, No. 2, pp. 197-206, 1985.

