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Abstract We present a generalized let-polymorphic type inference 
algorithm, prove that any of its instances is sound and complete with respect 
to the Hindley/Milner let-polymorphic type system, and find a condition on 
two instance algorithms so that one algorithm should find type errors earlier 
than the other. 

By instantiating the generalized algorithm with different parameters, 
we can obtain not only the two opposite algorithms (the bottom-up stan- 
dard algorithm W and the top-down algorithm A4) but also other hybrid 
algorithms which are used in real compilers. Such instances' soundness and 
completeness follow automatically, and their relative earliness in detecting 
type-errors is determined by checking a simple condition. The set of in- 
stances of the generalized algorithm is a superset of those used in the two 
most popular ML compilers: SML/NJ and OCaml. 
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w Introduction 

1.1 This Work 
In realistic compilers, the let-polymorphic type system14) 's two opposite 

algorithms (VV 8'14) and M lo)) are not attractive candidates. In order to gener- 
ate helpful type-error messages we need to balance between their two opposite 
behaviors in type-checking: the bottom-up algorithm )IV is context-insensitive, 
finding type errors too late, while the top-down algorithm AA is as context- 
sensitive as possible, finding type errors too early. Because of these behaviors, 
the Standard ML of New Jersey (SML/NJ 19)) and Objective Caml (OCamP ~)) 
compilers use hybrids of the two algorithms. 

Several works 2'3'~'s'13'17'23) clearly show that  other type checking strategies 
are possible. To systematically explore this space of strategies, as well as to 
justify the existing hybrid ones, we need a framework (1) for integrating the two 
opposite algorithms into one algorithm; (2) for assuring that  such an integrated 
algorithm is still sound and complete; and (3) for measuring, if possible, how 
any two hybrid algorithms differ in behaviour. 

We present a generalized let-polymorphic type inference algorithm, prove 
that  any of its instances is sound and complete with respect to the Hindley/Milner 
let-polymorphic type system, and present a condition on two instance algorithms 
that  ensures that  one algorithm always finds type errors earlier than the other. 
By instantiating the generalized algorithm with different parameters, we can 
obtain not only the two opposite algorithms ()IV and Ad) but also other hybrid 
algorithms that  lie within this spectrum. The set of hybrid algorithms captured 
by the generalized algorithm is a superset of the existing hybrid algorithms in 
SML/NJ and OCaml. Within this algorithmic framework, compiler developers 
can freely experiment with various combinations without the burden of proving 
their correctness every time. 

1.2 Notation 
We use the same conventional notation as used in Lee and Yi's. 1~ Vector 

is a shorthand for { a l , . - .  , an}, and V~.T is for Val -. .  an.T. Equality of type 
schemes is up to renaming of bound variables. For a type scheme a : V~.T, the 
set f-tv(a) of free type variables in (r is ftv(~-) \ ~, where ftv(T) is the set of type 
variables in type T. For a type environment F, flu(F) -- U~edom(r)~(r(x)). A 
(simultaneous) substitution S -- {Ti /ai[1  < i < n} substitutes type Ti for type 
variable ai. We write {~/(~} as a shorthand for a substitution {Ti/ai I 1 < i < n} 
where ~ and ~ have the same length n, and S~  for { S a l , . . .  , San}.  For a sub- 
stitution S, the support  supp(S) is {a I S a r  a}, and the set itv(S) of involved 
type variables is {a  [ fl �9 supp(S), a �9 {j3} Uflu(S~)}. For a substitution S and 
a type T, ST is the type resulting from applying every substitution component 
Ti/ai in S to T. Hence, {}T = T. For a substitution S and a type scheme 
a = V~.T, S~ = V~.S{~/~}T,  where j n  (itv(S) Uflu(a)) = 0. For a substitu- 
tion S and a type environment F, SF = {x H S a  ]x ~-* ~ �9 F}. The composi- 
tion of substitutions S followed by R is writ ten as RS,  which is { R ( S a ) / a  [ a �9 



Proofs of a Set of Hybrid Let-Polymorphic Type Inference Algorithms 

supp( S ) } u { R a / a  I c~ e supp( R ) \ supp( S ) }. Two subst i tut ions S and R are equal 
if and only if Sc~ = R a  for every a E supp(S) U supp(R).  For a subst i tut ion P 
and a set of  type  variables V, we write P t y  for { T / a  E P I c~ • Y } .  The relation 
Vd.~-' ~ T holds whenever there exists a subst i tut ion S such t h a t  ST' = ~- and 
supp(S) c ~. We write F + x:  ~ to mean  {y ~-* (r ' lx # y , y  H a'  C F}U{x  ~-* a ) .  
Closr(T) is the same as Gen(F,~-) in Damas  and Milner's, s) i.e., V~.T, where 

=frv(~) \ ~ ( r ) .  
In  present ing type-inference algori thms,  we use Robinson ' s  unification al- 

gori thm: 

Theorem 1.1 (Robinson is)) 
There  is an  a lgor i thm L/which,  given a pair  of  types, either re turns  a subst i tut ion 
S or fails; fur ther  

�9 If  S = L/(T, T') then ST = ST'.  
�9 If  S '  unifies w and T', then L/(~-,7') succeeds with S and there exists a 

subst i tu t ion R such tha t  S '  = R S .  

Moreover, S involves only variables of  z and T t. 

1.3 Algorithms V? and A/I 
The  source language and its Hindley/Milner  style le t -polymorphic  type 

system are shown in Fig. 1. The two opposi te  algori thms 042 and A//) are shown 

Abstract Syntax 
Expr e 

Type T 

TypeScheme a 
TypeEnv F 

(CON) 

(VAR) 

(FN) 

(APP) 

(LET) 

(FIX) 

::= () 

I ~x.e 
] e e  
] let x=e in e 
] fix f ~x.e 

::= ~ I Va.o 
E Var --~ TypeScheme 

F~ () : t  

r ( z )  ~- T 
F~-X:T  

F + x : r l t - e : r 2  
F t- Ax.e : vz --* T2 

FF-eZ:T1---~T2 F I- e2 : "rl 

constant 
variable 
function 
application 

constant type 
type variable 
function type 

type environment 

F l- el e2 : T2 

F I - e l  :T1 F + x :  Closr(T1)~-e2 :'r2 
F ~- let x=el in e2 : T2 

F + f : T~- Ax.e :'r 
F 1- f i x  f Ax.e : T 

Fig. 1 Language and Its Let-Polymorphic Type System 
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S u b s t  S c_ { ' r /a  [ a is a type  variable, ~- is a type} 

W : TypeEnv x Expr ---, Subst x Type 

w ( r ,  ()) 
w ( r ,  x) 
w ( r ,  Ax.e) 

w ( r ,  el e2) 

= (id, ~) 
= (id, {~/a}T) 
= let 

in 
= let 

w ( r ,  let x=el  in e2) = 

)/v(r,  fix f )~z.e) = 

in 

where r (x )  = V~.'r, new 
($1, n )  = VV(F + x : / 3 ,  e), new/3  
(S~, 81 /3  - - ,  n )  
(S1, 7"1) ~- ~/~,)(I ~, el)  
(S2, ~2) = w ( & r ,  e~) 
$3 = L/(S2T1, r2 -~/3), new/3 
( S3S2Sl , Sa/3) 

let (81, n) = ]/V(F, el)  
($2, "/'2) -- ]/V(SIF q- x:  CIOSSlF(T1), e2) 

in ($2S1,  7"2) 
let (S~, ~'~) = W ( F + f : / 3 ,  Ax.e), new/3 

S2 = U(Sl/3, n )  
in ($2S1,  $2T1) 

.M : TypeEnv • Expr • Type --~ Subst 

M(r ,  (), p) = 
M(r ,  z, p) = 
M(F, Az.e, p) = 

M ( F ,  el e2, p) = let 

in 
f l4 ( r ,  l e t  x=el  in e2,p)  --- 

let 

M ( r ,  fix f Az.e, p) 

u(p, ~) 
Lt(p, {ff/t~}T) where F(x) = Vt~.T, new 
let $1 ---- ld(p, /31 --*/32), new/31,/32 

S2 = M ( S I F  q -x :  S1/31, e, S1/32) 
in $2S1 

$1 = A4(F, e l , / 3  ~ p), new/3 
S2 = M(SW, e2, S1/3) 
$2S1 

$1 = A4(F, e l , /3) ,  new/3 
$2 = M(S1F + x: Closslr(S1/3), e2, Sip) 

in $2S1 
M(F + f :  p, ,Xz.e, p) 

Fig. 2 Algorithm YV and f14. Note that every new type vari- 
able is distinct from each other, and the set New of 
new type variables introduced at each recursive call 
to 14;(F,e) (respectively, .hd(F,e,p)) satisfies New 0 
fly(F) : q) (respectively, New N (ftv(F) U fiv(p) ) = O). 

in Fig. 2. 
Algorithm W is context-insensitive. It  fails only at an application ex- 

pression. It infers types of two sub-expressions independently and checks later 
by unification whether those types conflict. Because of this, an erroneous ex- 
pression is often successfully type-checked (context-insensitively) long before its 
consequence collides. On the other hand, algorithm A4 is as context-sensitive 
as possible. It carries a type constraint (or an expected type) implied by the 
context of an expression down to its sub-or-sibling expressions. It fails when the 
current expression's type cannot satisfy the supplied type constraint. For exam- 
ple, for an application expression "el e2" with a type constraint, say of •  the 
type constraint for el is a -~ •  and the constraint for e2 is the type that  a 
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becomes after the type inference of el.  For a constant or a variable expression, 
its type must satisfy the type constraint that  the algorithm has supplied to that 
point. 

Example 1.1 
To illustrate the difference between W and A4, consider the application expres- 
sion 

1 2. 

~V fails at the application expression after having successfully type-checked the 
two sub-expressions, while A4 fails at the left expression 1 because its type i n t  
conflicts with a function type expected from the context (an application). 

w The Generalized Algorithm G 

2.1 Overview 
Our generalized algorithm is based on the top-down, context-sensitive al- 

gorithm A4. The key observation is that  we can vary the type-checking strategy 
by changing two factors in A4: the amount of information in the type constraints 
and the positions of calls to unification. Algorithm A4 carries as much informa- 
tion as possible in its type constraints and applies a unification at every value 
(constant, variable, and lambda) expression. Algorithm VV, on the other hand, 
carries no information at its type constraints and applies a unification at ev- 
ery application expression. Tuning these two factors yields other type-checking 
strategies: 

Example 2.1 
Consider an application expression 

(IsOne 2) :bool 

where Is0ne has type int --~ bool. As we impose less and less constraints in 
type-checking sub-expressions yet apply more and more checks later, we obtain 
the following type-checking variations: 

�9 We type-check Is0ne with constraint g --~ bool, which is the strongest 

expectation. After its success, we type-check 2 with the function's domain 
type int as its constraint. (714) 

�9 We type-check Is0ne with a weaker constraint, ~1 --~ ~2 with ~i and 
~2 being new type variables. The constraint forces IsOne's type to be a 
function, but does not constrain its domain or range. After its success, we 
check whether the function's range type is bool. Then we type-check 2 
with the function's domain type int as its constraint. 

�9 We type-check Is0ne with no constraint. After its success, we check 
whether the result type is a function type to bool. Then we type-check 

2 with the function's domain type int as its constraint. (OCaml's type 
inference algorithm) 

�9 We type-check Is0ne with no constraint. After its success, we check 
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whether the result type is just a function type, whatever its domain and 
range types are. Then we type-check 2 with the function's domain type 
i n t  as its constraint. After its success, we check whether the function's 
range type is bool. 
We type-check I sOne with no constraint. After its success, we check, as 
before, whether the result type is just a function type. Then we type-check 
2, but with no constraint. After its success, we check whether the function's 
type is int --+ bool. 
We type-check I sOne with no constraint. After its success, we don't check 

anything but continue type-checking the second expression 2 with no con- 

straint. After its success, we check everything at once: we check whether 

IsOne's type is a function type from int to bool. (]42) 

Every type-checking variation in the above example exposes a common 
property: it relaxes the type constraints for sub-expressions then checks after- 
ward whether the results from the relaxed constraints agree with the contexts 
implied from the original constraints. 

Our generalized algorithm is one that  allows, wherever possible, the re- 
laxing of the type constraints and yet makes sure that  posterior unifications 
compensate for the relaxation. The places for relaxing the constraints are right 
before recursive calls for type-checking sub-expressions. The places for posterior 
unifications that  compensate for the relaxed constraints are after the successful 
returns from the recursive-calls. Some unifications may only partially compen- 
sate for the relaxed constraints. Thus, before the original call returns, a final 
round of unification must be used to enforce any outstanding constraints. For 
example, consider type-checking the application expression el e2 with initial con- 
straint p. Our algorithm type-checks el with a type constraint that  can be more 
relaxed than the strongest possible constraint/3 ~ p. Right after its return, it 
applies a unification that  can compensate, not necessarily completely, for the 
relaxed constraint. It then type-checks the argument expression e2 with a type 
constraint that  can be more relaxed than the type that ~ became. After its suc- 
cess, there are no more sub-expressions to type-check, hence it's t ime to finalize 
the compensation for the relaxed constraints at the two recursive calls. This is 
done by two unifications: each one compensates for the relaxed constraint used 
in type-checking each sub-expression. The unifications check whether the types 
from the relaxed constraints agree with what the strongest constraint ~ --~ p 
implies. 

2.2 Algorithm Definition 
The generalized algorithm G is shown in Fig. 3. As in Ad, it returns a 

substitution from three components: an expression, a type environment, and a 
type constraint. The inferred type of the expression is the result of applying the 
final substitution to the type constraint of the expression. The type constraints 
are just types. 

By the phrases of the form 0 > p marked (1) to (7) in the algorithm, the 
strongest type constraint p is relaxed into 0 at each recursive call. This relaxed 
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G : TypeEnv x Expr x Type --* Subst 
G(F, ( ) ,p)  = U(p,~) 
~(F, x, p) ----/4(p, {fi/c~}r), new fi, F(x) = V~.T 
6 ( r ,  ~x.e, p) = 

let S1 = Z-~(fll ---)" ~2, O), new ill, new/32, 
$2 = 6($1F + x :  Sl f l l ,e ,  Slfl2) 
~3 = U(S2SlO, S2SIp) 

in $3S2S1 
6 ( r ,  e~ e2, p) = 

let S1 ---- G(F, el,01), new fl, 
S2 = ~4((S101,02), 
$3 --- O(S2S1F, e2, 03), 
$4 = ~[ ( $3S2S101, $3S2S1(~ ----+ p)) 
S5 = u ( s4&o3 ,  & & & & g )  

in $5S4S3S2S1 
Q(F, l e t  x = e l  i n  e2,p)  -- 

let $1 = 6 ( r ,  e l ,  Z), new/3 
$2 = G(S1F + x: Closs~r(Slfl), e2, 0), 
& = u ( & o ,  &&p) 

in $3S2S1 
~(F, fix f Ax.e, p) --- 

let F1- - - -F+f :O1 ,  

in 

(1) O>_p 

(G.1) 
(G.2) 

(~.3) 
(~.4) 
(6.5) 

(2) 01 _> fl --* p (G.6) 
(3) 02 _> S~(fl -~ p) (G.7) 

(4) 03 ~ S2Slf l  (~.8) 
((~.9) 

(~.10) 

(5) 0 _> Sip 
(G.11) 
(G.12) 
(G.13) 

(6) 01 _> p (G.14) 
S~ = Lt(fl~ --* g2,02), new g~, new/32, (7) 02 >_ O~ (G.15) 
$2 ---- ~ (SIF1  + X: S l ~ l , e ,  Slfl2) (G.16) 
$3 = ~/(~2S101, ~2S102, S2Slp )  (G.17) 
S3S2& 

Fig. 3 A Generalized Type Inference Algorithm G. All the  
type variables in fry(O) \fly(p) for each 0 _> p are new, 
every new type variable is distinct from each other, 
and the set New of new type variables introduced at 
each recursive call to ~(F, e, p) satisfies New A (ftv(F) U 
f~v(p)) = 0. 

constraint  is one t ha t  can be ins tant ia ted  to p by a subst i tu t ion t ha t  ranges over 
the type  variables occurr ing only in 8 (but  not  p): 

Definition 2.1 (0 > p) 
Type  0 is more general  (more relaxed) than  type  p, wr i t ten  0 _> p, if and only if 
there  exists a subst i tu t ion G such tha t  G0 = p and supp(G) = f t v ( O ) ~ ( p ) .  

For the variable case (6:2), the variable 's  type  F(x)  must  satisfy the cur- 
rent  type  constra int  p: /4(p, {fl /G)T).  Similarly for the constant  case (6.1). 

For the l ambda  expression case Ax.e with type  constraint  p, we first decide 
on the type  constra int  for the function 's  body  e. It  can be any type  tha t  is more 
relaxed than  the  range type  of p. We choose such a type  by relaxing p first, then 
picking up its range component  by unification: 

SI ---- U ( f l i  ~ fi2,0), new ill, f12, (1) 8 _> p. (6.3) 
Then we use the resulting range type $ifl2 as the constraint in type-checking 
the function's body: 

$2 = 6($1F + x: Sift1, e, Sifts). (6.4) 
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For example, if we choose the 0 to be a new type variable, then the unification 
(G.3) has no effect, hence e's type is inferred without any constraint. The other 
extreme is to choose 0 to be just p. Then e's type is inferred with p's range 
type, if p is a function type. After returning from the recursive call to e, we have 
to compensate for passing the relaxed type constraint. This last step is done 
by checking whether the relaxed constraint 0 can agree with the type that  its 
original p became: 

s3 = u(s2318, s2slp). (G.5) 
Consider type-checking an application expression el e2 with type con- 

straint p. First we decide on the type constraint for the function expression el. 
It can be any type that  is more relaxed than the most informative constraint 
/3 -~ p with/3 being a new type variable: 

Sl = 6 ( r ,  el,81), new/3, (2) 81 ~ /3 ~ p. (G.6) 

After the success of this recursive call, we can compensate, not necessarily com- 
pletely, for passing the relaxed type constraint 81. The compensation may be 
varied according to the constraint we wish to impose on the type of el. We can 
check the result type against the strongest constraint/3 --* p or we can check 
against nothing. Varying the degree of compensation amounts to choosing yet 
another more relaxed type 02 than $1 (/3 --, p) and by unifying it with the type 
that  01 became: 

$2 =~'~(S181,82), (3) 82 >_ Sl(/3 "-"+ p). (6.7) 

argument expression e2. It can be any type that  is more relaxed than the type 
tha t /3  became. Hence the next recursive call is: 

S3 = 6(S2Slr, e2, 83), (4) 83 _> $281/3. (6.8) 
The finalizing compensation for passing the relaxed type constraints to the two 
recursive calls is done by checking whether the first relaxed constraint 01 can 
agree with the type that  the original type/3  --* p became: 

$4 = b1( $3S2S181, $3S2S1(/3 ---+ p) ) (6.9) 

and by checking whether the other relaxed constraint 83 for the argument ex- 
pression can agree with what the original type/3  became: 

$5 : ~.~(S4S383, S4S3S2S1/3). (6.10) 

We don't  have to check for 82 because of its unification with 81 at line (G.7). 
Consider inferring the type of let-expression l e t  x=el i n  e2 with type 

constraint p. Because there is no context information about the type of the first 
expression el, there is no room for varying its type constraint: 

$1 = G(F, el,/3), new/3. (6.11) 

Next we decide on the type constraint for the body expression e2. It can be any 
type that is more relaxed than the given constraint p: 

$2 = ~ ( S I F  -~- x:  Closs1r(S1/3), e2, 0), (5) 8 _ Sip.  (6.12) 

Finally, we have to check whether the relaxed constraint agrees with the type 
that  the original constraint became: 
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G n : TypeEnv • Expr x Type ---* Subst 

6~(r ,  el e2, p) = 
let $1 = 6n(C, e2,~3), new 13 

S2 = g R ( S l r ,  e l ,01) ,  01 ~ Sl(•  ~ p) 
s3  = u ( s 2 o ~ , & s l ( ~  ~ p)) 

in $3S2S1 

({~.18) 
({~.19) 
(G.20) 

Fig. 4 A Generalized Type Inference Algorithm GR. For 
el e2, GR infers the type of e2 first, while G infers 
the type of el first. Other parts of GR are the same as 
those of G except that every recursive call in inference 
algorithm is GR, not G. 

$3 = H(  $20, S~Slp) .  (G.13) 

The case for recursive function f i x  f Ax.e is similar. First, we decide on 
the type constraint for f .  It can be any type that is more relaxed that  the given 
constraint p: 

l ~ l = F - ~ - f : O l ,  (6) 01_>]9. (~.14) 

Next we decide on what is expected for the type of Ax.e. We choose such a 
type by relaxing 01 first, then picking up its domain and range component by 
unification: 

$1 = ~ ' ~ ( ~ 1  -"+ 32, 82), new 31, ~2, (7) 02 _> 01. (G.15) 

Then we use the resulting range type $1/~2 as the constraint in type-checking 
the function body and the domain type $1~1 as the type of x: 

$2 --  {~(SIF1 + x :  S I ~ I ,  e, S1~2).  (G.16) 

Finally, we check whether the relaxed type constraints agrees with the type that  
the original constraint became: 

$3 = l t($2S101, $2S102, S2Slp) .  (~.17) 

We have another variant of generalized type inference algorithm G R in 
Fig. 4. For the function application el e2, G infers the type of argument 
expression e2 first, and then infers the type of function expression el. For other 
expressions, G n is the same as G except that  every recursive call in inference 
algorithm is G R, not G. 

Consider type-checking an application expression el e2 with type con- 
straint p. Because we do not have any context information about the type of 
the argument e2, there is no room for varying its type constraint: 

S1 = 6 R ( F ,  e2,/~), new ~. (G.18) 

Next we decide on the type constraint for the function expression el. It can be 
any type that  is more relaxed than the function type from ~ to given constraint 
p: 

$2 = QR(sIF, eI,SI), 81 _> SI(3 ---+/9). (G.19) 

Finally, we have to check whether the relaxed constraint agrees with the type 
that the original type/3 -+ p became: 
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(~.20) 

2.3 Instances 
By determining the relaxed constraints O's in G, we obtain various type- 

inference algorithms, including the standard algorithm W, the top-down algo- 
r i thm A/I, and the combinations of the two algorithms used in the SML/NJ 19) 
and OCamP 1) compiler systems. 

�9 14) is an instance of ~ where every oo is a new type variable. 
�9 ~4 is an instance of G where every/9 is not relaxed: for each case oo ~ p in 

G, we choose p for/9. 
�9 The OCaml's type inference algorithm*' is an instance of ~ where the/9 at 

(2) (line (G.6)) is a new type variable and other O's are not relaxed. 
�9 The SML/NJ 's  type inference algorithm .5 is an instance of G where every/9 

is a new type variable, except that/92 at (7) (line (G.15)) is the same with 
/91 at (6) (line (G.14)). 

�9 Other variations than the existing algorithms are also possible from ~. For 
example, consider an instance of G where the oo at (~.6) is a new function 
type (f~l --*/32 for new variables gl and/32) and other oo's are not relaxed. 
Let's call this instance algorithm 7-/. 

The oo's used in the five instances are summarized in Fig. 5. Please note that 
for SML/NJ's  algorithm, the relaxed constraint for the Ax.e case (line G.3) has 
two candidates, of which we choose one depending on whether the lambda is 
recursive (defined in f •  f Ax.e) or not. 

W 
SML/NJ's 
OCaml's 

7-/ 
A~ 

(1) (2) (3) (4) (5) (6) (7) 
0 01 02 03 0 01 02 

g3 Zl g2 g3 gl g3 Z4 
g3 gl g2 g3 gl g3 01 
p gl S l ( g ~ p )  S2Slg Sip p 01 
P ~ - - - ~ 2  S l (~ - - -*p )  S 2 S l g  S i p  p 01 
p Z - " + p  SI(Z-- -~p)  S 2 S l Z  S i p  p 01 

Fig. 5 Five Instances of Algorithm G. g i ' s  axe new type vari- 
ables introduced in the  0's. 

2.4 Every Instance is Sound and Complete 
Every instance of ~ is sound and complete with respect to the Hind- 

ley/Milner let-polymorphic type system. 

Theorem 2.1 (Soundness) 
Let e be an expression, F be a type environment, and p be a type. If G(F, e, p) 
succeeds with S, then SF ~- e : Sp. The theorem also holds for G R. 

.4 We figured out the  OCaml's  type inference algorithm by 'examining the source codes of 
OCaml 3.06.11) 

.5 We figured out the  SML/NYs type inference algorithm by examining the source codes of 
SML/NJ 110.0.7. TM 
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Proof 
See Appendix Section A1. 

Theorem 2.2 (Completeness) 
Let e be an expression, and let F be a type environment. If there exist a type p 
and a substitution P such that  P F  ~- e : Pp, then G(F, e, p) succeeds with S and 
there exists a substitution R such that  P[gew = (RS)~New where New is the set 
of new type variables used by G(F, e, p). The theorem also holds for GR. 

Proof 
See Appendix Section A2. �9 

Completeness means that  if an expression e has a type ~- that  satisfies a type 
constraint p (i.e., 3P.~-= Pp), then algorithm G for the expression with the 
constraint p succeeds with substitution S such that  the result type Sp subsumes 
r (i.e., the principality, 3R.T : R(Sp)). 

2.5 More Restraining Instances of G Detect Errors Sooner 
The information amount in the type constraints determines how early the 

algorithm detects type errors. Carrying less informative (restraining) constraints 
during type-checking sub-expressions makes it more probable that  the algorithm 
successfully infers their types with being less sensitive to the context, hence 
delays detecting type errors as such. 

We say that  an instance A of ~ is more restraining than another instance 
A' whenever A always passes more restraining constraints than A'. The "always" 
means that  the relaxing operations preserve the restraining order between the 
original constraints: for each pair of corresponding relaxations 0~ > p~ in A and 
0~ > p~ in A t for the same input, if Pi is more restraining than p'~ then so is 0~ 
than 0~. 

Definition 2.2 (A r- A t) 
Let A and A' be two instances of G. A is more restraining than A t, written 
A E A', if and only if for each pair of corresponding relaxations 0i _> p~ during 
A(F, e, p) and 0~ >_ p~ during A ' ( r ,  e, p), if p, = Rp~ for a substitution R then 
0~ = (R[~upp(p) U P)O'~ for a substitution P with supp(P) c_ ftv(Oti) \ftv(pti). We 

define A _ A ~ for the instances of G R in the same way. 

Lemma 2.1 
3/[ ~ 7/ F OCaml's ~- SML/NJ's  E_ W. 

Proof 
We prove A F- A ~ for each consecutive pair of the instance algorithms. For 
each corresponding pair of 0 > p in algorithm A and 0 t _> pt in algorithm A t 
with p = Rp' for a substitution R, we must find a substitution P such that 
0 : (R~supp(p) U P)Ot. 

* case A4 E 7/: They differ only at (2) (G.6). For f14, it is/3 --~ p > /3  --~ p. 
For 7/, it is/~t --,/3~ > / 3  t --~ pt. By the assumption, for a substitution R, 
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R(/3' --* p') = /3  --~ p. Thus (Rt{~ } U {p/~})(/3 '  -*/3~) = R/3' --~ p = t3 --* 
p. 

�9 case/-/ [- OCaml's: They differ only at (2) (_~G.6 l. For 7-/, it is 13 ---* /32 
/3 --+ p. For OCaml's algorithm, it is/3~ >/3  t p .  For any substitution R, 
(Ri{~,} U {~ -~ Z2/Z~})Z~ = Z -~/~2- 

�9 case ~)Caml's r- SML/NJ's: 

- case (1) at (G.3): For OCaml's, it is p > p. For SML/NJ's,  it is/3~ > p'. 
For any substitution R, (Rt{~i } u {p/~})/3~ = p. 

- case (2) at (~.6): For OCaml's, it is/3~ _> p. For SML/NJ's,  it is/3~ > p'. 
For any substitution R, (R[{zl} U {/31//3~})/3~ =/31. 

- case (3) at (G.7): For OCaml's, it is $1(/3 --+ p) > $1(/3 --~ p). For 
SML/NJ's,  it is /3~ > S~(/3' --+ p'). For any substitution R, (RJ{#~} U 

= p ) .  

- case (4) at (g.8): For OCamI's, it is $2S~/3 >_ S~$1/3. For SML/NJ's,  it is 
t : >  t t t �9 �9 _ s s z. For any subst,tut,on R, U {S S Z/ZD)Z = S S Z. 

- case (51 ,at (g.12): For OCaml's, it is Sip  > Sip. For SML/NJ's,  it is 
~3~ >_ S iP .  For any substitution R, (R{{~i} U{S1p//3~})/3~ = Sip. 

- case (6) at (g.14): For OCaml's, it is p > p. For SML/NJ's,  it is/3~ _> p'. 
For any substitution R, (R{{zi} U { p / ~ } ) ~  = p. 

- case (7) at (g.15): OCaml's and SML/NJ 's  are the same 0~ > 01. 

�9 case SML/NJ's  _ W: 

- case (7) at (g.15): For SML/NJ's,  it is 0~ :> 01. For W, it is/3~ ~ 0~. For 
any substitution R, (R[{~} U {0~//3~})~3~ = 01. 

- other cases: For SML/NJ's,  it is/3~ > T for a type T. For 142, it is/3~ > ~'~ 
for a type o-'. For any substitution R, (R{{z~} U {~3~//3~})/3~ =/3~. 

The time of detecting type errors can be formalized by the notion of call 
string. 1~ The call string of G(F, e, p) (written [G(F, e, p)]) is constructed by start- 
ing with the empty call string and appending a tuple (F1, el, pl) d (respectively, 
( r l ,  el, pl) u) whenever g ( r l ,  el, Pl) is called (respectively, returned). The d or 
u superscript indicates the downward or upward movement of the stack pointer 
when the inference algorithm is recursively called or returned. Note that  the 
call strings of every instance algorithm of g are always finite, because at most 
one call to the algorithm occurs for each sub-expression of the program, and 
that  the order of visiting sub-expressions of the input program in every instance 
algorithm's call string is the same. 

For two instance algorithms A and A' of g, if A is more restraining than 
A' then A stops earlier than A' if the input program is ill-typed: 

Theorem 2.3 
Let A and A' be instances of ~ such that  A z A', F0 be a type environ- 
ment, e0 be an expression, and P0 be a type. If lAir0, e0, p0)] has (F, e, p)~/~, 
then IA'(r0, e0, p0)~ has (F', e, p,)d/~, and there exists a substitution R such that  
RF'  ~- F and Rp' = p. The theorem also holds for G R. 
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Proof 
See Appendix Section A4. �9 

Because the orders of visiting sub-expressions during the execution of the two 
instance algorithms are the same, the above theorem implies that  if A is more 
restraining than A' then the length (the number of tuples) [IA(F0, e0,P0)]l of 
A's call string is shorter than or equal to that  I IA'(r0, e0, P0)~l of A s call string, 
i.e., A stops earlier than A r. 

By Lemma 2.1 and Theorem 2.3, the following order holds: 

Corollary 2.1 
Let F be a type environment, e be an expression and p be a type. 

I IA4(F, e, P)]I < [l[7-t(r, e, P)]I < I[OCaml's(r, e, p)l]l <- 
I ISML/NJ's(F, e, P)I[ -< I~W(r, e, p)~l 

where Is[ is the number of tuples in call string s. 

w Discussion 
We presented a generalized let-polymorphic type inference algorithm, from 

which, by changing its degree of context-sensitivity, various hybrid algorithms 
can be instantiated. We proved that  any of G's instances is sound and complete 
with respect to the Hindley/Milner let-polymorphic type system, and showed 
a condition on two instance algorithms so that  one algorithm should find type 
errors earlier than the other. The set of instances of G includes the two opposite 
algorithms (W and ,44) and is a superset of those hybrid algorithms used in the 
SML/NJ 19) and OCaml.11) 

Note that  the earliness condition cannot be a criterion to judge the al- 
gorithm's goodness in detecting the cause of type-errors. For any algorithm 
there exists an ill-typed program that  falsifies its type-error message. The earli- 
ness condition can just  be a criterion by which compiler developers can achieve 
different type-checking strategies. 

It is possible to further generalize G(F, e, p). We can relax not only the 
type constraint p but  also the type environment F. Note that  algorithm G 
passes the most informative type environment to sub-or-sibling expressions; it 
accumulates all substitutions in the type environment at its recursive calls. This 
is a top-down strategy; bottom-up approaches such as Bernstein and Stark's 3) 
and Chitil's ") use unconstrained type environments to check sub-or-sibling ex- 
pressions. Between these two opposing strategies lie hybrid ones. 12,2,) These 
variations can be formalized, similarly to G, by type-environment relaxing and 
posterior unification. 

In general settings l's'9,ls'1~'2~ where one views type inference algorithms 
as consisting of two separate stages - deriving constraints and solving them - the 
parameters in our generalized algorithm ~ can be considered a way to control 
when to solve the constraints within the Hindley/Milner type system. We delay 
the constraint-solving by passing relaxed constraints to recursive calls, and then 
solve the delayed constraints by applying posterior unifications. 
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Appendix A 

w Soundness Proof 

Theorem 2.1 (Soundness) 
Let e be an expression, F be a type environment, and p be a type. If  G(F, e, p) 
succeeds with S, then SF ~- e : Sp. The theorem also holds for G R. 

The proof uses Lemmas  A1.1-A1.3 and Theorem 1.1. 

Lemma AI.1 (Damas and Milner ~)) 
If F t- e : T, then SF F- e : ST. 

Lemlna A1.2 (Damas and Milner 8)) 
If  a ~- a '  then Sa  >-- Sc~'. 

Lemma A1.3 (Miiner 14>) 
Let S be a substitution, F be a type environment,  and r be a type. SClosr(T) = 
Closs,r(S'T), where S '  = S { ~ / ~ } ,  ~ =ftv(~-) \ f t v ( r )  and /~  is new. 

Proof of Theorem 2.1 
We prove by structural  induction on e, and we prove for G and GR simultaneously. 

�9 case () : S p = S e = L .  S o S F F -  () : S p b y ( C O N ) .  
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�9 c a s e  x : Sp = S{ f l /d}T -.< SF(x) by Lemma A1.2. So SF F- x : Sp by 
(VAR). 

�9 case ~x.e : By induction hypothesis, (0.4) implies that  S2S1F+x: S2Slfll ~- 
e:S~Slfl2.  By (FN), 

S~S1F ~- Ax.e : S2S1(~1 ~ ~2). 

By Lemma AI.1, we can apply $3 to both sides: 

Because SI(Zl --~ f12) = S1O by (G.3) and $3S2S19 = $3S2Slp by (0.5), 

$3S2S1F ~- Ax.e : $3S2Slp. 

�9 case el e2 for G : By induction, (0.6) implies S1F }- el : $181. By Lemma A1.1, 
we can apply $5S4S3S2 to both sides: 

$5S4S3S2S1F ~ el : ShS4SaS2&01.  

Because $4S3S2S101 = SaS3S2SI(fl ---* p) by (0.9) and $5S4S3S2S1Z = 
$5SAS303 by (0.10), 

ShS4S3S2SIF F el : S5S4S3(03 ~ S2Slp). (1) 

By induction, (G.8) implies S3S2S]F F e2 : $3~3. By Lemma A1A, we can 
apply $5S4 to both sides: 

ShS4S3S2SIF  ~- e2 : $5S4S3e~. (2) 
Hence by (APP), (1) and (2) imply 

ShS4S3S2S ,  F ~- el e2 : S h & S 3 S 2 S ~ p .  

�9 case el e2 for G R : By induction, (~.18) implies S1F ~- ee : Sift. By 
Lemma AI.1, we can apply $3S2 to both sides: 

S3S2S, F e e2 : S3S2SIZ. (3) 

By induction, (0.19) implies S2S1F ~- el : $28. By Lemma AI.1, we can 
apply $3 to both sides: 

S 3 S ~ S l r  ~- e~ : SaSh8. 

Because $3S20 = $3S2S1(Z ---+ p) by (0.20), 

s~s~s~r e e~ : &S~S~(Z -~ p). (4) 

Hence by (APP), (3) and (4) imply 

�9 case l e t  x=el • e2 : Let S~ -- S~{f~/d}, where d --fro(Sift) \fn~(S~F), 
are new type variables, and fl is the new type variable introduced at (Q.11). 
By induction, (~.11) implies SIF ~- el : Sift. By Lemma AI.1, we can apply 
S~ to both sides: 

By induction, (0.12) implies 

S2S~r + x: S2Closs,r(Sl/3) F e2 : S2O. (6) 
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Note  t ha t  S2S1F = S~S1F because S~ differs f rom S~ only on non-free vari- 
ables of  S1F, and  tha t  S~Closslr(S13) = Closs~slr(S~S13) by L e m m a  A1.3. 
Thus  (6) is 

S~S1F + x: Closs~slr(S~S13) F- e2:  $20. (7) 

Hence by (LET) ,  (5) and  (7) imply  S~S1F F- l e t  x=el i n  e2 : S20; t h a t  is, 

S2SIF  ~- l e t  x=el i n  e2 : $20. 

By L e m m a  AI .1 ,  we can apply  $3 to b o t h  sides: 

S3S2S1F F- l e t  x=el i n  e2 : $3S~0. 

Because $3S20 : $3S2Slp by (6.13),  

S3S2S1F F- l e t  X=el i n  e2 : $3S2Slp.  

�9 case f i x  f Ax.e : By  induction,  (6.16) implies $2SIF1 + x:  $2S131 }- e : 
$2S132. By (FN),  

$2•1F1 [- Ax.e : $2S1(31 --+ 32)- 

By L e m m a  AI .1 ,  we can apply  $3 to bo th  sides: 

$382S1F1 ~- Ax.e : $3S2S1(31 ---+ 32). 

Because $1(31 ~ 32) = $102 by (6.15),  

SaSeSIF1 F- Ax.e : $3SeS102. 

Because F1 = F + f : 01 by (6.14), 

$3S2SIF  -~- f :  ~3S2S101 }-- Ax.c : $3S2S102 . 

Because $3S2S101 = $3S~$102 = $3S2Slp by (6.17), 

$3S2SIF + f :  S3S2S, p }- Ax.e : S 3 S 2 S I p .  

Hence by (FIX) ,  

SaS2S1F }- f i x  f Ax.e : S3S2SIp. 

w Completeness  Proof  

Theorem 2.2 (Completeness) 
Let e be  an expression,  and let F be  a type  environment .  I f  there  exist a type  p 
and a subs t i tu t ion  P such t ha t  P F  ~- e : Pp, then  G(F, e, p) succeeds with S and 
there exists a subs t i tu t ion  R such t h a t  P~gew = (RS)~gew where  New is the set 
of  new type  var iables  used by G(F, e, p). The  theorem also holds for 6 R. 

The  comple teness  p roof  uses L e m m a s  A2.1-A2.5.  

Lemma A2.1 (Lee and Yi 10)) 
Let S be  a subs t i tu t ion ,  F be  a type  envi ronment ,  and  T be a type.  Then  
SClosr(T) ~ Clossr(ST). 

Lemma A2.2 (Damas and Milner ~)) 
Let F and F t be  t ype  envi ronments  such t h a t  F >- F t. I f  F '  ~- e : 7, t hen  F ~- e : T. 
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Lemma A2.3 (Milner 14)) 
Let R and S be substitutions and T be a type. Then 

�9 i tv (RS)  C_ i tv(R) U itv(S) and 
�9 fn , (ST)  c_ftv(T) U itv(S). 

Lemma A2.4 
If S = G(F, e, p) then itv(S) c_ fry(F) Uflv(p) U New, where New is the set of new 
type variables used by ~(F, e, p). The lemma also hols for G n. 

Proof  
See Appendix Section A3. �9 

Lemma A2.5 (Lee and Yi lo)) 
If itv(S) n Y = 0, then (RS)[  v = RIGS.  

Proof  of  Theorem 2.2 
We prove by structural induction on e, and we prove for ~ and G R simultaneously. 
For a rigorous t reatment  of new type variables, we assume that  every new type 
variable used throughout algorithm ~ is distinct from each other, and that  the 
set New of new type variables used by each call ~(F, e, p) satisfies N e w N  (fry(F) U 
ftv(p)) --- 0. Moreover, let us rephrase the part  of the algorithm definition that 
whenever we use 0 _> p in ~, the substitution G for GO = p is such that  supp(G) = 
fly(0) \ftv(p) and has only new type variables. 

�9 case ( ) and x : The same as the proof for A/[ in Lee and Yi's.l~ 
�9 ease Ax.e : Let the given judgment be P F  F- Ax.e : T1 --+ T2 where T1 --* 

'7"2 -~- Pp,  and New = {ill, f12} U supp(G) U New1 where fll and f12 are new 
type variables used at (G.3), G is the substitution for 0 _> p at (~.3), and 
New1 is the set of new type variables used by G(SIF + x: Sift1, e, $1fl2) at 

First, we prove the unification/d(fll --* f12, 8) at (~.3) succeeds. Let P~ = 
(PG)I{&,fl2} U {T1/fll,  T2/f12}. Then P '  unifies fll --~ f12 and 0 because 

P'O = PGO because the new ill, f12 r 
= P p  by the definition of G 
= T1 --~ T2 by the assumption 
= P'( f l l  -'-+ f12) by the definition of P' .  

Thus by Theorem 1.1, the unification at (G.3) succeeds with $1 such that  
for a substitution R1, 

R1S1 = P' .  (8) 

By the (FN) rule, the given judgment implies 

P F + x :  T1 F- e : T2. (9) 

TO apply induction to G(SIF + x: Sift1, e, $1fl2) at (G.4) and (9), we must 
prove that  there exists a substitution P1 such that  7-2 = PI(S l f l2)  and 
P F  + x:  T1 = P I ( S I F  + x: Sift1). Such P1 is R1 at (8) because 

RI(S l f l2 )  = P'fl2 by(S)  
= T2 by the definition of P~ 
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RI(S1F + x: S131) 
=p ' ( r+x :  31) by (8) 
= P G F  + x: T1 because the new/~1,j32 Cftv(F) 
= PF  + x: 71 because supp(G) Nfiv(F) = O. 

Thus by induction, Q(S1F + x: Sift1, e, $1fl2) at (Q.4) succeeds with $2 such 
that for a substitution R2, 

(R2S2)~New~ = Rl~New~. (10) 

Note that 
itv(S1) C_ {/31,~32} U fry(0) by Theorem 1.1 

{[31,/32} Uftv(p) U supp(G) 
because supp(G) =ftv(O) \ fry(p),  and thus by the definition of G, 

New1 n itv(S1) = 0. (11) 

Then 

(R~S2SI)INe~ = (R2S2)~Newa S1 

= Rl~Newl S1 

= (R lS l )~Ne~a  

= P'~Newl 

by Lemma A2.5 and (11) 

by (10) 

by Lemma A2.5 and (11) 

by (8). (12) 

Thus the unification at (G.5) succeeds with $3 such that for a substitution 
R3, 

R3S3 = R2. (13) 

Hence 6(F, Ax.e,p) succeeds with $3S2S1, and (R3S3S2S1)[New = P[gew 
because 

(R3S3S2SI)~Ne~ 
= (R2S2S1)~New by (13) 
= P'tNe  by (12) 
= because s .pp(O)U{Zl ,Z2} C_ New. 

�9 ease el e2 f o r  ~ : Let the given judgment be PF F- el e2 : Pp, and New = 
{~} Usupp(G1) Usupp(G2) Usupp(G3) UNew 1 UNew2, where/3 is the new type 
variable used at (~.6), G1, G2 and G3 are respectively the substitutions for 
01 ~ ~ ~ p a t  (~.6), 02 ~ $1(~ ~ p) at (G.7), and 03 >_ S2S lg  at (~.8), 
and New1 and News are respectively the sets of the new type variables used 
by G(F, el, 01) at (G.6) and Q(S2S1F, e2, 03) at (G.8). 

by (12) and because fry(0) n New1 = O 
because the new ~1, ~2 ~f tv(0)  
by the definition of G 
because fly(p) n supp(G) = O 
because the new/31, g2 r  
by (12) and because fry(p) n New1 = O. 

R2(S~.SIO) 
= P'O 
= PGO 
= P p  
= P G p  
= p ' p  

= R2(S2SIp) 

Now we prove the unification U(S2S18, S2Slp) at (0.5) succeeds. R~ unifies 
$2S10 and S2Slp  because 
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By the (APP) rule, there exists a type T such that 

P F  ~- el : 7 ~ P p  

and 

PF F- e2 : T. 

(14) 

(15) 
First, we prove 6(r ,  ca ,  01) at (6.6) succeeds by induction. Let P '  = P~{Z} [J 
{T/~}. Then 

P'GI01 = P'(t3 ~ p) by the definition of G1 
= T --* P p  because the new/3 fLftv(p) 

and P'alr = P F  because fry(F) n (supp(G1) U {/3}) = O. Hence, applying 
induction to 6(F, el,01) at (6.6) and (14), there exists a substitution R1 
such that 

(RiS1) tNewl  = (ptG1)~Newl. (16) 

Then RIG2 unifies SaO1 and 02 at (6.7) because, by noting that 

f t V ( S I 0 1 )  ("1 supp(G2) 

c (itv(S1) uftv(01)) nsupp(G2) by Lemma A2.a 

_c (ftv(F) U New1 Uftv(01)) n supp(G2) by Lemma A2.4 

=0 ,  

RIG2(S101)  
= R I S 1 0 1  

= P'GIO1 
= P'(t3 ~ p) 
= P 'G1 (/3 -~ p) 

= R1 $1 (/~ --~ p) 
= R1G2(02) 

by (17) 
by (16) and because fry(01) A New1 = 0 
by the definition of G1 
because ftv(13 ---* p) F1 supp( G1) = 0 
by (16) and because ftv(/3 ~ p) NNeWl  = 0 
by the definition of G2. 

(17) 

= (P'al)[, ,pp(a2)ug~wl (18) 

In order to apply induction to 6($2S1F, e2, 03) at (6.8) and (15), we must 
prove that there exists a substitution P1 such that P I ( S 2 S I F )  = P F  and 
P103 = T. Such P1 is R2G3. First, note that, by the definition of 6, 

supp(Ga) nftv(S2S1V) = O (19) 

because 
ftv(S2S1V) 
c_ itv(S2)uitv(S1)Uftv(r) by Lemma A2.3 
c_ ftv(02) U fry(01 ) UNeWl U fry(F) by Theorem 1.1 and Lemma A2.4. 

because supp(G2) A itv(S1) = 0 

by Lemma A2.4 

by (16). 

Thus the unification at (6.7) succeeds with $2 such that for a substitution 
R2, R2S2 = R1G2. Then 

( R2S~Sl )~,upp( C~)uN~Wl 
= (R1G2S1)~supp(e2)ugewl 

= (RI Sl)Isupp(Gz)UNewl 



Proofs of a Set of Hybrid Let-Polymorphic Type Inference Algorithms 21 

Thus 

Second, 

R2G3 (S2SIF) 
= R2S2SaF by (19) 
= P ' G I F  by (18) and 

because f ry ( r )  n (supp(G2) u New1) = 0 
= P r  because f t v ( r )  n ({/3} U supp(G~))  = O. 

R2G3(03) 
= R2S2S1/3 
= P'G1/3 
= p ' / 3  

: T  

by the definition of G3 
by (18) and because/3 r supp(G2) tA New1 
because/3 r supp(G1) 
by the definition of P'.  

Thus by induction, (~.8) succeeds with $3 such that for a substitution R3, 

(RsS3)[yew~ = (R2C3)[yew2. (20) 

Moreover, note that 

(RsSS)~New2u~.. .(c~) = R~tNew~s. . . (C~)"  (21) 

Then R3 unifies $3S2S101 and $3S2S1(/3 -'+ p) at (G.9) because 
R3S3S2S101 

= R2S2S101 

-~ P'GIO1 

= P'(/3 ~ p) 
= P ' G I ( / 3  ~ p) 
= R2s2s1(/3 -~ p) 

= R 3 S a S 2 S I ( / 3  ~ p) 

by (21) and 
because ftv(O1) N (Ngw 2 Usupp(G3) ) = 0 
by (18) and 
because ftv(01) N ( gewl  U supp( G2 ) ) = 0 
by the definition of G1 
because ftv(/3---* p) nsupp( G1) = 0 
by (18) and 
becauseftv(/3 ~ p) n (New1 tA supp (G2)) = 0 
by (21) and 
because ftv(/3 ~ p) N (New2 Usupp( G3 ) ) = ~). 

Thus the unification at (G.9) 
R4, 

R4S4 -- R3. 

Finally, R4 unifies $4S303 and SaS3S2Sa/3 at (G.10) because 
R4(S4Sses) 
= R3Sa03 
-~ R2G303 
= R2S2S1/3 
= R4($4s3s2s1/3)  

succeeds with $4 such that for a substitution 

(22) 

Thus the unification at (G.10) succeeds with $5 such that for a substitution 
Rb, 

RbS5 = R4. (23) 

Hence G(F, el e2, p) succeeds with $5S4S3S2S1. 

by (22) 
by (20) and becausefiv(03) n New2 = 0 
by the definition of G3 
by (21) and (22), and 
because t3 ~ New2 U supp(G3). 
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Now we prove the rest that ( R s S s S 4 S 3 S 2 S 1 ) ~ N e  w -~- Pc~N~ ~ Note that, 
by Lemma A2.3 and A2.4 and Theorem 1.1, itv(S2S1) = j . . ~ i  ~) Uftv(01) U 
ftv(02) U New1, hence by the definition of G, 

itv(S2S1) n (New2 U supp(G3) ) = 0. (24) 

Therefore 
( R5S5S4S3S2S1)~  Ne w 
= (R4S4S3S2S1)~New by (23) 
= (R3S3S2S1)tNew by (22) 
= ((R3S3)~gew2us,pp(a3)S2S1)[gew by Lemma A2.5 and (24) 

= (R2[gew2usupp(G3)S2S1)lNew by (21) 
= (R2S2S1)~New by Lemma A2.5 and (24) 
= (PtG1)~New by (18) 
= P[New because ({/3} U supp(G1)) c_ New. 

�9 case el e2 for G R : 
Let the given judgment be P r  e el e2 : Pp, and New = {/3} U supp(G) U 
New1 U New2, where /3 is the new type variable used at (G.18), G is the 
substitution for 0 > $1(/3 --+ p) at (G.19), and Newa and New2 are respec- 
tively the sets of the new type variables used by G(F, e2,/3) at (G.18) and 
G ( & r ,  e l , 0 )  at (G.19). 
By the (APP) rule, there exists a type ~- such that 

P F  F el : ~- --* Pp (25) 

and 

P r  ~- e2 : r. (26) 

First, we prove that  G(F,e~,/3) at (G.18) succeeds by induction. Let P ' =  
P~{Z} U {T//3}. Then P'~  = T and P T  = P F  because/3 C fry(F). Hence by 
induction, G(F, e2,/3) at (G.18) and (26) imply that there exists a substitu- 
tion R1 such that  

(R1Sl)[Newa = Pt~Newl" (27) 

Moreover, note that  

(nlSl )~{~3}uNewl  = P~{Z}UNewl. (28) 

In order to apply induction to 6($1F, e~, 0) at (G.19) and (25), we must find 
a substitution P1 such that  P1S1F = P F  and PIO = 7 ---, Pp. Such P1 is 
RIG because 

RIG(S1F)  
= RIS1F 

= P F  
and 

because supp(G) Nftv(S1F) = 0 
by Lemma A2.3 and A2.4 
by (28) and because ftv(F) n ({/3} ONewl)  = O. 
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Rla(e) 
= R1S1(13 --* p) by the definition of G 
= P'(/3 --* p) by (27) and becausefiv(t3 --* p) A g e w l  = 0 
= T --* P ' p  by the definition of p i  
= ~- --* P p  because f~ r 

Then by induction, (~.19) succeeds with $2 such that for a substitution R2, 

(R2S2)~gew2 = (RIG)[New2. (29) 

Moreover, note that 

('R2S2)tsupp(G)ugew2 = Rltsupp(G)Ugew2" (30) 

Then R2 unifies $20 and $2S1(/3 --~ p) at (G.20) because 
R2SeO 
= R ae by (29) and fry(9) n New2 = 0 
= RISI(•  --+ p) by the definition of G 
= R2S2S1(~  ~ p) by (30) and because, by Lemma A2.3 and A2.4, 

jalv(S2Sl(fl  m p ) )  ('1 (supp(a) N New2) = O. 
Thus the unification at (G.20) succeeds with $3 such that for a substitution 
R3, 

R3S3 = R2. (31) 

Hence G(F, el e2, p) succeeds with $3S2S1. 
Now we prove the rest that (R3S3S2S1)~Ne~ = PtNe~" Note that, by 
Lemma A2.4, itv(S1) c_ ftv(F) U {~} U New1, hence by the definition of 
G, 

itv(S1) N (supp(G) U New2) = 0. (32) 

Therefore 
(R3S3S2S1)tNew 
= (R2S2S1)~Ne~ by (31) 
= ((R2S2)~supp(a)uye~2S1)~yew by Lemma A2.5 and (32) 
= (Rl[supp(G)ugew2S1)~gew by (30) 
= (RIS1)~New by Lemma A2.5 and (32) 
= P~New by (28). 

�9 ease :Let x=el  i n  e2 : Let the given judgment be P F  F- l e t  x=el  • e2 : Pp ,  
and New = {j3) 12 supp(G) 12 New1 t2 New2, where j3 is the new type variable 
introduced at (G.11), G is the substitution for 0 > S i p  at (G.12), and New1 
and New2 are respectively the sets of new type variables used by G(F, el, fl) 
at (G.11) and G(SIF + x: Closslr(S1/3) ,e2,0)  at (G.12). 
By the (LET) rule, there exists a type T such that 

P F  ~- el : T (33) 

and 

P F  + x:  Clospr(T) ~- e2 : Pp .  (34) 



24 H. Eo, O. Lee and K. Yi 

Let P '  = P[{Z} U {7//3}. Then P'/3 = 7- and P'F = PF  because/3 Cftv(F). 
Hence by induction, 6(F, el,/3) at (6.11) and (33) imply that there exists a 
substitution R1 such that 

(R1S1)~Newl = P'[New~" (35) 

Moreover, 

(RlSl)[{,O}UNeWl : P[{13}UNeWl" (36) 

Note that 
R1G(SIF) 
= RISIF because supp(G) Nftv(SiF) = 0 

by Lemma A2.3 and A2.4 
= PV by (36) and because~(V)  n ({/3} UNewl) = O, 

and 
RI G( Clos s lr(  S1/3) ) 

ClosR1Gs1F( RI GSI/3) 
= ClospF(R1S1/3) 

= Clospr(P'/3) 
= CIospF(T) 

by Lemma A2.1 
because supp(G) Aftv(S1/3) = 0 
by Lemma A2.3 and A2.4 
by (35) and because/3 ~ New1 
by the definition of P~; 

that is, R1G(S1F + x: Closslr(S1/3)) ~- PF + x: Clospr('r). Then by 
Lemma A2.2 and (34), 

R1G(S1F + x: Closslr(Sl~3)) ~- e2 : Pp. (37) 

In order to apply induction to 6 (SIF + x: Closs~ v ($1/3), e2, O) at (6.12) and 
(37), we have to prove that R1GO = Pp: 

R 1 G ( 0 )  

= R I S l p  by the definition of G 
= Pp by (36) and because ftv(p) A ({/3} UNewl) = 0. 

Thus by induction, 6($1F + x: Closslr(S1/3), e2, 0) at (6.12) succeeds with 
$2 such that for a substitution R2, 

(R2S2)[g~w2 = (RIG)]N~w~. (38) 

Moreover, note that 

(RZS2)~supp(G)UNew2 : Rl~supp(G)UNew2" (39) 

Then R2 unifies $20 and S~Slp at (6.13) because 
R2($20) 
= RxGO by (38) and becauseftv(0) •New2 = 0 
= R1Slp by the definition of G 
= R2(S2Slp) by (39) and because, by Lemma A2.3 and A2.4, 

f t v ( S l p )  CI (supp(G) U New2) = O. 
Thus the unification at (6.13) succeeds with $3 such that for a substitution 
R3, 

RaSa = R2. (40) 
Hence, 6(F, l e t  x=el i n  e2, p) succeeds with $3S2S1. 
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Now we prove the rest that  (RsSsS2S1)tNew = P~New" Note that,  by 
Lemma A2.4, itv(S1) c_ ftv(F) (3 {/9} U New1, hence by the definition of 
G, 

itv(S1) N (supp(G) [2 New2) ---- O. (41) 

Therefore 
(R3S3S2S1)~New 
= (R2S2S1)[New by (40) 
= ( (R2S2) [~u. . (C)uNew2Sl ) [Now by Lemma A2.5 and (41) 
= (Rl~s,pp(V)ugew2S1)~g~w by (39) 
= (R1S1)~gew by Lemma A2.5 and (41) 
= Ptg~w by (36). 

�9 case f i x  f Ax.e : Let the given judgment be PF  }- f i x  f Ax.e : Pp  where 
Pp = T1 "-+ 7"2 and New = {/91,/32} t3 supp(G1) U supp(G2) t3 New' where/91 
and/92 are new type variables used at (~.15), G1 and G2 are substitutions 
for 01 _> p at (G.14) and 02 _> 01 at (G.15), and New' is the set of new type 
variables used by ~;(S1F1 + x:  $1/91, e, S1~2) at (G.15). 
By the (FIX) rule, P F + f :  Pp ~- Ax.e: Pp. Because (supp(G1)Usupp(G2))n 
fry(F) = O and p = G101 : GIG202, 

PGIG2F + f :  PG101 ~- Ax.e : PG1G202. 

Because F1 -- F + f : 01 by (G.14), and ftv(01) nsupp(G2) = O, 

PG1G2F1 ~- Ax.e : PG1G202. (42) 

First, we prove the unification H(~I ~ /92,02) at (G.15) succeeds. Let 
P'  = (PG1G2)t{~,~2} U {7-1/~1, ~'2/~2}. Then P '  unifies/91 --~/92 and 02 
because 

P'02 = PGIG202 

= PGlOl 

= Pp  

= T1---..). T 2  

---- P ' ( ]91 ---+ Z2) 

because the new j31,/92 Cftv(02) 

by the definition of G2 

by the definition of G1 

by the assumption 
by the definition of P ' .  

(43) 

Thus by Theorem 1.1, the unification at (G.15) succeeds with $1 such that  
for a substitution R1, 

R1S1 = P' .  (44) 

By the (FN) rule and because PG1G202 = T1 --+ T2 by (43), (42) implies 

P G I G 2 F 1  + x :  T 1 ~- e : T  2. (45) 

To apply induction to G(S1FI + x: $1/31,e, $1~2) at (G.16) and (45), we 
must prove that  there exists a substitution P1 such that  T2 = P1 ($1/92) and 
PGIG2F1 + x: T1 = PI(S1F1 + x:  $1~1). Such Pl  is R1 at (44) because 

R1(S1/92)  = P'/92 b y ( 4 4 )  

= v2 by the definition of P '  
and 



26 H. Eo, O. Lee and K. Yi 

RI(SIF1 -Fx: $1/31) 
= P'(F1 + x:/31) by (44) 
= PGIG2F1 + x: ~-1 because the new/31,/32 Cftv(F1). 

Thus by induction, G(SIF1 + x: $1/31, e, $1/32) at (~.16) succeeds with $2 
such that for a substitution R2, 

(R2S2)INew, = Rl~New'" (46) 
Note that, because supp(G1) =ftv(01)Vtv(p) and supp(G2) =ftv(O2)~etv(01), 

itv(&) 
_C {/31,/32} Ufiv(02) by Theorem 1.1 
__C {/31,/32} uf-tv(O1) U supp(G2) 
_c {/31,/32} u fry(p) u supp(G1) U supp(G2) 

and thus by the definition of ~, 

Then 

New' 71 itv(S1) = 0. (47) 

(R2S2S1)~New, = (R2S2)INew,~I 

= RltNew,S1 

= (Rl~l ) tNew'  
= P ' IN~w,  (48) 

Now we prove the unification LI(S2SI01, $2S102, S2Slp) at (G.16) succeeds. 
R2 unifies S2Sa01, $2S102, and S2Slp  because 

and 

R2($2S102) 
= P'02 

= PGIG202 

= PGI01 

= PG1G201 

= P'01 

= R2($28101)  

by Lemma A2.5 and (47) 
by (46) 
by Lemma A2.5 and (47) 
by (44). 

by (48) and because fry(02) ;q New' = 0 

because the new/31,/32 r 

by the definition of G2 

because fry(01) n supp( G2 ) = 0 

because the new/31,/32 C fry(01) 

by (48) and because ftv(01) ClNew' = 0. 

R2($2S102) 
= P p  
= P G l p  
= PG1G2p 
= p ' p  

= R2(S2Slp)  

by (49) and the definition of G1 
because ftv(p) rq supp( G1) = 0 
because fn,(p) N supp(G2) = 0 
because the new/31,/32 Of fry(p) 
by (48) and because ftv(p) cq New' = 0. 

(49) 

Thus the unification at (G.16) succeeds with $3 such that for a substitution 
R3, 

R3S3 = R2. (50) 

Hence G(F, fJ_x f Ax.e,p) succeeds with $3S2S1, and (R3S3S2S1)~New = 
P~gew because 
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(R3S3S2S1)[New 
=(R2S2S1)tNew by (50) 
=P'~uew by (48) 
= P[New because supp (G1) U supp(G2) U {/31, f12 } C New. 

w Proof of Lemma A2.4 
We prove by structural induction on e. 

�9 case () : By Theorem 1.1, itv(H(p, ~)) C ftv(p) Uftv(~) =ftv(p). 
�9 c a s e  x �9 

itv(U(p, {fi/~}7)) 
C_ ftv(p) Uftv({fi/d}T) by Theorem 1.1 
c f~(p) u ~ ( ~ )  \ d) u j 
= f~(p) uf~(v~.~) u 
=f~(p) uf~(r(x))  u j because r(x) = V~.~ 
c f~(p) u f~ ( r )  u j .  

Note that  fi is the set of new type variables used by G(F, x, p). 
�9 case Ax.e : Let G be the substitution for 0 _> p at (G.3). Note that all the 

type variables in supp(G) are new by definition. 
itv(S1) 
C frY(0) Uft'y(/31 ----4/32) by Theorem 1.1 
C_ftv(p) U supp(G) U {/31,/32} because supp(G) =fry(O) \ftv(p), 
itv(S2) 
c_ftv(SiF) U fry(S1/31) uftv(Sx/32) UNewl by induction 
c_ itv(S1) U fry(F) u {/31,/32} UNewl by Lemma A2.3 

where New1 is the set of new type variables used by ~ ($1F + x : $1/31, e, $1/32) 
at (G.4), and 

itv(S3) 
C_ ftv( S2S10) U ftv( S2Slp) by Theorem 1.1 
C itv(S2) U itv(Sa) Uftv(0) Uftv(p) by Lemma A2.3 
C_ itv(S2) U itv(Sl) U supp(G) Uftv(p). 

Therefore itv(SaS2S1) c_ ftv(F) Uftv(p) U (supp(G) U {/31,/32} U New1). Note 
that  supp(G) U {/31,/32} U NeWl is the set of new type variables used by 
G(F, ~z.e, p). 

Other cases can be similarly proven. �9 

w Relative Earliness Proof 

T h e o r e m  2 . 3  

Let A and A ~ be instances of G such that  A G A ~, F0 be a type environ- 
ment, e0 be an expression, and P0 be a type. If IA(F0, e0, P0)l has (F, e, p)d/~, 
then [A~(F0, e0, P0)l has (F', e, pt)d/u and there exists a substitution R such that  
RF t >- F and Rp ~ = p. The theorem also holds for ~R. 
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The proof of Theorem 2.3 uses Lemmas A4.1 and A4.2. 

Lemma A4.1 (Lee and Yi lo)) 
If F ~- F' then Closr(r )  ~- Closr,(T). 

Lemma A4.2 
Let A and A'  be instances of G, F and F' be type environments, and p and p' be 
types such that  RF'  ~- F and Rp'  = p for a substitution R. If A(F, e, p) succeeds 
with S, then A'(F',  e, p') succeeds with S' and there exists a substitution R' such 
that (R'S')~Ne w = (SR)~Ne w where New is the set of new type variables used by 
A'(F', e, p'). The lemma also holds for G R. 

Proof 
Because A(F, e, p) succeeds with S, by the soundness of A, 

S F  F- e : Sp.  

By Lemma A1.2, S R F '  ~- S F  and Sp  = S R p ' .  Thus by Lemma A2.2, 

S R F '  F- e : SRp ' .  

By the completeness of X ,  A'(F', e, p') succeeds with S' and there exists a sub- 
stitution R'  such that  

(R'S ' )~Ne w = (SR)~New. 

Proof  of  Theorem 2.3 
We prove by induction on the length of the prefixes of IA(Fo, eo, Po)], and we 
prove for G and GR simultaneously. We add superscript prime (') to all names 
used by A'(Fo, eo, Po). 

�9 base ease: When the prefixes are of length 1, they represent the initial calls 
where e is eo. Then the identity substitution R satisfies RFo ~- Fo and 
Rpo = Po. 

Followings are inductive cases. We first prove for the case that  the string ends 
with a return: (Fo, eo, po) d . . .  (F, e, p)U. 

�9 case of  the return from e: The case means that  IA(Fo, eo, Po)l has 

(r, e, p)d. . .  (r, e, 
By induction hypothesis, IA'(Fo, eo, Po)l has (F', e, p,)d and there exists a 
substitution R such that  R p  ~ = p and RF'  >-- F. Then by Lemma A4.2, 
A'(F', e, p') succeeds; that  is, ~A'(Fo, eo, Po)] has (F', e, p')~. 

Now we prove the cases that  the string ends with a call: (Fo, eo, Po) �9 "" (F, e, p)d. 

�9 case e in ;~x.e: that  is, IA(F0, e0, P0)~ has 

( r ,  ,~x.e, p ) d ( S l F  Jr- x :  S1/~I, e, S1~2) d 

where $1 =/g(f i l  ~ ~32, 0) at (G.3), and fll and f12 are the new type variables 
at (~.3). By induction, ~A'(r0, e0, P0)~ has (F', Ax.e, p,)d and there exists a 
substitution R such that  Rp'  = p and 

RF' >- r. (51) 
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In order for A'(F' ,  Ax.e, p') to have a call for e, the unification at (g.3) must 
hold. Because A ~- A', there exists a substitution P such that 

0 = (R[s,pp(p) U P)O' (52) 

and supp(P) C_ ftv(0') \ f i r ( / ) .  Note that by the definition of G, 

supp(P) nf~(r ' )  = O. (53) 

Let R0 = R~{~L~Du.,,pp(p) U P U {/31/fll,/32/fll} where/31 and/31 are the 
new type variables of A' introduced at (G.3). Then SIR0 unifies/3~ -~/31 
and O' at (G.3) because 

SIRo(O') 
= Sl(R[supp(p) U P)O' 
= S I P  
= $1( /31 - > / 3 2 )  

= S1Ro(9~ -~/31) 

because the new/~,/31 ~ftv(0') 
by (52) 
by (g.3) 
by the definition of Ro. 

Thus the unification of A' at (g.3) succeeds with S~, hence [A'(F0, co, p0)] 
has (S~F' + x :  S1/31 , e,  S l Z 2 )  . 
Now we prove the rest that there exists a substitution R'  such that R ' (S~F '+ 
x: S~/3~) >- (SIF + z: $1t31) and R'(S~/31) = $1/32. Because (G.3) succeeds 
with S1, by Theorem 1.1, there exists a substitution R1 such that 

SIRo : RIS~.  (54) 

Then such R'  is R1 because 
RI(S~F'  + x: S1/31)' ' 
= S l R o ( F '  + x:  3~) by (54) 
= Sl((R[supp(p) U P)F '  + x: Ro/3~) 

because the new ~31,/32 r  

and 

= S I ( R F '  +x: /31)  
>- S I ( F  + x: /31) 

] ! ! 
R I ( S I ~ )  = S1Ro/32 

= S i f t2  

by (53) and the definition of Ro 
by (51) and Lemma A1.2 

by (54) 
by the definition of Ro. 

* case  e in  e e2 for  ins tances  o f  g:  that  is, [A(Fo, co, Po)] has 
(r, e e2, p / ( r ,  e, 81) d 

where 01 is the type relaxed from/3 --* p at (G.8). By induction hypothesis, 
IA'(F0, e0, Po)l has (F', e e2, p,)d and there exists a substitution R such that 
Rp' = p and 

RF'  >- F. (55) 

Thus by the definition of G, [A'(ro, e0, po)] has (F', e, 0~) d where 0~ is the 
type relaxed from/3' -~ / at (g.8). 
Now we prove the rest. Let Ro : R~{~,} U {/3//3'} where /3 and /3' are 
respectively the new type variables of A and A' at (g.6). Because A _Z A' 
and 

Ro(/3' ---*/) = /3 ---+ Rp'  because the new/3'  Cftr(p') 
= / 3 ~ p ,  

there exists a substitution P such that 
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(ROtsupp(p) U P)O' 1 = 01 

and supp(P) C_ ftv(0~) \f-tv(g' --+ p'). Note that supp(P) Nftv(F') = 0 by the 
definition of G. Thus 

(Roi..pp(y) u P ) ( r ' )  
= RF '  because ({g} U supp(P)) Aftv(F') = q) 
~- F by (55). 

�9 c a s e  e i n  e l  e f o r  i n s t a n c e s  o f  G: that  is, [A(Fo, co, Po)] has 

(F, el e, p)d(F, el ,  01) d ' ' '  (F, el, 01)u(S2SIF, e, 03) d 
where 01, 02, and 0a are respectively the relaxed types of A at (G.6), (G.7), 
and (G.8), $1 = G(F, el,01) at (G.6), and $2 = U($101,02) at (G.7). 
By induction hypothesis, IA' ( ro ,  co, po)] has (F ,  ea e, p ) and there exists 
a substitution R such that Rp' = p and 

RF'  >- V. (56) 

In order for A'(F' ,  el e, p') to have a call for e, its call for el at (6.6) must 
return and the unification at (G.7) must succeed. 

! ! ! 
- A (F ,  el, 01) at (6.6) returns: Let Ro = R~{#,} U {g/g '}  where g and g' 

are the new type variables of A and A', respectively, introduced at (G.6). 
Because A _ A t and 

Ro(g'  ~ p') = g --* Rp' because the new g' •ftv(p') 

= # -~ p, (57) 

there exists a substitution P1 such that 

01 = ( Rots,pp(p1) u 1:)1)0 i (58) 

and supp(P1) Cftv(0~) \ f tv(g '  --+ p'). Note that by the definition of ~, 

supp(P1) n (ftv(r') Uftv(g' ---* p')) = 0 (59) 

and thus 

(Ro~s,pp(e,) U P1)F' = RF'  by (59) and g' Cftv(F') 

~- F by (56). (60) 

Because ~A(ro, co, Po)~ has (F, el, 01) u, (Ro~,.pp(p,) U POF'  >- F (60), and 
(Ro[~,pp(p,) UP1)Oi = 01 (58), by Lemma A4.2, A'(F', el, Oi) succeeds with 
S~ such that for a substitution R1, 

(nlSi)tNew, = (Sl(Rots.pp(p,) U P1))~New, (61) 

where New1 is the set of new type variables used by X(F ' ,  el, 0~). 
! f 

- Lt(Sl01,0'2) at (G.7) succeeds: Because A r- A' and 

RI(S~(# '  ~ p')) 
I = Sl(Rot~.~.(p~) u P1)(Z'  --* p') 

by (61) and because ftv(g' ---+ p') n New1 = 0 
= SiRo(g '  -~ p') by (59) 

---- S 1  ( ~  ---+ p )  by (57), (62) 
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there exists a substitution P2 such that 

02 = (Rl~s...(p2) U P2)O~ 

and supp(P2) C_ftv(O'2) \ f tv(S'~(~'  -~ p')) .  Note that  
ftv(S~O~) U/tv(S~/31) Uftv(S~F 1) 
C_ itv(S~) Uftv(0~) U {13'} Uftv(V') by Lemma A2.3 
C New1 Uftv(0~) U {f/'} Uftv(F') by Lemma A2.4 

and thus by the definition of G, 
I I 1 I 

supp(P2) n ( f - t v ( S l 0 1 )  U f t l , ' ( S l f l  ) uf tv (S~c ' ) )  = r 

Then S2(R4,.,,(v~ u P2) unifies S'~Oi and 0~ at (~.7) because 
S2(R~L.u,,(p,~ u P~)(s~o'l) 

S ~ ~'  {71 = 2 X t l O 1  1 by (64) 
= S 2 S x ( a o L . . . ( p ~  u P~)01 by (61) and 

because ftv(0~) n NeWl = ~) 
---- S2S101 by (58) 
= $202 by (G.7) 

(63) 

(64) 

= S2(Rlts,pp(p2) U P2)(O~) by (63). 
Thus the unification of A I at (G.7) succeeds with S~. 

' ' ' e {71 ~d Therefore [A'(Fo,eo,Po)[ has ($2S1F , , 3] �9 
Now we prove the rest that there exists a substitution R'  such that R'{?~3 = {?3 
a n d  i ? t ! t R ( S 2 S I F )  ~ S2SaF. Because (G.7) succeeds with $2, by Theorem 1.1, 
there exists a substitution R2 such that 

R2S~ = S2(Rl~supp(p2) U P2). (65) 

Because A r A I and 
R - -  I 1 I I 1 2(S2Sx~) = S2(R~Is~..(e~> u P2)SI~ by (65) 

= S 2 R 1 S ~  1 by (64) 
= $2S1/3 by (62), 

there exists a substitution P3 such that 
P i {?3 = (R2[,,,pp(p3) U 3){?3 

and supp(P3) C_ ftv(O'3) \ f tv(S~S~/3') .  Note again that, by Lemma A2.3 
and A2.4 and Theorem 1.1, 

! ! I ~(S2Slr  ) 
C ftv(01) Uftv(02) U New1 Uftv(F') 
C_ supp(P1) Uftv(/3 --~ p) U supp(P2) UNewl  Uftv(r ' )  

and thus by the definition of G, 

supp(P3) ' ' ' nftv(S2Sar  ) = 0. (66) 

Therefore, such R'  is (R2~s,pp(p3) U P3) because 
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(R2[supp(p3) U 3 ) ~ o 2 ~  1 ) 

= R 2 S i S [ F '  by (66) 

= S2(Rl[s,pp(p2) U P2)S~F' by (65) 
_ c D C'F' by (64) - -  ~ 2 1 t l  o 1 

= S2Sl(Ro~.,.~pp(pa) U P1)F' by (61) and because 
f tv(r ' )  N New1 = (J 

>- S2S1F by (60) and Lemma A1.2. 

�9 case e in el e for instances of 6R: that  is, IA(Fo, eo, po)l has 

(r, el e, p)d(r, e,/3)d 
where /3 is the new type variable introduced at (6.18). By induction, 
IA'(ro,eo,po)] has (F ' ,el  e,p ' )  d and there exists a substitution R such 
that RF'  ~- F and Rp'  = p. By the definition of 6 R, IA'(Fo, eo, Po)] has 
(F',e,/3') d where /3' is the new type variable introduced at (6.18). Let 
Ro = R[{~,} U {/3//3'}. Then R o r ' =  R r '  >- r and Ro/3' =/3.  

�9 case e in e e2 for instances of  6R: that  is, [A(Fo, eo, Po)l has 

(r, e e2, p)d(r, e~,/3)d... (r, e~,/3)u(slr,  e, 0) d 
where/3 is the new type variable introduced at (6.18), 0 is the relaxed type 
at (6.19), and S1 -- 6R(F,  e2,/3) at (6.18). 
By induction, ~A'(Fo, eo, Po)~ has (F', e e2, p,)d and there exists a substitu- 
tion R such that Rp'  = p and 

RF'  ~ r .  (67) 

Let Ro = R[{Z,} U {/3//3'} where/3'  is the new type variable introduced at 
(6.18). Then Ro/3' =/3 and 

RoF' = R r '  because the new/3' •ftv(F') 

~- F by (67). (68) 

Thus by Lemma A4.2, A'(F' ,e2, /3 ' )  at (6.18) succeeds with S~, hence 
[A'(ro, eo, po)] has (S~F', el, 0') d. 
Now we prove the rest that there exists a substitution R'  such that R'O' = 0 
and R's~r' ~ s i r .  Because (6.18) succeeds with S~, by Lemma A4.2, there 
is a substitution R1 such that 

(nlstl)~NeWl = ( S1no )~Newa (69) 

where New1 is the set of new type variables used by A'(F',  e2,/3'). 
Because A E A' and 

RI(S~#) 
= S1Rop'  by (69) and becauseftv(p') ANewa = 0 
= SaRp '  because the new/3' Cftv(p') 
= Sip ,  

there exists a substitution P such that 

(Rl[supp(p) U P)O' = O 

and supp(P) C_ftv(O') \ f tv(S~p') .  Note that  

supp(P)  N (ftv(S~F') Uftv(S~/3')) = {~. (70) 
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by the definition of g because 
~(S~F') Uf~(S~fl') 
C ilv(S~) Uftv(C') U {fl'} by Lemma A2.3 
C New1 Uftv(F') U {fl'} by Lemma A2.4. 

Therefore, such R'  is (Rl~.~,pp(p) U P)  because 

(Rl~supp(p) U P ) ( S ~ C ' )  

= n l ( S l r ' )  by (70) 
= SIRoF' by (69) and because New1 Aftv(F') = 0 
>- SIF by (68) and Lemma A1.2. 

�9 case e in ( l e t  x=e i n  eJ :  that is, [A(Fo, co, P0)] has 

(r,  l e t  x=e i n  e2, p)d(r, e, fl)d 

where fl is the new type variable introduced at (G.11). By induction, 
IA'(Fo, co, Po)[ has (F', l e t  x=e i n  e2, p,)d and there exists a substitution 
R such that  RF >- F and Rp'  = p. By the definition of g, [A'(Fo, co, Po)] 
has (F', el, fl,)d where fl' is the new type variable introduced at (G.11). Let 
Ro = Rt{fl,} U {f l / f l '} .  Then RoC' = RF'  >- F and Rofl'  = ft. 

�9 case e in ( l e t  x=el  i n  e): that is, [A(Fo, co, Po)~ has 

( r ,  l e t  x=el i n  e, p )d(F ,  e, f l )d . . .  ( r ,  e, f l)u(SlF q- x: Closs, r(Slf l) ,  e, 0) d 

where fl is the new type variable introduced at (G.11), 0 is the relaxed type 
at (Q.12), and $1 = g(r, el,fl) at (6.11). 
By induction, [A'(Fo, co, po)] has (F', Ze t  z=e i n  e2, p,)d and there exists 
a substitution R such that Rp = p and 

RF'  >- r .  (71) 

Let Ro = R~{Z,} U, {f l / f l '}  where fl' is the new type variable introduced at 
(6.11). Then Rofl  = fl and 

RoF' = RF'  because the new fl' Cftv(F') 

>- F by (71). (72) 

Thus by Lemma A4.2, A ' (F ' , e l , f l ' )  at (6.11) succeeds with S~, hence 
t t I d  [A'(ro, co, po)] has (S~F' + x: Closs,,r, ( S i f t ) ,  e~, 0 ) . 

Now we prove the rest that  there exists a substitution R'  such that  R'0' -- 0 
and R'(S~F'  + x: Closslr, (S~fl')) >- S1 F q- x :  Clo$s1F(Slfl). Because (6.11) 
succeeds with S~, by Lemma A4.2, there is a substitution R1 such that  

(nlS~)[Newl = (S1no)[New, (73) 
where New1 is the set of new type variables used by A'(F',  el, fl'). 
Because A C A' and 

RICSip') 
= SIRop '  by (73) and becausef-tv(p') n New1 = @ 
= S I R p '  because the new fl' cdftv(p') 
= Sip ,  

there exists a substitution P such that  

(Rl~s.pp(p) U P)O' = 0 
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and supp(P) c_ ftv(O') \fiv(S~p'). Note that 
f~(s~r') u~(s~Z') 
C_ itv(S~) Uftv(F') U {/3'} by Lemma A2.3 
C_ New1 Uftv(F') U {/3'} by Lemma A2.4 

and thus by the definition of ~, 

supp(P) A (ftv(S~F') Uftv(S~/3')) = O. 

Therefore, such R' is (Rl~s,pp(p) U P) because 

(Rl~supp(p) U P ) ( s ~ r ' )  

= R l ( S ~ r ' )  by (74) 
= SIRoF' by (73) and because New1 Nftv(F') = 0 

~- S1F by (72) and Lemma A1.2 

and 
( Rl~supp(p) U P) (  Closs~ F, ( S~/3t) ) 
= R1Closs;r, (S~/3') 

! ! 
~- ClosR1s,~r, (RIS1/3) 
~- Clossir(R1S~/3') 
= Clossir(S1Ro/3') 
= Closslr(S1/3) 

by (74) 
by Lemma A2.1 
by (75) and Lemma A4.1 
by (73) and/3' ~ New1 
by the definition of Ro. 

(74) 

(75) 

because the new/3~,/3~ Cftv(0~) 
by (78) 
by (~.15) 
by the definition of Ro. 

Thus the unification of A' at (G.15) succeeds with S~, hence [A'(Fo, eo, Po)l 
I ! o I l ! I t~ has (81s + x .  S1/31, e, S1/32) �9 

SlRo(0D 
= S l (R tsupp(e )uP)O~ 
= S102 
= S1(/31~/32) 

�9 ease e in ( f i x  f Ax.e): that is, [A(Fo, eo, P0)] has 
(F, s f Ax.e,p)d(SiF1 + x: $1/31, e, $1/32) d 

where F1 = F + f : 01 at (~.14), Sx =//(/31 --*/32, 0) at (6.15), and/31 and 
/32 are the new type variables at (G.15). By induction, IX(Fo, eo, po)] has 
(l v, f i x  f Ax.e, pt)d and there exists a substitution R such that Rp' = p 
and 

RF' ~- F. (76) 

In order for A'(F', f i x  f Ax.e, p') to have a call for e, the unification at 
(G.15) must hold. Because A U A', there exists a substitution P such that 

O1 = (Rtsupp(p) U P)O' 1, (77) 

02 = (R~s,pp(p) U P)#'2, (78) 

and supp(P) C (fry(01) U fry(02)) \J~(p') .  Note that by the definition of G, 

supp(P) n ~ ( r ' )  = 0. (79) 
Let Ro = R[{~,Z~}us,pp(p) U P U {/31//3~,/32//3~} where/3~ and/3~ are the 
new type variables of A t introduced at (G.15). Then SIRo unifies/3~ --*/3~ 
and 0~ at (G.15) because 
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Now we prove the rest that  there exists a substitution R'  such that  R ' (S[F~+ ;: Sh'~! ~y(ST~Flor+eZ m: S1/31) andR'(S~/3;)= S1f l2 .  B e c a u s e  ( ~ . 1 5 )  s u c c e e d s  
it 1.1, there exists a substitution R1 such that 

S1Ro -= R1S~. 
Then such R'  is R1 because 

I l I I RI(SIFI  +X: $1~1) 
= S lR0(r i+z :  ~ )  
= Sl((Rtsupp(p)UP)r'l+X: Ro/3~) 

= Sl((Rt.~,~p(p)UP)I'i+x:/3~) 
p , -= Sl((Rlsupp(p)U )(F + f :  01)+x:  /31) 

= S I ( R F ' + f :  01+x:  ill) 
~- S l ( r + / :  01+z: ~1) 
= S l ( r l - t  - x :  ~1)  

and 
R I ( S ~ ; )  = $1Ro/3~ 

= S 1 3 2  

(so) 

by (80) 

! l I because the new/~], ~2 Cfw(r l )  
by the definition of Ro 
by (6.14) 
by (77) and (79) 
by (76) and Lemma A1.2 
by (G.14) 

by (80) 
by the definition of Ro. 
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