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Abstract This paper is devoted to the evaluation of aggregates (avg, 
sum . . . .  ) in deductive databases. Aggregates have proved to be a necessary 
modeling tool for a wide range of applications in non-deductive relational 
databases. They also appear to be important in connection with recursive 
rules, as shown by the bill o f  materials example. Several recent papers have 
studied the problem of semantics for aggregate programs. As in these papers, 
we distinguish between the classes of stratified (non-recursive) and recursive 
aggregate programs. For each of these two classes, the declarative semantics 
is recalled and an efficient evaluation algorithm is presented. The semantics 
and computation of aggregate programs in the recursive case are more 
complex: we rely on the notion of graph traversal to motivate the semantics 
and the evaluation method proposed. The algorithms presented here are 
integrated in the QSQ framework. Our work extends the recent work on 
aggregates by proposing an efficient algorithm in the recursive case. Recur- 
sive aggregates have been implemented in the EKS-V1 system. 

Keywords: Deductive Database, Aggregate Function, Recursion, Extended 
Datalog, Database, Deduction 

w I Introduction 
This  paper  examines an advanced func t iona l i ty  of deduct ive database 

systems, namely  the abi l i ty  to express programs invo lv ing  both  recursion and 

* This paper is an extended version of the paper which appeared in the proceedings of the FGCS' 
92 Conference. zx) 
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aggregate computations in a declarative manner. The bill o f  materials applica- 
tion (compute the total cost of  a composite part built  up recursively from basic 
components) shows the importance of  this feature in real life databases. It is well 
known that such programs are not expressible in Datalog. We discuss a seman- 
tics, an evaluation model and the implementation of  aggregates in the EKS-VI 
system. 43) 

The recursive aggregate facility is one of  the innovative features of  the 
declarative language of  EKS-V1, in addition to the more standard features, 
recursion, negation and universal and existential quantification. EKS-V1 also 
provides an extensive integrity checking facility and sophisticated update primi- 
tives (hypothetical reasoning, conditional updates). EKS-V1 was mainly devel- 
oped in 1989 and demonstrated at several database conferences (EDBT, Venice, 
March 1990; SIGMOD, Atlantic City, May 1990; ICLP, Paris, June 1991; VLDB, 
Barcelona, September 1991); it is used as a support  for teaching in several 
universities. 

The aggregate capabilities we consider are essentially those of  SQL: a 
grouping primitive (group_by) is used in association with scalar functions (such 
as sum, avg, rain) to compute aggregate values for each group oftuples.  Adding 
aggregate capabilities to a recursive language causes different problems, depend- 
ing on the class of programs accepted. We will consider two such classes: 
stratified aggregate programs and non-stratified aggregate programs (this termi- 
nology builds on an analogy with negation that will be explained below). 

Our aim here is to provide efficient evaluation algorithms which can be 
integrated in a general evaluation framework such as QSQ or Magic Sets. In the 
case of  EKS-VI, this is performed within the top-down QSQ/DedGin* frame- 
work which was developed in Refs. 44), 45), and 46) and for which compilation 
and implementation techniques were developed in a set-oriented way in the 
DedGin* prototype, z2) Studying evaluation in this framework does not limit its 
scope. Indeed, it is now accepted that there is a canonical mapping between an 
evaluation performed using a Magic Sets like strategy 28'5'37~ and a " top-down" 
strategy 44'45'38) (see Refs. 9), 33), 40), and 46) for a comparison). Hence, anything 
that we develop here can be adapted to Magic Sets (and vice-versa). 

In stratified aggregate programs, aggregate operations and recursion 
can't  be interleaved. In other words, an aggregate operation may be specified 
over the result of  a recursive query, or a recursive query may be specified over 
the result of an aggregate operation. However, an aggregate operation may not 
be part of a recursive cycle, i.e. one aggregate predicate can not recursively refer 
to itself. 

For stratified aggregate programs, both semantics and evaluation issues 
are readily solved: 1) the semantics can be defined in a standard proof-theoretic 
way and 2) the evaluation problems are essentially those of top-down constant 
propagation and of coordination on the strata. The constant propagation issue 
is the (classical) problem of  making use of constants given in the query to limit 
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the search space. For  a query like "Give me the average salary for the sales 
department", one does not need to consult the entire employee relation. As for 
coordination,  one has to make sure that all relevant tuples have been derived 
before performing the aggregate operation: again, this is a classical and relative- 
ly easy problem, which can be solved by appropriately extending the query 
evaluation method of  the respective system. 

In the case of  non-stratified aggregates, interaction of  recursion and 
aggregate computat ion raises more difficult problems. As a motivating example, 
consider the classical bill o f  materials application for a bicycle. In order to 
compute the total cost of  a bicycle, one has to 1) compute the total  costs of  all 
its direct subparts (e.g. a wheel), 2) mult iply these costs by the number of  
occurrences of  these subparts (e.g. 2 wheels on a bicycle) and 3) sum up the 
resulting costs (aggregate computat ion).  Step 1) consists of a recursive invoca- 
tion of the bill o f  materials query, implying a recursive invocation of step 3) 
(aggregate computat ion).  Clearly, aggregate computat ion and recursion are 
intertwined. In the following, we refer to this more general class of  programs 
either as non-stratified aggregate programs or as recursive aggregate programs. 

The first difficulty concerns semantics. For  instance, suppose that, in the 
bill o f  materials example, a composite  part is defined in terms of  itself (cyclic 
data). Clearly, the cycle problem has to be solved in order to provide semantics 
for such queries. Our definition of  the semantics of recursive aggregate queries 
relies on the two following intuitive choices. 1) We regard recursive aggregate 
computat ions as operations on top of the evaluation of  a Datalog program. This 
underlying program represents a generalized graph (Datalog allows more than 
just transitive closure) being traversed during evaluation/7~ 2) Semantics should 
be definable in a way orthogonal to the semantics of  the aggregate operations 
themselves: for example, the semantics of  a query should be definable whenever 
min is replaced by max or vice-versa (of course, the result of  the evaluation 
would be different!). 

In order to give semantics to recursive aggregate programs, we consider 
the subclass of  programs for which it is possible to associate a reduced program 
leaving out the associated computat ion of  aggregates. This program conceptual- 
ly represents the graph being traversed. We call such programs reducible aggre- 
gate programs. A query on a reducible program is meaningful only if there is 
no cycle in the derivations on the associated reduced program (we speak then of 
group stratification). Its semantics can then be defined in a classical proof- 
theoretic manner. 

The second difficulty is the evaluation of  recursive aggregate queries. As 
in the stratified aggregate case, this issue is two-fold: constant propagat ion and 
coordination. Constant propagation is done in the same way as in the stratified 
aggregate case. Coordination is more difficult than in the stratified aggregate case 
as one has to rely on data stratification (there is no predicate stratification any 
more). Hence, one has to ensure that the whole group of  tuples for a given input 
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value has been derived before performing the corresponding aggregate opera- 
tion. However, we are manipulat ing sets of  tuples: in a given set of  tuples at a 
given time, there might be a group that has been completely derived, and another 
for which only a partial set of  tuples has been derived. This makes the control 
over the order of evaluation more complicated as it now has to be performed at 
the data level. 

In the top-down evaluation scheme of EKS-V1, we introduce the notion 
of  subquery completion. We rely on dependencies between subqueries in order to 
check whether the derivation of a given group has been completed. A general 
solution is proposed which makes use of  the reduced associated program in 
order to provide ranges for the subqueries, so that the resulting subquery 
dependencies correspond to the group dependencies. In the case of  tail-recursive 
programs, including the bill of  materials program, a simplification is possible. 

The main contr ibut ion of our work is the integration of recursion and 
aggregates in a general query evaluation framework. Two independent studies 
on recursive aggregates 23'11) have been developed in parallel to our work. They 

take a model-theoretic approach, whereas we consider a proof-theoretic 
approach to the semantics of  aggregate programs. In Ref. 23), Mumick et al. 
describe an algorithm extending the Magic Sets technique to stratified aggregate 
programs (in fact Magic Stratified aggregate programs). In this paper, we 
extend the evaluation algorithm based on QSQ to group stratified aggregate 
programs of  which the bill o f  materials program is an example. 

More recently, a technique similar to ours called Ordered_Search 31) has 
been developed and implemented in the Coral  deductive database system. 32) 

The structure of  this paper is as follows. The remainder of  this section 
introduces some definitions and notations. Section 2 examines semantics and 
evaluation of stratified aggregates. For  the recursive aggregate case, we first 
analyze the semantics problem in Section 3, where we define the class of  
reducible aggregate programs. We then propose an evaluation method which 
relies on the notion of  subquery complet ion in Section 4. Section 5 discusses 
related work. Section 6 summarizes the paper and describes future work. 

1 . 1  Definitions and Notations 
We assume that a database is composed of  base relations and of  deduc- 

t ion rules of  the form Head ~--Body where the Body is a conjunct ion of 
positive and negative literals. All the variables in the Head should appear  in a 
positive literal in the body. Deduction rules define virtual predicates, which are 
also commonly called views in the classical relational terminology. 

Definition 1.1 Aggregate rule 
An aggregate predicate agg_pred is syntactically defined, as in Ref. 23), by an 
aggregate rule in the following way: 

agg_pred(OUt) *-- group by( 
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group_pred(Iff), 
List_of_Grouping_Variables,  
List_of_Aggspecs 

). 
where: 

List_of_Grouping_Variables is a list of  variables. Offt and Ir~ are 
sequences of  variables. They are called grouping, output and input 
variables respectively; 
group_pred is any virtual or base predicate and is called the grouping 
predicate; 
List_of_Aggspecs is a list of  aggregate specifications of the form A isagg 
func_agg(B) or A isagg count where func_agg can be 'sum',  'rain', 'max'  
or 'avg', A must be an output variable and B must be an input variable. 
The variable A is called an aggregate variable and B a variable 
to-be-aggregated; 
an output variable must either be a grouping variable or an aggregate 
variable. 

Without  loss of  generality, we assume that an aggregate predicate is defined by 
one aggregate rule only. [] 

Note that the aggregate function count has no argument, as it s imply counts the 
number of  tuples for a given group. 

We allow the use of  arithmetic predicates in the body of  Datalog rules. 
Such predicates, not computable  by the basic relational operations, are called 
external predicates. We suppose that the external predicates are used in a safe 
way (as in Ref. 10)--there should be a finite set of  answers and finite top-down 
evaluation). As an example, the bill of  material example uses an external 
predicate performing a multiplication (see Section 3). The use of  this predicate 
is safe as long as the data is acyclic. 

Compar ing  our syntax to the SQL syntax for aggregates deserves two 
remarks. First, SQL allows the user to specify aggregate functions on any query, 
including joins and any kind of  where condition. With our syntax, however, 
aggregate functions can only be applied to a single grouping literal. A natural 
extension would be to allow the user to write any expression, instead of a single 
grouping literal. Second, SQL allows the user to specify conditions on the result 
of  the aggregations by means of the having clause inside an aggregate query. 
This is also possible with our syntax: the corresponding condit ion however has 
to appear outside the aggregate rule, because it concerns the result of  the 
aggregation and not the aggregate computa t ion  itself. We feel that it is a more 
natural way to express such conditions. 

Definition 1.2 Grouping subtuples and groups of tuples 
Given a tuple for the grouping predicate, its grouping subtuple is its projection 
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over the grouping arguments, 
Given a set of  tuples S for a grouping predicate, we partition S into groups of 
tuples: there is one group for each different grouping subtuple GST in S. A 
group contains those and only those tuples of  S having GST as grouping 
subtuple (and no other tuple). [] 

We say that a predicate predl depends directly (resp. indirectly) on the 
predicate pred2, if pred2 appears in the body of  a rule defining predl (resp. if there 
is a predicate pred3 such that predl depends directly on pred3 and pred3 depends 
indirectly on pred2). We can now give the following definition, inspired by the 
terminology used in the case of Datalog queries with negation. 

Definition 1.3 Stratified aggregate program 
An aggregate program is stratified if no aggregate predicate depends directly nor 
indirectly on itself. [] 

Note that aggregate programs having recursive predicates which are not mutu- 
ally recursive with aggregate predicates are indeed aggregate stratified. 

A simple example of a stratified aggregate program is the following. 

Example 1.1 
Suppose that the database contains a base relation employee with tuples of the 
form employee(Name, Dept, Salary). One can define a virtual predicate avg_- 
salary_per_dept using the following rule: 

avg_salary_per_dept(Dept, AvgSal) < -  
group_by( 

employee(Name, Dept, Salary), 
[Dept~, 
[AvgSal isagg avg(Salary)~ 

). 

If  the predicate avg_salary_per_dept is queried with the argument Dept in- 
stantiated, it returns one single value. If the query is fully uninstantiated, the 
result is a binary table with one value per department. [] 

w Stratified Aggregates 
In this section, we first recall the natural semantics of  stratified aggregate 

programs, which rely on the stratification of  rules. We then describe their 
evaluation by extending the QSQ framework. 

2 . 1  Semantics 
The stratification of a database ensures the soundness of the following 

extension of the classical proof-theoretic definition of semantics for stratified 
aggregate programs. 

Like Datalog programs with stratified negation, a stratified aggregate 
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program P can be divided into strata S~, i = 1 ..... n. 

Consider a predicate p appearing in the body of  a rule R ~ Sg. I f  R is an 
aggregate rule and p appears as a grouping predicate in R, then the definition 
o f p  is contained in U~<iSj, else, its definition is contained in Uj<_~Sj. 

An example of  a stratified aggregate program involving more than one 
aggregate predicate is the following, counting the number  of  descendants for 
each person in a family tree. 

Example 2.1 
Suppose that the database contains a base relation child with tuples of  the form 
ch i ld (X ,  Y )  where Y is a child of  X. One can define the virtual predicate 
children_nr, counting the number  of  children of a given person, with the 
following rule: 

children_nr(X, N) < -  
group_by( 

child(X, Y), 
[x] ,  
[N isagg count] 

). 

The descendant  predicate, transitive closure of  the child predicate, is defined 
with the following rules: 

descendant(X, Y) < -  
child(X, Y). 

descendant(X, Y) < -  
child(X, Z) and descendant(Z, Y). 

Building on these two predicates, the predicate chi ldren_nr_for_descendant  

computes the number  N of children of  the descendant Y of  a person X as 
follows: 

children_nr_for_descendant(X, Y, N) < -  
descendant(X, Y) and children_nr(Y, N). 

Finally, the predicate descendant_nr ,  representing the number of  descendants 
for each person, is defined with the following rule: 

descendant__nr(X, N) < -  
group_by( 

children_nr_for_descendant(X, Y, N), 
Ix] ,  
IN isagg count] 

). 

This program is aggregate stratified. No aggregate predicate depends directly or 
indirectly on itself. A possible stratification for this program is as follows: S~ = 
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{child, descendant}, Sz = { children_nr, ehildren nr_fordescendant} and 
Sa = { descendant_nr}. [] 

Definition 2.1 Semantics of a stratified aggregate program P 
Facts derivable for P from the database are obtained by saturation of the 
immediate consequence operator, consecutively on each stratum Si, starting 
from i = 1 up to i = n. Facts for aggregate predicates are defined as follows. 
For  an aggregate predicate agg_pred, there is one tuple Tc for each group G of 
the corresponding grouping predicate group_pred such that: 

(1) I f  an attribute o f  TG corresponds to a grouping variable, its value is the 
value of the same variable in G. 

(2) I f  an attribute o f  TG corresponds to an aggregate variable, its value is 
the result of the aggregate operation performed on the corresponding 
values of G to be aggregated. [] 

Note that this proof-theoretic definition of the semantics is equivalent to the 
model-theoretic one given in Refs. 23) and 11). For  stratified aggregates, 
Mumick et al. TM define the model-theoretic semantics in terms of  a perfect 
model. The proof-theoretic definition of the semantics defined above exactly 
computes this perfect model (it is similar to the construction of the perfect model 
of  stratified programs with negation). 

2 . 2  Evaluation 
We present here an evaluation algorithm integrated in the QSQ frame- 

work. In Ref. 23), the authors extend the Magic Set formalism to stratified 
aggregates in a similar way. 

(1~ Constant propagation 
The propagation of constants (i.e. taking advantage of the constants 

appearing in the query in order to reduce the search of the database) is addressed 
by adapting the QSQ framework: the top-down generation of subqueries is used 
for focusing on relevant data while answers are propagated bottom-up. 

We first describe this adaptation on a tuple-at-a-time basis. Let Q be a 
query over the aggregate predicate agg_pred defined using an aggregate rule as 
in Definition 1.1. Answering Q consists in the following steps: 

(l)  If Q matches the head agg_pred(Out) of  the aggregate rule, then generate 
a subquery SQ on group_pred by binding each variable X of group_pred 
which is also present in agg_pred (X must be a grouping variable) to its 
value in Q (either a variable or a constant). 

(2) Answer the subquery SQ. 
(3) Partition the answers to SQ into groups of tuples and perform the 

aggregate operations for each group. 
(4) Project the results over the arguments of  agg_pred. 
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Note that only the bindings of grouping variables are propagated down- 
wards. If some aggregate variables of  agg_pred are bound in SQ, then their 
bindings are not propagated to SQ (e.g. if a value for the AvgSal argument of 
Example 1.1 is provided in the query, then this binding is not propagated). The 
gain obtained by using such bindings in order to reduce the search space 
depends on the nature of the aggregate and can require a complicated mecha- 
nism. 

(23 Set-oriented evaluation in EKS-VI 
The evaluator/compiler  of EKS-V1 derives from the DedGin* prototype. 

The above computational  scheme is implemented in a set-oriented way by a 
simple adaptation of  the DedGin* query answering mechanism. The following 
operations correspond to the previously described steps: 

(1) A selection/projection selects from a set of queries Q those queries 
matching the head of the aggregate rule, and projects the resulting tuples 
over the relevant arguments of group_pred. This results in a set of 
subqueries SQ over group_pred. 

(2) The standard set-oriented evaluation of  DedGin* is used to answer the 
subqueries in SQ. 

(3) The grouping and aggregate operations are implemented in one pass, by 
an extended operator described below. This results in an intermediate 
relation trap containing one attribute for each grouping variable and for 
each aggregate variable. 

(4) A projection of  the tuples in tmp over answer tuples for agg_pred is 
finally performed. 

(33 Remarks 
In EKS-V1, only step (3) needs an extension to the basic set-oriented 

machinery: grouping and aggregate operations are performed by one single 
set-oriented operator implemented in BANG.* This operator projects the group- 
ing tuples onto their grouping value (grouping operation) and incrementally 
performs the aggregate operations on additional arguments associated with each 
grouping subtuple. In the case of an average, the sum and count aggregates are 
computed during step (3), and then a division during step (4). 

The 4th operation is needed when some grouping variables do not appear 
in agg_pred. In such cases, it is crucial that the aggregate operations are first 
performed on the full grouping subtuples (resulting in the tmp relation) and 
then the intermediate result tmp be projected out to the final answer relation. As 
an example, one may want to compute the different values of the average salary 
per department without the values of the departments. For this purpose, the 

* The BANG file system 14) provides the data manipulat ion operators in EKS-V1. 
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variable Dept would be in the grouping list but would not appear in the head, 
i.e. in the aggregate predicate. 

(43 Coordination aspects 
In general, the evaluation of deductive queries can be viewed as a 

saturation both on the top-down propagat ion of (non-redundant) subqueries 
and on the bot tom-up generation of answers. In the case of  recursion without 
negation or aggregates, there is total freedom as far as the order of  propagat ion 
is concerned. In particular, answers can be propagated bot tom-up even if they 
represent only a partial set of  answers to the corresponding subqueries. However  
in case of  aggregates (also in the case of  negation),  subqueries must be answered 
completely before their answers can be used or propagated further. I f  one did 
not stick to this strategy, wrong inferences could be made: for instance, one 
could propagate an intermediate count which is different from the final count. 

In order to implement  this strategy in EKS-V 1, we make use of  a run-time 
structure described in Refs. 45) and 22) called the data-flow graph (DFG).  
Nodes of  this graph essentially represent (occurrences of) virtual predicates and 
the graph serves to moni tor  the sets of  data (essentially subqueries, environments 
and answers) manipulated for these (occurrences of) predicates. The nodes are 
linked according to their relative positions in rules: the brother of  a node 
corresponds to the immediate next literal in the body of a rule; predicates in the 
body of a rule defining a virtual predicate p form children nodes with respect to 
the node corresponding to p. Refer to Refs. 45) and 22) for a precise definition 
of  the DFG.  This structure is adequate for coordinat ion aspects since it gives, at 
any time, a "map"  of  the rules that have been evaluated or remain to be 
evaluated to fully answer a virtual predicate. The coordinat ion strategy de- 
scribed above can be formulated in the case of  aggregate predicates as follows: 

For  each node N of the D F G  corresponding to an aggregate 
predicate, saturate the descendants of  N before performing the 
aggregate operat ion associated with N. 

w Semantics of Recursive Aggregates 
In order to introduce problems arising in the case of  recursive aggregate 

programs, we discuss the classical bill o f  materials example, also presented in 
Refs. 23) and 11). 

Example 3.1 Bill of materials 
Suppose that the database contains the following information: basic parts, and 
their cost and assembly links, to make up composi te  parts are stored in two base 
relations 

basic_part(Part, Cost). 
assembly(Part, SubPart, Qty). 
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The born (bill of  materials) predicate computes the total cost of  a given part by 
summing up the costs of all its direct subparts, computed by the grouping 
predicate subpart_cost. 

born(Part, TotalCost) < -  
group_by( 

subpart_cost(Part, SubPart, Cost), 
[Part], 
ETotalCost isagg sum(Cost)] 

). 

The non-recursive rule of  subpart_cost returns the cost for a basic part. The 
recursive rule computes the cost which a direct subpart SubPart accounts for in 
the total cost of Part by recursively computing its cost and multiplying it by the 
number of occurrences of SubPart in Part. 

subparLcost(Part, Part, Cost) < -  
basic_part(Part, Cost), 

subpart_cost(Part, SubPart, Cost) < -  
assembly(Part, SubPart, Quantity) 
and bom(SubPart, TotalSubCost) 
and Cost is Quantity * TotalSubCost. 

As an example, if Part is "bicycle", and if "bicycle" is made up of  two wheels 
(each costing 10) and of one frame (costing 100), then the subquery subpart_- 
cost(bicycle, Subpart, Cost) will return two tuples: 

(wheel, 20) % 20 is 2 * 10 
(frame, 100) % 100 is I * 100 

The aggregate computat ion performed in the rule defining bom then returns 120 
as the total cost for a "bicycle". [] 

What would the semantics of  the bill of  materials example be if there 
were a cycle in the data: what would be the cost of a recursively defined 
composite part (where its value depends on itself)? In order to solve this 
problem, we rely on the following two choices: 

(1) We intuitively view recursive aggregate computations as generalized 
graph traversals. In this framework, computations are performed both 
along deduction paths (e.g. multiplying by the number of  occurrences) 
and by aggregating the values associated with several paths (summing up 
costs). However, recursive aggregate computations go beyond graph 
traversal as they require 1) more complex structures than graphs to  be 
searched (n-ary relations correspond to hypergraphs), 2) the combination 
of several "graphs" in the search (several, different predicates) and 3) a 
more general search than transitive closure (e.g. non-linear recursion). 
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(2) 

To each recursive aggregate program, we conceptually associate a so- 
called reduced program. Intuitively, the reduced program captures the 
essence of traversal, while leaving out the associated computa t ion  of 
aggregates. We provide a rewriting method which, given a recursive 
aggregate program, obtains its reduced program if one exists. 
A recursive aggregate program is then acceptable if  it is syntactically 
correct, i.e. if there exists a reduced program attached to the original 
aggregate program. In such a case, the program is said to be reducible. 
Moreover, we consider that the semantics should be definable in a way 
orthogonal  to the semantics of  the aggregate operations: for example, the 
cases where the semantics of  a query is defined should be the same 
whenever rain is replaced by max or vice-versa (however, the result of  the 
evaluation would be different). As a consequence, we give semantics to 
recursive aggregates only when the data is acyclic, i.e. if the p roof  trees 
generated from the database for the reduced query are acyclic. The actual 
semantics of  meaningful recursive aggregates queries is then defined in a 
classical bo t tom-up  manner. 
Indeed, al though one could compute the shortest path between two nodes 
of  a cyclic graph, one can not compute  the maximal length of  a path in 
such a case. However  accepting the first case without accepting the second 
one would violate this orthogonali ty principle. 

3 .1  Reducible Aggregate Programs and Group Stratification 
We conclude the semantics chapter by giving more precise definitions of  

the notions "reduced", "reducible" and "acyclic" introduced above. 
Consider the program P consisting of  the set of  rules defining the 

predicates which are mutual ly recursive with a given aggregate predicate agg_- 
pred. 

We built the variable graph ~) for P as follows. There is one node (p, i) 
in ~ for each variable position i of  each virtual predicate p in P. There is an 
edge between two nodes in V if there is a rule r in P such that the variables 
corresponding to the nodes appear in the same external predicate in the body of 
r. There is an edge between two nodes (p, i) and (q, j )  in ~ if there is a rule 
in P of which p is the head predicate, q is a body predicate, and the variables 
corresponding to i and j are identical. A node (p, i) is an aggregate node if 
there is a rule r in P of which either p is a grouping predicate and the 
corresponding variable appears as a variable to-be-aggregated in the body of  r, 
or p is the head predicate and the corresponding variable appears as an aggre- 
gate variable in the body of r. Finally, a node (p, i) is a grouping node if there 
is an aggregate rule r in P of which p is the head predicate and the correspond- 
ing variable appears as a grouping variable in the body of P. 

Obtaining a reduced program from an original program P will be 
possible if the grouping variables, which represent the essence of  the program, 
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can be isolated from the aggregate variables: the program P is reducible if no 
grouping node is connected to an aggregate node in ~;. 

In a given rule r of P, a variable is said to be aggregate connected if  the 
node in ~ corresponding to its position is connected to an aggregate node. 
Informally, if P is reducible, its reduced program reduce(P) is obtained by l) 
deleting from each rule of P every literal, built  on an external predicate, which 
contains aggregate connected variables and 2) replacing each literal which is 
mutually recursive with agg_pred by a new literal where the aggregate con- 
nected variables have been omitted (hence, reducing its arity). Indeed, if P was 
not reducible, then the transformation reduce would also remove some grouping 
variables which carry the essence of  the program. 

Formally, the transformation reduce makes use of  a set R_Set (initialized 
to 0) containing pairs of  the form (Lit, R L i t ) ,  where Lit is an initial literal and 
R L i t  is obtained from Lit by omitting some variables. The predicates of the 
reduced literals are renamed by adding the prefix " r_"  in front of  the initial 
predicate names. 

Definition 3.1 Transformation reduce and reducible programs 
The transformation reduce is defined as follows: 

(1) Replace each aggregate rule: 

Head ,-- group_by( 
Group_Lit ,  
List_of Grouping_Variables, 
List_of_Aggspecs 

). 

by: 

Head'  ~- Group_Lit ' .  

where Head" (resp. Group_Lit') is obtained from Head (resp. from 
Group_Lit) by deleting the aggregate variables (resp. the to-be- 
aggregated variables). 
Add (Head, Head') and (GroupLi t ,  Group_Lit') to R_Set while replac- 
ing all arguments by new variables. 

(2) Iterate the following process until no more changes occur: 
Replace each remaining rule in the program (these are not aggregate 
rules): Head ,-- Body by a new rule: Head' ~- Body' obtained by: 

(a) replacing each literal Lit (including the head) by its corresponding 
R_Lit whenever (Lit, R_Lit) is in R_Set; 

(b) removing all external predicates of which one of  the input argu- 
ments corresponds to one of the variables removed in step (a); 

(c) if step (b) was applied, obtaining Head" from Head (or from 
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R_Head if  step (a) was applied) by removing the ou tpu t  variables 
o f  the external predicates involved in step (b). In this case, add 
(Head, Head') to R_Set (replace all arguments  by new variables). 

The  t ransformat ion reduce succeeds and the recursive aggregate p rogram P is 
said to be reducible if the saturat ion process in (2) does not  affect the grouping  
and aggregate literals. [] 

F r o m  now on, we consider only reducible  aggregate programs.* 
In order to illustrate the concepts  defined here, let us in t roduce  the parts 

explosion example, which  computes  the total  amoun t  Qty of  a given subpart  SP 
involved in the cons t ruc t ion  o f  a given part  P.  The  definit ion o f  part subpart_- 
qty has the same structure as the definit ion o f  bom. It uses a g roup ing  predicate 

int_subpart_qty which  gives, for each direct intermediate c o m p o n e n t  IP of  P,  
the quant i ty  o f  SP involved th rough  IP. Note  that  the predicate part subpart_- 
qty is an extension o f  the born predicate with more didactic properties.  

Example 3.2 Parts explosion and reduced program 

parLsubpart_qty(P, SP, Qty) < -  
group_by( 

int_subparL_qty(P, IP, SP, IQty), 
[P, SP], 
[Qty isagg sum(IQty)] 

). 

int_subparLqty(P, P, SP, Qty) < -  
assembly(P, SP, Qty). 

inLsubparLqty(P, IP, SP, IQty) < -  
assembly(P, IP, Qty) and 
part_subpart_qty(IP, SP, IQtyl) and 
IQty is Qty * IQtyl. 

(part_qubpart_qty, 1) 

(part_qubpart_qty, 2) 

(parl_subpart_qty, 3) 

(int_subpart_qty, 1) 

(int_subpart_qty, 2) 

(int_subpart_qty, 3) 

(int_subpart_qty, 4) 

0 normal node 
@ grouping node 
~) aggregate node 

Fig. 1 Variable graph for the parts explosion program. 

In practice, the only reasonable recursive aggregate programs we could think of are reducible 
(bill of materials, shortest path, corporate takeover, ...). This is also the case of all examples 
treated in the related work. 



Towards an Efficient Evaluation of Recursive Aggregates in Deductive Databases 145 

Figure 1 represents the variable graph for this program. There is an edge between 
(part_subpart qty, 3) and (int_subpart_qty, 4), because the corresponding 
variables appear in the external mult ipl icat ion predicate. There is an edge 
between (part subpart_qty, 1) and (int_subpart_qty, 1), and an edge between 
(part_subpart_qty, 2) and (int_subpart_qty, 3) because the corresponding 
variables are identical in the aggregate rule defining part subpartqty. Finally, 
there is an edge between (part subpartqty, 1) and (int_subpart_qty, 2) because 
the corresponding variables are indentical in the third rule. The aggregate nodes 
in the variable graph corresponding to this program are (part_subpart_qty, 3) 
and (int_subpart_qty, 4); the grouping nodes are (part_subpart_qty, 1) and 
(part_subpart_qty, 2). No grouping node is connected to an aggregate node, 
therefore the program is reducible. The reduced program is: 

r_partsubpartqty(P, SP) < -  
r_inhsubpart_qty(P, IP, SP). 

r_intsubpartqty(P, P, SP) < -  
assembly(P, SP, Qty). 

r_intsubpartqty(P, IP, SP) < -  
assembly(P, IP, Qty) and 
r_partsubpartqty(IP, SP). [~] 

We now define precisely what we mean by "cyclic data". 

Definition 3.2 Fact and group dependeneles 
A fact F derivable from DB is directly dependent on a fact F '  if there is a 
ground instance I of  a clause such as I: F ,--- ... and F" and ... and such that all 
the ground literals of  the body of I are derivable from DB. The dependency 
relationship is the transitive closure of  the direct dependency relationship. 
The group dependency relationship is the fact dependency relationship induced 
by reduce(P) over DB. [] 

Definition 3.3 Group stratified program 
A recursive aggregate program P is group stratified over a database DB if the 
group dependency relationship introduced by P over DB is acyclic. 

Example  3.2 (eontinued) Consider the following data for the assembly rela- 
tion representing a bicycle, as illustrated in Fig. 2: 

assembly(bicycle, frontframe, I). 
assembly(frontframe, mudguard, I). 
assembly(frontframe, fork, I). 
assembly(frontframe, wheel, I). 
assembly(frontframe, headlamp, 2). 
assembly(frontframe, handles, I). 

assembly(bicycle, rearframe, I). 
assembly(rearframe, mudguard, I). 
assembly(rearframe, fork, I). 
assembly(rearframe, wheel, I). 
assembly(rearframe, chain, I). 
assembly(rearframe, pedal, I). 
assembly(rearframe, saddle, I). 
assembly(rearframe, reflector, I). 
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headlamp 

....-~ handles 

frontfrarne ~ mudguard 

bicycle ~ fork ~ spoke 

rearframe,~.,. . . . . . .~ wheel ~ rim 
~ ' x ~ "  saddle ~ - ' -  h u b ~ . . . . . ~  gears 

chain " tyre axle ~ nut 

-tor 

Fig. 2 Assembly graph of a bicycle. 

assembly(wheel, hub, I). assembly(hub, gears, I). 
assembly(wheel, tyre, I). assembly(hub, axle, I). 
assembly(wheel, spoke, 20). assembly(axle, nut, 2). 
assembly(wheel, rim, I). assembly(axle, bolt, I). 

The parts explosion program together with these facts is clearly group stratified, 
as there are no cycles in the data. [] 

We can now define the semantics of  a group stratified program P over 
DB, by refining Definition 2.1. Again, the notion of group stratified programs 
here is identical to the one proposed in Ref. 23). 

This time, we note that the facts in reduce(P)  can be divided along group 

strata GSi, i = 1 ..... n, such that, if a fact Fi E GS~ depends on a fact Fj ~ GS~, 

then j < i. In addition, grouping and aggregate facts in P will be given the 
group stratum level of  the corresponding reduced facts. 

Definition 3.4 Semantics of a group stratified aggregate program P 
Facts derivable for P from the database are obtained by saturation of the 
immediate consequence operator consecutively using facts belonging to the 
group strata GS~<_~, starting from i = 1 up to i = n. Facts for aggregate predi- 
cates are derived as in Definition 2.1. [] 

w Evaluation of  Reducible Group Stratified Aggregate Programs 
The evaluation problems in the recursive aggregate case are, like in the 

stratified aggregate case, those of  constant propagat ion and coordination.  As far 
as constant  propagation is concerned, the problem is solved in the recursive 
aggregate case as described in Section 2.2 ~1]. 

The coordination problem is now different. The goal is still to perform 
the aggregate operations only on complete groups. However, there is no predi- 
cate stratification in the recursive case, and a control mechanism as described in 
Section 2.2 ~4) cannot  be performed any more. Instead, the group stratification 
that the program is supposed to enforce is data dependent and not predicate 
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dependent. Hence, the coordination will have to be performed at the data level 
instead of  at the predicate level. In Ref. 23), Mumick et al. remark that group 
stratified programs can be evaluated in the order of the groups. In this section 
we give a precise algorithm to perform this evaluation. 

Theoretically one could first generate the group dependency graph and 
base the computation on this graph. However, the representation and analysis of 
such a graph is likely to be expensive. 

The solution proposed in EKS-V1 relies on the top-down character of  the 
evaluation: there exist natural dependencies between the subqueries. A subquery 
SQ is said to directly depend on the subqueries derived during the evaluation 
of the rules invoked for answering SQ; a formal description of  these depen- 
dencies can be provided based on SLD-AL trees--see Ref. 45). In Section 4.1 we 
present the subquery completion mechanism: the evaluation of a program under 
subquery completion ensures that the set o f  answer tuples to a subquery is 
propagated only when it is complete. In Section 4.2 we apply this technique to 
recursive aggregates. Modification of the original program using reduced literals 
is proposed in order to establish a one-to-one correspondence between subquery 
dependencies and group dependencies. The subquery completion mechanism 
can then be applied to the modified program. Section 4.3 is concerned with 
tail-recursive rules: in such a case, the subquery dependencies naturally corre- 
spond to the group dependencies and the original program can directly be 
evaluated under subquery completion. 

4.1  Subquery Completion 
We consider that a subquery has been completed during evaluation if its 

complete set of answers has been generated. 

Definition 4.1 Subquery completion 
A given subquery SQ has been completed if one of the two following conditions 
holds: 

for a subquery on a base predicate: the join with the corresponding base 
relation has been performed; 
for a subquery on a virtual predicate: all the rules have been fired, and 
recursively all the subqueries on which SQ directly depends have been 
completed. 

We say that a program is evaluated under subquery completion if the set of 
answers to each subquery SQ is propagated only when SQ has been completed. 

[] 

The subquery completion mechanism can be implemented as follows: 

(1) When a subquery is derived, it is originally marked as non-completed. 
(2) When answering a set of  subqueries for which all the rules have been 
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triggered, the subqueries having non-completed direct descendants are left 
out. The other subqueries are marked as completed and the join with 
their corresponding answer tuples can take place. 

4 . 2  Evaluation with the Reduced Program 
Our goal is now to use the subquery completion mechanism in order to 

solve the problem of recursive aggregate evaluation. However, the subquery 
completion mechanism ensures that answers to a subquery are used when it has 
been completed, but not when a given group of tuples has been completed. We 
use calls to the reduced program in order to generate bindings for the grouping 
variables: this way, all grouping variables are instantiated and the subquery 
tuples are identical to the grouping subtuples. It follows that the subquery 
dependencies and the group dependencies coincide. 

For reducible aggregate programs, the definition of a completed subquery 
is extended in the following way. 

Definition 4.1 Subquery completion (continued) 

a subquery on a grouping fiteral has been completed if  the aggregate 
operation on the corresponding group has been performed. 

A reducible aggregate program is evaluated under subquery completion if the set 
of answers to each subquery SQ is propagated only when SQ has been complet- 
ed, and if the aggregate operation on a given group is performed only when the 
corresponding subquery on the grouping predicate has been completed. [] 

Consider a recursive aggregate program P. The algorithm can be formal- 
ized as follows. 

Algorithm 4.1 

(l) Produce the corresponding reduced program reduce(P). 
(2) Modify P by introducing, at the beginning of each rule's body containing 

grouping and/or aggregate literals, the corresponding reduced literals. 
The evaluation of these reduced literats will be performed before the 
evaluation of the other literals and will provide bindings for all the 
grouping variables. Let P' be the resulting program. 

(3) Modify the query by adding the corresponding reduced literal. 
(4) Evaluate the modified query under subquery completion over reduce(P) 

UP' .  

Thanks to the instantiations of all the grouping arguments by the reduced 
literals, the subquery dependencies correspond exactly to the group depen- 
dencies: the completion mechanism applied to the modified program guarantees 
that a given group is used for aggregate operations only when it is complete. 
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Example 4.1 (Example 3.2 continued) 
Consider a query part_subpart_qty(P, *SP, Qty) (where "*" marks an argument 
which is instantiated when the literal is consulted during evaluation). Suppose 
that the compiler chooses the following ordering of  the subqueries for the 
recursive rule of  int_subpart_qty. 

inbsubpart_qty(P, IP, *SP, IQty) < -  
part_subparLqty(IP, *SP, IQtyl) and 
assembly(P, *IP, Qty) and 
IQty is *Qty * *lQtyl. 

The evaluation of  the recursive rule for int_subpart_qty immediately generates 
subqueries on part_subpart_qty which are redundant  w.r.t, the initial query on 
part_subpart_qty: they have the same argument *SP carrying the same value. 
This introduces a cycle in the subquery dependencies. However, the group 
dependencies are cycle free for this example as long as the relation assembly is 
not cyclic. 

Using the reduced literals for generating bindings for the grouping 
variables has the following effect on our example. The call to the query literal 
is replaced by "r_part_subpart_qty(P, *SP) and part_subpart_qty(*P, *SP, 
Qty)". The modified version of  the program is: 

part_subparLqty(P, *SP, Qty) < -  
r_inLsubpart_qty(P, IP, *SP) and 
group_by( 

inLsubparLqty(*P, *IP, *SP, IQty), 
[ *P, *SP], 
[Qty isagg sum(IQty)] 

). 

inLsubparLqty(*P, *P, *SP, Qty) < -  
assembly( *P, *SP, Qty). 

inLsubparLqty(*P, *IP, *SP, IQty)<- 
assembly( *P, *IP, Qty) and 
r_parLsubparLqty(*lP, *SP) and 
parLsubparLqty(*lP, *SP, IQtyl) and 
IQty is *Qty * *lQtyl. 

The subquery dependencies on the modified program now correspond to the 

group dependencies. 
Note as well that the reduced literal r_part_subpart_qty(*IP, *SP) in the 
recursive rule is superfluous as the two grouping arguments *IP and *SP would 
have been instantiated anyway. It can be removed. [] 
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~1~ Remarks 

(1) When evaluating a program using the QSQ mechanism, each subquery is 
evaluated only once. A subquery SQ' ,  which is a variant of  a previously 
encountered subquery SQ, is called a non-admissible subquery. A non- 
admissible subquery SQ" is not reevaluated. Instead, the answers to the 
corresponding original subquery SQ are reused for answering SQ'. In 
order to take non-admissible subqueries into account, we have to extend 
the definition of  completed subquery as follows. 

Definition 4.1 Subquery completion (continued) 

a non-admissible subquery has been completed if the corresponding 
admissible subquery has been completed. 

The subquery complet ion mechanism can be extended with the following 
condition in order to handle non-admissible subqueries: 

(3) When an admissible subquery has been completed, the corresponding 
non-admissible subqueries are marked as completed as well. D 

This way, like during normal QSQ evaluation, an aggregate subquery is 
answered only once, and the corresponding answers are reused for variant 
occurrences of  a given subquery. Consider again the parts explosion Example 3. 
2 with the bicycle data. During the execution of the top query part subpart 
qty(bicycle, P, Q), the subquery part_subpart qty(wheel, pr, Q,) is derived 
twice, once through the front frame and once through the rear frame. Only one 
of  these two subqueries will be evaluated. Once the evaluation of  one occurrence 
ofpart_subpart_qty(wheel, P', Q') is completed, the answers are reused for the 
other occurrence of  this subquery. 

(2) When using the QSQ mechanism, it is important  that the subquery 
complet ion is local to the recursive aggregate cliques. Consider that a 
recursive aggregate predicate ap depends on a recursive (non-aggregate) 
predicate rp which is in a lower clique, and that the complet ion mecha- 
nism is used on the whole program. Consider as well that the program is 
group stratified. Finally, suppose that the evaluation of  some subquery 
on rp is such that it depends on itself (like in the ancestor example with 
a query anc(X, a)). I f  the subquery complet ion mechanism was applied 
to the predicate rp as well, then the non-admissible subquery for rp 
would never be completed, and no answer would be returned to the query 
on ap. 
A correct evaluation scheme is achieved within the EKS-V1 system by 

applying the subquery complet ion mechanism only locally, within each recur- 
sive aggregate clique, and not within lower cliques. 

(3) Note that the evaluation of reducible aggregate programs which are not 
group stratified stops, and returns a negative answer. As there are cycles 
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in the dependencies, there exists a subquery which depends on itself. This 
subquery will never be completed and the evaluation stops. 
One can emphasize the difference with the problem of handling negation 
in the effectively stratified case. 2'26's) In programs with negation, the body 
of  a rule always provides a range for all the variables of  negated literals. 
Therefore there is no need to introduce a range in the case of  negation. 
For  recursive aggregate programs, reduced literals have to be introduced 
in the original program in order to obtain a range for all the grouping 
variables. 

4 . 3  Simplification in the Tail-Recursive Case 
The mechanism we have just presented has a drawback. For  the evalua- 

tion of a query on an aggregate predicate the evaluator performs the search 
through the relevant data twice: once during the evaluation of  the reduced 
predicates, and once during aggregate computat ion.  There is a case however 
where the subquery dependencies naturally correspond to the group depen- 
dencies, even though some of the grouping arguments can be uninstantiated in 
the subqueries. In such a case, it is sufficient to evaluate the original aggregate 
program under subquery completion, therefore searching the data only once. 

This case has been called tail-recursive in Ref. 22), and also corresponds 
to the right- and left-linear recursive case as in Re['. 24). A tail-recursive 
program is characterized by the following property. 

Definition 4.2 Tail-recnrsive program 
Consider the program P defining a recursive predicate p and a given query 
literal QLit built on predicate p. Consider that the literals in the rules defining 
P have been reordered for QLit. Consider each body literal BLit built on p 
appearing in the body of a rule R in P. P is ta i l - recnrs ive  w.r.t, p for QLit if 
and only if, for each BLit: 

(1) BLit is the only literal in the body of  R recursive with p. 
(2) BLit is the last literal in the body of R. 
(3) The variables which are different in BLit and QLit are instantiated. 
(4) The variables which are free in BLit and QLit are the same and at the 

same position in those literals. 

By extension, we say that a recnrsive aggregate program is tail- 
recursive if its reduced program is tail-recursive w.r.t, the aggregate predicate. 

We now give the proof  of  why a tail-recursive aggregate program P w.r.t. 
a given query literal QHead can be evaluated directly under subquery comple- 
tion. 

Proof 4.1 
We have to guarantee that the subquery complet ion mechanism stops exactly 
when there exists a cycle in the group dependencies. This means that we have to 
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prove that a cycle in the group dependencies implies a cycle in the subquery 
dependencies (i) and vice versa (ii). 

(i) 

(ii) 

Suppose that there is a cycle in the group dependencies. As the subquery 
tuples on the aggregate predicate are subtuples of the grouping tuples 
(remember that we do not propagate instantiations of the aggregate 
variables), a cycle in the groups dependencies implies a cycle in the 
subquery dependencies on the aggregate predicate. 
Suppose that there is a cycle in the subquery dependencies on the 
aggregate predicate: a subquery SQ1 depends on a variant subquery SQ2 
(note that we consider only cycles in the subquery dependencies for the 
aggregate predicate: because the aggregate predicate and the grouping 
predicate are mutually recursive, this also implies cycles in the subquery 
dependencies for the grouping predicate). Let us call SQG1 (resp. SQG2) 
the subquery tuple on the grouping predicate on which SQ1 (resp. SQ2) 
directly depends. SQG1 and SQG2 are variants as well. Suppose that 
TG2 is an answer tuple to SQG2. As SQG1 and SQG2 are identical, TG2 
is also an answer tuple to SQG1. Moreover, as the reduced program is 
tail-recursive, the subqueries on the aggregate predicate share the same 
free grouping variables. These free grouping variables also appear in the 
grouping predicate. It means that TG2 depends, as an answer fact to SQ2. 
on all the answer facts to SQ2 and thus on all the answer facts to SQG2 
as well, and under them on TG2 itself. Therefore TG2 depends on itself 
and there is a cycle in the group dependencies. [] 

Algorithm 4.1 on reducible aggregate programs in the tail-recursive case 
has been implemented in the EKS-V1 prototype. This includes the bill of 
materials and the parts explosion examples. Experiments on these examples have 
shown that the cost of  controlling the subquery completion represents about 10% 
of the total evaluation cost. 

Example 4.1 (continued) 
In the case where the first variable Part is instantiated in the query literal, the 
reduced program is tail-recursive and there is no need to add any reduced 
literals. During the evaluation of a query ?- part subpartqty(*P, SP, Qty), a 
subquery part subpart_qty(*IP, Si, Qi) may depend on itself (actually on a 
variant of itself) if and only if there is a cycle in the assembly relation. These 
dependencies correspond to several group dependencies with the same value *IP 

b 

a J  5 
c ~ d  

Fig. 3 Data for the assembly relation_ 



Towards an Efficient Evaluation of Recursive Aggregates in Deductive Databases 153 

p : an aggregate operation has been performed 
. . . .  ,. : answer re-use 

isq(a,b,b,3) 

isq(b,b,c,4) I 
i I  isq(c,c,d,6) " 

isq(a,b,b,3) 

~ iiSs~((a:b:cd,'172~ 

K,~~.l~q(b b c 4) r 
isq(b'icld~24) 

. . . .  ~ psq(c,d,6) 

psq(a,b,3) 
psq(a,c,17) 
psq(a,d,102) 

t 
a 

~ i s q  isq(a'a'c'5) 
(a,c,d,30) 

b I isq(c'c'd'6) 

~. dh 

Fig. 4 Subquery completion mechanism on parLsubparCqty.  

for the first argument. The evaluation of queries for this pattern under subquery 
completion is complete and correct in the acyclic case, and fails if the assembly 
relation is cyclic. 

Consider the following facts for the relation assembly represented in 
Fig. 3: 

assembly(a, b, 3). 
assembly(b, c, 4). 
assembly(a, c, 5). 
assembly(c, d, 6). 

Suppose that the query is ?- part_subpart_qty(a, P, Q). Figure 4 represents the 
subquery tuples on the predicate part_subpartqty during the evaluation. We 
abbreviate the predicates part_subpart_qty and int_subpart_qty with psq and 
isq respectively. For simplicity reasons, we do not represent the psq facts except 
for the top query and the re-used answers. A completed subquery is represented 
by a white square. A tuple annotated by "na" is non-admissible. At the end of 
the first stage of the evaluation, subqueries have been derived, among them a 
non-admissible subquery for c. The original subquery for c is being answered 
and has not been completed yet. Some partial answering is generated for the 
subquery on a which cannot be aggregated, because the subquery on a has not 
been completed yet. Only during the second stage, the answers for c can be 
re-used for answering the non-admissible subquery. Note that the subquery for 
c is answered only once. The aggregate operation for the group of a may then 
be performed, as all the subqueries underneath have been completed. [] 
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w Related Work 

5 . 1  Analogy with Negation 
We have already pointed out the analogy between aggregates and nega- 

tion. There is a correspondence between the two notions of stratification in both 
areas, and between group stratification on the one hand and dynamic 
stratification 26) (or effective stratification, 3) constructive consistency, 8) or modu- 
lar stratification 29)) on the other. The coordination issue is essentially the same 
for negation (stratified case) and for aggregates (stratified case). Indeed, just as 
for aggregate predicates, negated subqueries must be fully answered before 
negated facts can really be inferred. The evaluation of stratified negation has 
been studied in the top-down evaluation framework in Refs. 20) and 34). It has 
also been addressed in the framework of rewriting methods for bottom-up 
computation such as Magic Sets 4'~) and Alexander. ~8) The issue arises when 
rewriting a stratified program using the Magic Sets rewriting method: the 
rewritten program is n o t  in general stratified and its non-deterministic bottom- 
up computation is no longer possible. In order to solve this issue, various 
labelings of rewritten rules have been introduced, in order to ensure that negated 
(or aggregate) subqueries are answered fully before their answers can be used. 
For  instance, in Ref. 18) Kerisit proposes to classify the rewritten rules along the 
strata of  the original program. The bottom-up fixpoint normally applied to the 
rewritten rules is modified in order to take the strata numbers attached to the 
rules into account: at a given point of time during the evaluation, only the 
rewritten rules corresponding to the current lowest stratum can be activated. 
When no more operations can take place on this stratum the rules for the 
immediately higter stratum are re-activated, etc. This algorithm applies to the 
stratified aggregate problem in a straightforward manner. 

Methods have been proposed in Refs. 3) and 8) for implementing the 
evaluation of  negation in the dynamic stratified case. The 0rdered_Search 
technique at) has also been used for implemeting the evaluation of modularly 
stratified programs. 

5 . 2  Other Work on Aggregates 
In Ref. 17), Klug first formalized aggregates in relational algebra and 

calculus, and argued that the notion of duplicates (multi-sets) was not needed 
for the expressivity of  aggregates. We also think that the notion of multi-sets is 
not necessary for specifying semantics unlike, z3) We regard the problem of  being 
able to handle full duplicates within sets as an issue independent from aggregate 
computation. It is rather a modeling issue, as to how one may want to represent 
the data for a given application. Our standpoint however still permits a correct 
solution to the duplicate issue in the computat ion of aggregates: it can be 
performed by choosing the arguments present in the grouping predicate. We give 
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Example 5.1 Duplicates in the computation of aggregates 
In Example 1.1, the grouping predicate is the whole employee relation. There- 
fore, if several employees have the same salary, the duplicate salaries are 
considered. However, if  one wants to compute  the average of the distinct salary 
values by department,  one may do so by simply defining the following predicate: 

avg_distinct salary_per_dept(Dept, AvgSal) < -  
group_by( 

salary dept(Dept, Salary), 
[Dept], 
[AvgSal isagg avg(Salary)] 
). 

where salary_dept is a projection of the employee relation leaving out the name 
attribute: 

salary_dept(Dept, Salary) < -  
employee(_Name, Dept, Salary). [] 

The model that we consider remains a fiat model: it does not allow 
set-valued (or nested) attributes. In other words, sets are not first-class objects in 
EKS-V 1. Hence, we are not following the research trend in nested relations, NF2  
models, represented for instance by research projects such as COL ~) or LDL.  39) 
In these approaches, a more general grouping (or nesting) facility is provided 
allowing aggregate functions to be simply expressed as functions applied to 
set-valued attributes. We believe that the extension of a flat model with (scalar) 
aggregate facilities (chosen here as in Refs. 23) and 11)) remains worth inves- 
tigating because its requirements on the physical level (storage and manipula-  
tion) are less stringent, it represents a natural extension of Datalog systems and 
despite its restrictions, it may well cover an important  part of  the applicat ion 
requirements. 

Our work is close to that on Traversal Recursion 27) in the way we 
consider aggregate operations as operations on top of graph traversals. However 
we generalize graph traversal to more complex structures than graphs and we do 
not incorporate the semantics of  the particular aggregate function (min/max)  
and thus never allow cyclic graphs. Although this leads to some restrictions, we 
believe that, if one takes semantics of  the aggregate functions into account, this 
should be done within as formal and as general a framework as possible. 

Several r e c e n t  p a p e r s  23,11Ag'7'3~ also consider aggregates in Datalog 

programs. These papers take a model theoretic approach for defining the seman- 
tics of  aggregate programs. The work in Refs. 30) and 36) unifies the other 
approaches in a more general framework. Recently, Van Gelder 42) has extended 
the semantics to a wider class of  aggregate programs by reconsidering the 
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underlying semantics of the aggregate operations themselves. 
In the stratified aggregate case, the semantics and evaluation methods 

proposed are equivalent to ours. In Ref. 23), Mumick et al. extend the Magic 
transformation producing so-called magic stratified programs. The evaluation 
of  such programs can be performed in an order corresponding to the 
stratification order of  the original program by a modification of the bottom-up 
fixpoint, just like the case of  negation] 8) 

For defining the semantics o f  non-stratified aggregate programs, the 
approach taken in Refs. 23), 11), 19), 30), 36) and 42) is different from ours: in 
these papers, the authors do not separately consider the underlying reduced 
program. Instead, they take into account the semantics of  the aggregate opera- 
tions, as well as the other arithmetic constructs appearing in an aggregate 
program, in order to define semantics. This allows them to treat the class of 
monotonic aggregate programs (like the minimal length path program or the 
so-called corporate takeover program) for which natural semantics exists. In Ref. 
11), Consens and Mendelzon also treat closed semiring programs as a special 
case of recursive aggregate programs having natural semantics. 

The evaluation of  recursive aggregate programs is not addressed in Ref. 
23). Mumick et al. simply mention that an evaluation following the order of  the 
groups would be possible (which seems to be quite easy to realize). In Ref. 11), 
Consens and Mendelzon propose a general algorithm applying to closed semi- 
ring or to monotonic  aggregate programs. Closed semirings are also interesting 
because specialized algorithms relying on graph traversal (such as in Ref. 12)) 
can be used for their evaluation. The case of  monotonic  programs involving 
minimum and maximum predicates has been the object of other recent 
papers, ~'1~) proposing a bottom-up evaluation mechanism called greedy 
fixpoint, which coincides with Dijkstra's algorithm on the shortest path prob- 
lem. In Ref. 13), Dietrich presents an algorithm based on extension tables, which 
applies to the shortest path problem, and is also equivalent to Dijkstra's 
algorithm on this problem. Surarshan and Ramakrishnan in Ref. 35) optimise 
the evaluation of programs with extrema by removing irrelevant facts. The parts 
explosion Example 3.2 is also treated in Ref. 25). Phipps uses a procedural 
language, where the control  of the completion for each subquery during query 
evaluation is expressed in the program by the user. 

Recently, a control  technique called 0rdered_Search al) has been devel- 
oped, which works on the transformed programs obtained by Magic Templates 
rewriting of  (left-to-right) modularly stratified or recursive aggregate programs. 
This technique is very similar to subquery completion, in that it keeps track of  
the dependencies between the magic facts (i.e. the subqueries) in order to control 
the evaluation of recursive aggregate programs. Ordered_Search has been im- 
plemented in the Coral deductive database system, a2) The data structure used in 
Ordered_Search has to implement the subquery dependencies, whereas these 
dependencies are already part of the run-time data structure in EKS-V 1. 
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w Conclusion 
Our contribution has been to provide an efficient evaluation mechanism 

for group stratified reducible aggregate programs. An extension to the work 

presented here would be to extend our solution to the classes of closed semirings 
and monotonic aggregate programs, which indeed have "natural" semantics. We 
are also considering an extension of  the subquery completion mechanism to the 

evaluation of modularly stratified programs with negation. As 0rdered_Search is 
also used for the evaluation of  such programs, we believe that such an extension 
of the subquery completion mechanism is feasible. Finally, little work seems to 

have been done in order to push selections into the computation of aggregates: 
in the query " s u m _ s a l a r y _ p e r _ d e p t ( D ,  S u m )  a n d  S u m  < 1 0 0 , 0 0 0 " ,  the con- 

stant 100,000 could be used in order to stop the aggregation, as soon as this 
constant is overtaken. 
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