
New Generation Computing, 12 (1994) 131-160
OHMSHA, LTD. and Springer-Verlag

�9 OHMSHA, LTD. 1994

Towards an Efficient Evaluation of Reeursive
Aggregates in Deductive Databases*

Alexandre L E F E B V R E
BULL**
B.P. 68
78340 Les-Clayes-sous-Bois, France.

Received 16 November 1992
Revised manuscript received 1 October 1993

Abstract This paper is devoted to the evaluation of aggregates (avg,
sum) in deductive databases. Aggregates have proved to be a necessary
modeling tool for a wide range of applications in non-deductive relational
databases. They also appear to be important in connection with recursive
rules, as shown by the bill o f materials example. Several recent papers have
studied the problem of semantics for aggregate programs. As in these papers,
we distinguish between the classes of stratified (non-recursive) and recursive
aggregate programs. For each of these two classes, the declarative semantics
is recalled and an efficient evaluation algorithm is presented. The semantics
and computation of aggregate programs in the recursive case are more
complex: we rely on the notion of graph traversal to motivate the semantics
and the evaluation method proposed. The algorithms presented here are
integrated in the QSQ framework. Our work extends the recent work on
aggregates by proposing an efficient algorithm in the recursive case. Recur-
sive aggregates have been implemented in the EKS-V1 system.

Keywords: Deductive Database, Aggregate Function, Recursion, Extended
Datalog, Database, Deduction

w I Introduction
This paper examines an advanced func t iona l i ty of deduct ive database

systems, namely the abi l i ty to express programs invo lv ing both recursion and

* This paper is an extended version of the paper which appeared in the proceedings of the FGCS'
92 Conference. zx)

** This work was achieved while the author was at the European Computer-Industry Research
Centre in Munich.

132 A. Lefebvre

aggregate computations in a declarative manner. The bill o f materials applica-
tion (compute the total cost of a composite part built up recursively from basic
components) shows the importance of this feature in real life databases. It is well
known that such programs are not expressible in Datalog. We discuss a seman-
tics, an evaluation model and the implementation of aggregates in the EKS-VI
system. 43)

The recursive aggregate facility is one of the innovative features of the
declarative language of EKS-V1, in addition to the more standard features,
recursion, negation and universal and existential quantification. EKS-V1 also
provides an extensive integrity checking facility and sophisticated update primi-
tives (hypothetical reasoning, conditional updates). EKS-V1 was mainly devel-
oped in 1989 and demonstrated at several database conferences (EDBT, Venice,
March 1990; SIGMOD, Atlantic City, May 1990; ICLP, Paris, June 1991; VLDB,
Barcelona, September 1991); it is used as a support for teaching in several
universities.

The aggregate capabilities we consider are essentially those of SQL: a
grouping primitive (group_by) is used in association with scalar functions (such
as sum, avg, rain) to compute aggregate values for each group oftuples. Adding
aggregate capabilities to a recursive language causes different problems, depend-
ing on the class of programs accepted. We will consider two such classes:
stratified aggregate programs and non-stratified aggregate programs (this termi-
nology builds on an analogy with negation that will be explained below).

Our aim here is to provide efficient evaluation algorithms which can be
integrated in a general evaluation framework such as QSQ or Magic Sets. In the
case of EKS-VI, this is performed within the top-down QSQ/DedGin* frame-
work which was developed in Refs. 44), 45), and 46) and for which compilation
and implementation techniques were developed in a set-oriented way in the
DedGin* prototype, z2) Studying evaluation in this framework does not limit its
scope. Indeed, it is now accepted that there is a canonical mapping between an
evaluation performed using a Magic Sets like strategy 28'5'37~ and a " top-down"
strategy 44'45'38) (see Refs. 9), 33), 40), and 46) for a comparison). Hence, anything
that we develop here can be adapted to Magic Sets (and vice-versa).

In stratified aggregate programs, aggregate operations and recursion
can't be interleaved. In other words, an aggregate operation may be specified
over the result of a recursive query, or a recursive query may be specified over
the result of an aggregate operation. However, an aggregate operation may not
be part of a recursive cycle, i.e. one aggregate predicate can not recursively refer
to itself.

For stratified aggregate programs, both semantics and evaluation issues
are readily solved: 1) the semantics can be defined in a standard proof-theoretic
way and 2) the evaluation problems are essentially those of top-down constant
propagation and of coordination on the strata. The constant propagation issue
is the (classical) problem of making use of constants given in the query to limit

Towards an Efficient Evaluation of Recursive Aggregates in Deductive Databases 133

the search space. For a query like "Give me the average salary for the sales
department", one does not need to consult the entire employee relation. As for
coordination, one has to make sure that all relevant tuples have been derived
before performing the aggregate operation: again, this is a classical and relative-
ly easy problem, which can be solved by appropriately extending the query
evaluation method of the respective system.

In the case of non-stratified aggregates, interaction of recursion and
aggregate computat ion raises more difficult problems. As a motivating example,
consider the classical bill o f materials application for a bicycle. In order to
compute the total cost of a bicycle, one has to 1) compute the total costs of all
its direct subparts (e.g. a wheel), 2) mult iply these costs by the number of
occurrences of these subparts (e.g. 2 wheels on a bicycle) and 3) sum up the
resulting costs (aggregate computat ion). Step 1) consists of a recursive invoca-
tion of the bill o f materials query, implying a recursive invocation of step 3)
(aggregate computat ion). Clearly, aggregate computat ion and recursion are
intertwined. In the following, we refer to this more general class of programs
either as non-stratified aggregate programs or as recursive aggregate programs.

The first difficulty concerns semantics. For instance, suppose that, in the
bill o f materials example, a composite part is defined in terms of itself (cyclic
data). Clearly, the cycle problem has to be solved in order to provide semantics
for such queries. Our definition of the semantics of recursive aggregate queries
relies on the two following intuitive choices. 1) We regard recursive aggregate
computat ions as operations on top of the evaluation of a Datalog program. This
underlying program represents a generalized graph (Datalog allows more than
just transitive closure) being traversed during evaluation/7~ 2) Semantics should
be definable in a way orthogonal to the semantics of the aggregate operations
themselves: for example, the semantics of a query should be definable whenever
min is replaced by max or vice-versa (of course, the result of the evaluation
would be different!).

In order to give semantics to recursive aggregate programs, we consider
the subclass of programs for which it is possible to associate a reduced program
leaving out the associated computat ion of aggregates. This program conceptual-
ly represents the graph being traversed. We call such programs reducible aggre-
gate programs. A query on a reducible program is meaningful only if there is
no cycle in the derivations on the associated reduced program (we speak then of
group stratification). Its semantics can then be defined in a classical proof-
theoretic manner.

The second difficulty is the evaluation of recursive aggregate queries. As
in the stratified aggregate case, this issue is two-fold: constant propagat ion and
coordination. Constant propagation is done in the same way as in the stratified
aggregate case. Coordination is more difficult than in the stratified aggregate case
as one has to rely on data stratification (there is no predicate stratification any
more). Hence, one has to ensure that the whole group of tuples for a given input

134 A. Lefebvre

value has been derived before performing the corresponding aggregate opera-
tion. However, we are manipulat ing sets of tuples: in a given set of tuples at a
given time, there might be a group that has been completely derived, and another
for which only a partial set of tuples has been derived. This makes the control
over the order of evaluation more complicated as it now has to be performed at
the data level.

In the top-down evaluation scheme of EKS-V1, we introduce the notion
of subquery completion. We rely on dependencies between subqueries in order to
check whether the derivation of a given group has been completed. A general
solution is proposed which makes use of the reduced associated program in
order to provide ranges for the subqueries, so that the resulting subquery
dependencies correspond to the group dependencies. In the case of tail-recursive
programs, including the bill of materials program, a simplification is possible.

The main contr ibut ion of our work is the integration of recursion and
aggregates in a general query evaluation framework. Two independent studies
on recursive aggregates 23'11) have been developed in parallel to our work. They

take a model-theoretic approach, whereas we consider a proof-theoretic
approach to the semantics of aggregate programs. In Ref. 23), Mumick et al.
describe an algorithm extending the Magic Sets technique to stratified aggregate
programs (in fact Magic Stratified aggregate programs). In this paper, we
extend the evaluation algorithm based on QSQ to group stratified aggregate
programs of which the bill o f materials program is an example.

More recently, a technique similar to ours called Ordered_Search 31) has
been developed and implemented in the Coral deductive database system. 32)

The structure of this paper is as follows. The remainder of this section
introduces some definitions and notations. Section 2 examines semantics and
evaluation of stratified aggregates. For the recursive aggregate case, we first
analyze the semantics problem in Section 3, where we define the class of
reducible aggregate programs. We then propose an evaluation method which
relies on the notion of subquery complet ion in Section 4. Section 5 discusses
related work. Section 6 summarizes the paper and describes future work.

1 . 1 Definitions and Notations
We assume that a database is composed of base relations and of deduc-

t ion rules of the form Head ~--Body where the Body is a conjunct ion of
positive and negative literals. All the variables in the Head should appear in a
positive literal in the body. Deduction rules define virtual predicates, which are
also commonly called views in the classical relational terminology.

Definition 1.1 Aggregate rule
An aggregate predicate agg_pred is syntactically defined, as in Ref. 23), by an
aggregate rule in the following way:

agg_pred(OUt) *-- group by(

Towards an Efficient Evaluation of Recursive Aggregates in Deductive Databases 135

group_pred(Iff),
List_of_Grouping_Variables,
List_of_Aggspecs

).
where:

List_of_Grouping_Variables is a list of variables. Offt and Ir~ are
sequences of variables. They are called grouping, output and input
variables respectively;
group_pred is any virtual or base predicate and is called the grouping
predicate;
List_of_Aggspecs is a list of aggregate specifications of the form A isagg
func_agg(B) or A isagg count where func_agg can be 'sum', 'rain', 'max'
or 'avg', A must be an output variable and B must be an input variable.
The variable A is called an aggregate variable and B a variable
to-be-aggregated;
an output variable must either be a grouping variable or an aggregate
variable.

Without loss of generality, we assume that an aggregate predicate is defined by
one aggregate rule only. []

Note that the aggregate function count has no argument, as it s imply counts the
number of tuples for a given group.

We allow the use of arithmetic predicates in the body of Datalog rules.
Such predicates, not computable by the basic relational operations, are called
external predicates. We suppose that the external predicates are used in a safe
way (as in Ref. 10)--there should be a finite set of answers and finite top-down
evaluation). As an example, the bill of material example uses an external
predicate performing a multiplication (see Section 3). The use of this predicate
is safe as long as the data is acyclic.

Compar ing our syntax to the SQL syntax for aggregates deserves two
remarks. First, SQL allows the user to specify aggregate functions on any query,
including joins and any kind of where condition. With our syntax, however,
aggregate functions can only be applied to a single grouping literal. A natural
extension would be to allow the user to write any expression, instead of a single
grouping literal. Second, SQL allows the user to specify conditions on the result
of the aggregations by means of the having clause inside an aggregate query.
This is also possible with our syntax: the corresponding condit ion however has
to appear outside the aggregate rule, because it concerns the result of the
aggregation and not the aggregate computa t ion itself. We feel that it is a more
natural way to express such conditions.

Definition 1.2 Grouping subtuples and groups of tuples
Given a tuple for the grouping predicate, its grouping subtuple is its projection

136 A. Lefebvre

over the grouping arguments,
Given a set of tuples S for a grouping predicate, we partition S into groups of
tuples: there is one group for each different grouping subtuple GST in S. A
group contains those and only those tuples of S having GST as grouping
subtuple (and no other tuple). []

We say that a predicate predl depends directly (resp. indirectly) on the
predicate pred2, if pred2 appears in the body of a rule defining predl (resp. if there
is a predicate pred3 such that predl depends directly on pred3 and pred3 depends
indirectly on pred2). We can now give the following definition, inspired by the
terminology used in the case of Datalog queries with negation.

Definition 1.3 Stratified aggregate program
An aggregate program is stratified if no aggregate predicate depends directly nor
indirectly on itself. []

Note that aggregate programs having recursive predicates which are not mutu-
ally recursive with aggregate predicates are indeed aggregate stratified.

A simple example of a stratified aggregate program is the following.

Example 1.1
Suppose that the database contains a base relation employee with tuples of the
form employee(Name, Dept, Salary). One can define a virtual predicate avg_-
salary_per_dept using the following rule:

avg_salary_per_dept(Dept, AvgSal) < -
group_by(

employee(Name, Dept, Salary),
[Dept~,
[AvgSal isagg avg(Salary)~

).

If the predicate avg_salary_per_dept is queried with the argument Dept in-
stantiated, it returns one single value. If the query is fully uninstantiated, the
result is a binary table with one value per department. []

w Stratified Aggregates
In this section, we first recall the natural semantics of stratified aggregate

programs, which rely on the stratification of rules. We then describe their
evaluation by extending the QSQ framework.

2 . 1 Semantics
The stratification of a database ensures the soundness of the following

extension of the classical proof-theoretic definition of semantics for stratified
aggregate programs.

Like Datalog programs with stratified negation, a stratified aggregate

Towards an Efficient Evaluation of Recursive Aggregates in Deductive Databases f37

program P can be divided into strata S~, i = 1 n.

Consider a predicate p appearing in the body of a rule R ~ Sg. I f R is an
aggregate rule and p appears as a grouping predicate in R, then the definition
o f p is contained in U~<iSj, else, its definition is contained in Uj<_~Sj.

An example of a stratified aggregate program involving more than one
aggregate predicate is the following, counting the number of descendants for
each person in a family tree.

Example 2.1
Suppose that the database contains a base relation child with tuples of the form
ch i ld (X , Y) where Y is a child of X. One can define the virtual predicate
children_nr, counting the number of children of a given person, with the
following rule:

children_nr(X, N) < -
group_by(

child(X, Y),
[x] ,
[N isagg count]

).

The descendant predicate, transitive closure of the child predicate, is defined
with the following rules:

descendant(X, Y) < -
child(X, Y).

descendant(X, Y) < -
child(X, Z) and descendant(Z, Y).

Building on these two predicates, the predicate chi ldren_nr_for_descendant

computes the number N of children of the descendant Y of a person X as
follows:

children_nr_for_descendant(X, Y, N) < -
descendant(X, Y) and children_nr(Y, N).

Finally, the predicate descendant_nr , representing the number of descendants
for each person, is defined with the following rule:

descendant__nr(X, N) < -
group_by(

children_nr_for_descendant(X, Y, N),
Ix] ,
IN isagg count]

).

This program is aggregate stratified. No aggregate predicate depends directly or
indirectly on itself. A possible stratification for this program is as follows: S~ =

138 A. Lefebvre

{child, descendant}, Sz = { children_nr, ehildren nr_fordescendant} and
Sa = { descendant_nr}. []

Definition 2.1 Semantics of a stratified aggregate program P
Facts derivable for P from the database are obtained by saturation of the
immediate consequence operator, consecutively on each stratum Si, starting
from i = 1 up to i = n. Facts for aggregate predicates are defined as follows.
For an aggregate predicate agg_pred, there is one tuple Tc for each group G of
the corresponding grouping predicate group_pred such that:

(1) I f an attribute o f TG corresponds to a grouping variable, its value is the
value of the same variable in G.

(2) I f an attribute o f TG corresponds to an aggregate variable, its value is
the result of the aggregate operation performed on the corresponding
values of G to be aggregated. []

Note that this proof-theoretic definition of the semantics is equivalent to the
model-theoretic one given in Refs. 23) and 11). For stratified aggregates,
Mumick et al. TM define the model-theoretic semantics in terms of a perfect
model. The proof-theoretic definition of the semantics defined above exactly
computes this perfect model (it is similar to the construction of the perfect model
of stratified programs with negation).

2 . 2 Evaluation
We present here an evaluation algorithm integrated in the QSQ frame-

work. In Ref. 23), the authors extend the Magic Set formalism to stratified
aggregates in a similar way.

(1~ Constant propagation
The propagation of constants (i.e. taking advantage of the constants

appearing in the query in order to reduce the search of the database) is addressed
by adapting the QSQ framework: the top-down generation of subqueries is used
for focusing on relevant data while answers are propagated bottom-up.

We first describe this adaptation on a tuple-at-a-time basis. Let Q be a
query over the aggregate predicate agg_pred defined using an aggregate rule as
in Definition 1.1. Answering Q consists in the following steps:

(l) If Q matches the head agg_pred(Out) of the aggregate rule, then generate
a subquery SQ on group_pred by binding each variable X of group_pred
which is also present in agg_pred (X must be a grouping variable) to its
value in Q (either a variable or a constant).

(2) Answer the subquery SQ.
(3) Partition the answers to SQ into groups of tuples and perform the

aggregate operations for each group.
(4) Project the results over the arguments of agg_pred.

Towards an Efficient Evaluation of Recursive Aggregates in Deductive Databases 139

Note that only the bindings of grouping variables are propagated down-
wards. If some aggregate variables of agg_pred are bound in SQ, then their
bindings are not propagated to SQ (e.g. if a value for the AvgSal argument of
Example 1.1 is provided in the query, then this binding is not propagated). The
gain obtained by using such bindings in order to reduce the search space
depends on the nature of the aggregate and can require a complicated mecha-
nism.

(23 Set-oriented evaluation in EKS-VI
The evaluator/compiler of EKS-V1 derives from the DedGin* prototype.

The above computational scheme is implemented in a set-oriented way by a
simple adaptation of the DedGin* query answering mechanism. The following
operations correspond to the previously described steps:

(1) A selection/projection selects from a set of queries Q those queries
matching the head of the aggregate rule, and projects the resulting tuples
over the relevant arguments of group_pred. This results in a set of
subqueries SQ over group_pred.

(2) The standard set-oriented evaluation of DedGin* is used to answer the
subqueries in SQ.

(3) The grouping and aggregate operations are implemented in one pass, by
an extended operator described below. This results in an intermediate
relation trap containing one attribute for each grouping variable and for
each aggregate variable.

(4) A projection of the tuples in tmp over answer tuples for agg_pred is
finally performed.

(33 Remarks
In EKS-V1, only step (3) needs an extension to the basic set-oriented

machinery: grouping and aggregate operations are performed by one single
set-oriented operator implemented in BANG.* This operator projects the group-
ing tuples onto their grouping value (grouping operation) and incrementally
performs the aggregate operations on additional arguments associated with each
grouping subtuple. In the case of an average, the sum and count aggregates are
computed during step (3), and then a division during step (4).

The 4th operation is needed when some grouping variables do not appear
in agg_pred. In such cases, it is crucial that the aggregate operations are first
performed on the full grouping subtuples (resulting in the tmp relation) and
then the intermediate result tmp be projected out to the final answer relation. As
an example, one may want to compute the different values of the average salary
per department without the values of the departments. For this purpose, the

* The BANG file system 14) provides the data manipulat ion operators in EKS-V1.

140 A. Lefebvre

variable Dept would be in the grouping list but would not appear in the head,
i.e. in the aggregate predicate.

(43 Coordination aspects
In general, the evaluation of deductive queries can be viewed as a

saturation both on the top-down propagat ion of (non-redundant) subqueries
and on the bot tom-up generation of answers. In the case of recursion without
negation or aggregates, there is total freedom as far as the order of propagat ion
is concerned. In particular, answers can be propagated bot tom-up even if they
represent only a partial set of answers to the corresponding subqueries. However
in case of aggregates (also in the case of negation), subqueries must be answered
completely before their answers can be used or propagated further. I f one did
not stick to this strategy, wrong inferences could be made: for instance, one
could propagate an intermediate count which is different from the final count.

In order to implement this strategy in EKS-V 1, we make use of a run-time
structure described in Refs. 45) and 22) called the data-flow graph (DFG).
Nodes of this graph essentially represent (occurrences of) virtual predicates and
the graph serves to moni tor the sets of data (essentially subqueries, environments
and answers) manipulated for these (occurrences of) predicates. The nodes are
linked according to their relative positions in rules: the brother of a node
corresponds to the immediate next literal in the body of a rule; predicates in the
body of a rule defining a virtual predicate p form children nodes with respect to
the node corresponding to p. Refer to Refs. 45) and 22) for a precise definition
of the DFG. This structure is adequate for coordinat ion aspects since it gives, at
any time, a "map" of the rules that have been evaluated or remain to be
evaluated to fully answer a virtual predicate. The coordinat ion strategy de-
scribed above can be formulated in the case of aggregate predicates as follows:

For each node N of the D F G corresponding to an aggregate
predicate, saturate the descendants of N before performing the
aggregate operat ion associated with N.

w Semantics of Recursive Aggregates
In order to introduce problems arising in the case of recursive aggregate

programs, we discuss the classical bill o f materials example, also presented in
Refs. 23) and 11).

Example 3.1 Bill of materials
Suppose that the database contains the following information: basic parts, and
their cost and assembly links, to make up composi te parts are stored in two base
relations

basic_part(Part, Cost).
assembly(Part, SubPart, Qty).

Towards an Efficient Evaluation of Recursive Aggregates in Deductive Databases 141

The born (bill of materials) predicate computes the total cost of a given part by
summing up the costs of all its direct subparts, computed by the grouping
predicate subpart_cost.

born(Part, TotalCost) < -
group_by(

subpart_cost(Part, SubPart, Cost),
[Part],
ETotalCost isagg sum(Cost)]

).

The non-recursive rule of subpart_cost returns the cost for a basic part. The
recursive rule computes the cost which a direct subpart SubPart accounts for in
the total cost of Part by recursively computing its cost and multiplying it by the
number of occurrences of SubPart in Part.

subparLcost(Part, Part, Cost) < -
basic_part(Part, Cost),

subpart_cost(Part, SubPart, Cost) < -
assembly(Part, SubPart, Quantity)
and bom(SubPart, TotalSubCost)
and Cost is Quantity * TotalSubCost.

As an example, if Part is "bicycle", and if "bicycle" is made up of two wheels
(each costing 10) and of one frame (costing 100), then the subquery subpart_-
cost(bicycle, Subpart, Cost) will return two tuples:

(wheel, 20) % 20 is 2 * 10
(frame, 100) % 100 is I * 100

The aggregate computat ion performed in the rule defining bom then returns 120
as the total cost for a "bicycle". []

What would the semantics of the bill of materials example be if there
were a cycle in the data: what would be the cost of a recursively defined
composite part (where its value depends on itself)? In order to solve this
problem, we rely on the following two choices:

(1) We intuitively view recursive aggregate computations as generalized
graph traversals. In this framework, computations are performed both
along deduction paths (e.g. multiplying by the number of occurrences)
and by aggregating the values associated with several paths (summing up
costs). However, recursive aggregate computations go beyond graph
traversal as they require 1) more complex structures than graphs to be
searched (n-ary relations correspond to hypergraphs), 2) the combination
of several "graphs" in the search (several, different predicates) and 3) a
more general search than transitive closure (e.g. non-linear recursion).

142 A, Lefebvre

(2)

To each recursive aggregate program, we conceptually associate a so-
called reduced program. Intuitively, the reduced program captures the
essence of traversal, while leaving out the associated computa t ion of
aggregates. We provide a rewriting method which, given a recursive
aggregate program, obtains its reduced program if one exists.
A recursive aggregate program is then acceptable if it is syntactically
correct, i.e. if there exists a reduced program attached to the original
aggregate program. In such a case, the program is said to be reducible.
Moreover, we consider that the semantics should be definable in a way
orthogonal to the semantics of the aggregate operations: for example, the
cases where the semantics of a query is defined should be the same
whenever rain is replaced by max or vice-versa (however, the result of the
evaluation would be different). As a consequence, we give semantics to
recursive aggregates only when the data is acyclic, i.e. if the p roof trees
generated from the database for the reduced query are acyclic. The actual
semantics of meaningful recursive aggregates queries is then defined in a
classical bo t tom-up manner.
Indeed, al though one could compute the shortest path between two nodes
of a cyclic graph, one can not compute the maximal length of a path in
such a case. However accepting the first case without accepting the second
one would violate this orthogonali ty principle.

3 .1 Reducible Aggregate Programs and Group Stratification
We conclude the semantics chapter by giving more precise definitions of

the notions "reduced", "reducible" and "acyclic" introduced above.
Consider the program P consisting of the set of rules defining the

predicates which are mutual ly recursive with a given aggregate predicate agg_-
pred.

We built the variable graph ~) for P as follows. There is one node (p, i)
in ~ for each variable position i of each virtual predicate p in P. There is an
edge between two nodes in V if there is a rule r in P such that the variables
corresponding to the nodes appear in the same external predicate in the body of
r. There is an edge between two nodes (p, i) and (q, j) in ~ if there is a rule
in P of which p is the head predicate, q is a body predicate, and the variables
corresponding to i and j are identical. A node (p, i) is an aggregate node if
there is a rule r in P of which either p is a grouping predicate and the
corresponding variable appears as a variable to-be-aggregated in the body of r,
or p is the head predicate and the corresponding variable appears as an aggre-
gate variable in the body of r. Finally, a node (p, i) is a grouping node if there
is an aggregate rule r in P of which p is the head predicate and the correspond-
ing variable appears as a grouping variable in the body of P.

Obtaining a reduced program from an original program P will be
possible if the grouping variables, which represent the essence of the program,

Towards an Efficient Evaluation of Recursive Aggregates in Deductive Databases 143

can be isolated from the aggregate variables: the program P is reducible if no
grouping node is connected to an aggregate node in ~;.

In a given rule r of P, a variable is said to be aggregate connected if the
node in ~ corresponding to its position is connected to an aggregate node.
Informally, if P is reducible, its reduced program reduce(P) is obtained by l)
deleting from each rule of P every literal, built on an external predicate, which
contains aggregate connected variables and 2) replacing each literal which is
mutually recursive with agg_pred by a new literal where the aggregate con-
nected variables have been omitted (hence, reducing its arity). Indeed, if P was
not reducible, then the transformation reduce would also remove some grouping
variables which carry the essence of the program.

Formally, the transformation reduce makes use of a set R_Set (initialized
to 0) containing pairs of the form (Lit, R L i t) , where Lit is an initial literal and
R L i t is obtained from Lit by omitting some variables. The predicates of the
reduced literals are renamed by adding the prefix " r_" in front of the initial
predicate names.

Definition 3.1 Transformation reduce and reducible programs
The transformation reduce is defined as follows:

(1) Replace each aggregate rule:

Head ,-- group_by(
Group_Lit ,
List_of Grouping_Variables,
List_of_Aggspecs

).

by:

Head' ~- Group_Lit ' .

where Head" (resp. Group_Lit') is obtained from Head (resp. from
Group_Lit) by deleting the aggregate variables (resp. the to-be-
aggregated variables).
Add (Head, Head') and (GroupLi t , Group_Lit') to R_Set while replac-
ing all arguments by new variables.

(2) Iterate the following process until no more changes occur:
Replace each remaining rule in the program (these are not aggregate
rules): Head ,-- Body by a new rule: Head' ~- Body' obtained by:

(a) replacing each literal Lit (including the head) by its corresponding
R_Lit whenever (Lit, R_Lit) is in R_Set;

(b) removing all external predicates of which one of the input argu-
ments corresponds to one of the variables removed in step (a);

(c) if step (b) was applied, obtaining Head" from Head (or from

1 dd A. Lefebvre

R_Head if step (a) was applied) by removing the ou tpu t variables
o f the external predicates involved in step (b). In this case, add
(Head, Head') to R_Set (replace all arguments by new variables).

The t ransformat ion reduce succeeds and the recursive aggregate p rogram P is
said to be reducible if the saturat ion process in (2) does not affect the grouping
and aggregate literals. []

F r o m now on, we consider only reducible aggregate programs.*
In order to illustrate the concepts defined here, let us in t roduce the parts

explosion example, which computes the total amoun t Qty of a given subpart SP
involved in the cons t ruc t ion o f a given part P. The definit ion o f part subpart_-
qty has the same structure as the definit ion o f bom. It uses a g roup ing predicate

int_subpart_qty which gives, for each direct intermediate c o m p o n e n t IP of P,
the quant i ty o f SP involved th rough IP. Note that the predicate part subpart_-
qty is an extension o f the born predicate with more didactic properties.

Example 3.2 Parts explosion and reduced program

parLsubpart_qty(P, SP, Qty) < -
group_by(

int_subparL_qty(P, IP, SP, IQty),
[P, SP],
[Qty isagg sum(IQty)]

).

int_subparLqty(P, P, SP, Qty) < -
assembly(P, SP, Qty).

inLsubparLqty(P, IP, SP, IQty) < -
assembly(P, IP, Qty) and
part_subpart_qty(IP, SP, IQtyl) and
IQty is Qty * IQtyl.

(part_qubpart_qty, 1)

(part_qubpart_qty, 2)

(parl_subpart_qty, 3)

(int_subpart_qty, 1)

(int_subpart_qty, 2)

(int_subpart_qty, 3)

(int_subpart_qty, 4)

0 normal node
@ grouping node
~) aggregate node

Fig. 1 Variable graph for the parts explosion program.

In practice, the only reasonable recursive aggregate programs we could think of are reducible
(bill of materials, shortest path, corporate takeover, ...). This is also the case of all examples
treated in the related work.

Towards an Efficient Evaluation of Recursive Aggregates in Deductive Databases 145

Figure 1 represents the variable graph for this program. There is an edge between
(part_subpart qty, 3) and (int_subpart_qty, 4), because the corresponding
variables appear in the external mult ipl icat ion predicate. There is an edge
between (part subpart_qty, 1) and (int_subpart_qty, 1), and an edge between
(part_subpart_qty, 2) and (int_subpart_qty, 3) because the corresponding
variables are identical in the aggregate rule defining part subpartqty. Finally,
there is an edge between (part subpartqty, 1) and (int_subpart_qty, 2) because
the corresponding variables are indentical in the third rule. The aggregate nodes
in the variable graph corresponding to this program are (part_subpart_qty, 3)
and (int_subpart_qty, 4); the grouping nodes are (part_subpart_qty, 1) and
(part_subpart_qty, 2). No grouping node is connected to an aggregate node,
therefore the program is reducible. The reduced program is:

r_partsubpartqty(P, SP) < -
r_inhsubpart_qty(P, IP, SP).

r_intsubpartqty(P, P, SP) < -
assembly(P, SP, Qty).

r_intsubpartqty(P, IP, SP) < -
assembly(P, IP, Qty) and
r_partsubpartqty(IP, SP). [~]

We now define precisely what we mean by "cyclic data".

Definition 3.2 Fact and group dependeneles
A fact F derivable from DB is directly dependent on a fact F ' if there is a
ground instance I of a clause such as I: F ,--- ... and F" and ... and such that all
the ground literals of the body of I are derivable from DB. The dependency
relationship is the transitive closure of the direct dependency relationship.
The group dependency relationship is the fact dependency relationship induced
by reduce(P) over DB. []

Definition 3.3 Group stratified program
A recursive aggregate program P is group stratified over a database DB if the
group dependency relationship introduced by P over DB is acyclic.

Example 3.2 (eontinued) Consider the following data for the assembly rela-
tion representing a bicycle, as illustrated in Fig. 2:

assembly(bicycle, frontframe, I).
assembly(frontframe, mudguard, I).
assembly(frontframe, fork, I).
assembly(frontframe, wheel, I).
assembly(frontframe, headlamp, 2).
assembly(frontframe, handles, I).

assembly(bicycle, rearframe, I).
assembly(rearframe, mudguard, I).
assembly(rearframe, fork, I).
assembly(rearframe, wheel, I).
assembly(rearframe, chain, I).
assembly(rearframe, pedal, I).
assembly(rearframe, saddle, I).
assembly(rearframe, reflector, I).

146 A. Lefebvre

headlamp

....-~ handles

frontfrarne ~ mudguard

bicycle ~ fork ~ spoke

rearframe,~.,.~ wheel ~ rim
~ ' x ~ " saddle ~ - ' - h u b ~ ~ gears

chain " tyre axle ~ nut

-tor

Fig. 2 Assembly graph of a bicycle.

assembly(wheel, hub, I). assembly(hub, gears, I).
assembly(wheel, tyre, I). assembly(hub, axle, I).
assembly(wheel, spoke, 20). assembly(axle, nut, 2).
assembly(wheel, rim, I). assembly(axle, bolt, I).

The parts explosion program together with these facts is clearly group stratified,
as there are no cycles in the data. []

We can now define the semantics of a group stratified program P over
DB, by refining Definition 2.1. Again, the notion of group stratified programs
here is identical to the one proposed in Ref. 23).

This time, we note that the facts in reduce(P) can be divided along group

strata GSi, i = 1 n, such that, if a fact Fi E GS~ depends on a fact Fj ~ GS~,

then j < i. In addition, grouping and aggregate facts in P will be given the
group stratum level of the corresponding reduced facts.

Definition 3.4 Semantics of a group stratified aggregate program P
Facts derivable for P from the database are obtained by saturation of the
immediate consequence operator consecutively using facts belonging to the
group strata GS~<_~, starting from i = 1 up to i = n. Facts for aggregate predi-
cates are derived as in Definition 2.1. []

w Evaluation of Reducible Group Stratified Aggregate Programs
The evaluation problems in the recursive aggregate case are, like in the

stratified aggregate case, those of constant propagat ion and coordination. As far
as constant propagation is concerned, the problem is solved in the recursive
aggregate case as described in Section 2.2 ~1].

The coordination problem is now different. The goal is still to perform
the aggregate operations only on complete groups. However, there is no predi-
cate stratification in the recursive case, and a control mechanism as described in
Section 2.2 ~4) cannot be performed any more. Instead, the group stratification
that the program is supposed to enforce is data dependent and not predicate

Towards an Efficient Evaluation of Recursive Aggregates in Deductive Databases 147

dependent. Hence, the coordination will have to be performed at the data level
instead of at the predicate level. In Ref. 23), Mumick et al. remark that group
stratified programs can be evaluated in the order of the groups. In this section
we give a precise algorithm to perform this evaluation.

Theoretically one could first generate the group dependency graph and
base the computation on this graph. However, the representation and analysis of
such a graph is likely to be expensive.

The solution proposed in EKS-V1 relies on the top-down character of the
evaluation: there exist natural dependencies between the subqueries. A subquery
SQ is said to directly depend on the subqueries derived during the evaluation
of the rules invoked for answering SQ; a formal description of these depen-
dencies can be provided based on SLD-AL trees--see Ref. 45). In Section 4.1 we
present the subquery completion mechanism: the evaluation of a program under
subquery completion ensures that the set o f answer tuples to a subquery is
propagated only when it is complete. In Section 4.2 we apply this technique to
recursive aggregates. Modification of the original program using reduced literals
is proposed in order to establish a one-to-one correspondence between subquery
dependencies and group dependencies. The subquery completion mechanism
can then be applied to the modified program. Section 4.3 is concerned with
tail-recursive rules: in such a case, the subquery dependencies naturally corre-
spond to the group dependencies and the original program can directly be
evaluated under subquery completion.

4.1 Subquery Completion
We consider that a subquery has been completed during evaluation if its

complete set of answers has been generated.

Definition 4.1 Subquery completion
A given subquery SQ has been completed if one of the two following conditions
holds:

for a subquery on a base predicate: the join with the corresponding base
relation has been performed;
for a subquery on a virtual predicate: all the rules have been fired, and
recursively all the subqueries on which SQ directly depends have been
completed.

We say that a program is evaluated under subquery completion if the set of
answers to each subquery SQ is propagated only when SQ has been completed.

[]

The subquery completion mechanism can be implemented as follows:

(1) When a subquery is derived, it is originally marked as non-completed.
(2) When answering a set of subqueries for which all the rules have been

148 A. Lefebvre

triggered, the subqueries having non-completed direct descendants are left
out. The other subqueries are marked as completed and the join with
their corresponding answer tuples can take place.

4 . 2 Evaluation with the Reduced Program
Our goal is now to use the subquery completion mechanism in order to

solve the problem of recursive aggregate evaluation. However, the subquery
completion mechanism ensures that answers to a subquery are used when it has
been completed, but not when a given group of tuples has been completed. We
use calls to the reduced program in order to generate bindings for the grouping
variables: this way, all grouping variables are instantiated and the subquery
tuples are identical to the grouping subtuples. It follows that the subquery
dependencies and the group dependencies coincide.

For reducible aggregate programs, the definition of a completed subquery
is extended in the following way.

Definition 4.1 Subquery completion (continued)

a subquery on a grouping fiteral has been completed if the aggregate
operation on the corresponding group has been performed.

A reducible aggregate program is evaluated under subquery completion if the set
of answers to each subquery SQ is propagated only when SQ has been complet-
ed, and if the aggregate operation on a given group is performed only when the
corresponding subquery on the grouping predicate has been completed. []

Consider a recursive aggregate program P. The algorithm can be formal-
ized as follows.

Algorithm 4.1

(l) Produce the corresponding reduced program reduce(P).
(2) Modify P by introducing, at the beginning of each rule's body containing

grouping and/or aggregate literals, the corresponding reduced literals.
The evaluation of these reduced literats will be performed before the
evaluation of the other literals and will provide bindings for all the
grouping variables. Let P' be the resulting program.

(3) Modify the query by adding the corresponding reduced literal.
(4) Evaluate the modified query under subquery completion over reduce(P)

UP' .

Thanks to the instantiations of all the grouping arguments by the reduced
literals, the subquery dependencies correspond exactly to the group depen-
dencies: the completion mechanism applied to the modified program guarantees
that a given group is used for aggregate operations only when it is complete.

Towards an Efficient Evaluation of Recursive Aggregates in Deductive Databases 149

Example 4.1 (Example 3.2 continued)
Consider a query part_subpart_qty(P, *SP, Qty) (where "*" marks an argument
which is instantiated when the literal is consulted during evaluation). Suppose
that the compiler chooses the following ordering of the subqueries for the
recursive rule of int_subpart_qty.

inbsubpart_qty(P, IP, *SP, IQty) < -
part_subparLqty(IP, *SP, IQtyl) and
assembly(P, *IP, Qty) and
IQty is *Qty * *lQtyl.

The evaluation of the recursive rule for int_subpart_qty immediately generates
subqueries on part_subpart_qty which are redundant w.r.t, the initial query on
part_subpart_qty: they have the same argument *SP carrying the same value.
This introduces a cycle in the subquery dependencies. However, the group
dependencies are cycle free for this example as long as the relation assembly is
not cyclic.

Using the reduced literals for generating bindings for the grouping
variables has the following effect on our example. The call to the query literal
is replaced by "r_part_subpart_qty(P, *SP) and part_subpart_qty(*P, *SP,
Qty)". The modified version of the program is:

part_subparLqty(P, *SP, Qty) < -
r_inLsubpart_qty(P, IP, *SP) and
group_by(

inLsubparLqty(*P, *IP, *SP, IQty),
[*P, *SP],
[Qty isagg sum(IQty)]

).

inLsubparLqty(*P, *P, *SP, Qty) < -
assembly(*P, *SP, Qty).

inLsubparLqty(*P, *IP, *SP, IQty)<-
assembly(*P, *IP, Qty) and
r_parLsubparLqty(*lP, *SP) and
parLsubparLqty(*lP, *SP, IQtyl) and
IQty is *Qty * *lQtyl.

The subquery dependencies on the modified program now correspond to the

group dependencies.
Note as well that the reduced literal r_part_subpart_qty(*IP, *SP) in the
recursive rule is superfluous as the two grouping arguments *IP and *SP would
have been instantiated anyway. It can be removed. []

/ 50 A. Lefebvre

~1~ Remarks

(1) When evaluating a program using the QSQ mechanism, each subquery is
evaluated only once. A subquery SQ' , which is a variant of a previously
encountered subquery SQ, is called a non-admissible subquery. A non-
admissible subquery SQ" is not reevaluated. Instead, the answers to the
corresponding original subquery SQ are reused for answering SQ'. In
order to take non-admissible subqueries into account, we have to extend
the definition of completed subquery as follows.

Definition 4.1 Subquery completion (continued)

a non-admissible subquery has been completed if the corresponding
admissible subquery has been completed.

The subquery complet ion mechanism can be extended with the following
condition in order to handle non-admissible subqueries:

(3) When an admissible subquery has been completed, the corresponding
non-admissible subqueries are marked as completed as well. D

This way, like during normal QSQ evaluation, an aggregate subquery is
answered only once, and the corresponding answers are reused for variant
occurrences of a given subquery. Consider again the parts explosion Example 3.
2 with the bicycle data. During the execution of the top query part subpart
qty(bicycle, P, Q), the subquery part_subpart qty(wheel, pr, Q,) is derived
twice, once through the front frame and once through the rear frame. Only one
of these two subqueries will be evaluated. Once the evaluation of one occurrence
ofpart_subpart_qty(wheel, P', Q') is completed, the answers are reused for the
other occurrence of this subquery.

(2) When using the QSQ mechanism, it is important that the subquery
complet ion is local to the recursive aggregate cliques. Consider that a
recursive aggregate predicate ap depends on a recursive (non-aggregate)
predicate rp which is in a lower clique, and that the complet ion mecha-
nism is used on the whole program. Consider as well that the program is
group stratified. Finally, suppose that the evaluation of some subquery
on rp is such that it depends on itself (like in the ancestor example with
a query anc(X, a)). I f the subquery complet ion mechanism was applied
to the predicate rp as well, then the non-admissible subquery for rp
would never be completed, and no answer would be returned to the query
on ap.
A correct evaluation scheme is achieved within the EKS-V1 system by

applying the subquery complet ion mechanism only locally, within each recur-
sive aggregate clique, and not within lower cliques.

(3) Note that the evaluation of reducible aggregate programs which are not
group stratified stops, and returns a negative answer. As there are cycles

Towards an Efficient Evaluat ion of Recursive Aggregates in Deductive Databases

(4)

151

in the dependencies, there exists a subquery which depends on itself. This
subquery will never be completed and the evaluation stops.
One can emphasize the difference with the problem of handling negation
in the effectively stratified case. 2'26's) In programs with negation, the body
of a rule always provides a range for all the variables of negated literals.
Therefore there is no need to introduce a range in the case of negation.
For recursive aggregate programs, reduced literals have to be introduced
in the original program in order to obtain a range for all the grouping
variables.

4 . 3 Simplification in the Tail-Recursive Case
The mechanism we have just presented has a drawback. For the evalua-

tion of a query on an aggregate predicate the evaluator performs the search
through the relevant data twice: once during the evaluation of the reduced
predicates, and once during aggregate computat ion. There is a case however
where the subquery dependencies naturally correspond to the group depen-
dencies, even though some of the grouping arguments can be uninstantiated in
the subqueries. In such a case, it is sufficient to evaluate the original aggregate
program under subquery completion, therefore searching the data only once.

This case has been called tail-recursive in Ref. 22), and also corresponds
to the right- and left-linear recursive case as in Re['. 24). A tail-recursive
program is characterized by the following property.

Definition 4.2 Tail-recnrsive program
Consider the program P defining a recursive predicate p and a given query
literal QLit built on predicate p. Consider that the literals in the rules defining
P have been reordered for QLit. Consider each body literal BLit built on p
appearing in the body of a rule R in P. P is ta i l - recnrs ive w.r.t, p for QLit if
and only if, for each BLit:

(1) BLit is the only literal in the body of R recursive with p.
(2) BLit is the last literal in the body of R.
(3) The variables which are different in BLit and QLit are instantiated.
(4) The variables which are free in BLit and QLit are the same and at the

same position in those literals.

By extension, we say that a recnrsive aggregate program is tail-
recursive if its reduced program is tail-recursive w.r.t, the aggregate predicate.

We now give the proof of why a tail-recursive aggregate program P w.r.t.
a given query literal QHead can be evaluated directly under subquery comple-
tion.

Proof 4.1
We have to guarantee that the subquery complet ion mechanism stops exactly
when there exists a cycle in the group dependencies. This means that we have to

152 A. Lefebvre

prove that a cycle in the group dependencies implies a cycle in the subquery
dependencies (i) and vice versa (ii).

(i)

(ii)

Suppose that there is a cycle in the group dependencies. As the subquery
tuples on the aggregate predicate are subtuples of the grouping tuples
(remember that we do not propagate instantiations of the aggregate
variables), a cycle in the groups dependencies implies a cycle in the
subquery dependencies on the aggregate predicate.
Suppose that there is a cycle in the subquery dependencies on the
aggregate predicate: a subquery SQ1 depends on a variant subquery SQ2
(note that we consider only cycles in the subquery dependencies for the
aggregate predicate: because the aggregate predicate and the grouping
predicate are mutually recursive, this also implies cycles in the subquery
dependencies for the grouping predicate). Let us call SQG1 (resp. SQG2)
the subquery tuple on the grouping predicate on which SQ1 (resp. SQ2)
directly depends. SQG1 and SQG2 are variants as well. Suppose that
TG2 is an answer tuple to SQG2. As SQG1 and SQG2 are identical, TG2
is also an answer tuple to SQG1. Moreover, as the reduced program is
tail-recursive, the subqueries on the aggregate predicate share the same
free grouping variables. These free grouping variables also appear in the
grouping predicate. It means that TG2 depends, as an answer fact to SQ2.
on all the answer facts to SQ2 and thus on all the answer facts to SQG2
as well, and under them on TG2 itself. Therefore TG2 depends on itself
and there is a cycle in the group dependencies. []

Algorithm 4.1 on reducible aggregate programs in the tail-recursive case
has been implemented in the EKS-V1 prototype. This includes the bill of
materials and the parts explosion examples. Experiments on these examples have
shown that the cost of controlling the subquery completion represents about 10%
of the total evaluation cost.

Example 4.1 (continued)
In the case where the first variable Part is instantiated in the query literal, the
reduced program is tail-recursive and there is no need to add any reduced
literals. During the evaluation of a query ?- part subpartqty(*P, SP, Qty), a
subquery part subpart_qty(*IP, Si, Qi) may depend on itself (actually on a
variant of itself) if and only if there is a cycle in the assembly relation. These
dependencies correspond to several group dependencies with the same value *IP

b

a J 5
c ~ d

Fig. 3 Data for the assembly relation_

Towards an Efficient Evaluation of Recursive Aggregates in Deductive Databases 153

p : an aggregate operation has been performed
. . . . ,. : answer re-use

isq(a,b,b,3)

isq(b,b,c,4) I
i I isq(c,c,d,6) "

isq(a,b,b,3)

~ iiSs~((a:b:cd,'172~

K,~~.l~q(b b c 4) r
isq(b'icld~24)

. . . . ~ psq(c,d,6)

psq(a,b,3)
psq(a,c,17)
psq(a,d,102)

t
a

~ i s q isq(a'a'c'5)
(a,c,d,30)

b I isq(c'c'd'6)

~. dh

Fig. 4 Subquery completion mechanism on parLsubparCqty.

for the first argument. The evaluation of queries for this pattern under subquery
completion is complete and correct in the acyclic case, and fails if the assembly
relation is cyclic.

Consider the following facts for the relation assembly represented in
Fig. 3:

assembly(a, b, 3).
assembly(b, c, 4).
assembly(a, c, 5).
assembly(c, d, 6).

Suppose that the query is ?- part_subpart_qty(a, P, Q). Figure 4 represents the
subquery tuples on the predicate part_subpartqty during the evaluation. We
abbreviate the predicates part_subpart_qty and int_subpart_qty with psq and
isq respectively. For simplicity reasons, we do not represent the psq facts except
for the top query and the re-used answers. A completed subquery is represented
by a white square. A tuple annotated by "na" is non-admissible. At the end of
the first stage of the evaluation, subqueries have been derived, among them a
non-admissible subquery for c. The original subquery for c is being answered
and has not been completed yet. Some partial answering is generated for the
subquery on a which cannot be aggregated, because the subquery on a has not
been completed yet. Only during the second stage, the answers for c can be
re-used for answering the non-admissible subquery. Note that the subquery for
c is answered only once. The aggregate operation for the group of a may then
be performed, as all the subqueries underneath have been completed. []

154 A. Lefebvre

w Related Work

5 . 1 Analogy with Negation
We have already pointed out the analogy between aggregates and nega-

tion. There is a correspondence between the two notions of stratification in both
areas, and between group stratification on the one hand and dynamic
stratification 26) (or effective stratification, 3) constructive consistency, 8) or modu-
lar stratification 29)) on the other. The coordination issue is essentially the same
for negation (stratified case) and for aggregates (stratified case). Indeed, just as
for aggregate predicates, negated subqueries must be fully answered before
negated facts can really be inferred. The evaluation of stratified negation has
been studied in the top-down evaluation framework in Refs. 20) and 34). It has
also been addressed in the framework of rewriting methods for bottom-up
computation such as Magic Sets 4'~) and Alexander. ~8) The issue arises when
rewriting a stratified program using the Magic Sets rewriting method: the
rewritten program is n o t in general stratified and its non-deterministic bottom-
up computation is no longer possible. In order to solve this issue, various
labelings of rewritten rules have been introduced, in order to ensure that negated
(or aggregate) subqueries are answered fully before their answers can be used.
For instance, in Ref. 18) Kerisit proposes to classify the rewritten rules along the
strata of the original program. The bottom-up fixpoint normally applied to the
rewritten rules is modified in order to take the strata numbers attached to the
rules into account: at a given point of time during the evaluation, only the
rewritten rules corresponding to the current lowest stratum can be activated.
When no more operations can take place on this stratum the rules for the
immediately higter stratum are re-activated, etc. This algorithm applies to the
stratified aggregate problem in a straightforward manner.

Methods have been proposed in Refs. 3) and 8) for implementing the
evaluation of negation in the dynamic stratified case. The 0rdered_Search
technique at) has also been used for implemeting the evaluation of modularly
stratified programs.

5 . 2 Other Work on Aggregates
In Ref. 17), Klug first formalized aggregates in relational algebra and

calculus, and argued that the notion of duplicates (multi-sets) was not needed
for the expressivity of aggregates. We also think that the notion of multi-sets is
not necessary for specifying semantics unlike, z3) We regard the problem of being
able to handle full duplicates within sets as an issue independent from aggregate
computation. It is rather a modeling issue, as to how one may want to represent
the data for a given application. Our standpoint however still permits a correct
solution to the duplicate issue in the computat ion of aggregates: it can be
performed by choosing the arguments present in the grouping predicate. We give

Towards an Efficient Evaluation of Recursive Aggregates in Deductive Databases

an example illustrating this point.

155

Example 5.1 Duplicates in the computation of aggregates
In Example 1.1, the grouping predicate is the whole employee relation. There-
fore, if several employees have the same salary, the duplicate salaries are
considered. However, if one wants to compute the average of the distinct salary
values by department, one may do so by simply defining the following predicate:

avg_distinct salary_per_dept(Dept, AvgSal) < -
group_by(

salary dept(Dept, Salary),
[Dept],
[AvgSal isagg avg(Salary)]
).

where salary_dept is a projection of the employee relation leaving out the name
attribute:

salary_dept(Dept, Salary) < -
employee(_Name, Dept, Salary). []

The model that we consider remains a fiat model: it does not allow
set-valued (or nested) attributes. In other words, sets are not first-class objects in
EKS-V 1. Hence, we are not following the research trend in nested relations, NF2
models, represented for instance by research projects such as COL ~) or LDL. 39)
In these approaches, a more general grouping (or nesting) facility is provided
allowing aggregate functions to be simply expressed as functions applied to
set-valued attributes. We believe that the extension of a flat model with (scalar)
aggregate facilities (chosen here as in Refs. 23) and 11)) remains worth inves-
tigating because its requirements on the physical level (storage and manipula-
tion) are less stringent, it represents a natural extension of Datalog systems and
despite its restrictions, it may well cover an important part of the applicat ion
requirements.

Our work is close to that on Traversal Recursion 27) in the way we
consider aggregate operations as operations on top of graph traversals. However
we generalize graph traversal to more complex structures than graphs and we do
not incorporate the semantics of the particular aggregate function (min/max)
and thus never allow cyclic graphs. Although this leads to some restrictions, we
believe that, if one takes semantics of the aggregate functions into account, this
should be done within as formal and as general a framework as possible.

Several r e c e n t p a p e r s 23,11Ag'7'3~ also consider aggregates in Datalog

programs. These papers take a model theoretic approach for defining the seman-
tics of aggregate programs. The work in Refs. 30) and 36) unifies the other
approaches in a more general framework. Recently, Van Gelder 42) has extended
the semantics to a wider class of aggregate programs by reconsidering the

156 A. Lefebvre

underlying semantics of the aggregate operations themselves.
In the stratified aggregate case, the semantics and evaluation methods

proposed are equivalent to ours. In Ref. 23), Mumick et al. extend the Magic
transformation producing so-called magic stratified programs. The evaluation
of such programs can be performed in an order corresponding to the
stratification order of the original program by a modification of the bottom-up
fixpoint, just like the case of negation] 8)

For defining the semantics o f non-stratified aggregate programs, the
approach taken in Refs. 23), 11), 19), 30), 36) and 42) is different from ours: in
these papers, the authors do not separately consider the underlying reduced
program. Instead, they take into account the semantics of the aggregate opera-
tions, as well as the other arithmetic constructs appearing in an aggregate
program, in order to define semantics. This allows them to treat the class of
monotonic aggregate programs (like the minimal length path program or the
so-called corporate takeover program) for which natural semantics exists. In Ref.
11), Consens and Mendelzon also treat closed semiring programs as a special
case of recursive aggregate programs having natural semantics.

The evaluation of recursive aggregate programs is not addressed in Ref.
23). Mumick et al. simply mention that an evaluation following the order of the
groups would be possible (which seems to be quite easy to realize). In Ref. 11),
Consens and Mendelzon propose a general algorithm applying to closed semi-
ring or to monotonic aggregate programs. Closed semirings are also interesting
because specialized algorithms relying on graph traversal (such as in Ref. 12))
can be used for their evaluation. The case of monotonic programs involving
minimum and maximum predicates has been the object of other recent
papers, ~'1~) proposing a bottom-up evaluation mechanism called greedy
fixpoint, which coincides with Dijkstra's algorithm on the shortest path prob-
lem. In Ref. 13), Dietrich presents an algorithm based on extension tables, which
applies to the shortest path problem, and is also equivalent to Dijkstra's
algorithm on this problem. Surarshan and Ramakrishnan in Ref. 35) optimise
the evaluation of programs with extrema by removing irrelevant facts. The parts
explosion Example 3.2 is also treated in Ref. 25). Phipps uses a procedural
language, where the control of the completion for each subquery during query
evaluation is expressed in the program by the user.

Recently, a control technique called 0rdered_Search al) has been devel-
oped, which works on the transformed programs obtained by Magic Templates
rewriting of (left-to-right) modularly stratified or recursive aggregate programs.
This technique is very similar to subquery completion, in that it keeps track of
the dependencies between the magic facts (i.e. the subqueries) in order to control
the evaluation of recursive aggregate programs. Ordered_Search has been im-
plemented in the Coral deductive database system, a2) The data structure used in
Ordered_Search has to implement the subquery dependencies, whereas these
dependencies are already part of the run-time data structure in EKS-V 1.

Towards an Efficient Evaluation of Recursive Aggregates in Deductive Databases 157

w Conclusion
Our contribution has been to provide an efficient evaluation mechanism

for group stratified reducible aggregate programs. An extension to the work

presented here would be to extend our solution to the classes of closed semirings
and monotonic aggregate programs, which indeed have "natural" semantics. We
are also considering an extension of the subquery completion mechanism to the

evaluation of modularly stratified programs with negation. As 0rdered_Search is
also used for the evaluation of such programs, we believe that such an extension
of the subquery completion mechanism is feasible. Finally, little work seems to

have been done in order to push selections into the computation of aggregates:
in the query " s u m _ s a l a r y _ p e r _ d e p t (D , S u m) a n d S u m < 1 0 0 , 0 0 0 " , the con-

stant 100,000 could be used in order to stop the aggregation, as soon as this
constant is overtaken.

Acknowledgemen t s

The author is indebted to Laurent Vieille for many constructive com-
ments on earlier versions of this paper. I have also benefited from comments
from several colleagues at ECRC, as well as useful remarks from Eric Vil-

lemonte de la Clergerie, Gill Dobbie, Sundararajarao Sudarshan, Raghu Rama-
krishnan, and anonymous referees.

References
1) Abiteboul, S. and Grumbach, S., "A Rule-Based Language with Functions and Sets,"

ACM Transactions on Database Systems, 16, 1, pp. 1-30, March 1991.
2) Bidoit, N. and Froidevaux, C., "Negation by Default and Unstratifiable Logic Pro-

grams," Technical Report, 437, LRI, Orsay, 1988. To appear in a special issue of TCS
on Research in Deductive Databases.

3) Bidoit, N. and Legay, P., "WELL! An Evaluation Procedure for All Logic Pro-
grams," in Proc. o f the 3rd Int. Conference on Database Theory (ICDT), Paris,
France, December 1990.

4) Balbin, I., Meenakshi, K., and Ramamohanarao, K., "A Query Independent Method for
Magic Set Computation on Stratified Databases," in Proc. o f the International
Conference on Fifth Generation Computer Systems (FGCS), Tokyo, Japan, pp.
711-718, November 1988.

5) Beeri, C. and Ramakrishnan, R., "On the Power of Magic," in Proc. o f the 6th A CM
Symposium on Principles o f Database Systems (PODS), San Diego, California, March
1987.

6) Beeri, C., Ramakrishnan, R., Srivastava, D., and Sudarshan, S., "Magic Implementation
of Stratified Logic Programs," Technical Report, unpublished manuscript, August
1990.

7) Beeri, C., Ramakrishnan, R., Srivastava, D., and Sudarshan, S., "The Valid Model
Semantics for Logic Programs," in Proc. o f the l l th A CM Symposium on Principles
o f Database Systems (PODS), San Diego, California, June 1992.

I58 A. Lefebvre

8) Bry, F., "Logic Programming as Constructivism: A Formalization and Its Application
to Databases," in Proc. o f the 8th A CM Symposium on Principles o f Database
Systems (PODS), Philadelphia, Pennsylvania, pp. 34-50, March 1989.

9) Bry, F , "Query Evaluation in Recursive Databases: Bottom-Up and Top-Down
Reconciled," in Proc. o f the 1st International Conference on Deductive and Object-
Oriented Databases (DOOD), Kyoto, Japan, pp. 95-112, 1989.

10) Brodsky, A. and Sagiv, Y., "On Termination of Datalog Programs," in Proc. o f the 1st
International Conference on Deductive and Object-Oriented Databases (DOOD.),
Kyoto, Japan, pp. 95-112, 1989.

11) Consens, M. P. and Mendelzon, A. O., "Low Complexity Aggregation on GraphLog
and Datalog," in Proc. o f the 3rd Int. Conference on Database Theory (ICDT), Paris,
December 1990.

12) Cruz, 1. and Norvell, T., "Aggregative Closure: An Extension of Transitive Closure,"
in Proc. IEEE 5th International Conference on Data Engineering, pp. 384-391,
February 1989.

13) Dietrich, S. W., "Shortest Path by Approximation in Logic Programs," ACM Letters
on Programming Languages and Systems, 1, 2, pp. 119-137, June 1992.

14) Freeston, M., "The BANG File: A New Kind of Grid File," in Proc. o f the ACM
SIGMOD Conference on Management of Data, San Francisco, California, pp.
260-269, May 1987.

15) Ganguly, S., Greco, S., and Zaniolo, C., "Minimum and Maximum Predicates in Logic
Programming," in Proc. o f the lOth ACM Symposium on Principles o f Database
Systems (PODS), Denver, Colorado, May 1991.

16) Ganguly, S., Greco, S., and Zaniolo, C., "Greedy by Choice," in Proc. o f the 11th
ACM Symposium on Principles o f Database Systems (PODS), San Diego, California,
June 1992.

17) Klug, A., "Equivalence of Relational Algebra and Relational Calculus Query Lan-
guages Having Aggregate Functions," Journal o f the ACM, 29, 3, pp. 699-717, July
1982.

18) Kerisit, J. M. and Pugin, J. M., "Efficient Query Answering on Stratified Databases," in
Proc. o f the International Conference on Fifth Generation Computer Systems
(FGCS), Tokyo, Japan, pp. 719-725, November 1988.

19) Kemp, D. and Stuckey, P., "Semantics of Logic Programs with Aggregates," in Proc. of
the International Logic Programming Symposium, 1991.

20) Kemp, D. B. and Topor, R. W., "Completeness of a Top-Down Query Evaluation
Procedure for Stratified Databases," in Proc. o f 5th Int. Conference and Symposium
on Logic Programming (R. A. Kowalski and K. A. Bowen, eds.), Seattle, WA, pp.
178-194, August 1988.

21) Lefebvre, A., "Towards an Efficient Evaluation of Recursive Aggregates in Deductive
Databases," in Proc. o f the International Conference on Fifth Generation Computer
Systems (FGCS), Tokyo, Japan, pp. 915-925, June 1992.

22) Lefebvre, A. and Vieille, L., "On Deductive Query Evaluation in the DedGin* System,"
in Proc. of the 1st International Conference on Deductive and Object-Oriented
Databases (DOOD), Kyoto, Japan, pp. 95-112, 1989.

23) Mumick, I. S., Pirahesh, H., and Ramakrishnan, R., "The Magic of Duplicates and
Aggregates," in Proc. o f the 16th VLDB Conference, Brisbane, Australia, pp. 264-277,
August 1990.

24) Naughton, J. F., Ramakrishnan, R., Sagiv, Y., and Ullman, J. D., "Efficient Evaluation
of Rigth-, Left-, and Multi-Linear Rules," in Proc. o f the A CM SIGMOD Conference
on Management o f Data, Portland, Oregon, pp. 235-242, June 1989.

25) Phipps, G., "Glue: A Deductive Database Programming Language," in Proc. o f the

Towards an Efficient Evaluation of Recursive Aggregates in Deductive Databases 159

NALCP'90 Workshop on Deductive Databases (Jan Chomicki, ed.), pp. 1-6, October
1990. Extended Abstract.

26) Przymusinski, T. C., "Every Logic Program Has a Natural Stratification and an Iterated
Fixed Point Model," in Proc. o f the 8th A CM Symposium on Principles o f Database
Systems (PODS), Philadelphia, Pennsylvania, pp. 11-21, March 1989.

27) Rosenthal, A., Heiler, S., Dayal, U., and Manola, F., "Traversal Recursion: A Practical
Approach to Supporting Recursive Applications," in Proc. of the A CM S1GMOD
Conference on Management of Data, Washington D. C., May 1986.

28) Rohmer, J., Lescoeur, R., and Kerisit, J.-M., "The Alexander Method: A Technique for
the Processing of Recursive Axioms in Deductive Databases," New Generation Comput-
ing, 4, 3, pp. 273-285, 1986.

29) Ross, K., "Modular Stratification and Magic Sets for DATALOG Programs with
Negation," in Proc. o f the 9th A CM Symposium on Principles o f Database Systems
(PODS), Nashville, Tennessy, pp. 161-171, April 1990.

30) Ross, K. and Sagiv, Y., "Monotonic Aggregation in Deductive Databases," in Proc. of
the l l th A CM Symposium on Principles o f Database Systems (PODS), San Diego,
California, June 1992. Also presented at the ILPS'91 Workshop on Deductive
Databases.

31) Ramakrishnan, R., Srivastava, D., and Sudarshan, S., "Controlling the Search in
Bottom-Up Evaluation," in Proc. o f the Joint Int. Conference and Symposium on
Logic Programming, Washington D. C., pp. 273-287, November 1992.

32) Ramakrishnan, R., Srivastava, D., Sudarshan, S., and Seshadri, P., "Implementation of
the CORAL Deductive Database System," in Proc. of the A CM SIGMOD Conference
on Management o f Data, Washington D. C., May 1993.

33) Seki, H., "On the Power of Alexander Templates," in Proc. o f the 8th ACM Sympo-
sium on Principles o f Database Systems (PODS), Philadelphia, Pennsylvania, pp.
150-159, March 1989.

34) Seki, H. and Itoh, H., "A Query Evaluation Method for Stratified Programs under the
Extended CWA," in Proc. o f 5th Int. Conference and Symposium on Logic Program-
ming (R. A. Kowalski and K. A. Bowen, eds.), Seattle, WA, pp. 195-211, August 1988.

35) Sudarshan, S. and Ramakrishnan, R., "Aggregation and Relevance in Deductive
Databases," in Proc. of the 17th VLDB Conference, Barcelona, Spain, September
1991.

36) Sudarshan, S., Srivastava, D., Ramakrishnan, R., and Beeri, C., "Extending the
Well-Founded and Valid Semantics for Aggregation," in Proc. o f the International
Logic Programming Symposium, Vancouver, British Columbia, October 1993.

37) Sacca, D. and Zaniolo, C., "Magic Counting Methods," in Proc. of the A CM
S1GMOD Conference on Management o f Data, San Francisco, California, pp. 49-59,
May 1987.

38) Tamaki, H. and Sato, T., "OLD Resolution with Tabulation," in Proc. o f the 3rd Int.
Conference on Logic Programming, London, UK, pp. 84-98, June 1986.

39) Tsur, S. and Zaniolo, C., "LDL: A Logic-Based Data-Language," in Proc. o f the 12th
VLDB Conference, Kyoto, Japan, pp. 33-41, August 1986.

40) Ullman, J. D., "Bottom-Up Beats Top-Down for Datalog," in Proc. o f the 8th ACM
Symposium on Principles o f Database Systems (PODS), Philadelphia, Pennsylvania,
pp. 140-149, March 1989.

41) Van Gelder, A., "The Well-Founded Semantics of Aggregation," in Proc. o f the l l th
A CM Symposium on Principles o f Database Systems (PODS), San Diego, California,
June 1992.

42) Van Gelder, A., "Foundations of Aggregation in Deductive Databases," in Proc. of the
3rd International Conference on Deductive and Object-Oriented Databases (DOOD),

160 A. Lefebvre

Phoenix, Arizona, December 1993.
43) Vieille, L., Bayer, P., Kfichenhoff, V., and Lefebvre, A., "EKS-V1, A Short Overview,"

in AAAI Workshop on Knowledge Base Management Systems (E. Mays, ed.), Boston,
USA, July 1990.

44) Vieille, L., "Recursive Axioms in Deductive Databases: The Query/SubQuery
Approach," in Proc. 1st Int. Conference on Expert Database Systems (L. Kerschberg,
ed.), Charleston, SC, USA, pp. 179-193, April 1986.

45) Vieille, L., "From QSQ towards QoSaQ: Global Optimization of Recursive Queries," jn
Proc. 2nd Int. Conference on Expert Database Systems (L. Kerschberg, ed.), Tysons
Corner, Virginia, pp. 421-434, April 1988.

46) Vieille, L., "Recursive Query Processing: The Power of Logic," Theoretical Computer
Science, 69, 1, December 1989.

Dr. Alexandre Lefebvre: He is an engineer at Data and Knowledge
Management, at Bull, France. Previously, he was a researcher at the
European Computer-Industry Research Centre in Munich, Germany,
and later a Research Fellow at Griffith University in Brisbane, Aus-
tralia. He received a Ph.D. in computer science in 1991 from the
University of Paris 5. He is a member of the ACM and the Association
for Logic Programming. His professional interests include deductive
and object-oriented databases.

