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Abstract We outline an approach for reasoning about events and  
time within a logic programming framework. The notion of event is taken 
to be more primitive than that  of time and both are represented explicitly by 
means of  Horn clauses augmented with negation by failure. 

The main intended applications are the updating of  databases and 
narrative understanding. In  contrast with conventional  databases which 
assume that updates are made in the same order as the corresponding events 
occur in the real world, the explicit  treatment of events allows us to deal with 
updates which provide new information about the past. 

Default reasoning on the basis of incomplete information is obtained 
as a consequence of  using negation by failure. Default conclusions are 
automatical ly withdrawn if  the addit ion of new information renders them 
inconsistent. 

Because events are differentiated from times, we can represent events 
with unknown times, as well as events which are part ial ly ordered and 
concurrent. 

Keywords: Event Calculus, Logic Programming, PROLOG, Temporal Logic, 
Database Updates, Default Reasoning. 

w Introduction 
F o r m a l  Log ic  can be used  to  represent  k n o w l e d g e  o f  many  k inds  for  

m a n y  purposes .  I t  can be used  to  fo rma l i ze  p rog rams ,  p r o g r a m  speci f ica t ions ,  

da tabases ,  l eg i s la t ion  and  n a t u r a l  l anguage  in genera l .  F o r  m a n y  such a p p l i c a -  

t ions  o f  log ic  a r ep re sen t a t i on  o f  t ime  is necessary.  

A l t h o u g h  there have  been  several  a t tempts  to  fo rma l i ze  the no t i on  o f  t ime  

in c lass ica l  f i rs t -order  logic ,  it  is st i l l  w ide ly  be l i eved  tha t  c lass ical  logic  is n o t  
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adequate for the representation of  time and that  some form of  non-classical 
Tempora l  Logic is needed. In this paper, we shall out l ine a treatment of  time, 
based on the notion of  event, formalized in the Horn  clause subset of  classical 
logic augmented with negation as failure. The resulting formalizat ion is executa- 
ble as a logic program. 

We use the term "event calculus" to relate it to the well-known "si tuat ion 
calculus". 5) The main difference between the two is conceptual: The situation 
calculus deals with global states whereas the event calculus deals with local 
events and time periods. Like the event calculus, the situation calculus can be 
formalized by means of  Horn  clauses augmented with negation by failure. 4) 

The  main intended appl icat ions investigated in this paper  are the updat-  
ing o f  databases and narrative understanding. In order to treat both cases 
uniformly we have taken the view that an update consists of  the addition of  new 
knowledge to a knowledge base. The effect of  explicit deletion of informat ion 
in conventional  databases is obta ined without  deletion by adding new knowl-  
edge about  the end of the per iod of  time for which the information holds. 

w A Simplified Example 
A simple, informal example will illustrate the general idea. Consider the 

fol lowing narrative: 

(1) Mary was hired as a lecturer on 10 May 1970. 
(2) John  left as lecturer on 1 June 1975. 
(3) Mary left as professor on 1 October 1980. 
(4) Mary was promoted f rom lecturer to professor on 1 June 1975. 

Each sentence in the narrative can be considered as an update which adds new 
knowledge, starting from an initially empty knowledge base. In the spirit o f  
many  natural  language processing systems, the meaning of the new knowledge 
can be formulated in terms of  event descriptions. Formula ted  in event descrip- 
t ion terms, the sequence of  updates becomes: 

(1) E1 is an event in which 
Mary is hired as lecturer. 
E1 has time 10 May 1970. 

(2) E2 is an event in which 
John  leaves as lecturer. 
E2 has t ime 1 June 1975. 

(3) E3 is an event in which 
Mary leaves as professor, 
E3 has t ime 1 October 1980. 

(4) E4 is an event in which 
Mary is promoted f rom lecturer to professor. 
E4 has t ime 1 June 1975. 
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A typical  event causes the start o f  several (zero or  more)  periods o f  t ime 
and the end o f  several others. For  example:  

An  event e o f  h i r ing  x as y 

starts a per iod o f  t ime 
for which  x has r ank  y. 

This can be formulated  as a H o r n  clause 

x has rank y for per iod  after(e) 

if  e is an  event in which x is hi red as y. 

Here the term after(e) names the time per iod as a funct ion o f  e. The start o f  
after(e) can be defined by a condi t ionless  H o r n  clause: 

The start o f  after(e) is e. 

The  end o f  after(e) is undefined but  might  be determined by means o f  
add i t iona l  in format ion  later. Similar H o r n  clauses can be used to express tha t  

an event e o f  x leaving as y 
ends a per iod o f  t ime 
for which x has r ank  y; 

an event e o f  p r o m o t i n g  x f rom y to z 
ends a per iod o f  t ime 
for which  x has rank  y and 
starts a per iod o f  t ime 
for which  x has rank  z. 

By means  o f  these rules it is possible to conc lude  after update (1) that  

Mary has rank lecturer for per iod after(E1) 
which  starts 10 Ma y  1970. 

This  can be represented pic tor ia l ly  as shown in Fig. 1. 

time 

E1 o 
Mary lecturer 

I 
10 May 1970 

Fig. 1 After update (1) 

Similar ly after updates (2), (3) and (4), it is possible to make the 
conc lus ions  shown in pictorial  terms in Figs. 2-4 respectively. 
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E l o  

time I 

Mary lecturer 

I 

10 May 1970 

John lecturer 
o E2 

I 
1 June 1975 

Fig. 2 After update (2) 

E1 o 
Mary lecturer 

* o E2 
John lecturer 

Mary professor 

time { { [ 
10 May 1970 1 June 1975 

Fig. 3 After update (3) 

E1 o t _  

Mary lecturer 

- o E2 

o E 3  

John lecturer 

- o E 3  
Mary professor 

u O m 

Mary lecturer E4 Mary professor 

time ] [ [ 

1 Oct 1980 

10 May 1970 1 June 1975 1 Oct 1980 

Fig. 4 After update (4) 

After update (4) it would be natural to conclude that the event E4 of 
Mary's promotion ends her previous period after(E1) of  lectureship and starts 
her previously identified, future period before(E3) of  professorship. This can be 
pictured as Fig. 5: 

E4 
E1 o o o E3 

Mary lecturer Mary professor 

�9 o E2 
John lecturer 

time [ [ } 
10 May 1970 1 June 1975 1 Oct 1980 

F i g .  5 

The conclusions illustrated in Fig. 5 can be justified if we can prove the 
equalities: 
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after(E1) = before(E4) 
after(E4) = before(E3). 

Together  with the rules of  equali ty and the fact that E4 ends before(E4) and 
starts after(E4), these equalities imply that 

E4 ends after(El)  and 
E4 starts before(E3). 

The two equalities can be derived by means of a rule which expresses that 

two periods of  time are identical 
if the same individual  holds the same rank for both periods, 
and one period starts before the other ends, 
and it cannot  be shown that an event has occurred, which affects 

the individual 's  rank, after the start of  the first period and 
before the end of  the second. 

This  rule uses default reasoning in the expression "cannot  be shown",  
which can be formalized by negation as failure. Such default reasoning is 
"non-monoton ic"  in the sense that conclusions derived with its assistance are 
automatical ly  withdrawn if contradictory new informat ion is later made avail- 
able. This  might happen in the present example if it were discovered, for 
instance, that Mary left temporar i ly  in January 1978 and was rehired in October  
1979. 

Mary 's  rank at a time instant t can be determined by finding a period of  
t ime containing t and determining her rank during that period. This too can be 
expressed as a Horn  clause 

x has rank y at t ime t 
if  x has rank y for period p 
and t in p. 

Thus after assimilating our example narrative it should be possible to 
conclude that 

Mary has rank lecturer on 11 May 1970 and 
Mary has rank professor on 16 Feb. 1978. 

Whether  it should also be possible, however, to conclude that 

John has rank lecturer on 30 May 1975, 

for example,  is more problematic.  We shall deal with these and related problems 
later. 

The simple example narrative already illustrates several general character- 
istics of  the event calculus approach.  

(1) Updates  are additive in that they add but  do not delete information 
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about  events. That  a relationship no longer holds is represented by 
adding information which implies the end of  the time period for which 
the relationship holds rather than by deleting the relationship. This is 
consistent with our use of  classical logic without  explicit destructive 
assignment. 

(2) Conventional  database systems, in contrast, allow arbitrary additions and 
deletions of  relationships, qualified only by the requirement that integrity 
constraints be preserved. It might be permissible, for example, to replace 
the relationship "John has rank lecturer" by the relationship "Mary has 
rank professor" whether or not this corresponds to any meaningful real 
world event. The derivation of  starts and ends of  relationships from event 
descriptions imposes an extra level of semantic structure on database 
updates. 

(3) Past and future are treated symmetrically. Therefore event descriptions 
can be assimilated in any order, independently of  the order in which the 
events themselves actually take place. This facilitates dealing with incom- 
plete information, both with new knowledge about  the past as well as 
with hypothetical possibilities for the future. In the example, this is 
illustrated by the second update which records John's leaving without  
there being any previous record of  his employment.  
In a conventional database system the only way to express 

"if  a person leaves then he must already be employed" 

is to formulate an integrity constraint which would reject as inconsistent 
any update which records an event of  leaving without  there already being 
an appropriate record of  employment in the database. But such an 
integrity constraint combines (and confuses) two different kinds of state- 
ment: an object-level statement (about the world),  that leaving implies a 
preceding period of  employment,  with a metalevel statement (about the 
database) that the database contains a complete record of  relevant infor- 
mation about the past. In this paper we ignore problems concerned with 
the treatment of integrity constraints and preconditions of events. 

(4) In the example narrative, a numerical time is associated with every event. 
In the general case this is not essential; rather it is the relative ordering 
of  events which is important.  Knowing the time at which events take 
place, of course, allows us to define an ordering relation " < "  on events 
in a particularly simple way: 

e < e" if Time(e t) and Time(e' t') 
and t is (chronologically) earlier than t' 

In other cases, the event ordering relation can be defined explicitly, 
without reference to time. Indeed, in many cases it may not be possible 
to associate explicit times with events at all. For  example, the meaning of  
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(5) 

(6) 

the sentence 

"John went to the theatre 
after he came home from work." 

can be represented by the event descriptions: 

E1 is an event in which 

John goes from work to home;  
E2 is an event in which 
John goes from home to the theatre; 

together with a relative ordering of the two events 

E1 < E 2 .  

In the sequel we shall use the symbol " < "  to signify both the ordering 
relation for events and the chronological (or other) ordering relation on 

times, and let context disambiguate between the two. 
The distinction between events, time periods and time instants makes it 
possible to deal with concurrent events. In our simple narrative we have 
such an example. The two events E2 and E4 are distinct even though they 

take place simultaneously. 
Although all the events considered in this paper can be treated as taking 

place instantaneously, we want to leave open the possibility that events 
can also have duration. For  this reason we do not want time periods to 
contain wholly the events which start or end them. This is not quite the 
same as treating time periods as open intervals. Consider for example, an 

event of  moving a block x from place y to place z, which consists in turn 
of  five subevents: grasping, lifting, transporting, lowering and ungrasping 
the block. The period for which x is at y ends when x is lifted and the 

period for which x is at z starts when x is lowered. The relationship 
between the event and time periods which we previously pictured (Fig. 6) 

x at y x at z 
0 

m o v e  X 

from y to z 

Fig. 6 

can now be pictured (Fig. 7). 

x a t y  x a t z  

move x 
from y to z 

Fig. 7 
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To  cater for this possibili ty it suffices to adopt  the convention that events 
occur "after" the periods they end, "before" those they start and are not  
whol ly  contained within them. 

(7) Our  formalization of  events is intended as a formal analysis of  the 
concepts rather than as a program or even as a program specification. 
Nonetheless, because it can be expressed by means of  Horn  clauses 
augmented with negation by failure, it is an executable analysis which in 
certain circumstances, after appropriate  equivalence preserving transfor- 
mations,  runs as a P R O L O G  program. 

(8) The  most established alternative treatment of  states and actions in classi- 
cal, first-order logic is the situation calculus, s~ Time varying relationships 
are qualified by a si tuation parameter, which can be regarded as a global,  
instantaneous time slice. Events transform one global situation into 
another. 
Because situations are global,  it is not possible to deal with simultaneous 
and partially ordered events. In the usual formalizations,  it is difficult 
also to deal with incomplete information about  a situation, and therefore 
to assimilate new informat ion about  the past. 
The  situation calculus, like the calculus of  events, can be formalized by 
means of  Horn  clauses augmented with negation as failure 4~ and therefore 
can be executed as a P R O L O G  program. However,  execution of the 
situation calculus gives rise to the f r ame  problem, the need to reason that  
a relat ionship which holds in a situation and is not affected by an event 
continues to hold in the following situation. This  explicit deduction, 
which is a consequence of  the use o f  global  situations, is so 
computat ional ly  inefficient as to be intolerable. 
The  event calculus was developed, to a large extent, in order to avoid the 
frame problem. It  does so by qualifying relat ionships with time periods 
instead of with global situations. Time periods associated with different 
relationships have different names even if they have the same duration. 

(9) There  is a vast, related literature 3~ concerned with the formalization of  
time. Our presentation o f  the event calculus is similar to those treatments 
of  t ime which are based on the use of  time periods rather than on t ime 
instants. Among  these, the approach of Allen l'z~ is closest, not only  
because of  its use of  t ime periods, but more important ly  because of  its 
emphasis on events and the time periods they start and end. (Since 
writing this paper, we have discovered the still more  closely related work 
of  Lee, Coelho and Cotta,  8) which is also formulated within a logic 
programming framework.)  
We have avoided the use of  non-classical logic for two reasons: to obta in  
greater expressive power, and to exploit the p roof  procedures which have 
been developed for classical first-order logic in general and for logic 
programming in particular. Expressive power is gained by treating t ime 
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and events explicitly rather than implicitly through the use of natural, but  
weak modal operators for notions such as "future",  "since" and "while". 
We have potentially sacrificed the greater conciseness of  modal logic for 
the greater expressiveness of  an explicit treatment of time and events. 

The 
general rules: 

Rank(x y after(e)) if Hire(x y e) 
Rank(x y before(e)) if Leave(x y e) 
Rank(x y before(e)) if Promote(x y z e) 
Rank(x z after(e)) if Promote(x y z e) 

Start(after(e) e) 
End(before(e) e) 

w The Promotion Example in Detail 
Before considering the general case, we shall investigate the promot ion 

example in greater detail. 
The sequence of updates starting from the initially empty knowledge base 

can be represented by assertions: 

Hire (Mary lecturer E l )  
Time (El 10.May. 1970) 
Leave (John lecturer E2) 
Time (E2 1.June. 1975) 
Leave (Mary professor E3) 
Time (E3 1.Oct. 1980) 
Promote (Mary lecturer professor E4) 
Time (E4 1.June. 1975) 

relationships which start or end as the result of  events are defined by 

P1 
P2 
P3 
P4 

P5 
P6 

Notice that we have assumed for the time being that event descriptions 
are complete. In many cases incomplete event descriptions, such as 

E2 is an event 
in which John leaves, 
E4 is an event 
in which Mary is promoted to professor, 

would be more natural. The advantage of  complete event descriptions for the 
present is that they allow us to derive both started and ended relationships from 
the event descriptions alone. We shall deal with incomplete event descriptions 
later. 

In order to conclude that 

End(after(E 1) E4) 
End(after(E4) E3) 
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Start(before(E4) E 1) 
Start(before(E3) E4) 

we need additional rules 

End(after(e) e') 
Start(before(e') e) 

To  derive that 

after(E1) = before(E4) 
after(E4) = before(E3) 

we use the general rule 

after(e) = before(e') if 

where 

pl << p2 

R. Kowalski, and M. Sergot 

if  after(e) = before(e') 
if after(e) = before(e'). 

P7 
P8 

Rank(x y after(e)) 
and Rank(x y before(e')) 
and e < e" 
and not after(e) << before(e') 

Tempi  

expresses that periods pl  and p2 are disjoint, with the end o f p l  occurring before 
the start of  p2. 

In fact, this rule (and several of  the earlier rules) will be generalised later 
in Section 10 to separate general axioms about events and time from those which 
are application specific. We shall introduce an axiom which expresses a general 
property of  periods in the event calculus: 

any two periods associated with the same relationship 
are either identical, or they are disjoint. 

(Note that Allen uses the same axiom.) Remembering that periods do not  
contain their end points, we can formalize the not ion of  disjoint periods as 
follows: 

pl << p2 if End(p l  e) and Start(p2 e') and e <_ e' Temp2 

Pictorially, the definition is illustrated in Fig. 8. 

0 C 

pl e e' p2 

Fig. 8 

Here e <_ e' means that e occurs before or at the same time as e'. 
Note  that we allow the case where an event ends and starts the same 

relationship. For  example the event of  Mary's taking a sabattical can be regard- 
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ed as ending one period of  lectureship and starting another. 
The negative condit ion in Templ  can be interpreted either classically or 

by means of  negation by failure. Interpreting it by negation as failure has the 
consequence that time periods are assumed to be equal by default, if  they cannot  
be shown to be different. 

w Execution of the Promotion Example 
Clauses P1-8 and Templ-2  are in a form which can be executed as a 

PROLOG program. Unfortunately, when executed by PROLOG, the program 
goes into an infinite, non-terminating loop. Suppose for example that we have 
just the two event descriptions 

Hire(Mary lecturer El )  
Promote(Mary lecturer professor E4) 
El  < E4 

and pose the query 

End(after(E1) x) ? Q1 

using P1-8, Templ-2 and an appropriate definition of  _<. The first three condi- 
tions of  clause Templ  are solved without difficulty, leaving the query 

not alter(El) << before(E4) ? Q2 

To show this succeeds we must show that the query 

after(E1) << before(E4) ~ Q3 

fails. There is only one clause we can use, Temp2, and so we must show that the 
query 

End(after(E1) e ' )  and Start(before(E4) e*) and e" <_ e* ? Q4 

fails. PROLOG tries to solve the first condition first. But this is just like the 
original query, and PROLOG goes into a non-terminating loop. 

It is possible to eliminate the loop, either by employing a more intelligent 
problem-solver than PROLOG or by using program transformation techniques. 
Before presenting a loop-free variant of  the "program", however, we have a more 
serious problem to consider. 

w Incompleteness and Incorrectness of Start and End 
Negation by failure is a form of  the closed world assumption, that the 

"knowledge base" is complete: 

not p is judged to hold if all ways of showing p fail. 

If the characterization of  p is incomplete then not p may be judged to 
hold even though it does not. Unfortunately, our characterization of the "Start" 
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and " E n d "  predicates is incomplete. Consequently negation by failure can give 
incorrect results, allowing us to conclude that two t ime periods are equal when 
they are not. 

Suppose, for example, that  we are given the two event descriptions 

Hire(Jack professor J1) 
Hire(Jack professor J2) 
J1 < J2 

and nothing more (Fig. 9). 

J1 o 
Jack professor 

m 

J2 o 
Jack professor 

Fig. 9 

Clearly some event, as yet unreported, must have occurred somewhere 
between J1 and J2 to end Jack 's  first period of professorship. Our existing rules 
could never find such an end for after(J1). Even if they did not loop, they would  
only be able to find ends which correspond to named, reported events. The rules 
we have for "End"  are incomplete therefore ; by symmetry,  so are the ones for 
"Start".  

The  rule Tem pl ,  by which we conclude that two periods are equal, relies 
on the completeness of  the program for " < <  ". The program for "<<  ", Temp2, 
relies in turn on the completeness of  "Start" and "End" .  This means that T e m p l  
may lead us to conclude that two periods are equal, when in fact we should not. 

Suppose, for example, we add to the event descriptions above the infor- 
mat ion that  

Leave(Jack professor J3) 
J2 < J3. 

Pictorially, we have the situation shown in Fig. 10. 

J l o  
Jack professor 

m 

J2 o 
Jack professor 

o J3 
Jack professor 

Fig. 10 

Even if we eliminated loops, our existing rules could not find an end to 
after(J1), as argued above. Therefore, we could not show that periods after (J1) 
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and before(J3) are disjoint, and so Templ  would conclude they are equal. 
Clearly they are not. 

The obvious solution is to complete the definition of  the "End"  and 
"Start"  predicates. In this example we need rules which allow us to conclude 
that there exists some end j o f  after(J1), such that J1 < j <_ J2 (Fig. 11). 

J l o  o j  

J2 o 

o J3 

Fig. I t  

In fact, as we shall see later, we need similar rules to conclude the 
existence of  ends and starts o f  time periods in many  other cases. In the mean- 
while, however, we remark that  the problems of incorrectness and looping can 
both  be solved without  having first to solve the problem of incompleteness. 

I f  the predicate " < < "  is not required for any other purpose, we can solve 
the problem by finding an alternative program fer " < <  ", which does not rely on 
the completeness of  "Start" and "End".  With such a program, the rules we have 
for "Star t"  and "End"  would still be incomplete but  now they would be correct. 

Fortunately,  there is such a program. It can be shown that, whenever 

Rank(x y after(e)) 
Rank(x y before(e '))  
e < e '  

all hold, the condit ion 

after(e) << before(e ')  

can be replaced by 

[Rank(x y' after(e*)) or Rank(x y' before(e*))] and e < e* < e'. 

In other words the two time periods are disjoint if (and only if) some other event 
e* which affects the relat ionship takes place in between the start of  one period 
and the end of the other. 

Notice that the use of  the variably y" instead of  y implicitly incorporates 
the "integrity constraint" that  no person can hold more than one rank at the 
same time. We shall deal with such " incompat ib le"  relationships in greater 
detail later when we deal with the general case. 

With this result, we can dispense with the explicit definition o f "  << ", and 
write instead 

after(e) = before(e ')  if Rank(x y after(e)) P9 
and Rank(x y before(e '))  
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This is equivalent to 

after(e) = before(e') 

and e < e' 
and not ( [Rank(x  y" after(e*)) or 

Rank(x y" before(e*))] 
a n d e < e *  < e ' )  

if Rank(x  y after(e)) 
and Rank(x  y before(e')) 
and e < e' 
and no t [Rank(x  y'  after(e*)) and e < e* and e* < e'~ 
and no t [Rank(x  y'  before(e*)) and e < e* and e* < e'~ 

This alternative to Temp 1-2 solves both the problem of  looping and the problem 
of incorrectness. 

Not ice  that rule P9 does not cover the case where the events e and e' are 
too far apart  in t ime for x to have rank y continuously f rom e to e'. To deal with 
this case we would need to add another  condit ion to P9, such as 

not Too-far-apart(e  e ')  

and define it appropriately.  

w Time Instants 
Using P1-9 P R O L O G  can be used to determine the time periods for 

which relationships hold. To  determine that a relat ionship holds at a t ime 
instant, however, we need addi t ional  rules such as 

RankAt(x  y t) if Rank(x y p) P10 
and t in p 

t in p if  Start(p e l )  and End(p e2) P l l  
and Time(e l  t t )  and Time(e2 t2) 
a n d t l  < t a n d t < t 2  

Given the rules P I - l l ,  an appropriate  definition of  < for t ime instants, 
and the description of  events E l -E4  in our simple narrative, we can conclude 
using P R O L O G  that, for example,  

RankAt(Mary  lecturer 11.May. 1970) 
RankAt(Mary  professor 16.Feb.1978). 

The  rules work for t ime periods which have a determined start and end. 
They do not work for periods which have no start or end, or for periods whose 
starts or ends are implied by other information but are not  explicitly determined. 
These cases can be dealt with in a variety of  ways and we shall return to them 
when we come to consider the general case, 
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w A Special Case of the Promotion Example 
The event calculus approach, the main features of  which have been 

outl ined above, may appear more complicated than necessary by comparison 
with conventional  approaches to the treatment of  database updates. This is 
partly because conventional databases deal with a special ease: events are 
assimilated in the order in which they take place and the database is assumed to 
contain a complete record of  all relevant past events. It is instructive, therefore, 
to see what simplifications can be made in the event calculus when we restrict 
ourselves to the same special case. 

One of  the most important  simplifications is that P1-9 now constitute a 
complete definition of the troublesome "Start" and "End"  predicates. This is 
because all relationships are first derived in the form 

Rank(x y after(e)) 

before they are (redundantly) re-derived in the form 

Rank(x y before(e)). 

The  existing definitions of  "Start" and "End"  cover this case. Moreover, 
as a further simplification, we can avoid the redundancy of  deriving the same 
relationship twice, by restricting attention to the derivation of  predicates of  the 
form 

Rank(x y after(e)) 
Start(after(e) e) 
End(after(e) e') 

which are needed to characterize time periods of  the form after(e). Clauses P 1-9 
can be replaced for these purposes by the clauses 

Rank(x y after(e)) if Hire(x y e) PI 
Rank(x z after(e)) if Promote(x y z e) P4 
Start(after(e) e) P5 
End(after(e) e') if Rank(x y after(e)) and Leave(x y e') P2" 

and e < e' 
and not [Rank(x y' after(e*)) and e < e* < e'] 

End(after(e) e') if Rank(x y after(e)) and Promote(x y z e') P3' 
and e < e' 
and not [Rank(x y' after(e*)) and e < e* < e'] 

This is a significant simplification over P1-9. 
The rules P10 and P11 express that a relationship holds at a particular 

time instant if it holds after the start of  the relationship and before its end. It is 
appropriate in this special case to assume in addition that a relationship holds 
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after it has started, provided it has not already ended: 

t in p if Start(p e) PI2 
and Time(e t') 
and t' < t 
and not End(p e') 

Here, because the definition of "End" is complete for this special case, the 
negative condition in P12 does not lead to incorrect results, as it might in the 
more general case. (These rules are similar to those of Lee, Coelho, and Cotta, 6) 
who also use negation by failure, but restrict themselves to this special case.) 

w Incomplete Event Descriptions 
For the purpose of simplicity we have assumed that event descriptions are 

sufficiently complete to derive, directly from the event description alone, the 
relationships which are started and ended by the event. In many cases, however, 
incomplete event descriptions such as 

E2 is an event in which John leaves, 

where there is insufficient information to determine directly what John's rank 
was when he left, are more natural. 

The analysis of natural language by means of semantic networks and 
semantic cases suggests a way of dealing with such incomplete event descrip- 
tions. An event such as 

"John gave the book to Mary", 

for example, can be represented as a network (Fig. 12) 

A c t o r j  John 

~ Act = a Give 

R e c i ~  omect NNN~o 

Mary Book 

Fig. 12 

which can be formalized in turn by using constant symbols to represent nodes 
and binary predicates to represent arcs: 

Actor(E John) 
Act(E Give) 
Object(E Book) 
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Recipient(E Mary). 

Missing information can be dealt with by representing only the informa- 
tion which is known and ignoring that which is unknown. For example, to 
represent that Mary was promoted on 1 June 1975: 

Act(E4 Promote) 
Object(E4 Mary) 
Time(E4 1.June. 1975). 

The advantages of using semantic networks to describe events and of 
representing such networks in formal logic have been discussed by several 
authors. The discussion in Ref. 4) is especially relevant here. 

The clauses P1-4 which presently require complete event descriptions can 
be modified so that they use the minimum number of conditions needed to 
establish the conclusion. P1-4 can then be replaced by 

Rank(x y after(e)) if Act(e hire) PI" 
and Object(e x) 
and Destination(e y) 

Rank(x y before(e)) if Act(e leave) P2' 
and Object(e x) 
and Source(e y) 

Rank(x y before(e)) if Act(e promote) P3' 
and Object(e x) 
and Source(e y) 

Rank(x y after(e)) if Act(e promote) P4' 
and Object(e x) 
and Destination(e y) 

Thus, for example, P4' does not require the condition 

Source(e z) 

which identifies the "object's" rank immediately before promotion. The remain- 
ing clauses are not affected by this reformulation. 

Notice that the new formulation is still symmetric with respect to past 
and future. However, whereas a complete event description allows us to deduce 
all possible relationships which are started or ended by an event, an incomplete 
description might not contain sufficient information to allow such deductions. 
Nonetheless, it may be possible to complete such an event description by default 
reasoning. 

Suppose, for example, that we are given complete descriptions of the 
events El, E2 and E3 as before and then an incomplete description of E4: 

Act(E4 promote) 
Object(E4 Mary) 
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Time(E4 l.June. 1975). 

Pictorially the situation is shown in Fig. 13. 

EIo m 
Mary lecturer 

O 

E4 
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�9 * o E3 
Mary professor 

o E4 

o E2 
John lecturer 

Fig. 14 

-* o E3 
Mary professor 

Mary's ranks during periods after(E1) and before(E4) may be different, or they 

situation in Fig. 14. 

E1 o 
Mary lecturer 

Mary ? 

~, o E2 
John lecturer 

Fig. 13 

The information about E4 is insufficient to allow the derivation of  the 
conclusion 

Rank(Mary lecturer before(E4)) 

by means of  P3' and therefore of  the further conclusion 

End(after(E 1) E4). 

We can derive these conclusions, however, if we can find a means of  

completing the event description by deducing 

Source(E4 lecturer). 

We can do so by adding extra information about promotions: in every event of  
promot ion  there must be a "source", even though it may be unknown. 

This extra information allows us to deduce that, in event E4, Mary must 
have been promoted from some rank, and therefore that Mary holds some 

(unknown)  rank throughout the period before(E4). Pictorially we have the 
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may be the same. 
It is a natural extension of our previous use of  default reasoning to 

assume now that  

two ranks are identical 
if we cannot show they are different. 

This argument justifies adding the extra rule: 

Source(e y) if Act(e promote)  
and Object(e x) 
and Rank(x  y after(e')) 
and e' < e 
and not  ( [Rank(x  y'  after(e*)) or 

Rank(x y'  before(e*))] 
ande"  < e* < e )  

which uses the negative condi t ion to reason by default. 
Similarly we can use the addit ional  informat ion that every event of  

p romot ion  has a "dest inat ion" (persons are promoted  to some rank) to justify 
the extra rule: 

Destination(e y) if  Act(e promote)  
and Object(e x) 
and Rank(x y before(e'))  
and e < e" 
and not ( [Rank(x  y'  after(e*)) or 

Rank(x y'  before(e*))~ 
a n d e < e * < e ' )  

This allows us to deduce 

Destination(E4 professor) 
Start(before(E3) E4) 
End(after(E4) E3). 

These conclusions are shown pictorially in Fig. 15. 

E1 c, o 
Mary lecturer E4 Mary professor 

O 

John lecturer E2 

Fig. 15 

oE3 

As usual, conclusions based on default assumptions may be automati-  
cally withdrawn after the assimilation of  new information.  
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w Another Example 
Before turning to the general case, it is useful to consider an example in 

which an event starts and ends more than one relationship. Consider the 
following narrative: 

John exchanged his orange for Mary's apple. 
Then Mary exchanged the orange for a pear. 

An act of exchanging has two actors and two objects. Suppose we call 
them the actor, coactor, object and coobject. We can then formalize the narrative 
by the clauses 

Act(E1 exchange) 
Actor(E 1 John) 
Object(E1 orange) 
Coactor(E 1 Mary) 
Coobject(E1 apple) 

Act(E2 exchange) 
Actor(E2 Mary) 
Object(E2 orange) 
Coobject(E2 pear) 
E1 < E 2  

Notice that since each exchange event e starts and ends two relationships 
we need to distinguish the two periods associated with the relationships. We can 
do so by using terms before(e x) and after(e x), where the second parameter x 
distinguishes between the two periods. One of the easiest ways of doing this is 
to use the name of the actor or coactor as the second parameter. 

Possesses(x y before(e x)) 

Possesses(x y before(e x)) 

Possesses(x y after(e x)) 

Possesses(x y after(e x)) 

if Act(e exchange) Exl 
and Actor(e x) 
and Object(e y) 
if Act(e exchange) Ex2 
and Coactor(e x) 
and Coobject(e y) 
if Act(e exchange) Ex3 
and Coactor(e x) 
and Object(e y) 
if Act(e exchange) Ex4 
and Actor(e x) 
and Coobject(e y) 

In the given example, these clauses allow us to derive 

Possesses(John orange before(E1 John)) 
Possesses(Mary apple before(E1 Mary)) 
Possesses(John apple after(E1 John)) 
Possesses(Mary orange after(E1 Mary)) 
Possesses(Mary orange before(E2 Mary)) 
Possesses(Mary pear after(E2 Mary)) 

To derive starts and ends of time periods we need, to begin with, the 
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clauses 

Start(after(e x) e) 
End(before(e x) e). 

To conclude 

after(E1 Mary) = before(E2 Mary) 

and therefore that 

End(after(E1 Mary) E2) 
Start(before(E2 Mary) E 1) 

we need the clauses 

after(e x) -- before(e' x) if 

End(after(e x) e') 
Start(before(e' x) e) 

87 

Ex5 
Ex6 

Possesses(x y after(e x)) Ex7 
and Possesses(x y before(e r x)) 
and e < e' 
and not(EPossesses(x' y after(e* x')) or 

Possesses(x' y before(e* x'))] 
a n d e < e * < e ' )  

if after(e x) = before(e" x) Ex8 
if after(e x) = before(e' x) Ex9 

Here the negative condition in Ex7 also incorporates the constraint that more 
than one person cannot "possess" an object at one time. 

w The General Case 
We are now in a position to generalize the preceding examples and 

consider the general case. For  this purpose, in order to deal uniformly with 
events which start or end more than one relationship, it is convenient to name 
time periods by means of terms 

after(e u) and before(e u) 

where the second parameter u names the relationship associated with the time 
period. Moreover, instead of treating time periods as a parameter of time-varying 
relations, it is convenient to use a general predicate 

Holds(p) 

which expresses that the relationship associated with p holds for the time period 
p. Thus we will now write 

Holds(before(E2 rank(John lecturer))) 

instead of the earlier, simpler notation 

Rank(John lecturer before(E2)). 
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Although in most cases the new notation will be more complicated than 
necessary, it has the advantage of greater generality. This notation is similar to 
one we have used elsewhere for the situation calculus. 4~ 

Instead of writing rules such as 

Holds(before(e rank(x y))) if Act(e leave) 
and Object(e x) 
and Source(e y) 

Holds(before(e possesses(x y))) if Act(e exchange) 
and Actor(e x) 
and Object(e y) 

similar to those we have written before, we can write a single general rule and 
several specific rules for different applications: 

Holds(before(e u)) if Terminates(e u) G1 
Terminates(e rank(x y)) if Act(e leave) 

and Object(e x) 
and Source(e y) 

Terminates(e possesses(x y)) if Act(e exchange) 
and Actor(e x) 
and Object(e y). 

Similarly 

Holds(after(e u)) if Initiates(e u) G2 

Initiates(e rank(x y)) if Act(e hire) 
and Object(e x) 
and Destination(e y) 

Initiates(e possesses(x y)) if Act(e exchange) 
and Actor(e x) 
and Coobject(e y) 

Notice, however, that to achieve such generality we have had to introduce the 
new predicates "Initiates" and "Terminates". 

The remaining rules are very similar to those we have used for the 
preceding examples: 

Start(after(e u) e) G3 
End(before(e u) e) G4 
Start(before(e' u) e) if after(e u) = before(e' u) G5 
End(after(e u) e') if after(e u) = before(e' u) G6 

after(e u) = before(e" u) if Holds(after(e u)) G7 
and Holds(before(e' u)) 
and e < e' 
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and not Broken(e u e') 
Broken(e u e') if  Holds(after(e* u*)) and Exclusive(u u*) G8 

a n d e < e *  < e '  

Broken(e u e') if Holds(before(e* u*)) and Exclusive(u u*) G9 
a n d e < e *  < e '  

Here "Broken" has been introduced largely as an abbreviation for reuse later on. 
It is intended that the predicate Exclusive(u u') holds when the relationships u 
and u' are either identical or incompatible in the sense that not both can hold  
simultaneously, i. e. 

Exclusive(u u) 
Exclusive(u u') if Incompatible(u u') 

The predicate "Incompatible"  needs to be defined by specific rules for 
particular applications. For  example 

Incompatible(rank(x y) rank(x y')) if not  y = y" 
Incompatible(possesses(x y) possesses(x" y)) if not x = x' 

y = y .  

(Notice that to deal with the case that e and e" are too far apart for u to hold  
continuously from e to e' we could add extra application-specific rules for the 
"Broken" predicate.) 

To determine that a relationship holds at a time instant we need to 
modify P10: 

HoldsAt(u t) if Holds(after(e u)) 
and t in after(e u) 

HoldsAt(u t) if Holds(before(e u)) 
and t in before(e u) 

The rule P11 

t in p if Start(p e l )  and End(p e2) 
and Time(el  t l )  and Time(e2 t2) 
a n d t l  < t a n d t  < t 2  

is adequate as it stands. As before, the rule P12 

t i n  p i f  Start(p e) 
and Yime(e t') 
and not End(p e') 

is appropriate and not incorrect for the special case where events are recorded 
in the order in which they occur and the database contains a complete record of  
all relevant past events (and the time between t and t' is not too long for the 
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relationship concerned to hold  continuously).  However it is incorrect in the 
general case because our definition of  the "End" (as well as "Start") predicate 
is incomplete. We shall attempt to remedy this defect now. 

w O t h e r  C a s e s  o f  t h e  S t a r t  and  E n d  P r e d i c a t e s  
So far we have rules for the cases 

Start(after(e u) e) 
End(before(e u) e). 

We also have rules which derive end points when time periods are 
identical (Fig. 16): 

e o  

Fig. 16 

It 

U 
o e '  

Case 0. 

There are other, more difficult, cases which we shall now consider. 
Pictorially these are shown in Figs. 17-19. 

U 
o e  

1j' 
q o e  

Fig. 17 Case 1. 

In Fig. 17 u and u' are "exclusive" in the sense defined in Section 10. 

e c  

e o 

Fig. 18 Case 2. 

D 

U '  

In Fig. 18 u and u' are exclusive. (This case is symmetric to case 1.) 

e o 

u 
,,I O e '  

Fig. 19 Case 3. 



A Logic-based Calculus of Events 91 

In Fig. 19 u and u' are "incompatible".  
It can be argued that these four cases exhaust all the situations where time 

periods interact to imply the existence of end points. In fact, the rules for 
determining end points in all four cases 0-3 can be systematically derived from 
a small number of  general principles, the most important  of  which are: 

pl  = p 2 o r  pl << p 2 o r  p2 << pl  if pl  instance o f u l  Axl  
and p2 instance of  u2 
and Exclusive(ul u2) 

notEpl = p2] if pl  instance of ul Ax2 
and p2 instance of u2 
and Incompatible(ul  u2) 

after(e u) instance of  u if Holds(after(e u)) Ax3 
before(e u) instance of  u if Holds(before(e u)) Ax4 

x < y if Start(p x) and End(p y) Ax5 

pl  << p2 if and only if Ax6 
there exist el and e2 EEnd(pl e l )  and 

Start(p2 e2) and 
el _< e2] 

Notice that we have previously made use of the " i f  hal f"  of Ax6 to determine 
end points in case 0. To determine end points in cases 1-3 we need to use the 
"only if half". We will not show the derivation of  the rules here, but only 
present the rules themselves. 

In Case 1, there must exist a start i of  before(e'  u'), at or after e. 
Pictorially it is shown in Fig. 20. 

o e  

LI' 
i o  o e '  

Fig. 20 

The new end point  can be named as a function of  the time period, say 
init(before(e'  u')), and the end point  can be derived by the general rule 

EStart(before(e' u ')  init(before(e' u'))) 
and 

e <_ init(before(e" u'))~ 
if  Holds(before(e u)) 
and Holds(before(e '  u')) 
and Exclusive(u u') 
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and e < e' 
and not  Broken(e u' e') 

Here we have used the notation 

[A and B] i f C  

as shorthand for the two clauses 

A i f C  
B i fC .  

Case 2 is similar to case 1: 

[End(after(e u) fin(after(e u))) 
and 

fin(after(e u)) <_ e'] 
if Holds(after(e u)) 
and Holds(after(e' u')) 
and Exclusive(u u') 
and e < e' 
and not  Broken(e u e') 

Notice that an attractive consequence of  the use of  negation as failure is that the 
implicit end point derived by these rules disappears if new information makes 
it possible to derive the end point explicitly. 

Case 3 is similar to cases 1 and 2 but slightly more complicated. In this 
case there exists an end of after(e u) at or before the start of before(e' u'). These 
implicit start and end points are shown pictorially in Fig. 21. 

eo o f  

i o  O e  

I3- 

Fig. 21 

[fin(after(e u)) 
and 

Start(before(e' 
and 

End(after(e u) 
if 
and 
and 
and 
and 

-< init(before(e' u')) 

i') init(before(e' u'))) 

fin(after(e u)))] 
Holds(after(e u)) 
Holds(before(e' u')) 
Incompatible(u u') 
e < e '  
not Broken(e u e') 
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These clauses complete the definition of  the "Start"  and "End"  predicates. 
Notice, however, that  our  treatment in cases 1 and 2 of  both  identical and 

incompat ible  relationships in the same way suggests the possibility of  extending 
case 3 to include the case where u and u' are identical. 

This would mean that  in the situation (Fig. 22) 

U 
e o . 

i o e '  

Fig. 22 

where we earlier concluded that  

after(e u) = before(e '  u) 

we would  need non-Horn  clause logic to express that either the equality holds, 
or the period after(e u) ends before the period before(e'  u) starts. Such an 
expression would have the form 

(A or B) if C 

where A and B are mutual ly  exclusive. The approach  we have taken so far, 
which rewrites the statement in the form 

A i f C  and not  B 

and interprets negation as failure, gives disjunction an asymmetric interpreta- 
tion: 

prefer conclusion A to conclusion B 
unless it is inconsistent to do so. 

w Conclusion 
The event calculus attempts to provide a general framework for reasoning 

abou t  t ime and events. It  is based upon general axioms concerning the not ions 
of  events, relationships, and the periods for which they hold. In this paper,  we 
have presented some consequences of  these axioms which can be executed as a 
P R O L O G  program. 

In order to deal with simultaneous and part ial ly ordered events, and to 
impose semantic structure on knowledge base transitions, events are treated as 
primitive concepts, and knowledge base states are derived from event descrip- 
tions. Event descriptions are symmetric with respect to past and future, implying 
informat ion about  past states as well as about  future ones. 

In this paper we have concentrated on applicat ions of  the event calculus 
to assimilating both database updates and simple narratives. In particular,  we 
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stressed how default reasoning, implemented by negation as failure, deals with 
the case in which event descriptions are assimilated independently of  the order 
in which they occur. When an update description conflicts with information 
derived by default reasoning, the update is accepted and the conflicting informa- 
tion previously derived by default is automatically and non-monotonical ly 
withdrawn. 

In contrast, conventional databases choose to reject updates which are 
inconsistent with information already in the database. This strategy is appropri- 
ate only when updates are reported and assimilated in the order in which they 
occur, and when the database can be assumed to hold complete information 
about  the past. Making explicit these extra assumptions in the event calculus 
simplifies the treatment significantly. We have not discussed, however, the 
processing which is necessary in these circumstances to validate attempted 
updates and to avoid the violat ion of  database integrity. 

These two contrasting approaches to database updates represent extreme 
ends of  a spectrum of possibilities. In general, database systems faced with an 
attempted update inconsistent with their contents could choose to restore 
consistency either by rejecting the update or by withdrawing some of  the 
information in the database. 

The  clauses we presented for assimilating updates and narratives run 
reasonably efficiently as a PROLOG program. However, they should be regard- 
ed not as a program but as a specification. In practice, the clauses would be 
further transformed and optimized to run more efficiently in specific applica- 
tions. 

A number of  extensions can be incorporated straightforwardly into the 
event calculus. In particular, it is possible to extend the representation of  periods 
to deal with information like 

"Mary was a professor when Jim was promoted"  

where neither the start nor the end of her period of  professorship is known. 
Important  extensions which do need further investigation include the representa- 
tion of  negated facts, and the ability to associate arbitrary sentences, not just  
conditionless facts, with the periods for which they hold. 

Our formalization of  the event calculus is deliberately neutral with 
respect to whether or not events have duration. Fariba Sadri has investigated the 
treatment of  events which have duration, so that we can say, for example, that 
one event occurs completely, or partially, while another  is taking place. 

Somewhat more speculatively perhaps, we believe that the assimilation of  
updates without explicit deletion will contribute to the problem of updating 
data structures without destructive assignment in logic programming itself. 
These and other applications remain to be investigated in greater detail. 
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