
New Generation Computing, 22(2004)61-96
Ohmsha, Ltd. and Springer-Verlag

COMPUTING
�9 Ltd. 2004

Tutorial on Ontological Engineering

Part 2: Ontology Development, Tools and Languages

Riichiro MIZOGUCHI
The Institute of Scientific and Industrial Research, Osaka University
8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
miz@ el. sanken, osaka-u, ac. 3p

Received 18 August 2003

Abstract Practical aspects of ontological engineering are discussed
in this part. First topic is the methodology of ontology development. Next,
ontology representation languages and support tools are discussed as well as
ontology alignment and merging which are becoming practically important
to cope with distributed development of ontologies. We next discuss several
ontologies developed thus far including large-scale knowledge bases such as
Cyc, practical domain ontologies such as Enterprise ontology and gene on-
tology and generic ontologies such as PSL: Process Specification Language
and SUO: Standard Upper Ontology. The first topic of ontology applications
is the semantic web in which semantic interoperability, metadata and web
service ontology are described, e-Learning is also a good application area
of ontology in which LOM: Learning Object Metadata and ontology-aware
authoring systems are discussed followed by conclusion.

1. Ontology Development Methodology

1.1 Overview of the Methodologies

[1] The methodology by Ushold and King
[2] TOVE Methodology
[3] METHONTOLOGY
[4] On-To-Knowledge Methodology
[5] AFM: Activity-First Method in Hozo
[6] Summary

1.2 Three-layer Model of Guidelines

[1] Guidelines at Middle-layer
[2] Guidelines at Bottom-layer

2. Ontology Representation Languages and Tools

2.1 Languages

[1] Ontolingua
[2] RDF(S)

62 R. Mizoguchi

[3] OWL(DAML+OIL)
[4] Summary

2.2 Tools

[1] OntoEdit
[2] WebODE
[3] Prot@g~-2000
[4] OE: Ontology editor in Hozo

2.3 Ontology Alignment and Merging

[1] ONIONS
[2] PROMPT

3. Ontologies Developed

3.1 CYC
3.2 Wordnet
3.3 Enterprise Ontology
3.4 Cene Ontology
3.5 Process Ontology: PSL(Process Specification Language)
3.6 Standard Upper Ontology(SUO)
3.7 Other Activities

[1] WonderWeb
[2] DAML+OIL ontology library
[3] Cancer ontology

4. Applications

4.1 Typology of Ontology Applications
4.2 Some Applications

[1] Semantic web
[2] e-Learning
[3] Knowledge systematization

5. Concluding Remarks

w Ontology Development Methodology 3~)
Ontology development is not an easy task. It requires skills and is still

an art rather than technology. People need a sophisticated methodology to help
them develop an ontology. Although ontology building methodologies are not
matured enough, there are some methodologies available. After a brief overview
of some typical methodologies followed by a summarizing comparison of them,
a set of finer-grained guidelines are presented in this section.

1.1 Overview of the Methodologies

[1] The methodology by Ushold and King s)
The skeleton of Ushold and Kings' methodology is as follows:

Ontology Development, Tools and Languages 63

1. Purpose identification
2. Building the ontology
3. Evaluation
4. Documentation

Although their methodology has been developed based on their experience in
building the Enterprise Ontology, s) it is general and applicable to building other
domain ontologies. The heart of the methodology is the procedure of informal
ontology development shown below.

1. Scope definition

a. Concepts collection by brain storming
b. Clustering of the concepts collected
c. Refinement of the concept set by investigating what concepts are basic,

what proportion is appropriate between numbers of generic and specific
concepts, etc.

2. Determination of word name
For each concept, select a natural word which has only one meaning. If
there is no appropriate word for representing a concept, then create a new
one.

3. Definition
Meaning definition in an ontology is prescriptive in the sense that it should
represent the meaning of a concept intended by the developers.

The informal ontology developed is translated into a formal language, Ontolingua
in the case of Enterprise Ontology. The unique feature of this methodology is
that it strongly recommends the utility of an informal ontology which is easily
understood by many people and works as a useful specification of a formalized
ontology.

[2] TOYE Methodology 42)
It was developed intended to help enterprise process modeling at Toronto

University. It is composed of the following core steps:

I. Make motivating scenarios informally in order to formalize the requirement
specification of the ontology.

2. Using the scenarios, formulate competency questions to be answered by a
model built based on the ontology. The ontology must be able to provide
vocabulary for expressing these questions. Axioms in the ontology should
be able to characterize answers to the competency questions. The questions
play the role of constraints and are used to evaluate the resulting ontology.
Some examples of competency questions include:

a. What activities have to be done to achieve the goal?
b. Given activities at multiple time points in the future, what are the char-

acteristics of those activities and resources at other time points?

64 R. Mizoguchi

c. What if a task is shifted backward(forward)?

3. Extract a set of terms from the informal competency questions. And then,
the terms are formalized in a formal language to put into the ontology.

4. Formalize the competency questions by defining the terms and writing ax-
ioms for interpretation of the terms. The ontology is thus augmented.

5. Establish conditions for characterizing the completeness of the ontology.

The strategy of competency question is well-accepted and used in On-To-Knowl-
edge methodology and the guidelines by Noy. ~~

[3] M E T H O N T O L O G Y 22)
METHONTOLOGY has been developed at Polytechnic University of Madrid

and is based on IEEE standards for Developing Software Life Cycle Processes,
1074-1995. It has WebODE discussed in 2.2 [2] as a support tool. Some guide-
lines provided are as follows:

1. Project management process
Guidelines for planning, project control, quality control, etc.

2. Ontology development process
Guidelines for envisioned use of the ontology, explication of the envisioned
users, conceptualization of the target domain, formalization of ontology,
implementation, etc.

3. Support activities
Guidelines for knowledge acquisition, evaluation, ontology integration, doc-
umentation, version management, etc.

[4] On-To-Knowledge Methodology 37)
It was developed at Karlsruhe University based on a two-loop architecture:

Knowledge process and knowledge meta process for introducing and maintaining
ontology-based knowledge management. Knowledge process is a normal knowl-
edge use and evolution process. The knowledge meta process is a methodology
of ontology development and is composed of five major steps(with 13 sub-steps)
shown below. OntoEdit discussed in 2.2 [1] is a support tool for this methodol-
ogy.

1. Feasibility study
2. Kickoff
3. Refinement
4. Evaluation
5. Application & evaluation

[5] AFM: Activity-First Method in HOZO TM

AFM(Activity-First Method) is a method of building task and domain
ontologies from technical documents. One of the key ideas here is that task
ontology provides users with the set of Roles played in the task context by the

Ontology Development, Tools and Languages 65

domain concepts which should be organized according to the roles identified by
designing task ontology. It consists of 4 phases and 12 steps as follows:

1. Extraction of task-units:

(1) Divide the text in the technical documents into small blocks to extract
vocabulary easier.

(2) Extract task-units which contain only one process(action) from these
blocks.

(3) Make a flow chart called a concrete task-flow by combining task-units.

2. Organization of task-activities:

(4) Conceptualize task-activities from verbs in the task-units.
(5) Organize the task-activities in an is-a hierarchy.
(6) Define role-concepts, called task-activity roles, which appear in the in-

pu t /ou tpu t of these task-activities.

3. Analysis of task-structure:

(7) Generalize the concrete task-flows to obtain general task-flows.
(8) Describe the object-flows, which clearly express relations between in-

puts and outputs of the task-activities, in the general task-flows ob-
tained above.

(9) Define the task-context roles on the basis of these object-flows. By
task-context roles, we mean the role-concepts dependent on the whole
process of a task.

(10) Extract the domain terms which play a task-context role.

4. Organization of domain concepts:

(11) Discriminate between the roles dependent on the domain concepts and
the basic concepts.

(12) Organize the domain concepts in an is-a hierarchy. What is built is
semi-automatically translated into the Ontology Editor formulation.

In practice, these steps are done not in a waterfall manner. Users can go
back and forth during the process. AFM is supported by Onto-Studio subsystem
in Hozo described in 2.2 [4].

[6] Summary
AFM is a bit special in that it is mainly for task ontology development

and starts the process after determining the source document from which an
ontology is extracted, which implies the scope definition and purpose identifi-
cation are assumed to have been already done. The other four roughly shave
the skeletal structure of the whole process management. When developing a
large-scale ontology, the development process management becomes critical. In
such a case, M E T H O N T O L O G Y and On-To-Knowledge are very helpful. To ob-
tain an informal ontology at the early phase of development, Ushold and King's
methodology is useful. TOVE methodology is the most formal among the exist-

66 R. Mizoguchi

ing ones in that it first enumerates the questions to be answered by the resulting
ontology and formalize them in a formal language to use them for verification
of the ontology. Its competency question strategy is popular and usable in any
methodology. On-To-Knowledge methodology is a natural extension of KADS
methodology 34) for knowledge bases development. It works well especially for
knowledge management applications. Users could adopt all the good features of
the above methodologies successfully in their ontology building processes.

1.2 Three-layer Model of Guidelines
An ontology building methodology can be composed of the following three-

layer guidelines:

1. Top-layer: The coarsest level which specifies the whole building process
compliant with the conventional software development process, since an
implemented ontology is a kind of a computer program.

2. Middle layer: Generic constraints and guidelines which specify major steps
as well as their ordering.

3. Bottom layer: The most fine-grain guidelines such as those for class identi-
fication

Unfortunately, most of the existing methodologies are concerned mainly
with the top-layer, though some partially discuss topics at the middle-layer.
What are the more important for novices to develop a good ontology, however,
would be guidelines at the middle-layer and bottom-layer, since they directly
influence the quality of the ontology developed. AFM is mainly concerned with
the middle layer. Literature ~~ is a good introduction to how to design an
ontology with a few guidelines at the bottom-layer. The following is the author's
speculation of guidelines at the middle-layer and bottom-layer.

Top-layer: the whole building process compliant with
the conventional software development process

Middle-layer: Generic constraints and guidelines
which specify major steps

Bottom-layer: The most fine-grain guidelines such as
those for class identification process, etc.

Fig. 1 Three-layer Model of Ontology Building Methodology

Ontology Development, Tools and Languages

[11

a)

67

Guidelines at Middle-layer

Concepts rather than terms
One cannot stress the importance of this distinction too much, since people
will be easily trapped by the endless terminological discussion departing
from the underlying conceptual structure of the target domain. Ontology
is totally independent of terminological problems.

b) Mixed and flexible strategies of Top-down, Bottom-up and Middle-out is
strongly suggested. Never stick to only one of the strategies.

c) Top-level category should be identified in the early phase of the development
process to govern the rest of the steps.

d) When you deal with a concept, identify its main components; that is, '~art-
of" relation as well as its main attributes. You can thus find and extend
candidates of concepts to be included in the ontology.

e) Axiom writing should be done after finishing is-a hierarchy building and
informal term definition.

f) Note that you cannot define any concept completely in theory. Therefore,
do not stick to the definition of each term too much. At the best, you only
can give necessary conditions of them. Term definition in the early phase
can be rough. Detailed definition of a term should be done after you grasp
the whole structure of the ontology, that is, after building is-a hierarchy.

g) Never try to seriously define a term one by one. Definition of a concept needs
sufficient contextual information which is usually not available in the early
phase. Terms are related to each other and could have several meanings
which should be clarified by the context given.

h) Arrange and resolve the terminological issues(how to name a concept) at
the last step.

i) When you find the necessity to define more than one meaning for one term,
then you are facing the terminological problem. Each term should corre-
spond to exactly one concept in onotology, since you are not building a
dictionary, but a well-organized conceptual structure. Each term is only a
label of the concept. You of course can build a dictionary after building
ontology.

j) Put a higher priority on / s -a hierarchy construction than term definition.
Carefully designed is-a hierarchy gives you a correct context to define a
term.

k) When you get stuck with a term definition, follow either one of the following:

i) Multiple meanings? Then concentrate on meaning one by one.
ii) Multiple Viewpoints? Make the viewpoint explicit and then try it again

iii) Check if you are discussing terminology.
iv) Use is-a hierarchy to give enough context.

[2] Guidelines at Bottom-layer

(1) Determine an essential property for each concept and instance. It could

68 R. Mizoguchi

be informal. At least, when you come into a trouble, having an essential
property of each concept helps you a lot.

(2) Each subclass of a super class is distinguished by the values of exactly one
at t r ibute of the super class.

(3) Proper use of is-a relation should inherit the "Essential" proper ty of its
super classes.

(4) Clear and consistent differentiation between basic concepts (man, rice, oil,
etc.) and role concepts (teacher, food, fuel, etc.).

(5) Avoid the use of multiple inheritance relation as much as possible. When
you want to use multiple inheritance relation, then it is usually the t ime to
make misconceptualization of the world. Suspect if you are dealing with a
Role concept, or either one of them is apart of the concept(see par t 3 article
for details).

(6) Do not worry about the vagueness of the boundary between similar concepts.
Most boundaries between concepts are vague. A good example is color.
While there cannot be a clear boundary between ANY colors, we all share
very clear understanding about color, red, blue, etc.

(7) Pay a lot of at tention on the context issue, I mean, t ry to build a context-
independent ontology by making the context explicit One of the typical
contexts is the task you are involved in.

(8) Class part i t ion is not a part-of relation. Ex. Male is not part-of human.
(9) Deal with "Representation" issue carefully(see part 3 article for details).

A copy of the book of "Hamlet" is not an instance of Hamlet (what Shake-
speare wrote). I t is an instance of book. There can be infinite number of
copies of a book with the same content. Needless to say, what Shakespeare
wrote is only one and is independent of if it is writ ten on sheet of papers or
on anything else.

(10) If multiple meanings are identified in a term, then create a new term, say,
Term1 and Term2 temporari ly to make each te rm has only one meaning,
since we are dealing with a concept rather than a term.

(11) When you notice you do not have an appropriate te rm to represent a concept
you identify, do not hesitate to coin a new term. The new te rm could be
temporary which will be fixed at the last stage.

(12) Consult a reliable upper ontology when you find the necessity of a general
and high level distinction of categories.

w Ontology Representation Languages and Tools
This section discusses ontology representation languages and ontology de-

velopment tools. Usually, an ontology development methodology has its own
support tool which has a function to generate the ontology and instances in a
few ontology representation languages.

Ontology Development, Tools and Languages

2.1 Languages

69

[1] Ontolingua
Ontolingua TM is originally an interlingua for ontology representation and

sharing developed by KSL(Knowledge Systems Lab) at Stanford University. It
is designed by adding frame-like representation and translation functionalities
to KIF(Knowledge Interchange Format) is) which is a logic-based interlingua for
knowledge representation. It can translate from and to some description logics
languages such as Loom, Epikit, etc. Ontolingua itself does not have an infer-
ence functionality. It has currently developed into a development environment
which provides a set of ontology development functions (browse, create, edit,
modify and use ontologies) and a library of modular and reusable ontologies.
Although it had been a key language for ontology representation for years since
its development, it is not active recently because of the advent of XML family
languages described below. The following is an example of Ontolingua code.

(define-class Tutoring-objective (?t-obj)
''Attributes are also represented as slots."

:def (and (individual ?t-obj)
(value-type ?t-obj Tutoring.policy Policy))

:axiom-def
(subclass-partition

Tutoring-objective
(setof Transfer-of knowledge Remedy)))

This is an implementation of a class "Tutoring objective" in a tutoring task
ontology for ITS(Intelligent Tutoring System) whose instance is named ?t-obj.
The quotation in the second line is a comment. :def and :axiom-clef allows users
to write a necessary condition and definition(necessary and sufficient condition),
respectively. The reserved predicates/functions individual, value-type, subclass-
partition and setof mean an instance is an individual rather than a set, value
type of a slot as a semantic constraint, partitioning of a class into subclasses and
construction of a set, respectively.

In this example, :def part reads "any instance ?t-obj of class Tutoring-
objective is an individual and its value of Tutoring.policy slot has to be an in-
stance of Policy class" and :axiom-clef part reads "the class Tutoring-objective has
two subclasses as its class partition Transfer-of-knowledge and Remedy". Tutor-
ing.policy is a slot name of the class Tutoring-objective and is considered being
defined in this code. It is used as an access function afterward.

[2] RDF(S)
RDF(Resource Description Framework) is a framework for metadata de-

scription developed by W3C(WWW Consortium). It employs the triplet model
<object, attribute, value>, well-known in AI community, in which object is called
resource representing a web page. A triplet itself can be an object and a value.
Value can take a string or resource. Object and value are considered as a node
and attribute as a link between nodes. Thus, an RDF model forms a semantic
network. RDF has an XML-based syntax(called serialization) which makes it

70 R. Mizoguchi

resembles a common XML-based mark up language. But, RDF is different from
such a language in tha t it is a data representation model rather than a language
and that the XML's da ta model is the nesting structure of information and the
frame-like model with slots.

Metada ta is da ta about data. In the context of internet information pro-
cessing, data is whatever is accessed by URL. Any internet resource contains
information which is considered as an instance of a certain class. Using XML,
basically you can mark up any piece of the original information in-line in which
case an XML tag corresponds to a class whose instance is the thing marked-up
by the tag. However, what RDF does is different. I t creates a new representa-
tion in which it contains meta information which usually does not appear in the
original resource, tha t is, metada ta about the original information(data). For
example, let us take an article as an original data. At the top, it usually contains
a character string, say, "Riichiro Mizoguchi". If I mark it up as

<author> Riichiro Mizoguchi </author>

in the text, then it becomes explicit tha t the string denotes the author of this arti-
cle. On the other hand, in the RDF representation of the metada ta of the article
might include the date when it was published which might not be described in
the article. Assuming the article is put at http://www, ei. sanken, osaka-
u. a c . j p / p u b / W I 2 0 01-Mi z . p d f , the RDF description would be:

<rdf:Description rdf:about=''http://www.ei.sanken.osaka-u.ac.jp/pub/WI2OOI-Miz.pdf">
<author>Riichiro Mizoguchi</author>
<pub-date>2001-10-23</pub-date>

</rdf:Description>

Although RDF has been designed for me tada t a representation model, it can be
used as a general-purpose knowledge representation, which might be apparent
from the fact tha t it is a kind of semantic network model.

RDF schema is a language to define tags(vocabulary) RDF uses. The
most typical and common metada ta such as the creator(author) of a resource and
the date of its creation are defined in DC(Dublin Core) 5) in which 15 metada ta
elements are defined. RDF schema does not have to define them for use in RDF
but can borrow those 15 metada ta elements with the name space: dc: Name
space is the functionality given by XML and is used for designating a local
world in which a set of tags are valid to avoid conflict between other tag sets.
Although, at a first glance, the correspondence between RDF and RDF schema
and that between XML and XML schema look equal or at least similar, it is
not true. The major role of XML schema is to constrain the instance to which
a tag is attached. On the other hand, the major roles of RDF schema include
giving tags with definition and their taxonomy to RDF, though it also specifies
constraints of the possible values of the triplet. While XML is usable without
XML schema, RDF is useless without RDF schema.

RDF schema has its built-in classes and meta-classes by which users can
define any class and relation. Rdfs:Resource and its two subclasses: rdf.'sClass
and rdfs:Property are the key meta-classes. Every ordinary class defined in RDF

Ontology Development, Tools and Languages

~ : ~ /% / ks \ 'B""'---.~-~_

d--~s:do~ / \ / ~ \ I -/_
Fig. 2 A Simple Class Hierarchy of RDF Schema

71

Schema is an instance of rdfs:Class. In the same way, every property and relation
defined in RDF Schema is an instance of rdfs:Property. For example, rdf.'subclass-
of is an instance of rdfs:Property and is a built-in relation. This shows that
attributes and relations are not distinguished in RDF Schema. Relations and
attributes are defined globally, that is, independently of any class unlike frame-
based languages in which an attribute is defined as a slot of each class. This
comes from Description logics conventions.

Fig. 2 shows a simple class hierarchy of RDF schema including some
application-oriented classes related to the example shown in the above RDF
code. The following is RDF Schema code of the hierarchy:

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<rdfs:Class rdf:ID="Paper">
<rdfs:subClassOf rdf:resource="http://www.w3.org/2OOO/Ol/rdf-schema#Resource"/>

</rdfs:Class>
<rdfs:Class rdf:ID="ConferencePaper">

<rdfs:subClassOf rdf:resource="#Paper"/>
</rdfs:Class>

<rdfs:Class rdf:ID="Person"/>
<rdfs:Class rdf:ID="Publication"/>
<rdfs:Class rdf:ID="ConferenceProceedings">

<rdfs:subClassOf rdf:resource="#Publication"/>
</rdfs:Class>

<rdf:Property rdf:ID="title">
<rdfs:domain rdf:resource="#Paper"/>
<rdfs:range rdf:resource="http://www.w3.org/2OOl/XMLSchema#string"/>

</rdf:Property>
<rdf:Property rdf:ID="name">

<rdfs:domain rdf:resource="#Person"/>
<rdfs:range rdf:resource="http://www.w3.org/2OOl/XMLSchema#string"/>

</rdf:Property>
<rdf:Property rdf:ID="author">

<rdfs:domain rdf:resource="#Paper"/>
<rdfs:range rdf:resource="#Person"/>

72 R. Mizoguchi

</rdf:Property>
<rdf:Property rdf:ID="publishedIn">

<rdfs:domain rdf:resource:"#Paper"/>
<rdfs:range rdf:resource="#Publication"/>

</rdf:Property>
</rdf:RDF>

Assuming the above RDF Schema is put at h t t p : / / w w w . e i . s a n k e n .
o s a k a - u , a c . j p / e g / r p , an RDF expression using this schema definition in
which "rp" is used as a name space is as follows:

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2OOO/Ol/rdf-schema# "
xmlns:rp="http://www.ei.sanken.osaka-u.ac.jp/eg/rp#">

<rdf:Description rdf:about="urn:issn: 0302-9743">
<rdf:type rdf:resource-
"http://www.ei.sanken.osaka-u.ac.jp/eg/rp#ConferenceProceedings"/>

</rdf:Description>
<rp:ConferenceProceedings rdf:about="urn: issn: 0302-9743"/>
<rp:Person rdf:about:"http://www.ei.sanken.osaka-u.ac.jp/-miz">

<rp:name>Riichiro Mizoguchi</rp:name>
</rp:Person>
<rp:ConferencePaper rdf:about =

"http://www.ei.sanken.osaka-u.ac.jp/pub/WI2001-Miz.pdf">
<rp:title> Ontological Engineering: Foundation of the next generation

knowledge processing </rp:title>
<rp:author rdf:resource="http://www.ei.sanken.osaka-u.ac.jp/-miz"/>
<rp:publishedIn rdf:resource="urn: issn: 0302-9743"/>

</rp:ConferencePaper>
</rdf:RDF>

[3] OWL(DAML+OIL)
Web Ontology Language(OWL) is also a language developed by W3C.

OWL is designed to make it a common language for ontology representation
and is based on DAML+OIL. 3) OWL is an extension of RDF Schema and also
employs the triple model. Its design principle includes developing a standard
language for ontology representation to enable semantic web, and hence exten-
sibility, modifiability and interoperability are given the highest priority. At the
same time, it tries to achieve a good trade-off between scalability and expressive
power.

Functionality related to the constraints for instances of a class include:
unionOf for a Boolean operation of instance sets, disjointWith for mutual ex-
clusiveness of classes, oneOf for enumeration of all instances, etc. Other func-
tionality for constraints for property value include falls:domain and falls:range
for restricting domain and range of a relations/property, minCardinality for con-
straining the number of values, transitiveProperty, inverseOf and so on. In most
of the places where a class name is written, a class expression in terms of the
Boolean operations of classes can be written to augment class specialization
capability. Functionality for interoperability in the distributed environment of
semantic web include sameClassAs, differentFrom, etc. to make it easier to ex-
port/import classes. In spite of its rich functionality, OWL is less powerful than
the first order predicate logic in logical expression used in axiom writing, since

Ontology Development, Tools and Languages 73

such functionality is to be covered by the rule layer which is the next higher
layer than the ontology layer in the layered cake. 1)

In the same example above, for example, if one wants to add some con-
straints, he/she has to use OWL. The following OWL code shows a constraint
stating ConferencePaper and JournalPapers are mutually exclusive.

<owl:Class rdf:ID="JournalPaper">
<rdfs:subClassOf rdf:resource="#Paper"/>
<owl:disjointWith rdf:resource="#ConferencePaper"/>

</owl:Class>

A property defined globally can be specialized for a specific class shown in the
following where a relation "author" is restricted to have more than or equal to
two authors when it is applied to CoAuthoredPaper class.

<owl:Class rdf:ID="#CoAuthoredPaper">
<rdfs:subClassOf rdf:resource="#Paper"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resouroe:"#author"/>
<owl:minCardinarity>2</owl:minCardinarity>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

[4] Summary
Summarizing the above languages from knowledge representation(KR)

point of view, they are within the paradigm which KR community has devel-
oped thus far. The new aspect is that they employ XML syntax to cope with web
information processing. RDF(S) is a kind of semantic network. OWL is the same
as RDF(S) in its da ta model and in the top-level ontology. The class rdfs:Property
is a symbol level concept rather than an ontological concept. Therefore, RDF(S)
does not distinguish between relations, attributes and features in spite of that
all the three are essentially different. OWL does not provide users with adequate
modeling facility for representing an ontology, though it is very appropriate for
ontology interchange and sharing. In fact, an ontology is something scaffolding
conventional knowledge representation onto the real world, that is, the funda-
mental structure of the world of interest, which require a sophisticated ontology
theory. Ontology representation languages are expected to reflect the results of
such ontology theories.

2.2 Tools
Incorporating the methodologies and languages, there have been devel-

oped many environments for ontology development. Among them, this section
takes up OntoEdit, 39) WebODE, 2) ProtSg~ 28) and Hozo 21'36) which cover a wide
range of ontology development process rather than being a single-purpose tool
which should be covered elsewhere.

[1] OntoEdit
OntoEdit, 39~ professional version, is an ontology engineering environment

74[R. Mizoguchi

to support the development and maintenance of an ontology. Ontology develop-
ment process in OntoEdit is based on their own methodology, On-To-Knowledge
discussed in 1.43~) which is originally based on Common KADS. 34) Two tools,
OntoKick and Mind2Onto, are prepared for supporting the phase of ontology
capture. OntoKick is designed for computer engineers who are familiar with
software development process and tries to build relevant structures for building
informal ontology description by obtaining competency questions discussed in
1.2 which the resulting ontology and ontology-based applications have to an-
swer. Mind2Onto is a graphical tool for capturing informal relations between
concepts. It is easy to use because it has a good visual interface and allows loose
identification of relations between concepts. However, it is necessary to convert
the map into a more formal organization to generate an ontology.

The refinement phase is for developers to use an editor to refine the on-
tological structure and the definition of concepts and relations. Like most of
other tools, OntoEdit employs the client/server architecture where ontologies
are managed in a server and multiple clients access and modify one. A sophisti-
cated transaction control is introduced to enable concurrent development of an
ontology in a collaborative manner. It employs Ontoclean method 13) mentioned
in 2.2 [2] and discussed in Part 3 to refine the is-a hierarchy.

The key process in the evaluation phase is use of competency questions
obtained in the first phase to see if the designed ontology satisfies the require-
ments. To do this, OntoEdit provides users with a function to form a set of
instances and axioms used as a test set for evaluating the ontology against the
competency questions. It also provides users with debugging tools for ease of
identify and correct incorrect part of the ontology. It maintains the dependency
between competency questions and concepts derived from them to facilitate the
debugging process. This allows users to trace back to the origins of each con-
cept. Another unique feature of this phase is that collaborative evaluation is
also supported by introducing the name space so that the inference engine can
process each of test sets given by multiple users.

OntoEdit employs F-Logic 19) as its inference engine. It is used to process
axioms in the refinement and evaluation phases. Especially, it plays an important
role in the evaluation phase because it processes competency questions to the
ontology to prove that it satisfies them. It exploits the strength of F-logic in
that it can express arbitrary powerful rules which quantify over the set of classes
which Description logics cannot.

[2] W e b O D E
WebODE 2) is a scalable and integrated workbench for ontology engineer-

ing based on the ontology development methodology METH O N TO LO G Y de-
scribed in 1.3. It supports building an ontology at the knowledge level, and
translates it into different ontology languages. WebODE is designed on the ba-
sis of a general architecture shown in Fig. 3 and covers most of the processes
appearing in the ontology lifecycle. While Protege-2000 and OntoEdit are based
on plug-in architecture, WebODE is based on a client-server architecture which

Ontology Development, Tools and Languages 75

Ontology Middleware

;~!iiiiiiiiiiiiiii;ii iiiiiiiiiiiiiiiiiiiiiiiiiiii

~ ~ ~ ~ ~ i �84 o.to~y I~

~ ~ Onto~y |

Ontology Development & Management

~1 Ontology
Development

Suite

Component-based

Easy integration

RAD

i!!!!i!ii!!ii!~i!

Fig. 3 Architecture of WebODE 2)

provides high extensibility and usability by allowing the addition of new services
and the use of existing services. Ontologies are stored in an SQL database to
attain high performance in the case of a large ontology.

It has export and import services from and into XML, and its translation
services into and from various ontology specification languages such as RDF(S),
OIL, DAML+OIL, X-CARIN, Jess and F-Logic. Like OntoEdit, WebODE's on-
tology editor allows the collaborative edition of ontologies. Although WebODE
is an integrated tool sets covering most of the activities in ontology lifecycle, it
has no explicit stepwise guidance function unlike Hozo.

In the ontology development phase, WebODE has ontology editing service,
WAB: WebODE Axiom builder service, inference engine service, interoperabil-
ity service and ontology documentation service. The ontology editor provides
users with form based and graphical user interfaces, WAB provides an easy
graphical interface for defining axioms. It enables users to define an axiom by
using templates given by the tool with simple mouse operations. Axioms are
translated into Prolog. The inference engine is based on Prolog and OKBC
protocol[http ://www. ai. s ri. corn/~okbc/] to make it implementation-in-
dependent. Interoperability services provided by WebODE are of variety. It in-
eludes ontology access API, ontology export/import in XML-family languages,
translation of classes into Java beans to enable Jess system to read them and
OKBC compliance.

Like OntoEdit, WebODE has Ontoclean methodology ~3) to build a the-
oretically correct is-a hierarchy. The tool is called ODEClean. Ontology for
Ontoclean is composed of the top level universal ontology developed by Guar-

76 R. Mizoguchi

ino, a set of meta-properties and Ontoclean axioms which are translated into
Prolog to be interpreted by WebODE inference engine. It is given to the ODE-
Clean which works on the basis of it.

The collaborative editing of an ontology is supported by a mechanism that
allows users to establish the type of access of the ontologies developed through
the notion of groups of users. Synchronization mechanism is also introduced to
enable severM users to safely edit the same ontology. To support the use process
of ontology, WebODE has several functions. Like Hozo, WebODE allows users
to have multiple sets of instances for an ontology by introducing instance sets
depending on different scenarios, and conceptual views from the same concep-
tual model, which allows creating and storing different parts of the ontology,
highlighting and/or customizing the visualization of the ontology for each user.
WebPicker is a set of wrappers to enable users to bring classification of products
in the e-Commerce world into WebODE ontology. ODEMerge is a module for
merging ontologies with the help of correspondence information given by the
user.

[3] Protege-2000
Prot6g6-20002s) is strong in the use phase of ontology: Use for knowledge

acquisition, merging and alignment of existing ontologies, and plug-in new func-
tional modules to augment its usability. It has been used for many years for
knowledge acquisition of domain knowledge and for domain ontology building in
recent years. Its main features include:

1. Extensible knowledge model to enable users to redefine the representational
primitives.

2. A customizable output file format to adapt any formal language
3. A customizable user interface
4. Powerful plug-in architecture to enable integration with other applications

These features make Prot@g6-2000 a meta-tool for domain model building,
since a user can easily adapt it to his/her own instance acquisition tool together
with the customized interface. It is highly extensible thanks to its very sophis-
ticated plugin architecture. Unlike the other three, Prot@g6-2000 assumes local
installation rather than use through internet using client/server architecture. Its
knowledge model is based on frame similar to other environments. Especially,
the fact that Prot~g6-2000 generates its output in many ontology languages and
its powerful customizability make it easy for users to change it to an editor
of a specific language. So-called "meta-tuning" can be easily done thanks to
Prot@g@'s declarative definition of all the meta-classes which play a role of a
template of a class. Prot@g@ has a semi-automatic tool for ontology merging
and alignment named PROMPT 29) discussed in 2.3 [2]. It performs some tasks
automatically and guides the user in performing other tasks.

Ontology Development, Tools and Languages 77

[4] OE: Ontology editor in Hozo
"Hozo*" is an integrated ontology engineering environment for build-

ing/using task ontology and domain ontology based on fundamental ontolog-
ical theories. 21'36) "Hozo" is composed of "Ontology Editor," "Onto-Studio" and
"Ontology Server." The ontology and the resulting model are available in differ-
ent formats (Lisp, Text, XML/DTD, DAML+OIL) that make it portable and
reusable. One of the most remarkable features of Hozo is that it can treat the
concept of Role. When an ontology is seriously used to model the real world
by generating instances and then connecting them, users have to be careful not
to confuse the Role such as teacher, food, fuel, etc. with other basic concepts
such as human, vegetable, oil, etc. The former is a role played by the latter.
For example, if one builds an ontology including <Mr. A is instance-of teacher>
and <teacher is-a human>, then when he quits the teacher job, he cannot be an
instance of the class of teacher, and hence he cannot be an instance of the class
human, which means he must die. This difficulty is caused by making an in-
stance of Role which cannot have an instance in theory. In Hozo, three different
classes are introduced to deal with the concept of role appropriately.

Role-concept: A concept representing a role dependent on a context(e.g., teacher
role)
Basic concept: A concept which does not need other concepts for being de-
fined(e.g., human)
Role homer: An entity of a basic concept which is holding the role(e.g., teacher)

A basic concept is used as the class constraint. Then an instance that satisfies the
class constraint plays the role and becomes a role holder. Hozo supports to define
such a role concept as well as a basic concept. In each step Onto-Studio, which
supports AFM method described in 1.5, provides users with graphical interfaces
to help them perform the suggested procedures. The output of Onto-Studio is
a rather informal representation of ontology which is in turn translated by the
system into the Ontology editor representation to enable users to define ontology
more rigorously.

Like other editors, Ontology Editor in Hozo provides users with a graph-
ical interface through which they can browse and modify ontologies by simple
mouse operations. Users do not have to worry about so-called coding to develop
an ontology. The internal representation of the ontology editor, which is hidden
from users, is XML and it generates DAML+OIL code to export the ontology
and instance. It treats "role concept" and "relation" on the basis of fundamental
consideration discussed in Reference. 21) This interface consists of the following
four parts(Fig. 4):

1. Is-a hierarchy browser displays the ontology in a hierarchical structure ac-
cording to only is-a relation between concepts.

*~ "Ho" is a J apa nese word and m e a n s unchanged t r u t h , laws or rules in Japanese , and we
represent "ontologies" by t he word. "Zo" m e a n s to bui ld in Japanese .

78 R. Mizoguchi

Fig. 4 GUI of Ontology Editor in Hozo

2. Edit panel is composed of a browsing panel and a definition panel. The former
displays the concept graphically, and the latter allows users to define the
selected concept in the is-a hierarchy browser.

3. Menu bar is used for selecting tools
4. Tool bar is used for selecting commands

Collaborative development of an ontology is supported in the Ontology Editor.
At the primitive level, the ontology server allows users to read and copy all the
ontologies and instances, but do not allow modification of them by users other
than the original developer of them. Thus, unlike OntoEdit and WebODE, Hozo
does not allow multiple users to edit the same concept at the same time. Instead,
Ontology Editor allows users to divide an ontology into several component on-
tologies and manages the dependency between them to enable the concurrent
development of an ontology. The dependency between the component ontolo-
gies is three fold: super-sub relation(is-a relation), referred-to relation(class con-
straint) and task-domain relation. In the current implementation, the first two
are taken into account. The system observes every change in each component
ontology and notifies it to the appropriate users who are editing the ontology
which might be influenced by the change. The notification is done based on the
16 patterns of influence propagation analyzed beforehand. The notified users
can select a countermeasure among the three alternatives: 1. to adapt his/her
ontology to the change, 2. not to adapt to the change but stay compliant with
the last version of the changed ontology and 3. neglect the change by copying
the last version into his/her ontology. The timing of the notification is selected

Ontology Development, Tools and Languages 79

by the users among the two: when the editing task has been initiated and he/she
requested.

Functionality and GUI of Hozo's instance editor is the same as the one for
ontology. The consistency of all the instances with the ontology is automatically
guaranteed, since a user is given valid classes and their slot value restrictions by
the editor when he/she creates an instance. Hozo has an experience in modeling
of a real-scale Oil-refinery plant with about 2000 instances including even pipes
and their topological configuration which is consistent with the Oil-refinery plant
ontology developed with the help of domain experts. 24) The model as well as the
ontology are served by the ontology server and can answer questions on the
topological structure of the plant, the name of each device, etc. Any ontology
built by Hozo can have multiple sets of instances which are independent of one
another.

The ontology server stores ontologies and instance models in an XML
format and serves them to clients through API compliant with OKBC protocol.
Ontology editor is also a client of the ontology server. Inference mechanism of
Hozo is not very sophisticated. Axioms are defined for each class but it works
as semantic constraint checker like WebODE.

2.3 Ontology Alignment and Merging
An ontology is reusable and sharable in its nature. When building an

ontology, if necessary, portion of another ontology should be incorporated in it
and in the semantic web context, it is necessary to make the metadata interop-
erable, which requires merging or alignment of several ontologies. However, the
job is not easy to do because of the freedom of naming scheme which prohibit
automatic processing of ontology merging/alignment. Here presented are two
systems for supporting ontology merge.

[1] ONIONS ~x~
ONIONS(ONtological Integration Of Naive Sources) is a methodology

for merging ontologies and is composed of two major steps: (a) Re-engineering
of ontology building data, and (b) merging the ontologies. The first step is
further divided into steps such as extraction, formatting, analysis and formalization
of relevant data. The merging process is based on a core ontology which has to
be built if it is not available. The ontologies are mapped onto the core ontology
to be eventually merged into one ontology taking care of synonymy, polysemy,
and taxonomy.

[2] PROMPT 2~
Although P R O M P T is a plug-in tool of Prot@g6-2000, its procedure is

generic enough to be used across various platforms. Fig. 5 shows a flow of the
alignment process. Suggestions are made according to the following procedures:

1. Searching for similar names of concepts and their slots.
2. Watching class hierarchy(if a user merge two classes whose super classes are

similar, then suggestion of merge of the super classes is made)

80 R. Mizoguchi

-hi Select the next operation]

Find inconsistencies and potential problems

t Make suggestions

Fig. 5 Control flow of PROMPT 29)

3. Watching slots and their values.

P R O M P T can also detect conflicts by observing name conflicts(same name as-
signed to multiple frames), dangling references(a frame refers to another frame
that does not exist), slot-value restrictions violating class inheritance, etc.

w Ontologies Developed
Considerable amount of ontologies are already built and used. Here pre-

sented are some of them.

3.1 CYC h t t p : / / w w w . c y c . corn/
Cyc project began in 1984 and it now has more than 100 K atomic con-

cepts axiomatized by a set of more than 1M handcrafted assertions described in
nth-order predicate calculus using more than 10K predicates. The knowledge
base is the largest in the world and partially covers commonsense knowledge.
OpenCyc 33) is the open source version of the Cyc. Cycorp | the builders of Cyc,
has set up an independent organization to disseminate and administer OpenCyc
which has about 6,000 concepts with 60,000 assertions and is considered as an
upper ontology. Fig. 6 shows a diagram of top-level ontology OpenCyc.

Some characteristics of OpenCyc includes(Cyc terms are headed by ' #$ ') :

1. #$is-a relation in OpenCyc is meant instance-of and #$genls relation is
used for normal is-a.

2. A class is t reated as a collection of its instances, so one must be careful not
to confuse a collection(a class) and a mathemat ical set.

3. #$element-of relation, which is a more general relation than #Sis-a, is in-
troduced to distinguish member-of(#$element-of) and mstance-of(#$is-a)
relations.

4. Multiple inheritance is extensively used. So, users have to pay a closest
at tention to instance management, especially in the case of instance gen-

Ontology Development, Tools and Languages 81

Fig. 6 Upper Ontology of OpenCyc

[http://www. cyc. com/cycdoc/vocab/upperont-diagram.html]

eration and extinction, since identity of the instance cannot be managed
properly.

5. #$is-a (instance-of) relation is formed besides between an individual and a
class.
For example, my today's lunch event is an instance of #$Even t which is
a specialization of #$TemporalThing which is an instance of #$Temporal-
StuffType which is an instance of #$SecondOrderCollection. A good hy-
pertext documentation of Opencyc is found at: h t t p : / /www. a y e . corn/
cycdoc/vocab/vocab-t oc. html

6. Due to the problem of inconsistency within a huge knowledge base, mi-
crotheories are introduced, so that each microtheory containing a bunch of
assertions is consistent by sharing common assumptions about the world.

7. Cyc(OpenCyc) is a useful knowledge base for natural language understand-
ing, since it is built under the goal to capture commonsense people possess.

3.2 Wordnet
While WordNet | developed by the Cognitive Science Lab. at Princeton

University, is an online lexical reference system, its upper level structure is con-
sidered as a top-level ontology. Although it is useful as a lexical resource, it has
room to improve from ontological point of view. It might be apparent because
it has been developed to reflect natural language phenomena, that is, laymen's
understanding way of the world. As Guarino points out, there are quite a few in-

82 R. Mizoguchi

appropriate organization of concepts. Typical examples include (a) confusion of
concepts and individuals, (b) confusion between object-level and meta-level, (c)
incorrect use of is-a relation. See Reference 14) for details. Guarino and his group
are doing reorganization of the top-level ontology of WordNet. WordNet version
2 is available at http : //www. cogsci, princeton, edu/-wn/wn2.0, shtml.

3-~ Enterprise Ontology http : / /www. aiai. ed. ac. uk/pro j ect/
enterprise/enterprise/ontology, html
EO(Enterprise Ontology) has been developed by Mike Uschold and his

group at AIAI, Edinburgh University in 1996. s) It is a pioneering achievement and
has a sophisticated methodology for developing a real scale ontology described
in 1.1. The purpose of EO includes:

1. To guarantee smooth communication between participants for facilitating
sharing the unified understanding about the enterprise model by providing
necessary and sufficient vocabulary

2. To provide an infrastructure that is stable but at the same time adaptable
to the change of understanding about and requirements to the enterprise
model

3. To augment interoperability of various application programs of an enterprise
model by using EO as an interlingua for information exchange

Table I shows some typical concepts contained in EO.
EO has been evaluated by the project members as well as by those out-

side the project. In the internal evaluation, they tried to incorporate EO into
tools set for enterprise modeling already developed by the whole project. In the
attempt, two new ontologies called competency ontology and knowledge space
ontology were developed to make up for the abstract characteristic of EO. EO
was used as set of vocabulary. In the external evaluation, EO was applied to the
three tasks such as bid analysis, market analysis and continuous process improve-
ment. Unfortunately, however, the result was no good. It is mainly because: (1)
People's skill in the use of ontology was poor, (2) No computer support such as
an ontology browser was available so that it is not easy to understand EO as
a whole. (3) Many domain-specific terms are missing. Although the evaluation
was not very satisfactory, it was confirmed EO worked as a common vocabulary
to lead participants to a common understanding about enterprise model. Good
features of EO as an ontology include (a) it introduces activity and activity spec-
ification to model activities in the real world and the planning world. And (b)
it introduces the concept role explicitly. However, it caused another difficulty
to understand EO, since Ontlingua is not so powerful enough to deal with the
concept of role tha t users cannot follow the definition easily.

Ontolo~ Developme~, Tools and Languages

Tablel Some Conceptsin EO

[http://www.aiai.ed.ac.uk/project/enterprise/enterprise/
ontology.html]

83

activity organization strategy marketing time
Activity Person Purpose Sale Time line
Activity Machine Hold purpose Potential Time
specification sale interval
Execute Corporation Intended purpose For sale Time point
Executed activity Partnership Purpose-holder Sale offer
specification
T-Begin Partner Strategic purpose Vendor
T-End Legal entitiy Objective Actual

customer
Pre-Condition Organizational Vision Potential

unit customer
Effect Management Mission Customer
Doer Delegate Goal Reseller
Sub-Activity Management link Help achieve Product
Authority Legal ownership Strategy Asking price
Activity owner Non-Legal Strategic planning Sale price

Ownership
Event Ownership Strategic action Market

Resource Promotion
substitution

Competitor

3.4 Gene Ontology http : / /www. geneontology, org/doc/index.
expanded, shtml
Biology is one of the most active research communities in developing and

using ontology. In each of the various topics such as genomic, cellular, structure,
phenotype and so on, tremendous amount of data are being produced everyday.
The problem is there are syntactic and semantic differences in expressing such
information, which prevents researchers from retrieving and utilizing the relevant
information to facilitate their daily research activity. Tha t is, they are suffering
from so-called interoperability of the vast amount of information. What they
need is an ontology which provides a common vocabulary. In genomics, the
need of such common vocabulary is critical to further acceleration of the un-
derstanding of gene functions. This is why Gene ontology consortium has been
established under the goal: "to produce a controlled vocabulary that can be applied
to all organisms even as knowledge of gene and protein roles in cells is accumulating
and changing" (Exerpt from Reference lo)).

The three major components of GO are molecular function, biological pro-
cess and cellular component. GO contains as of July, 2003, about 1300 compo-
nent, 5400 function and 7300 process terms. Terms in GO are mainly used for
annotation of the existing databases to make them interoperable. GO is avail-
able online http : //www. geneontology, org/doc/GO, doc. html. Fig. 7
shows how Go looks like. The links are not equal to is-a link. This is why every

84 R. Mizoguchi

' Top of ontology } ~ e c u a; iu~ction

I arent term

I Child term ~ i e ~ c aci~ ~in~i~ ~

I Directed
acyclic graph

ATPase)7 ====

i Genes to which e.g. Lamin B e.g. Werner syndrome e.g. Bloom's syndrome
these GO terms receptor helicase protein

are annotated I I I

Fig. 7 Directed Graph Representation of GO

[http ://www.geneontology. org/doc/GO.doc.html#ontologies]
Image courtesy of the Europian Bioinformatics Institute (www.ebi.ac.uk) and
the Gene Ontology Consortium (www.geneontology.org)

GO term must follow the rule; if a child term describes a gene product, then
all its parent terms must also apply to the gene product. It is very important
to note that GO is not a dictated standard. GO needs to be adaptive to the
rapidly changing findings about gene by a democratic way.

Rigorously speaking, however, GO is a well-defined dictionary rather
than an ontology. It needs some improvement from the ontological theory
point of view. as) Cell signaling network ontology is developed at Tokyo Uni-
versity 4~ : //www. ontology, jp/].

3.5 Pr~ess Ontology: PSL http://ats, nist. gov/psl/psl2, html
Process engineering community is not an exception. It has also serious

terminological problems which prevent information exchange and interoperat-
ing with application systems such as scheduling systems, production simulation
systems. For example, while the term "resource" is used to mean "information
source necessary for decision making" in workflow systems, it is used to mean
"personnel or machine" in production planning systems. PSL(Process Speci-
fication Language) is developed by NIST(National Institute of Standards and
Technology, USA) to resolve such difficulties.

The semantics of all terminology within PSL is formally specified in ax-
ioms in KIF: Knowledge Interchange Format. 18) PSL ontology does not have
an is-a hierarchy among concepts. It is more like a common vocabulary with
rigorous definition in logic. PSL ontology is generic enough to cover various
scheduling, planning and other process-oriented activities and is composed of
three major components: PSL core, foundational theories and PSL extensions.

Ontology Development, Tools and Languages 85

PSL core is composed of four concepts such as activity, activity occurrence, time
point and object and three relations such as participates-in, before, and occurrence-
of. Its unique features are (a) Completely declarative definition of all the con-
cepts in KIF and (b) Differentiation between the two concepts: activity and
activity occurrence. The former is for giving adequate specification of the seman-
tics of the process terminology to avoid inconsistent interpretations and uses of
information among application programs. The latter is for c lear discrimination
between the concept of activity itself and its occurrence. So activity is free from
time which is for activity occurrence. Representation of subactivi ty relations is
done associated with activity rather than activity occurrence. Taking lunch is an
activity and Taking lunch at 12:30 pm on Aug. 11 in 2003 is an activity occur-
rence. While this conceptualization might look somewhat odd, it is consistent
with what I explained in the concluding remarks of Par t 1. An action has two
ways of conceptualization: One is tha t focusing on an event which has happened
in the real-world. The other is that focusing on the intrinsic property.

Some examples of definition of a concept are shown below.
Definition 1. Timepoint q is betweenEq timepoints p and r if and only if p is
before or equal to q, and q is before or equal to r.

(defrelation betweenEq (?p ?q ?r) :=
(and (beforeEq ?p ?q)

(beforeEq ?q ?r)))

Definition 2. An activity occurrence is-occurring-at a t imepoint p if and only if
p is betweenEq the activity occurrence's begin and end points.

(defrelation is occurring-at (?occ ?p) :=
(and (activity-occurrence ?occ)

(betweenEq (beginof ?occ) ?p (endof ?occ))))

Axiom 1. The occurrence-of relation only holds between activities and activity-
occurrences.

(forall (?a ?occ)
(=> (occurrence of ?occ ?a)

(and (activity ?a)
(activity-occurrence ?occ))))

Axiom 2. An activity-occurrence is the occurrence-of a single activity.

(forall (?occ ?al ?a2)
(=> (and (occurrence-of ?occ ?al)

(occurrence-of ?occ ?a2))
(= ?al ?a2)))

Axioms and definitions are organized as shown in Fig. 8. Formalization in
PSL is thorough. I t even formalizes what an integer is and has rich axioms about
time. On the other hand, concepts processed by activities are left untouched and
domain-specific activities such as "painting" are out of focus. Thus, PSL is very
much interested in domain-independent inference. It contrasts very well with EO
which is mainly concerned with concept extraction from the enterprise domain.

86 R. Mizoguchi

PSL-Com
Outer Core

Subactivity Theory
Theory of Occurrence Trees
Theory of Discrete States
Theory of Atomic Activities
Theory of Complex Activities
Activity Occurrence

Duration and Ordering Theories
Duration Theory
Subactivity Occurrence Ordering
Iterated Activities
Occurrence Tree Automorphisms
Envelopes and Umbrae

Resource Theories
Resource Requirements Theory
Resource Sets

Actor and Agent Theories
Activity Performance

Series: Definitional Extensions of PSL
Activity Extensions

Deterministic Activities: Permuting Branch Structure
Nondeterministic Activities: Folding Branch Structure
Nondeterministic Activities: Branch Structure and Ordering
Nondetenninistic Activities: Repetitive Branch Structure
Spectrum of Activities: Permuting Activity Trees

Fig. 8 Axioms and Definitions in PSL

3.6 Standard Upper Ontology(SUO) http : / / s u o . ieee. org/
IEEE Standard Upper Ontology has begun in May, 2001 after one year

preliminary discussion to design a large, general-purpose formal ontology. As
mentioned in Par t 1, hot topics there include 3D(3D space with time) model-
ing vs. 4D(including time as the 4 th dimension) modeling, multiple ontologies
vs. monolithic ontology, etc. The former is concerned with endurantism(which
claims clear boundary between object(continuant) and process(occurrent)) vs.
perdurantism(which claims no boundary between the two) argument which seems
never-ending. The latter is also very hot, since while, in theory, ontology seems
to be universal, it is practically impossible. The current agreement of the SUO
is to have a few number of candidate ontologies together with a meta-ontology
based on category theory 1~) providing a mechanism for managing, integrating
and interoperating with multiple ontologies. As of September, 2003, in addi-
tion to the two approved candidates: SUMO(Suggested Upper Merged Ontol-
ogy) proposed by Teknolwedge and OpenCyc, 33) DOLCE 6) ontology designed
by N. Guarino and his group and ISO/FDIS 15926-2 (h t t p : / / w w w . t c 1 8 4 -
s c4. org/wg3ndocs/wg3nl 3 2 8 / i i recycle _int egrat ion_s chema, html)
as a 4D ontology (See 4.2 [3]) are being proposed as other candidates. There
would be a long way to go before we come to an agreement.

Ontology Development, Tools and Languages 87

As of June 2002, SUMO contains 965 terms and 3742 assertions. The on-
tology can be browsed online (http://ontology. teknowledge, com), and
source files for all of the versions of the ontology can be freely downloaded
(http://ontology.teknowledge. com/cgi-bin/cvsweb, cgi/SUO/).

3.7 Other Activities

[1] WonderWeb http : //wonderweb. semant icweb, org/
WonderWeb is a comprehensive project on ontological engineering in Eu-

rope. Its main purpose is to establish "Ontology infrastructure for the seman-
tic web". Twenty nine deliverables are prepared under the following 6 work
packages. WP.1 (Ontology) Language Architecture; WP.2 (Ontology building)
Tools and Services; WP.3 Foundational Ontologies; WP.4 Ontology Engineer-
ing; WP.5 Assessment, Dissemination and Evaluation (of the project outcome);
WP.6 Project Management. DOLCE is the result of WP3.

[2] DAML+OIL ontology library http : //www. daml. org/ontologies/
DAML project has an ontology base where, as of August in 2003, 251

ontologies are stored in DAML+OIL or OWL. Although some of them look toy,
some look very serious. The biggest in number of classes of ontology there is
Cancer ontology mentioned below. It also contains DAML version of OpenCyc.

[3] Cancer ontology 12)
NCI: National Cancer Institute, USA, has developed a huge ontology in-

tended for NCI offices and divisions to use the Thesaurus as a source of codes
associated with concepts to annotate data and other information sources and
facilitate information reuse. As of February in 2003 the NCI Thesaurus contains
about 26,000 concepts and about 71,000 terms divided into 24 taxonomies which
cover administrative, applied and basic science and clinical terminology. Its
home page is at http : //www. mindswap, org/2 0 0 3/CancerOntology/.

w Applications

4.1 Typology of Ontology Applications
Considering the roles and characteristics of an ontology discussed in Par t 1,

we can classify the applications of ontology as Jasper and Ushold have done.17)
In this section, after classifying the ontology applications, we describe some of
the typical applications.

Type 1: Ontology as a common vocabulary This is the most straightforward
application type of ontology. As discussed in this article several times, a few on-
tologies are currently developed in domains for this purpose. Gene and Cancer
ontologies are typical examples of this type. Although having a common vocab-
ulary is a first step towards knowledge systematization of the domain, there are
a lot to do before realizing it.

88 R. Mizoguchi

Type 2: Ontology as the help of information access W W W is a huge informa-
tion source which would be able to give us enormous value. This is why people
are so enthusiastic about making information access more and more intelligent.
Metadata, Ontology-based information search, Knowledge management(KM)
are those efforts. Ontology gives a foundation of those research activities in
two ways: One is to provide me tada ta elements and vocabulary to put anno-
tations on the W W W resources and the other is to use class hierarchy and
relations among classes for interpreting the metada ta at tached to each resource.
KM utilizes both.

Type 3: Ontology as the medium for mutual understanding Mutual understand-
ing is always necessary between (a) humans and humans, (b) humans and soft-
ware agents, (c) software agents and software agents. Even the communication
between humans, ontology can be useful especially for knowledge-intensive en-
gineering such as concurrent engineering, business process reengineering, etc.
where interdisciplinary collaboration is required. Understanding between hu-
mans and software agents is seen in the case of W W W resource search. The
requirements specified by the users have to be properly understood by search
engines through the shared ontology or ontology translation. Semantic web 1) is
the biggest application of this type. The same happens in the case of com-
munication between software agents. FIPA takes it up and produces FIPA
ontology service specification(ht t p : / /www. f i p a . o r g / s p e c s / f i p a 0 0 0 8 6 /
XC0 0 0 8 6D. h t m l # _ f t n l 5). In order to enable software agents to communicate
each other, they need a common protocol and vocabulary. An ontology plays
a role of a common vocabulary in a more advanced way than tha t in type 1
because such vocabularies are managed by ontology agents in a formal way to
process queries about ontologies by other agents.

Type 4: Ontology as specification An instance is a model of the real-world thing
and an ontology is a model on instances, so an ontolology is a meta-model
which specifies what instance model is possible. Applications which utilize the
model specification functionality of an ontology include an authoring support
system which has to know what it is going to author. I call such an authoring
tool which has declarative specification about what it is going to produce as
an ontology "an ontology-aware" authoring tool. An ontology-aware authoring
tool can exploit the utility of an ontology. Prot6g~-2000 which is known as
an ontology development tool has been a knowledge acquisition meta-tool in
that it uses class definitions as a specification of instances which are target of
acquisition guided by the specification. Wha t users do is to design a set of
domain-specific class definitions. Then Prot~g6-2000 automatical ly becomes a
knowledge(instance model) acquisition system of the domain.

Type 5: Ontology as foundation of knowledge systematization An ontology pro-
vides us with a kernel conceptual structure. This functionality is especially
significant for the upper ontology. Knowledge systematization requires:

Ontology Development, Tools and Languages 89

1. Formalization of the basic terms
2. Positioning them in appropriate places in the conceptual structure by iden-

tifying relationship to others
3. Further identification of necessary relationships between concepts
4. Deeper understanding of concepts considering their use situations and com-

pile them in a use-ready form

These are what an ontology can provide. In the task of data exchange in
engineering domains, for example, there have been a long effort of standardiza-
tion of the date exchange format.

EPISTLE, T) which is a successor of the STEP: the Standard for the Ex-
change of Product Model Data activity at ISO, is a good example of ontology use
for knowledge systematization. The problem of STEP was multiple conceptual-
izations of product data for respective domains, which prevented engineers from
having a unified model of product data. To realize it, they did need a common
conceptual structure which is the basic motivation of the EPISTLE project.

In the production/manufacturing domain and computer-assisted design
domain, sharing engineers' expertise among engineers has been a hot topic for
facilitating their knowledge-intensive activities. Functional knowledge system-
atization based on functional ontology 2~ is a long-term activity aiming at the
goal. It has been successfully deployed in the industries and will be discussed in
detail in Part 3. Similar activities are found in Nanotechnology 2~) and Instruc-
tional design communities. 2~)

4.2 Some Applications

[1] Semantic web http : //www. w3. org/2 0 01/sw/

The semantic web is an effort to make the current W W W computer-
understandable. Computers currently process W W W resources only as a se-
quence of bits or characters, which causes low performance in finding relevant
W W W pages and hence causes information overflow. Semantic web is different.
A search engine would understand the content of each piece of W W W infor-
mation and hence it could find much more relevant information with much less
irrelevant information. Furthermore, one would be able to produce many kinds
of intelligent applications on top of semantic web in the areas of e-Commerce,
e-Learning, etc. to utilize the W W W maximally.

In the future, semantic web technology would bring us a kind of revolu-
tion to a knowledge base building. Conventionally, a knowledge base has been
something to design and build upon request. However, W W W and semantic web
technologies facilitate automatic building of knowledge resources so that a huge
knowledge base virtually exists out there, and hence the problem to solve would
become not to build a knowledge base from scratch but to collect appropriate
web pages out of already existing W W W knowledge resources, to reorganize
and to merge them. To make this happen, we need to solve a lot of problems by
providing key technology.

90 R. Mizoguchi

(a) Meta-data and semantic interoperability(type 3) The key technology to make
the semantic web happen is the XML-based markup language family with
ontology-based semantic processing. So-called "Layered cake 1)'' is an architec-
ture for it in which URI->XML->RDF(S)->OWL->Logic->Proof->Trust form
layered structure of technology. URI provides a unique variable, XML a markup
syntax and name space, RDF(S) a metadata model, OWL ontology, Logic logical
foundation, Proof record of proof and Trust establishes the trust relationships.
Technologically, the key issues are semantic interoperability among the meta-
data and trust and practicMly, a key issue is how to persuade users to produce
metadata for their resources. The WWW has grown in a bottom up manner
with the help of HTML technology. Some say the semantic web will grow as
the same way as the WWW, but others say the semantic web needs different
strategies to grow. It is true that writing metadata is harder than writing an
HTML page and the merit of the former is less appealing than the latter.

Technologically, ontology plays the key role in making metadata interop-
erable. The meaning of the vocabulary in a metadata is defined in the ontology.
It is OK in a single metadata case. The problem is how to make inference in
a case of multiple metadata defined in multiple ontologies. Ontology mapping,
alignment or merging discussed in 2.3 is critical. The topic is challenging. Al-
though OWL has functions to support and some research has been done on this
topic, there remains a lot to do. We have a dilemma on this issue. If we had
the universal ontology everyone shares, semantic interoperability were no more
a problem. If every metadata producer has his/her own ontology, it is a mess
and we never be able to achieve semantic interoperability among them. So, the
solution has to be in between the two extreme. However, we do not know where
it should be. I at least can say we need a few reliable upper ontologies each of
which has clear and explicit ontological choice it is based on and a reasonable
number of domain ontologies beautifully designed in a principled way.

(b) Web service ontology 4) http://www, daml. org/services/(type2) Web
services (http : //www. w3. org/2002/ws/) are Web-accessible computer pro-
grams which are platform-independent. Their characteristics are described in
terms of WSDL: Web Services Description Language[http : / /www. w3. o r g /
TR/wsdl I and found by UDDI: Universa~ Description, Discovery and Integration
of web services [http://www. uddi. org/] and communicate with each other
through SOAP: Simple Object Access Protocol[http ://www. w3, org/TR/
SOAP/] exchanging information for processing in XML. Web services activity
shares the same problem with the WWW, that is, how to find the relevant ser-
vices. It is straightforward to apply the semantic web technology to solve this
problem. DAML-S is an ontology for semantic markup of the web services. The
purpose of metadata writing for web services has the following four:

I. Automatic Web service discovery.
2, Automatic web services invocation
3. Automatic web services composition and interoperation
4. Automatic web services execution monitoring

Ontology Development, Tools and Languages

~ e s o u r ~ supports

~ Des~bcdBy S ~ prcscnus / I % o ~ g
~.. Service profile /) ~

What ~ - - - - - / (, ~ ' c e m ~ . .) How to access it
Service does How it works

Fig. 9 Top-level Ontology of DAML-S 4)

91

These goals are really ambitious. Especially, 3. is close to automatic
programming which is an old and hard topic. Fig. 9 shows top-level ontology
of DAML-S. Service profile contains concepts and attributes used for describing
services to use for finding services. For representing what the service does, it has
input, output, precondition and effect. Service model is responsible for representing
how the service works. DAML-S employs the process ontology which requires
precondition, input and out parameters, participants in a process and effects.
Input, output and effects are connected to those introduced in Service profile.
Process has three major subclasses such as AtomicProcess, SimpleProcess and
CompositeProcess as shown below.

<daml:Class rdf:ID="Process">
<rdfs:comment> The most general class of processes </rdfs:comment>
<daml:disjointUnionOf rdf:parseType="daml:collection">

<daml:Class rdf:about-"#AtomicProcess"/>
<daml:Class rdf:about="#SimpleProcess"/>
<daml:Class rdf:about="#CompositeProcess"/>

</daml:unionOf>
</daml:Class>

AtomicProcess is a process which is directly invocable, that is, it has no
subprocess, and hence it has to be grounded on WSDL description. SimpleProcess
is used for representation of atomic or CompositeProcess in the case of planning
or reasoning. It is not grounded on WSDL but an abstract single-step process.
CompositeProcess is decomposable into subprocesses. DAML-S ontology also
contains concepts for control such as sequence, split, unordered if-then-else and so
on .

DAML-S has the following three assumptions:

1. An AtomicProcess corresponds to an operation of WSDL.
2. Input and output of each AtomicProcess correspond to WSDL message part.
3. The type of each WSDL message part can be specified as the range of a

DAML-S parameter.

These are not serious limitations, in fact most of them are got rid of at the
latest version(V0.9) which will be called OWL-S. Although omitted here, there
are more important classes such as, T/me, Resource and Capacity, in DAML-S.

92 R. Mizoguchi

[2] e-Learning h t t p : / / l t s c . i e e e . o r g /
e-Learning has been growing into a big industry. Not only school learning

but also training of personnel in a company and life-long learning require sophis-
ticated and easy-to-use learning support systems. One of the demanding issues in
e-learning is reusability and interoperability of learning materials. To cope with
this issue, standardization of LMS: Learning Management Systems, LOM: Learn-
ing Object Metadata, etc. have been done in ADL: Advanced Distributed Learn-
ing (http : //www. adlnet, org/index, cfm? fuseact ion=scormabt),
ARIADNE(http ://www. ariadne-eu, org/), IEEE LTSC: Learning Tech-
nology Standards Committee (http : //it s c. ieee. org/) and ISO SC36.

(a) LOM: Learning Object Metadata http : / / I t s c . ieee. org/wgl 2/index.
html (type 2) By LO: learning objects, we mean any contents used in learn-
ing independently of its grain size. LOM is metadata of LO. LOM is partially
based on Dublin core because both are metadata for information resources and
contains learning-specific elements. A metadata is a pair of attribute and its
value. The former is called metadata element and the latter vocabulary. LOM
metadata elements consist of nine categories: the general category, the lifecycle
category, the meta-metadata category, the technical category, the educational
category, the rights category, the relation category, the annotation category and
the classification category. LOM ontology is mainly for specifying vocabulary.
LOM is carefully designed to attain maximal learning-subject-independence just
like CD-ROM standard is independent of its contents. To deploy LOM, however,
users need to fill in the value part of LOM with domain-specific vocabulary which
might decrease its interoperability. This is why well-designed ontology is nec-
essary for each category. Especially, ontologies for important concepts such as
educational goal, competency, learning object types, etc. are being developed. 15)

(b) Ontology-aware authoring system (type 4) Authoring of learning/teaching
courseware is a kind of task which can be characterized by task ontology de-
scribed in Part 1. Among various performance systems, an authoring system
is special in that it is a meta-system because it generates a learning material
which partially specifies the behavior of a learning support system together with
structured learning topics. Of particular importance here is that there are two
kinds of task ontologies: One is authoring task ontology and the other is tutoring
task ontology in the case of courseware for an intelligent tutoring system. The
latter ontology plays the key role. An authoring system which knows tutoring
task ontology can behave intelligently because it knows what it is generating for
what purpose. 2~)

[3] Knowledge systematization (type 5)

(a) EPISTLE 7) In order to come up with a unified view of concepts in the
oil and plant engineering domain, EPISTLE has a sophisticated model called
ECM: Epistle Core Model. It is based on the 4D viewpoint of the world(see

Ontology Development, Tools and Languages 93

3.6), that is, it tries to model an entity as a trajectory in the 4D space. It is
necessary for them to model artifacts with its lifecycle from its design phase
until its installation and use phase. Other unique features of ECM include: (a)
introduction of the intended and actual worlds to model things in the design or
planning phase and thins in the actual world with a special link realization-of
(instead of instance-of) between the two kinds of things. (b) Two classes called
"Individual" and "Class" introduced under the "Thing" class. The former is for
representing all kinds of individual existing not only in the actual world but in
planning or imaginary worlds. It is a very unique idea. An implementation of
Individual class is shown bellow.

ENTITY individual
SUPERTYPE OF
(ONEOF(plural_individual, single individual) ANDOR ONEOF(state,
temporal_boundary_of_state} ANDOR actual_individual ANDOR
whole_individual ANDOR ONEOF(point_in_space, vector_in_space))

SUBTYPE OF (thing);
END_ENTITY;

ECM thus provides a convincing data model supported by a unique on-
tology and serves as a core model through which existing domain-specific data
models are mapped. What EPISTLE has done is not just a simple data map-
ping, but an effort to systematizing the structure of the engineering product
model world.

w Concluding Remarks
While the importance of ontology has been already well-received in many

domains as well as in computer science, there still exist at least two major
interpretations of what an otology is. In the semantic web context, ontology
plays the key role in interoperability of metadata. Such an ontology would
be something like "a logical theory accounting for the intended meaning of a
formal vocabulary" defined by Zuniga. 41} On the other hand, people working on
upper ontology believe that an ontology should have philosophical justification
to some extent. These two sometimes cause conflicts which will need a long time
to resolve.

Many tools are available now and help people develop an ontology. How-
ever, it is still true that building a good ontology is not easy. There are two
kinds of difficulties: One is how to identify and organize classes and the other is
how to define classes in terms of axioms. Although the former should be taken
care of by an ontology building methodology, we have few convincing guidelines.
Part 3 will discuss an effort to this direction. While the latter is taken care
of by the existing tools, rigorous definition of a concept is not an easy task.
Users need a lot of knowledge and skills about formal stuff. One of the most
critical issues is how much to put in axioms. An ontology is expected to be
reusable and sharable, and hence less task-dependent. If an ontology has too
much knowledge, it becomes yet another knowledge base. We need a guideline
for drawing the boundary between application-dependent knowledge bases and
a shared ontology. The idea of task ontology 23) would be partially helpful to do

94 R. Mizoguchi

it because it helps separate task-dependency from the domain ontology.
A few ontologies have been developed and used in non-IT domains where

an ontology is mainly used as a common vocabulary. In the Semantic web,
well-formalized ontologies are expected to contribute to realizing intelligent be-
haviors in finding appropriate W W W pages and web services and types 2 and
3 applications are produced. Applications of types 4 and 5 are still not active
yet. Knowledge systematization, type 5, is a promising application of ontological
engineering which will be discussed in detail in Part 3.

Acknowledgements
The author is grateful to Yoshinobu Kitamura for his help in preparing

RDF and OWL examples and comments on the early version of this article.

References
1) Berners-Lee, T., Hendler, J. and Lassila, O., "The Semantic Web is an extension

of the current web in which information is given well-defined meaning, better en-
abling computers and people to work in cooperation," The Semantic Web, Scientific
American, May 2001.

2) Corcho, O., Fernandez-Lopez, M., Gomez-Perez, A. and Vicente, O.,
"WebODE: An Integrated Workbench for Ontology Representation, Reasoning
and Exchange," in Proc. ofEKAW2002, Springer LNAI 2473, pp. 138-153, 2002.

3) http://www.daml.org/

4) http://www.daml.org/services/

5) http://dublincore.org/

6) http://www.loa-cnr.it/DOLCE.html

7) http://www.btinternet.com/- chris.angus/epistle/index.html

8) http: / /www.aiai.ed.ac.uk /project /enterprise /enterprise / ontology.html

9) http://www.fipa.org/specs/fipa00086/XC00086D.html#_ ftn 15

10) http://www.geneontology.org/doc/index.expanded.shtml

11) Gangemi, A., Pisanelli, D. M. and Steve, G., "An Overview of the ONIONS
Project: Applying Ontologies to the Integration of Medical Terminologies," Data
Knowledge Engineering, 31, 2, pp. 183-220, 1999.

12) Golbeck, J., Fragoso, G., Hartel, F., Hendler, J., Parsia, B. and Oberthaler,
J., "The National Cancer Institute's Thesaurus and Ontology," Journal of Web
Semantics, 1, 1, Oct. 2003.

13) Guarino, N. and Welty, C., "Evaluating ontological decisions with OntoClean,"
Communications of the ACM, 2, 45, pp. 61-65, 2002.

14) Oltramari, A., Gangemi, A., Guarino, N. and Masolo, C., "Restructuring Word-
Net's Top-Leveh The OntoClean Approach," in Proc. ofLREC2002 (OntoLex work-
shop), Las Palmas, Spain.

15) Hirata, K., Takaoka, Y., Ohta, M. and Ikeda, M., "The Meaning of LOM and
LOM Authoring Tool on HRD," in Proc. of International Conference on Dublin Core

Ontology Development, Tools and Languages 95

and Metadata Applications 2001, pp. 259-262, National Institute of Informatics,
Tokyo, Japan, Oct. 22-26, 2001.

16) http://suo.ieee.org/IFF/

17) Jasper, R. and Uschold, M., "A Framework for Understanding and Classifying
Ontology Applications," in Proc. of KAW99, Banff, Canada, Oct. 1999.

18) http://logic.stanford.edu/kif/kif.ht ml

19) Kifer, M., Lausen, G. and Wu, J., "Logical Foundations of Object-oriented and
Frame-based Languages," Journal of the ACM, 42, pp. 741-843, 1995.

20) Kitamura, Y. and Mizoguchi, R., "Ontology-based Description of Functional
Design Knowledge and its Use in a Functional Way Server," Expert Systems with
Application, 24, 2, pp. 153-166, Feb. 2003.

21) Kozaki, K., Kitamura, Y., Ikeda, M. and Mizoguchi, R., "Hozo: An Environ-
ment for Building/Using Ontologies Based on a Fundamental Consideration of
"Role" and "Relationship," in Proc. of the 13th International Conference Knowledge
Engineering and Knowledge Management (EKAW2002), pp. 213-218, 2002.

22) Fernandez-Lopez, M., Gomez-Perez, A. and Pazos Sierra, J., "Building a Chemi-
cal Ontology Using Methontology and the Ontology Design Environment," IEEE
Intelligent Systems, 14, 1, pp. 37-46, 1999.

23) Mizoguchi, R., Ikeda, M., Seta, K. and Vanwelkenhuysen, J., "Ontology for
Modeling the World from Problem Solving Perspectives," in Proc. of IJCAI-95
Workshop on Basic OntologicalIssues in Knowledge Sharing, pp. 1-12, 1995.

24) Mizoguchi, R., Kozaki, K., Sano, T. and Kitamura, Y., "Construction and De-
ployment of a Plant Ontology," in Proc. of the 12th International Conference Knowl-
edge Engineering and Knowledge Management (EKAW2000), pp. 113-128, 2000.

25) Mizoguchi, R. and Bourdeau, J., "Using Ontological Engineering to Overcome
AI-ED Problems," International Journal of Artificial Intelligence in Education, I I, 2,
pp. 107-121, 2000.

26) Mizoguchi, R., "Ontology-based Systematization of Functional Knowledge,"
in Proc. of TMCE2002: Tools and methods of competitive engineering, Wuhan,
P.R.China, pp. 45-64, 2002.

27) "Knowledge Systematization Through Ontological Engineering," in Proc. of the
6th Sanken International Symposium -- Data mining, Semantic web and Computational
sciences--, Osaka University, Mar. 2003.

28) Musen, M. A., Fergerson, R. W., Grosso, W. E., Crubezy, M., Eriksson, H.,
Noy, N. F. and Tu, S. W., "The Evolution of Prot6g6: An Environment
for Knowledge-Based Systems Development," International Journal of Human-
Computer lnteraction, 58, 1, pp. 89-123, 2003.
http://smi.stanford.edu/pubs/SMI_Abstracts/SMI-2002-0943.ht ml

29) Noy, N. F. and Musen, M. A., "PROMPT: Algorithm and Tool for Automated
Ontology Merging and Alignment," Seventeenth National Conference on Artificial
Intelligence (AAAI-2000), Austin, TX, 2000.

30) Noy, N. F. and McGuinness, D. L., "Ontology Development 101: A Guide to
Creating Your First Ontology," SMI technical report SMI-2001-0880, 2001.

31) http://www.ksl.stan ford.edu/software/ontolingua/

96 R. Mizoguchi

32) http://ontoweb.aifb.uni-karlsruhe.de/About/Deliverables/D 1.4-vl.0.pdf

33) http://www.opencyc.org/

34) Schreiber, G. et al., Knowledge Engineering and Management: The Common KADS
Methodology, MIT Press, Cambridge, Mass., 1999.

35) http://www.bioinfo.de/isb/2002/02/O017/

36) Sunagawa, E., Kozaki, K., Kitamura, Y. and Mizoguchi, R., "An Environment
for Distributed Ontology Development Based on Dependency Management," in
Proc. ofISWC-2003, Sanibel Island, Florida, USA, 2003.

37) Staab, S. H., Schunurr, P., Studer, R. and Sure, Y., "Knowledge processes and
ontologies," IEEE Intelligent Systems, Special Issue on Knowledge Management, 16, 1,
pp. 26-34, 2001.

38) http://www.steptools.com/library/standard/

39) Sure, Y., Staab, S., Erdmann, M., Angele, J., Studer, R. and Wenke, D., "On-
toEdit: Collaborative Ontology Development for the Semantic Web," in Proc.
oflSWC2002, pp. 221-235, 2002.

40) http://www.ontology.jp/

41) Zuniga, Z., "Ontology: Its transformation from philosophy to information sys-
tems," in Proc. of Formal Ontology in Information Systems (Welty and Smith eds.),
ACM Press, pp. 187-197, 2001.

42) Gruninger, R. and Fox, M., "The design and evaluation of ontologies for en-
terprise engineering," in Proc. of Comparison of Implemented Ontologies, ECAI'94
Workshop, W13, pp. 105-128, 1994.

/"

Riichiro Mizoguchi, Ph.D.: He is Professor of the Department of
Knowledge Systems, the Institute of Scientific and Industrial Re-
search, Osaka University. He received his B.S., M.S., and Ph.D.
degrees from Osaka University in 1972, 1974 and 1977 respec-
tively. From 1978 to 1986 he was research associate in the Insti-
tute of Scientific and Industrial Research, Osaka University. From
1986 to 1989 he was Associate Professor there. His research in-
terests include Non-parametric data analyses, Knowledge-based
systems, Ontological engineering and Intelligent learning support
systems. He is a member of the Japanese Society for Artifi-
cial Intelligence, the Institute of Electronics, Information and
Communica-tion Engineers, the Information Processing Society
of Japan, the Japanese Society for Information and Systems in
Education, Intl. AI in Education (IAIED) Soc., AAAI, IEEE
and APC of AACE. Currently, he is President of IAIED Soc. and
APC of AACE. He received honorable mention for the Pattern
Recognition Society Award, the Institute of Electronics, Infor-
mation and Communication Engineers Award, 10th Anniversary
Paper Award from the Japanese Society for Artificial Intelligence
and Best paper Award of ICCE99 in !985, 1988, 1996 and 1999,
respectively. He can be reached at miz@ei.sanken.osaka-u.ac.jp

