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Abstract We present a generalized let-polymorphic type inference
algorithm, prove that any of its instances is sound and complete with respect
to the Hindley/Milner let-polymorphic type system, and find a condition on
two instance algorithms so that one algorithm should find type errors earlier
than the other.

By instantiating the generalized algorithm with different parameters,
we can obtain not only the two opposite algorithms (the bottom-up stan-
dard algorithm W and the top-down algorithm AM) but also other hybrid
algorithms which are used in real compilers. Such instances’ soundness and
completeness follow automatically, and their relative earliness in detecting
type-errors is determined by checking a simple condition. The set of in-
stances of the generalized algorithm is a superset of those used in the two
most popular ML compilers: SML/NJ and OCaml.
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§1 Introduction

1.1 This Work

In realistic compilers, the let-polymorphic type system'®’s two opposite
algorithms (W®'® and M'?) are not attractive candidates. In order to gener-
ate helpful type-error messages we need to balance between their two opposite
behaviors in type-checking: the bottom-up algorithm W is context-insensitive,
finding type errors too late, while the top-down algorithm M is as context-
sensitive as possible, finding type errors too early. Because of these behaviors,
the Standard ML of New Jersey (SML/NJ'?) and Objective Caml (OCaml*")
compilers use hybrids of the two algorithms.

Several works®*7®131729 clearly show that other type checking strategies
are possible. To systematically explore this space of strategies, as well as to
justify the existing hybrid ones, we need a framework (1) for integrating the two
opposite algorithms into one algorithm; (2) for assuring that such an integrated
algorithm is still sound and complete; and (3) for measuring, if possible, how
any two hybrid algorithms differ in behaviour.

We present a generalized let-polymorphic type inference algorithm, prove
that any of its instances is sound and complete with respect to the Hindley/Milner
let-polymorphic type system, and present a condition on two instance algorithms
that ensures that one algorithm always finds type errors earlier than the other.
By instantiating the generalized algorithm with different parameters, we can
obtain not only the two opposite algorithms (W and M) but also other hybrid
algorithms that lie within this spectrum. The set of hybrid algorithms captured
by the generalized algorithm is a superset of the existing hybrid algorithms in
SML/NJ and OCaml. Within this algorithmic framework, compiler developers
can freely experiment with various combinations without the burden of proving
their correctness every time.

14)9

1.2 Notation

We use the same conventional notation as used in Lee and Yi’s.*® Vector
@ is a shorthand for {1, - ,a,}, and Va@.7 is for Vo - - - an.7. Equality of type
schemes is up to renaming of bound variables. For a type scheme o = Va&.7, the
set ftv(o) of free type variables in o is frv(7) \ &, where fiv(7) is the set of type
variables in type 7. For a type environment ', fiv(T') = Uzedommftv(T(z)). A
(simultaneous) substitution S = {7;/a; | 1 < i < n} substitutes type 7; for type
variable o;. We write {7/&} as a shorthand for a substitution {r;/a; |1 < i < n}
where & and 7 have the same length n, and Sé& for {Sa,-- -, San}. For a sub-
stitution S, the support supp(S) is {a | Sa # a}, and the set itv(S) of involved
type variables is {a | 8 € supp(S),a € {8} Uftv(SB)}. For a substitution S and
a type 7, ST is the type resulting from applying every substitution component
1i/a; in S to 7. Hence, {}r = 7. For a substitution S and a type scheme
o = Va.r, So =VB.8{3/a}r, where B (iv(S) Ufiv(c)) = 0. For a substitu-
tion S and a type environment I', ST = { +— So |z +— ¢ € T'}. The composi-
tion of substitutions S followed by R is written as RS, which is {R(Sa)/a|a €
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supp(S)}U{Ra/a| o € supp(R)\ supp(S)}. Two substitutions S and R are equal
if and only if S = Ra for every a € supp(S) U supp(R). For a substitution P
and a set of type variables V', we write P},, for {T/a € P | a ¢ V'}. The relation
v&.7' > 7 holds whenever there exists a substitution § such that S7’ = 7 and
supp(S) C & We writel' + z: o to mean {y — ¢'|z # y,y — o’ € T}U{z — o}
Closr(7) is the same as Gen(I',7) in Damas and Milner’s,® i.e., V&.7, where
a = fiv(r) \ fov(T).

In presenting type-inference algorithms, we use Robinson’s unification al-
gorithm:

Theorem 1.1 (Robinson'®)
There is an algorithm U which, given a pair of types, either returns a substitution

S or fails; further

o If S =U(r,7') then ST = S7'.
e If S’ unifies 7 and 7', then U(7,7’) succeeds with S and there exists a
substitution R such that S’ = RS.

Moreover, S involves only variables of 7 and 7.

1.3 Algorithms W and M
The source language and its Hindley/Milner style let-polymorphic type
system are shown in Fig. 1. The two opposite algorithms (W and M) are shown

Abstract Syntax

Expr e u= () constant
T variable
Az.e function
ee application
let z=e in e
fix f Az.e
Type T U= L constant type
a type variable
T—T function type
TypeScheme o 3= T |Vd.o
TypeEnv I' € Var — TypeScheme type environment
(CON) Qe
I(z) > r
(VAR) TFzir
F+z:mte:m
(FN) I'FXze:m — 7
I'tei:mm—7m TI'bFex:m
(APP) I'Feiex:m
F'tei:mi T'+x:Closc(mi)Fex:m
(LET) I'Flet z=e; inex: ™
(FIX) F'+f:7FXze:r

I'Ffix fAze:T

Fig.1 Language and Its Let-Polymorphic Type System
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Subst S C {r/a|a is a type variable, 7 is a type}

W: TypeEnv x Expr — Subst X Type

W(, () = (id, 1) .

W(T, z) = (id, {3/&}r) where ['(z) = Va.r, new

W(T, Az.€) = let (81, 71)=W{T+z:8,e), new g3
in (91, $18— 1)

W(T, e; e2) = let (91, m)=W({T,e1)

(S2, 72) = W(S1T, e2)
S3 = U(S271, T2 — B), new 3
in (539251, Saﬂ)
W(T, let z=e1 in ez) =

let (S1, 1) =W(T, e1)
(S2, 72) = W(S1T + z: Closs,r(71), ez2)
in (5251, 7'2)
W(, £ix f Az.e) = let (Si,71)=W(T+f:8, Az.e), new g3

Sz = U(5:18, 1)
in (5281, S271)

M TypeEnv x Expr x Type — Subst

M(F7 a0, P) = u(pa L)_' .
M(T, z, p) = U(p, {B/&}7) where I'(z) = V&.7, new 3
M(Fa /\11).6, P) = let Sl = u(pv Bl - 132)a new /317 ﬂ2
S = M(S:T +2: 5151, e, S102)
in 8251
M(T, e ez, p) = let S =M(T, e, B —p), newg
Sy = M(Sll“, €2, S1ﬁ)
in S35

M(T, let z=e; in ez, p) =
let S:=M(T, e, B), new
S2 = M(S:1T + z: Closs,r(5108), e2, Sip)
in 8251
M(T, fix f Az.e, p) = M(T+ f:p, Az.e, p)

Fig.2 Algorithm W and M. Note that every new type vari-
able is distinct from each other, and the set New of
new type variables introduced at each recursive call
to W(T',e) (respectively, M(T,e,p)) satisfies New N
Sv(T) = 0 (respectively, New N (fiv(T) U fiv(p)) = 0).

in Fig. 2.

Algorithm W is context-insensitive. It fails only at an application ex-
pression. It infers types of two sub-expressions independently and checks later
by unification whether those types conflict. Because of this, an erroneous ex-
pression is often successfully type-checked (context-insensitively) long before its
consequence collides. On the other hand, algorithm M is as context-sensitive
as possible. It carries a type constraint (or an expected type) implied by the
context of an expression down to its sub-or-sibling expressions. It fails when the
current expression’s type cannot satisfy the supplied type constraint. For exam-
ple, for an application expression “e; es” with a type constraint, say of int, the
type constraint for e; is @ — int and the constraint for ey is the type that «



Proofs of a Set of Hybrid Let-Polymorphic Type Inference Algorithms 5

becomes after the type inference of e;. For a constant or a variable expression,
its type must satisfy the type constraint that the algorithm has supplied to that
point.

Example 1.1
To illustrate the difference between W and M, consider the application expres-
sion

1 2.

W fails at the application expression after having successfully type-checked the
two sub-expressions, while M fails at the left expression 1 because its type int
conflicts with a function type expected from the context (an application).

§2 The Generalized Algorithm G

2.1 Overview

Our generalized algorithm is based on the top-down, context-sensitive al-
gorithm M. The key observation is that we can vary the type-checking strategy
by changing two factors in M: the amount of information in the type constraints
and the positions of calls to unification. Algorithm M carries as much informa-
tion as possible in its type constraints and applies a unification at every value
(constant, variable, and lambda) expression. Algorithm W, on the other hand,
carries no information at its type constraints and applies a unification at ev-
ery application expression. Tuning these two factors yields other type-checking
strategies:

Example 2.1
Consider an application expression

(IsOne 2) :bool

where IsOne has type int — bool. As we impose less and less constraints in
type-checking sub-expressions yet apply more and more checks later, we obtain
the following type-checking variations:

o We type-check IsOne with constraint 8 — bool, which is the strongest
expectation. After its success, we type-check 2 with the function’s domain
type int as its constraint. (M)

o We type-check IsOne with a weaker constraint, 8; — (o with £; and
(B2 being new type variables. The constraint forces IsOne’s type to be a
function, but does not constrain its domain or range. After its success, we
check whether the function’s range type is bool. Then we type-check 2
with the function’s domain type int as its constraint.

e We type-check IsOne with no constraint. After its success, we check
whether the result type is a function type to bool. Then we type-check
2 with the function’s domain type int as its constraint. {(OCaml!’s type
inference algorithm)

e We type-check IsOne with no constraint. After its success, we check
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whether the result type is just a function type, whatever its domain and
range types are. Then we type-check 2 with the function’s domain type
int as its constraint. After its success, we check whether the function’s
range type is bool.

e We type-check IsOne with no constraint. After its success, we check, as
before, whether the result type is just a function type. Then we type-check
2, but with no constraint. After its success, we check whether the function’s
type is int — bool.

e We type-check IsOne with no constraint. After its success, we don’t check
anything but continue type-checking the second expression 2 with no con-
straint. After its success, we check everything at once: we check whether
IsOne’s type is a function type from int to bool. (W)

Every type-checking variation in the above example exposes a common
property: it relaxes the type constraints for sub-expressions then checks after-
ward whether the results from the relaxed constraints agree with the contexts
implied from the original constraints.

Our generalized algorithm is one that allows, wherever possible, the re-
laxing of the type constraints and yet makes sure that posterior unifications
compensate for the relaxation. The places for relaxing the constraints are right
before recursive calls for type-checking sub-expressions. The places for posterior
unifications that compensate for the relaxed constraints are after the successful
returns from the recursive-calls. Some unifications may only partially compen-
sate for the relaxed constraints. Thus, before the original call returns, a final
round of unification must be used to enforce any outstanding constraints. For
example, consider type-checking the application expression e; ez with initial con-
straint p. Our algorithm type-checks e; with a type constraint that can be more
relaxed than the strongest possible constraint 8 — p. Right after its return, it
applies a unification that can compensate, not necessarily completely, for the
relaxed constraint. It then type-checks the argument expression es with a type
constraint that can be more relaxed than the type that 3 became. After its suc-
cess, there are no more sub-expressions to type-check, hence it’s time to finalize
the compensation for the relaxed constraints at the two recursive calls. This is
done by two unifications: each one compensates for the relaxed constraint used
in type-checking each sub-expression. The unifications check whether the types
from the relaxed constraints agree with what the strongest constraint 8 — p
implies.

2.2 Algorithm Definition

The generalized algorithm G is shown in Fig. 3. As in M, it returns a
substitution from three components: an expression, a type environment, and a
type constraint. The inferred type of the expression is the result of applying the
final substitution to the type constraint of the expression. The type constraints
are just types.

By the phrases of the form > p marked (1) to (7) in the algorithm, the
strongest type constraint p is relaxed into 8 at each recursive call. This relaxed



Proofs of a Set of Hybrid Let-Polymorphic Type Inference Algorithms 7

G : TypeEnv x Expr x Type — Subst

g(F7 ()’p) Zu(pal) . (gl)
G(T'z, p) = Ulp, {3/@}7), new f, T(z) = Vai.r G.2)
G(I', Az.e,p) =
let Sl = u(ﬁl - ,82)0)1 new ﬂ17 new ﬁzy (1) 0 Z 14 (g3)
Sa =g(S1F+I: S1[31,6,S1ﬂ2) (g4)
S3 = U(S2510, S251p) (G.5)
in S3525;
g(F’ €1 62,,0) =
let S1=G(T,e,01), new 3, (2)6.=>8—p (G.6)
Sz = U(5:161, 02), (3)62>81(8B—p) (9.7)
Sz = g(Sler,ez,og), (4) 63 > 52518 (G.8)
Sy = U(S3525101, SsSle(ﬂ - p)) (99)
Ss = U(8515303, 5453525:18) (G.10)

in 5554535251
G([, let z=e; in ez,p) =

let S =6(T,e1,0), new g8 (G.11)
Sy = G(51 + z: Closs,r{5108),e2,6), (5)8> Sip (G.12)
S3 = U(S528, S251p) (G.13)

in  S3825:

G, fix f Az.e,p) =

let T1=0+f:64, (6) 0:>p (g.14)
Sl = u(ﬁl - /82702)7 new 517 new ﬁzy (7) 02 2 01 (g]-'s)
S2 =g(51F1 +z: S1ﬂ1,6,51ﬁ2) (9.16)
Sz = u(525101,528102, SzS1p) (g.17)

in S3SzS1

Fig.3 A Generalized Type Inference Algorithm G. All the
type variables in fiv(6) \ ftv(p) for each § > p are new,
every new type variable is distinct from each other,
and the set New of new type variables introduced at
each recursive call to G(I', e, p) satisfies New N (fiv(I") U

fv(p)) = 0.

constraint is one that can be instantiated to p by a substitution that ranges over
the type variables occurring only in 8 (but not p):

Definition 2.1 (6 > p)
Type 0 is more general (more relaxed) than type p, written § > p, if and only if
there exists a substitution G such that G8 = p and supp(G) = frv(8)\frv(p).

For the variable case (G.2), the variable’s type I (z) must satisfy the cur-
rent type constraint p: U(p, {3/a}7). Similarly for the constant case (G.1).

For the lambda expression case Az.e with type constraint p, we first decide
on the type constraint for the function’s body e. It can be any type that is more
relaxed than the range type of p. We choose such a type by relaxing p first, then
picking up its range component by unification:

S1 =U(B1 — P2,0), new 51,82, (1) 0 >p. (G.3)
Then we use the resulting range type 5102 as the constraint in type-checking
the function’s body:

Sy = G(S1T + z: 5161, ¢, 5102). (G-4)
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For example, if we choose the 8 to be a new type variable, then the unification
(G.3) has no effect, hence e’s type is inferred without any constraint. The other
extreme is to choose 8 to be just p. Then e’s type is inferred with p’s range
type, if p is a function type. After returning from the recursive call to e, we have
to compensate for passing the relaxed type constraint. This last step is done
by checking whether the relaxed constraint # can agree with the type that its
original p became:

S3 = U(Slee,stlp). (g5)

Consider type-checking an application expression e; e with type con-

straint p. First we decide on the type constraint for the function expression e;.
It can be any type that is more relaxed than the most informative constraint
8 — p with 3 being a new type variable:

S1=G(,e1,61), new 3, (2) 61> 8 — p. (G.6)
After the success of this recursive call, we can compensate, not necessarily com-
pletely, for passing the relaxed type constraint 6;. The compensation may be
varied according to the constraint we wish to impose on the type of e;. We can
check the result type against the strongest constraint 3 — p or we can check
against nothing. Varying the degree of compensation amounts to choosing yet
another more relaxed type 62 than S;(3 — p) and by unifying it with the type
that 6, became:

Sy =U(5161,02), (3) 02> 51(8 — p). (G.7)
argument expression ez. It can be any type that is more relaxed than the type
that 3 became. Hence the next recursive call is:

S3 = G(5251T, e2,03), (4) 03 > S2515. (G.8)
The finalizing compensation for passing the relaxed type constraints to the two

recursive calls is done by checking whether the first relaxed constraint #; can
agree with the type that the original type 8 — p became:

S4 =U(53525101, 535251(8 — p)) (G.9)

and by checking whether the other relaxed constraint 3 for the argument ex-
pression can agree with what the original type # became:
S5 = U(S45303, 51535251 3). (G.10)
We don’t have to check for 8, because of its unification with #; at line (G.7).
Consider inferring the type of let-expression let z=e; in e, with type
constraint p. Because there is no context information about the type of the first
expression ej, there is no room for varying its type constraint:

S1 =G(T,e1,8), new 3. (G.11)

Next we decide on the type constraint for the body expression e2. It can be any
type that is more relaxed than the given constraint p:

Sy = Q(Sll“ +x: Closslr(Slﬁ), 62,9), (5) 8 > Sip. (g~12)

Finally, we have to check whether the relaxed constraint agrees with the type
that the original constraint became:
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Gk TypeEnv x Expr x Type — Subst
G, e1 e2,p) =

let S1 =GR (I, ez, ), new 8 (G.18)
Sz = G*(SiT, e1,01), 6> 81(8—-p (G.19)
S3 = U(S261, 8281(8 — p)) (G.20)
in  S35:5:

Fig.4 A Generalized Type Inference Algorithm G¥. For
e ez, GE infers the type of es first, while G infers

the type of e; first. Other parts of GF are the same as
those of G except that every recursive call in inference

algorithm is QR, not G.

S3 = U(S20, S251p). (G.13)
The case for recursive function £ix f Az.e is similar. First, we decide on
the type constraint for f. It can be any type that is more relaxed that the given
constraint p:
=T+ f:6:, (6)61>p. (G.14)
Next we decide on what is expected for the type of Az.e. We choose such a
type by relaxing 6; first, then picking up its domain and range component by
unification:

S1 =U(By — B2,02), new B1,0B2, (7) 62 > 6. (G.15)
Then we use the resulting range type S;32 as the constraint in type-checking
the function body and the domain type S;3; as the type of z:

So = G(S1T'1 + z: 8181, €, 5102). (G.16)
Finally, we check whether the relaxed type constraints agrees with the type that
the original constraint became:
Sg =U(825191,525192,5251p). (917)
We have another variant of generalized tgfpe inference algorithm GZ in
Fig. 4. For the function application e; ez, G infers the type of argument
expression e first, and then infers the type of function expression e;. For other
expressions, G¥ is the same as G except that every recursive call in inference
algorithm is QR, not G.
Consider type-checking an application expression e; es with type con-
straint p. Because we do not have any context information about the type of
the argument ey, there is no room for varying its type constraint:

S, = GR(I, es,8), new B. (G.18)
Next we decide on the type constraint for the function expression e;. It can be
any type that is more relaxed than the function type from § to given constraint
o

Sy =GR(SiT e1,01), 61> 51(6— p). (G.19)
Finally, we have to check whether the relaxed constraint agrees with the type
that the original type § — p became:
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S5 =U(S2, $:51(8 — p)- (6-20)

2.3 Instances

By determining the relaxed constraints #’s in G, we obtain various type-
inference algorithms, including the standard algorithm W, the top-down algo-
rithm M, and the combinations of the two algorithms used in the SML/NJ*®
and OCaml' compiler systems.

e W is an instance of G where every 6 is a new type variable.

e M is an instance of G where every 8 is not relaxed: for each case 8 > p in
G, we choose p for 6.

e The OCaml’s type inference algorithm™ is an instance of G where the 0 at

(2) (line (G.6)) is a new type variable and other §’s are not relaxed.
e The SML/NJ’s type inference algorithm™ is an instance of G where every 6

is a new type variable, except that 6 at (7) (line (G.15)) is the same with
61 at (6) (line (G.14)).

e Other variations than the existing algorithms are also possible from G. For
example, consider an instance of G where the 8 at (G.6) is a new function
type (81 — (2 for new variables 31 and (32) and other #’s are not relaxed.
Let’s call this instance algorithm H.

The 8’s used in the five instances are summarized in Fig. 5. Please note that
for SML/NJ’s algorithm, the relaxed constraint for the Az.e case (line G.3) has
two candidates, of which we choose one depending on whether the lambda is
recursive (defined in £ix f Az.e) or not.

1n @ (3) 4 () 6 (M

/] 01 G2 O3 7] 6: 62

w Bs o) B2 Bs B B b
SML/NJ’s | B3 i} Be B3 8 B O
OCamls | p B SilB—p) S8 Sip p 6
H p B—B Si(B—p) $2858 Sip p 6

M p B—op Si(B—op) 258 Sip p 6

Fig. 5 Five Instances of Algorithm G. §3;’s are new type vari-
ables introduced in the 8’s.

2.4 Every Instance is Sound and Complete
Every instance of G is sound and complete with respect to the Hind-
ley /Milner let-polymorphic type system.

Theorem 2.1 (Soundness)
Let e be an expression, I" be a type environment, and p be a type. If G(T', ¢, p)

succeeds with S, then ST I e : Sp. The theorem also holds for G=.

*¥ We figured out the OCaml’s type inference algorithm by examining the source codes of
OCaml 3.06.'V

** We figured out the SML/NJ’s type inference algorithm by examining the source codes of
SML/NJ 110.0.7.19
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Proof
See Appendix Section Al. |

Theorem 2.2 (Completeness)

Let e be an expression, and let I" be a type environment. If there exist a type p
and a substitution P such that PT e : Pp, then G(T', ¢, p) succeeds with S and
there exists a substitution R such that P}, = (RS)|y,, Where New is the set
of new type variables used by G(T', e, p). The theorem also holds for G¥.

Proof
See Appendix Section A2. n

Completeness means that if an expression e has a type 7 that satisfies a type
constraint p (i.e., AP.7 = Pp), then algorithm G for the expression with the
constraint p succeeds with substitution S such that the result type Sp subsumes
T (i.e., the principality, 3R.7 = R(Sp)).

2.5 More Restraining Instances of G Detect Errors Sooner

The information amount in the type constraints determines how early the
algorithm detects type errors. Carrying less informative (restraining) constraints
during type-checking sub-expressions makes it more probable that the algorithm
successfully infers their types with being less sensitive to the context, hence
delays detecting type errors as such.

We say that an instance A of G is more restraining than another instance
A’ whenever A always passes more restraining constraints than A’. The “always”
means that the relaxing operations preserve the restraining order between the
original constraints: for each pair of corresponding relaxations 6; > p; in A and
0%1 > '[(;;’ in A’ for the same input, if p; is more restraining than p then so is 6;
than 6;.

Definition 2.2 (4 C A")

Let A and A’ be two instances of G. A is more restraining than A’, written
AC A, if and only if for each pair of corresponding relaxations 6; > p; during
A(T,e,p) and 0, > p} during A'(T,e, p), if p; = Rp] for a substitution R then
0; = (Rlyppy U P)O; for a substitution P with supp(P) C fiv(6;) \ fiv(p}). We
define A T A’ for the instances of G¥ in the same way.

Lemma 2.1
MCE HLC OCaml’s C SML/NJ’s © W.

Proof

We prove A C A’ for each consecutive pair of the instance algorithms. For
each corresponding pair of 8 > p in algorithm A and ¢’ > p in algorithm A’
with p = Rp’ for a substitution R, we must find a substitution P such that
9 = (Rh’upp(}’) U P)gl

o case M L H: They differ only at (2) (G.6). For M, itis 8 — p> 8 — p.
For M, it is 8’ — B5 > B’ — p’. By the assumption, for a substitution R,
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R(B' — p') = B — p. Thus (Rlg, U{p/B})(B' — B) = RS — p=f —

p-

e case H C OCaml’s: They differ only at (2) (G.6). For H, it is 8 — B2 >
B — p. For OCaml’s algorithm, it is 3] > 8’ — p’. For any substitution R,
(Rhgaey U 16 — Bo/ BB, = B — B

e case 6Caml’s C SML/NJ’s:

— case (1) at (G.3): For OCaml’s, it is p > p. For SML/NJ’s, it is 85 > p'.
For any substitution R, (R}s, U{p/B3})0s = p.

— case (2) at (G.6): For OCaml’s, it is 8; > p. For SML/NJ’s, it is 8] > p'.
For any substitution R, (R}, U {61/61})B1 = B1.

- case (3) at (G.7): For OCaml’s, it is S1(8 — p) > S1(6 — p). For
SML/NJ’s, it is 85 > Sj(8" — p'). For any substitution R, (R}, U
{51(8 — p)/B2})B2 = S1(B = p).

- case (4) at (G.8): For OCaml’s, it is $29103 > S28:10. For SML/NJ’s, it is
B3 > 9,514 For any substitution R, (R}g, U{S2518/83})B5 = 52518.

- case (5) at (¢.12): For OCaml’s, it is S1p > Si1p. For SML/NJ’s, it is
B1 > Sip'. For any substitution R, (R}, U {S1p/B1})B1 = S1p.

- case (6) at (G.14): For OCaml’s, it is p > p. For SML/NJ’s, it is 85 > p'.
For any substitution R, (R};s, U{p/B3})85 = p.

3

— case (7) at (G.15): OCaml’s and SML/NJ’s are the same §; > 6;.

e case SML/NJ’s C W:
— case (7) at (G.15): For SML/NJ’s, it is 6; > 6;. For W, it is §; > 6. For
any substitution R, (R} g, U{61/6,})8, = 01.
— other cases: For SML/NJ’s, it is 8; > 7 for a type 7. For W, it is 8} > 7’
for a type 7'. For any substitution R, (R} s, U{Bi/B;})5; = B;.

The time of detecting type errors can be formalized by the notion of call
string.*® The call string of G(T, e, p) (written [G(T', e, p)]) is constructed by start-
ing with the empty call string and appending a tuple (I'1, e1, pl)d (respectively,
(T'1,e1,01)") whenever G(I'y,e1,p1) is called (respectively, returned). The d or
u superscript indicates the downward or upward movement of the stack pointer
when the inference algorithm is recursively called or returned. Note that the
call strings of every instance algorithm of G are always finite, because at most
one call to the algorithm occurs for each sub-expression of the program, and
that the order of visiting sub-expressions of the input program in every instance
algorithm’s call string is the same.

For two instance algorithms A and A’ of G, if A is more restraining than
A’ then A stops earlier than A’ if the input program is ill-typed:

Theorem 2.3

Let A and A’ be instances of G such that A T A’, Ty be a type environ-
ment, ey be an expression, and pg be a type. If ﬂA(FO, eo, po)] has (I‘,e,p)d/“,
then [A'(T'o, €0, po)] has (I, e, o)™ and there exists a substitution R such that
RI" > T and Rp’ = p. The theorem also holds for G%.
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Proof
See Appendix Section A4. [ ]

Because the orders of visiting sub-expressions during the execution of the two
instance algorithms are the same, the above theorem implies that if A is more

restraining than A’ then the length (the number of tuples) |[A(Lo, €0, po)]| of
A’s call string is shorter than or equal to that |[A’(To, eq, po)]| of A”’s call string,
i.e., A stops earlier than A’.

By Lemma 2.1 and Theorem 2.3, the following order holds:

Corollary 2.1

Let I’ be a type environment, e be an expression and p be a type.
[IM(T, e, p)]| < |[H(T', e, p)]| < [[OCaml’s(T' e, p)]| <
\ISML/NT's(T, e, p)]| < [DV(T, e, p)]|

where |s| is the number of tuples in call string s.

83 Discussion

We presented a generalized let-polymorphic type inference algorithm, from
which, by changing its degree of context-sensitivity, various hybrid algorithms
can be instantiated. We proved that any of G’s instances is sound and complete
with respect to the Hindley/Milner let-polymorphic type system, and showed
a condition on two instance algorithms so that one algorithm should find type
errors earlier than the other. The set of instances of G includes the two opposite
algorithms (W and M) and is a superset of those hybrid algorithms used in the
SML/NJ*® and OCaml."”

Note that the earliness condition cannot be a criterion to judge the al-
gorithm’s goodness in detecting the cause of type-errors. For any algorithm
there exists an ill-typed program that falsifies its type-error message. The earli-
ness condition can just be a criterion by which compiler developers can achieve
different type-checking strategies.

It is possible to further generalize G(T', e, p). We can relax not only the
type constraint p but also the type environment I'. Note that algorithm G
passes the most informative type environment to sub-or-sibling expressions; it
accumulates all substitutions in the type environment at its recursive calls. This
is a top-down strategy; bottom-up approaches such as Bernstein and Stark’s®
and Chitil’s® use unconstrained type environments to check sub-or-sibling ex-
pressions. Between these two opposing strategies lie hybrid ones.'**¥ These
variations can be formalized, similarly to G, by type-environment relaxing and
posterior unification.

In general settings where one views type inference algorithms
as consisting of two separate stages - deriving constraints and solving them - the
parameters in our generalized algorithm G can be considered a way to control
when to solve the constraints within the Hindley/Milner type system. We delay
the constraint-solving by passing relaxed constraints to recursive calls, and then
solve the delayed constraints by applying posterior unifications.

1,5,9,15,16,20~22)
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Appendix A

§A1 Soundness Proof

Theorem 2.1 (Soundness)
Let e be an expression, I' be a type environment, and p be a type. If G(T, e, p)
succeeds with S, then ST F e : Sp. The theorem also holds for G%.

The proof uses Lemmas A1.1-A1.3 and Theorem 1.1.

Lemma Al.1 (Damas and Milner®)
IfT'te: 7, then STFe: ST.

Lemma A1.2 (Damas and Milner®)
If o >~ ¢’ then So > So’.

Lemma A1.3 (Milner'¥)
Let S be a substitution, " be a type environment, and 7 be_‘a type. SClosp(t) =
Closg'r(S'T), where S’ = S{8/&}, @ = frv(7) \ fv(T') and 3 is new.

Proof of Theorem 2.1
We prove by structural induction on e, and we prove for ¢ and G® simultaneously.

e case () : Sp=St=1t So ST+ () : Sp by (CON).
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e case r : Sp = S{g/fi}r < ST(z) by Lemma Al.2. So ST z : Sp by
{VAR)}.

e case \z.e : By induction hypothesis, (G.4) implies that S35 T'+2: S2516:1 -
e: SQSLBQ. By (FN),

8251F FAz.e: Sgsl(ﬂl - ﬂz)

By Lemma Al.1, we can apply S3 to both sides:
S38:8 T F Az.e: S38:5: (B — B2).

Because S1(81 — $2) = 5160 by (G.3) and 5352510 = S3S5251p by (G.5),
535251F FAz.e: SgSlep.

e case e ey for G : By induction, (G.6) implies S1I" - e1 : S160;. By Lemma Al.1,
we can apply S55415352 to both sides:

5’554,5’35251I‘ - €1 ! 555453825191.
Because 5453525191 = 54535251(,3 g p) by (99) and 5554533251[3 =
55545393 by (9.10),

8554335251F - ey : 855453(93 — Sgslp). (1)
By induction, (G.8) implies S3525:T I ez : S303. By Lemma Al.1, we can
apply S5S4 to both sides:

S5S4S35251F I €y : 55845393‘ (2)
Hence by (APP), (1) and (2) imply

5554535251P [ €1 €2 ! 5554535251p.

e case e; eg for gk - By induction, (G.18) implies Si" F e : 5;5. By
Lemma A1.1, we can apply 5352 to both sides:

5'352511“ [ €9 : 535251,8. (3)
By induction, (G.19) implies 251 - e; : S20. By Lemma Al.1l, we can
apply S3 to both sides:

SgSgSlr F €1 : 53529.
Because 53520 = S35351(8 — p) by (G.20),

S3SzS1F - €1 : 335251(,3 — p). (4)
Hence by (APP), (3) and (4) imply

53525'11’ = €1 €2 : 53525'1[).

e case let z=e; in ey : Let S5 = S2{A/d}, where @ = fiv(S18) \ fv(S1T), g
are new type variables, and 3 is the new type variable introduced at (G.11).
By induction, (G.11) implies $1I" I e; : 51 8. By Lemma Al.1, we can apply
S5 to both sides:

SéS]F [ €y : SéS],B (5)
By induction, (G.12) implies
S25:1T + x: SQCIOSSIF(Slﬁ) Feq 1 S90. (6)
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Note that S5, = §551T because S, differs from S, only on non-free vari-
ables of S1T", and that S2Closs,r(S13) = Closg,s,r(S5510) by Lemma A1.3.
Thus (6) is
558:T + x: Closgys,r(S3510) F ez : S26. (7)
Hence by (LET), (5) and (7) imply S55:1T" - let z=e; in ey : S26; that is,
S281T - let z=e; in es : Sa6.
By Lemma Al.1, we can apply S3 to both sides:
535251 - 1let z=e; in eg : S3550.
Because 53528 = 535251p by (G.13),
S35281 ' F let z=€; in eg : S35251p.
e case fix f Az.e : By induction, (G.16) implies S251T'1 + z: S2S161 e
528182. By (FN),
$2811 F Az.e : S5251(51 — B2).
By Lemma Al.1, we can apply S3 to both sides:
83525911 F Az.e : 535251(81 — [a).
Because S1(81 — B2) = S102 by (G.15),
5352811"1 FAze: 53525192.
Because I'y =T'+ f: 6; by (G.14),
839251 + f: 535251601  Az.e: 53525162.
Because 53525181 = S3525102 = 535251p by (G.17),
538251 + f: S35381pF Az.e: S35:5:p.
Hence by (FIX),
53825 T F fix f Az.e: 8535:S51p.

§A2 Completeness Proof

Theorem 2.2 (Completeness)

Let e be an expression, and let I" be a type environment. If there exist a type p
and a substitution P such that PT I e : Pp, then G(T', e, p) succeeds with S and
there exists a substitution R such that P}, = (RS)|y., Where New is the set
of new type variables used by G(I', e, p). The theorem also holds for G%.

The completeness proof uses Lemmas A2.1-A2.5.

Lemma A2.1 (Lee and Yi'®)
Let S be a substitution, I be a type environment, and 7 be a type. Then
SClosr (1) = Clossr(ST).

Lemma A2.2 (Damas and Milner®)
Let I' and I be type environments such that T' > [V, If [V~ e: 7, then T e : 7.
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Lemma A2.3 (Milner'?)
Let R and S be substitutions and 7 be a type. Then

e itv(RS) Cinv(R) U itv(S) and
e ftv(ST) C fiv(T) Uitv(S).

Lemma A2.4
If S =G(T', e, p) then it(S) C fiv(T') U fiv(p) U New, where New is the set of new
type variables used by G(T, e, p). The lemma also hols for G¥.

Proof
See Appendix Section A3. ]

Lemma A2.5 (Lee and Yi'”)
If itv(S) NV = 0, then (RS)},, = R}, S.

Proof of Theorem 2.2

We prove by structural induction on e, and we prove for G and G® simultaneously.
For a rigorous treatment of new type variables, we assume that every new type
variable used throughout algorithm G is distinct from each other, and that the
set New of new type variables used by each call G(T', e, p) satisfies New N (fiv(T") U
Jfv(p)) = 0. Moreover, let us rephrase the part of the algorithm definition that
whenever we use § > p in G, the substitution G for G8 = p is such that supp(G) =
fv(0) \ fiv(p) and has only new type variables.

e case () and z : The same as the proof for M in Lee and Yi’s.'?

o case Az.e : Let the given judgment be PT' - Az.e : m — 72 where 7y —
To = Pp, and New = {01, 82} U supp(G) U New; where 3 and 2 are new
type variables used at (G.3), G is the substitution for 8 > p at (G.3), and
New; is the set of new type variables used by G(S1T + z: S151,€, S152) at

G.4).
%irs'z, we prove the unification U(B; — B2,0) at (G.3) succeeds. Let P’ =
(PG)]l{ﬂlyB2} U {m1/B1,72/B2}. Then P’ unifies 51 — (B2 and 6 because

P8 = PG§ because the new (31, B2 & fiv(6)
= Pp by the definition of G
= 71T by the assumption

= P'(f1 — B2) by the definition of P'.
Thus by Theorem 1.1, the unification at (G.3) succeeds with S; such that
for a substitution R;,

RiS1 =P (8)
By the (FN) rule, the given judgment implies
Pl+z:mFe:m. (9)

To apply induction to G(Si1T + z: S181,¢€,S5132) at (G.4) and (9), we must
prove that there exists a substitution P; such that 7o = P;(S105,) and
Pl +z: 7 =P (51T +2: $161). Such P, is Ry at (8) because
R1(8182) = P'By by (8)
= 7 by the definition of P’
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and
R1(51F +x: 31,31)

=P +z:8) by (8

= PGl +z: 74 because the new §y, 5z & frv([')

=Pl+z:m because supp(G) N fv(T') = 0.
Thus by induction, G(S1T'+x: S161,¢€, S162) at (G.4) succeeds with Sz such
that for a substitution Rg,

(R2S2 )l New, = Ralnew, - (10)
Note that
itv(S1) € {B1, 02} Ufiv(B) by Theorem 1.1

C {1, B2} Ufrv(p) U supp(G)
because supp(G) = fiv(8) \ fiv(p), and thus by the definition of G,

New, N in(Sy) = 0. (11)
Then
(RQLS'g.S’l),lI\,ew1 = (R2S2)lnew, 51 by Lemma A2.5 and (11)
= RﬂNewlsl by (10)
= (R1S1 ) new, by Lemma A2.5 and (11)
= Pliyew, by (8). (12)

Now we prove the unification U/(S52516, S2S1p) at (G.5) succeeds. Rg unifies
52510 and S5.51p because

Ra(S2516)

=P'§ by (12) and because fiv(9) N New; =
= PG6 because the new 31, 82 € ftv(9)

=Pp by the definition of G

= PGp because ftv(p) N supp(G) = 0

=P'p because the new 31, 82 & ftv(p)

= R2(S251p) by (12) and because fiv(p) N New; = 0.
Thus the unification at (G.5) succeeds with S3 such that for a substitution

R3,
R3S3 = R». (13)

Hence G(T', Ax.¢, p) succeeds with S35251, and (R3535251)} yew = Plyew
because

(R3535251)| New

= (R25251)} yew by (13)

= Pl*New by (12)

= Plyew because supp(G)U{B1, B2} C New.

e case e; eg for G : Let the given judgment be PI' I e; ez : Pp, and New =
{B}Usupp(G1)Usupp(G2)Usupp(Gs) UNew; UNews, where 3 is the new type
variable used at (G.6), G1, G2 and G3 are respectively the substitutions for
61> 5 — pat (G.6), 62 > S1(8 — p) at (G.7), and 03 > 52515 at (G.8),
and New; and Newsg are respectively the sets of the new type variables used

by G(T',e1,0:1) at (G.6) and G(S251T, e2, 63) at (G.8).



20

H. Eo, O. Lee and K. Yi

By the (APP) rule, there exists a type 7 such that

Pltey:7— Pp (14)
and

Plleq: T (15)

First, we prove G(I', e1,6:) at (G.6) succeeds by induction. Let P’ = Plg U
{r/B}. Then
P'Gi6, = P (33— p) by the definition of Gy
= 17— Pp because the new 3 & fiv(p)
and P'GiT" = PT because fiv(I") N (supp(G1) U {3}) = 0. Hence, applying
induction to G(T',e1,61) at (G.6) and (14}, there exists a substitution R;
such that

(R1iS1 M new, = (P'G)kwen, - (16)
Then R;G2 unifies S;60; and 05 at (G.7) because, by noting that
ftv(5161) N supp(Ga)
C (irv(S1) Uftv(61)) N supp(Ga) by Lemma A2.3
C (fv(T") U Newq U ftv(61)) N supp(G2) by Lemma A2.4
=0, (17)
R1G3(5:10,)
= R15101 by (17)
= P'G16, by (16) and because fiv(61) N New;, = 0

=P (8 — p) by the definition of G

= P'G1(B — p) because ftv(3 — p) Nsupp(G1) =0

= R151(8 — p) by (16) and because ftv(8 — p) N\ New; =0

= R1G2(62) by the definition of G>.
Thus the unification at (G.7) succeeds with Sz such that for a substitution
Rs, RS = R1G2. Then

(R2S251)+supp(Gz)UNew1
= (R1G251)supp(cr)uNew
= (R1S1 ) supp(Ga)uNews because supp(Gs) Nitv(S1) = 0
by Lemma A2.4
= (P'Gillupp(Gr)unew, DY (16). (18)

In order to apply induction to G(S251T, e2,63) at (G.8) and (15), we must
prove that there exists a substitution P; such that P;(S25:1I") = PI' and
P65 = 7. Such P; is RyG3. First, note that, by the definition of G,

supp(G3) Nftv(Se51T) = 0 (19)
because
fv(8251T)
C itv(So) Vitv(S1) Ufv(T) by Lemma A2.3

C frv(62)Uftv(61)UNew, Uftv(I') by Theorem 1.1 and Lemma A2.4.
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Thus
RyG3(525:T)
= RzSleF by (19)
=P'GiI’ by (18) and
because fiv(I') N (supp(G2) U New;) = 0
= PT because fiv(I') N ({8} U supp(G1)) = 0.
Second,
R2G3(65)
= R3525:8 Dby the definition of G3
= P'G;8 by (18) and because 3 & supp(G2) U New;
=P'p because 3 & supp(G1)
=7 by the definition of P’.
Thus by induction, (G.8) succeeds with Sz such that for a substitution Rs,
(R3S3)+New2 = (R2G3)llNew2' (20)

Moreover, note that

(R3S3)+New2Usupp(G3) = R2*New2Usupp(G3)‘ (21)

Then Rj unifies 53525160; and S3525:1(8 — p) at (G.9) because

R35353510;
= Ry555161 by (21) and

because ftv(6;)N(NewaUsupp(Gs)) = 0
= P'G1%; by (18) and

because fiv(6;)N(New1Usupp(Ga)) =0
=P'(8— p) by the definition of Gy

= P'G1(8 — p) because ftv(8— p)Nsupp(G1) = 0
= R25251(f — p) by (18) and
because ftv(8 — p) N (Newy Usupp(G2)) =0
= R3535251 (6 — p) by (21) and
because fiv(8 — p) N (New2Usupp(G3)) =0.
Thus the unification at (G.9) succeeds with Ss such that for a substitution
R4a

R4S4 = R3. (22)
Finally, R4 unifies 545363 and 545352515 at (G.10) because
R4(545303)
= R35305 by (22)
= RyG3ls by (20) and because fiv(f3) N Newy = )
= R25:5.0 by the definition of Gj

= R4(5453525168) by (21) and (22), and
because 3 & News U supp(G3).
Thus the unification at (G.10) succeeds with S5 such that for a substitution

RS’
RsSs = Ry. (23)
Hence G(T', e; ez, p) succeeds with S5545935251.
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Now we prove the rest that (Rs5S554535251)new = Pliew: Note that,
by Lemma A2.3 and A2.4 and Theorem 1.1, itv(eé‘)gSl) - ftvu(l“) U fiv(81) U

ftv(62) U Newy, hence by the definition of G,

itv(S251) N (Newq U supp(G3)) = 0. (24)
Therefore
(R585554535251)} New
= (R4S4S3S?Sl)+New by (23)
= (R3S35251)}New by (22)
= ((R353)} vew, usupp(G3) 925D New by Lemma A2.5 and (24)
= (RQ}Newgumpp(G’g)SQSI);New by (21)
= (R25251) New by Lemma A2.5 and (24)
= (P'G)lnew by (18)
= Plyew because ({8} U supp(G1)) C New.

case e; e for GF :

Let the given judgment be PT" I e; e3 : Pp, and New = {8} U supp(G) U
New, U News, where 3 is the new type variable used at (G.18), G is the
substitution for 8 > S1(6 — p) at (G.19), and New; and New, are respec-
tively the sets of the new type variables used by G(T', e2, 3) at (G.18) and
G(SiT, e1,8) at (G.19).

By the (APP) rule, there exists a type 7 such that

Pllke:7— Pp (25)
and
PTFes: T (26)

First, we prove that G(I', ez, 8) at (G.18) succeeds by induction. Let P’ =
P}y U{7/B}. Then P’ =7 and P'T = PT because § ¢ frv(l'). Hence by
induction, G(T', e2, 3) at (G.18) and (26) imply that there exists a substitu-
tion Ry such that

(Rlsl){’Ne'wl = Pl{Ne'wl' (27)
Moreover, note that
(Rlslﬂ{ﬁ}uf\?ewl = P}{B}UNewl. (28)

In order to apply induction to G(S1T, e1,8) at (G.19) and (25), we must find
a substitution P; such that P{SiI" = PT and Pi@ = 7 — Pp. Such P; is
R;1G because

R1G(S:T)

= R1S1T  because supp(G) Nfrv(S1T) =0

by Lemma A2.3 and A2.4
. =Pr by (28) and because fiv(I') N ({8} U New;) = 0.

an
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R1G(6)
= R151(8 — p) by the definition of G
=P(B— p) by (27) and because ftv(3 — p) N New, = 0

=7 —=Pp by the definition of P’
=7 — Pp because 8 ¢ ftv(p).
Then by induction, (G.19) succeeds with Sz such that for a substitution Rz,
(R2S2 W New, = (R1GN New,- (29)
Moreover, note that
(R252)+supp(G’)UNew2 = Rl{supp(G’)UNewz‘ (30)
Then R, unifies S26 and S251(8 — p) at (G.20) because
RyS20
=R:G6 by (29) and frv(0) N News = 0

= Ri151(8 — p) by the definition of G
= R25251(8 — p) by (30) and because, by Lemma A2.3 and A2.4,
fv(5251(8 — p)) N (supp(G) N News) = 0.
Thus the unification at (G.20) succeeds with S3 such that for a substitution
R3a

R3S3 = R,. (31)

Hence G(I', &1 eq, p) succeeds with $35297.

Now we prove the rest that (R3535251)lyey = Plyew- Note that, by
Lemma A2.4, itv(S1) C fiv(I') U {8} U New1, hence by the definition of

g,

itv(S1) N (supp(G) U News) = 0. (32)
Therefore

(R3535251) yew

= (R2S2Sl)*New by (31)

= ((R2S2)lupp(@)uNew, S1)INey Dy Lemma A2.5 and (32)

= (Rll'supp(G)UNewg Sl)llNew by (30)

= (R1S1)l yew by Lemma A2.5 and (32)
=Plyew by (28).

e case let r=e; in ey : Let the given judgment be PT" - let z=e; ines : Pp,
and New = {3} U supp(G) U New; U News, where (3 is the new type variable
introduced at (G.11), G is the substitution for § > S1p at (G.12), and New
and New, are respectively the sets of new type variables used by G(T', e1, 8)
at (G.11) and G(SiT' + z: Closs,r(518), e2,6) at (G.12).

By the (LET) rule, there exists a type 7 such that

Pl'ke 7 (33)
and
PT +z: Clospr(t) - e : Pp. (34)
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Let P' = P} 5, U{7/B}. Then P'8 =7 and P'T = PT because 3 ¢ frv(I).
Hence by induction, G(T', ey, 8) at (G.11) and (33) imply that there exists a
substitution Ry such that

(Rlsl)llNeuu = PliNG‘wl' (35)
Moreover,
(RlSl)ll{ﬁ}UNeuu = P*{B}UNB'UJI' (36)
Note that
R1G(S11)

= R1 81" because supp(G) N frv(SiI') =0
by Lemma A2.3 and A2.4
=PT by (36) and because frv(I') N ({#} U New;) = 0,

and
RlG(CIOSSIF(Slﬁ))
> Closg,cs,r(R1GS18) by Lemma A2.1
= Clospr(R1510) because supp(G) Nftv(S18) =0
by Lemma A2.3 and A2.4
= Clospr(P'B) by (35) and because 8 & New;
= Clospr(T) by the definition of P’;

that is, RiG(SiI' + z: Closs,r(S18)) > PT + x: Clospr(7). Then by
Lemma A2.2 and (34),

RiG(S1T + z: Closg,r(S18)) ez : Pp. 37

In order to apply induction to G(S1T+z: Closs,r(S10), e2,0) at (G.12) and
(37), we have to prove that R1G@ = Pp:

R1G(0)

= R151p Dby the definition of G

= Pp by (36) and because fiv(p) N ({3} U New:) = 0.
Thus by induction, G(S1T + z: Closs,r(S518), e2,8) at (G.12) succeeds with
Ss such that for a substitution Ra,

(RQSQ)llNewg = (RlG)iNeuu’ (38)

Moreover, note that

(Re S2)hupp(G)UNew2 =R stupp(G)UNewz : (39)

Then Ry unifies S26 and S»S1p at (G.13) because

R»(5,6)

= R1Go by (38) and because ftv() N News = 0

=Ri1S1p by the definition of G

= Ry(S2S51p) by (39) and because, by Lemma A2.3 and A2.4,

Jtv(S1p) N (supp(G) U News) = 0.

Thus the unification at (G.13) succeeds with S3 such that for a substitution
R;,

R353 = Rs. (40)
Hence, G(T", 1let z=e1 in es, p) succeeds with S355.5;.



Proofs of a Set of Hybrid Let-Polymorphic Type Inference Algorithms 25

Now we prove the rest that (R3535251)Ine, = Plyew- Note that, by
Lemma A2.4, itv(S;) C fov(T') U {8} U New;, hence by the definition of

g,

iv(S1) N (supp(G) U News) = (. (41)
Therefore

(R3535251 )l yew

= (R2Sle)+New by (40)

= ((R2S2)lupp(G)uNew; S1) New by Lemma A2.5 and (41)

= (RlJ'xupp(G)UNewg Sl){New by (39)

= (R1S1 )} yew by Lemma A2.5 and (41)

= Plyew by (36).

e case £ix f Ax.e: Let the given judgment be PT' - fix f Azx.e: Pp where
Pp =1 — 15 and New = {01, B2} U supp(G1) U supp(G2) U New' where 3
and (3 are new type variables used at (G.15), G1 and G are substitutions
for 61 > p at (G.14) and 62 > 8, at (G.15), and New' is the set of new type

variables used by G(S1I'1 + z: S151,e, 5152) at (G.15).
By the (FIX) rule, PT'+f: PpF A\z.e : Pp. Because (supp(G1)Usupp(G2))N
ftv(I‘) = @ and p= G101 = GlGQQQ,

PGGoT" + f: PG161 F Mz.e: PG1Gabs.
Because I'y =T + f: 6; by (G.14), and frv(01) N supp(G2) = 0,
PG1G2F1 F)Az.e: PG1G292. (42)

First, we prove the unification U{F; — [2,02) at (G.15) succeeds. Let
P = (PGlG’g)}{ﬂhﬁz} U {m/B1,72/B2}. Then P’ unifies 55 — B2 and 62

because
POy = PG1Go0, because the new 01, B2 & fiv(6s)
= PG.16y by the definition of G2
= Pp by the definition of G
=T > T by the assumption (43)

= P'(6; — (2) by the definition of P’.

Thus by Theorem 1.1, the unification at (G.15) succeeds with S; such that
for a substitution R;,

RS, =P (44)
By the (FN) rule and because PG1G202 = 11 — 72 by (43), (42) implies
PG1GoT'14+z: b e:m. (45)

To apply induction to G(S1T'1 + z: S151,e,5152) at (G.16) and (45), we
must prove that there exists a substitution P; such that 72 = P;(S152) and
PG1Gol'1 + 21 11 = P1(S1T'1 + z: S161). Such P is Ry at (44) because
R1(S182) = P32 by (44)
= T by the definition of P’
and
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Ri(S1T1 +z: S161)

=P (T1+z: B) by (44)

= PG1Gsel'1 +z: 71 because the new (1,32 & fiv(l’1).
Thus by induction, G($1T1 + z: 5151,¢e,5162) at (G.16) succeeds with So
such that for a substitution Ra,

(R2S2)1lNew’ = R1+New” (46)
Note that, because supp(G1) = ftv(61) \ftv(p) and supp(G2) = frv(62) \ftv(61),
iv(Sy)
- {ﬂll,ﬁ2} U ftv(62) by Theorem 1.1

C {B1, B2} Uftv(61) U supp(G2)

C {B1, B2} U ftv(p) U supp(G1) U supp(Ga)
and thus by the definition of G,

New' Niv(Sy) = 0. 47)
Then
(R25251 ) New = (R252)} yewrS1 by Lemma A2.5 and (47)
= RilnewS1 by (46)
= (R1S1)lyew by Lemma A2.5 and (47)
= Plyew by (44). (48)

Now we prove the unification U(52516:, 525162, S251p) at (G.16) succeeds.
R unifies 525101, 525162, and S2S51p because

R2(82516-)

= PO by (48) and because fiv(2) N New' = 0
= PG1G26, because the new (1, 82 & fiv(62)

= PG16; by the definition of G (49)
= PG1G26, because frv(0;) N supp(G2) = 0

= P4, because the new (1, B2 & fiv(61)

= Ry(S25101) by (48) and because frv(f1) N New' = §.

and

R3(S525102)

= Pp by (49) and the definition of G;

= PG1p because ftv(p) N supp(G1) = 0

= PG1Gap because ftv(p) N supp(Ga) = 0

=Pp because the new 5y, 82 & fiv(p)

= R2(S251p) by (48) and because ftv(p) N New' = {).
Thus the unification at (G.16) succeeds with S3 such that for a substitution
R3a
R3S3 = Rs. (50)

Hence G(T', £ix f Az.e,p) succeeds with S35251, and (R3S535251 ) yew =
Pl .., because
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(R3S3S?Sl)¥New
:(R252S1){N6w by (50)

New because supp(G1)Usupp(G2)U{B1, B2} C New.

§A3 Proof of Lemma A2.4

We prove by structural induction on e.

e case () : By Theorem 1.1, itv(U(p,¢)) C fiv(p) Ufiv(e) = fv(p).

e case T : .
iv(U(p,{B/d}7))
frv(p) Uv({B/d}r) by Theorem 1.1
fv(p) U (fv(r) \ @) U B
ftV(p) U fv(va.r) U §
fv(p) Ufn([(z))UB  because ['(z) = V.7
< (o) Ui(T) U
Note that (3 is the set of new type variables used by G(I', z, p).
e case \r.e : Let G be the substitution for § > p at (G.3). Note that all the
type variables in supp(G) are new by definition.

1NN

irv(S1)

C frv(0) U frv(B1 — B2) by Theorem 1.1

Q}(‘tg(f) U supp(G) U {B1, B2} because supp(G) = fv(0) \ fiv(p),

itv(So

C v(S1T) Ufv(S161) U fv(S162) U New; by induction

C itv(S1) Ufv(T) U { B, B2} U Newy by Lemma A2.3
where New; is the set of new type variables used by G(S1T'+z: S151, €, S102)
at (G.4), and

itv(Ss)

C ftv(S52510) U frv(S2S:p) by Theorem 1.1

C iv(S2) U itv(S1) U fiv(0) U fiv(p) by Lemma A2.3

C itv(S2) Uitv(S1) Usupp(G) U fv(p).
Therefore itv(S35251) C fv(T) U frv(p) U (supp(G) U {B1, B2} U New1). Note
that supp(G) U {61,082} U New; is the set of new type variables used by
G(T, Az.e, p).

Other cases can be similarly proven. [ ]

§A4 Relative Earliness Proof

Theorem 2.3

Let A and A’ be instances of G such that A C A’, o be a type environ-
ment, ep be an expression, and pp be a type. If [[A(Fo,eo,po ] has (T, e, p)¥,
then [A'(T, g, po)]] has (I, e, p'}¥/* and there ex1sts a substitution R such that
R > T and Rp’ = p. The theorem also holds for GZ.
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The proof of Theorem 2.3 uses Lemmas A4.1 and A4.2.

Lemma A4.1 (Lee and Yi'®)
If I > I then Closr(r) > Closr/(T).

Lemma A4.2

Let A and A’ be instances of G, I and I be type environments, and p and p’ be
types such that RI” > I and Rp’ = p for a substitution R. If A(T', e, p) succeeds
with S, then A'(IV, e, p’) succeeds with S’ and there exists a substitution R’ such
that (R'S'){ New = (SR)} New Where New is the set of new type variables used by

A'(T", e, p’). The lemma also holds for GE.

Proof
Because A(T, e, p) succeeds with S, by the soundness of A,

ST'ke:Sp.
By Lemma A1.2, SRI' > ST and Sp = SRp’. Thus by Lemma A2.2,

SRIY Fe: SRy
By the completeness of A, A'(I", e, p’) succeeds with S’ and there exists a sub-
stitution R such that

(R,S/NNew = (‘S’RNNew'

Proof of Theorem 2.3
We prove by induction on the length of the prefixes of [A(T'y, ep, po)], and we

prove for G and G simultaneously. We add superscript prime (') to all names
used by A’ (To, €0, po)-

o base case: When the prefixes are of length 1, they represent the initial calls
where e is eg. Then the identity substitution R satisfies RT'g > I'y and
Rpo = po.

Followings are inductive cases We first prove for the case that the string ends
with a return: (g, g, po)?- - - (T, e, p)*.

o case of the return from e: The case means that [A(Ty, eq, po)] has

(T,e,p)?---(T,e,p)".
By induction hypothesis, [A’ (F 0,€0,p0)] has (I, e, p")% and there exists a
substitution R such that Rp’ = p and RIY = I'. Then by Lemma A4.2,

A'(I", e, p') succeeds; that is, [A'(To, eo, po)] has (I, e, p)*.
Now we prove the cases that the string ends with a call: (Tg,eg,p0)--- (T, €, p)d.
e case ein Az.e: that is, [A(T, eg, po)] has
(T, Az.e,p)4(S1T + z: 8151,¢€, 8162)¢

where S = U(B1 — (2,0) at (G.3), and B3 and (s are the new type variables
at (G.3). By induction, [A’ (Fo,eo, po)] has (I, Az.e, p')? and there exists a
substitution R such that Rp’ = p and

RI' > T. (51)
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In order for A’(T", Az.e, p') to have a call for e, the unification at (G.3) must
hold. Because A T A’, there exists a substitution P such that

0= (R*supp(P) U P)ol (52)
and supp(P) C fiv(8’) \ fiv(p'). Note that by the definition of G,
supp(P) Nfrv([’) = 0. (53)

Let Ro = Rlgr a13uapp(py U P U {B1/B1,B2/B2} where 31 and B are the
new type variables of A’ introduced at (G.3). Then S; Ry unifies 3] — 3,
and ¢ at (G.3) because

S1Ro(6)

= S1(Rlyppp) U P)0"  because the new By, B; & frv(6')
= 5,6 by (52)

= 51(61 — B2) by (G.3)

= S1Ro(B] — B3) by the definition of Rg.
Thus the unification of A" at (G.3) succeeds with S7, hence [A' (T, o, po)]
has (S1I7 + z: S8, e, S165)%.
Now we prove the rest that there exists a substitution R’ such that R'(S{I"+
z: 5167) > (SiT +z: S161) and R'(S185) = S102. Because (G.3) succeeds
with S7, by Theorem 1.1, there exists a substitution R; such that

S1Ro = R151. (54)

Then such R’ is R; because

Ri(SiT +z: S187)

= S1Ro(T" + z: ﬂi) by (54)

= Sl((R1l.supp(P) U P)F, +x: Roﬁi)

because the new 31, 55 & fiv(l')
=S1(Rl" +z: 1) by (53) and the definition of Ry
= S1(T+z: 51) by (51) and Lemma A1.2

Ri(S183) = Si1Rof; by (54)
= S1P2 by the definition of Ry.

and

e case e in e e; for instances of G: that is, [A(To, e, po)] has
(F7 € €2, p)d(r, €, 01)d
where 6, is the type relaxed from 3 — p at (G.8). By induction hypothesis,

[A(To, €0, po)] has (I”, e eq, p’)¢ and there exists a substitution R such that
Rp' = p and

RIY = T. (55)
Thus by the definition of G, [A’(T, e, po)] has (I, e, 8;)% where 6] is the
type relaxed from 8 — p' at (G.8).
Now we prove the rest. Let Rg = R} 5, U {8/} where 8 and 3’ are
respectively the new type variables of A and A’ at (G.6). Because A C A’

and
Ro(B — p') = B — Rp’ because the new 3’ ¢ frv(p’)
= B—p
there exists a substitution P such that
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(RO}lsupp(P) U P)0,1 = b1
and supp(P) C fiv(6;) \ fiv(8' — p'). Note that supp(P) Nftv(I") = 0 by the
definition of G. Thus
(Rokupp(P) U P)(F )
= RT' because ({8} U supp(P)) N frv(T') =0
~T by (55).

case e in e; e for instances of G: that is, [A(To, eo, po)] has

(Fa €1 €, p)d(rv €1, el)d e (F7 €1, gl)u(SQSlrv €, 03)d
where 61, 02, and 65 are respectively the relaxed types of A at (G.6), (G.7),
and (G.8), S1 = G(T',e1,61) at (G.6), and Sy = 5'191,022 at (G.7).
By induction hypothesis, [4’ (Fg,eo, po)] has (I',e; e,p')* and there exists
a substitution R such that Rp’ = p and

RTY - T. (56)
In order for A’(I”,e; e, ') to have a call for e, its call for e; at (G.6) must
return and the unification at (G.7) must succeed.
- A'(T',e1,6)) at (G.6) returns: Let Ry = R+{ﬁ,} U {B/B'} where 3 and '

are the new type variables of A and A’, respectively, introduced at (G.6).
Because A C A’ and

Ro(B — p') = B— Rp’ because the new 3’ ¢ fiv(p')

there exists a substitution P; such that
01 = (Ro*supp(Pl) U Pl )0,1 (58)
and supp(Py) C fiv(0]) \ fiv(8' — p'). Note that by the definition of G,
supp(P1) 0 (fv(T') U frv(B' — p')) = 0 (59)
and thus
(Roisupp(Pl) U Pl)F, = RF/ by (59) and ﬂ, ¢ﬁV(F,)
=T by (56). (60)

Because [A(To, €0, po)] has (T, e1,601)*, (Ro {AW(H) UP)I’ =T (60), and
(Ro{mpp(Pl)UPl)G’ = 61 (58), by Lemma A4.2, A'(I", e;, 6}) succeeds with
S1 such that for a substitution Ry,

(RlSI)JfNewl - (SI(RO][supp(Pl) U Pl))JfNewl (61)

where New is the set of new type variables used by A'(I", ey, 6}).
- U(S5107,65) at (G.7) succeeds: Because A C A’ and

Ri(81(6' = p"))
= S1(Rolyypp(pyy Y P8 — £)
by (61) and because fiv(3 — p') N New; = 0
= S1Ro(8' ~ ¢') by (59)
= 51(8 — p) by (57), (62)



Proofs of a Set of Hybrid Let-Polymorphic Type Inference Algorithms 31

there exists a substitution P, such that
0y = (lefsupp(Pz) U P2)0/2 (63)

and supp(Ps) C fiv(65) \ fiv(S1(8' — p')). Note that
Jrv(8161) Ufv(S16') U fiv(S1TY)
Cin(ST) Ufv(@) U {8} Ufv(l') by Lemma A2.3
C Newy Ufv(07) U{B'}Ufv(I') by Lemma A2.4
and thus by the definition of G,

supp(Py) N (ftv(S167) Ufiv(S18°) U frv(S1T)) = @ (64)
Then Sa(Rily,,,(p,) U P2) unifies S16; and 65 at (G.7) because
Sz(Rl}supp(Pz) U Pz)(Si ;)
= SR, 5160} by (64)
= S2S1 (RO*Supp(Pl) U P])oi by (61) and
because fiv(6;) N New; = 0
= S25101 by (58)
= S26- by (G.7)
= Sz(Rl{“.\'upp(Pg) U PQ)(GQ) by (63)
Thus the unification of A" at (G.7) succeeds with S5.
Therefore [A’(To, eo, po)] has (55511, e, 85)°.
Now we prove the rest that there exists a substitution R’ such that R'6; = 63
and R'(5351T) > S5:T. Because (G.7) succeeds with S5, by Theorem 1.1,

there exists a substitution R, such that

Because A C ,A’ and
R2(‘5’251/6,) = Sz(Rﬂsupp(Pz) U PQ)SLH, by (65)
! !

= S:R1918 by (64)
= 550 by (62),
there exists a substitution P; such that
03 = (Rz{supp(Pg) U P3)0§

and supp(P3) C frv(63) \ fv(S5,518'). Note again that, by Lemma A2.3
and A2.4 and Theorem 1.1,
Jrv(S351TY)
Qﬁv(ﬁl) Uﬁ‘v((b) U Newy Uﬁv(F')
C supp(Py) Uftv(8 — p) U supp(Py) U New: U frv(T)
and thus by the definition of G,
supp(P3) N ftv(S35:T7) = 0. (66)

Therefore, such R’ is (Ragupp(p,) U Ps) because
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(szfsupp(P3) U P3)(SéSiF,)

= RS by (66)

— SQ(Rllsupp(Pz) U P2)S{F' by (65)

= S2R1 Sil—‘/ by (64)

= 5251 (Rolpp(pyy U PLI by (61) and because
('Y N New; =0

= S25T by (60) and Lemma A1.2

e case e in e; e for instances of G'*: that is, [A(Tg, eq, po)] has

(T, e1 €,p)%(T, e, 8)°
where (3 is the new type variable introduced at (G.18). By induction,
[4'(To,e0,p0)] has (I',e1 e,p’ )¢ and there exists a substitution R such
that RI" > ' and Rp’ = p. By the definition of G®, [A(Ty, €0, po)] has
(I',e, )% where @ is the new type variable introduced at (G.18). Let
Ry = Rl{5, U {8/8'}. Then ReI" = RI” > T and Rof' = 8.
case e in e e, for instances of G¥: that is, [A(T, eg, po)] has

(Pa € €2, p)d(F, €2, /B)d e (Fa €2, IB)U(SI]-—" €, a)d
where (3 is the new type variable introduced at (G.18), 6 is the relaxed type
at (G.19), and S = GR(T, ez, 8) at (G.18).
By induction, [A’(Tq, €9, po)] has (I, e ea, o) and there exists a substitu-
tion R such that Rp’ = p and

RI' = T. (67)
Let Ry = R} 5, U{B/ B’} where ' is the new type variable introduced at
(G.18). Then Ry = 8 and

RoI" = RI' because the new 8 & fiv(I")

~T by (67). (68)

Thus by Lemma A4.2, A'(T',eq, ) at (G.18) succeeds with Sj, hence
[A’(To, €0, po)] has (SiTV,e1,6)%.
Now we prove the rest that there exists a substitution R’ such that R'¢' = 0

and R'S{I” > SiT. Because (G.18) succeeds with 5], by Lemma A4.2, there
is a substitution R; such that

(RlSiHNewl = (SIRO)JfNewl (69)

where New; is the set of new type variables used by A'(I", ez, ).
Because A C A’ and

Ryi(S16)

= S1Rop’ by (69) and because ftv(p') N New; =

= S1Rp’  because the new ' ¢ fiv(p')

= Slpv
there exists a substitution P such that

(Rl]lsupp(P) U P)ol =6

and supp(P) C fiv(€') \ fv(S1p"). Note that

supp(P) N (fv(S117) Ufiv(816')) = 0. (70)
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by the deﬁmtlon of G because
fv(SiT) UﬁV(Slﬂ/)
C n‘v(Sl) ufmv(l)u {8’} by Lemma A2.3
C New; Umv(I")U {3} by Lemma A2.4.
Therefore, such R’ is (Rilgpp(py U P) because

(Rl {\'upp(P) U P) (S{ FI)

= R8T by (70)
= S Rol” by (69) and because New; N fiv(T') = 0
= 51 by (68) and Lemma A1.2.

e case ein (let z=e in eg): that is, [A(T, €0, po)] has
(T, let z=€ in eg,p)d(F,e,ﬂ)d

where § is the new type variable introduced at (G.11). By induction,
[A’(To, €0, p0)] has (I, 1et z=e in ez, p’)? and there exists a substitution
R such that RI" > T and Rp' = p. By the definition of G, [A'(To, g, po)]
has (I, e1, 8')¢ where (' is the new type variable introduced at (G.11). Let
Ry = R+{,@'} U {ﬂ/ﬂ }. Then RoI" = RIV =T and Ry’ = 8.

e case ein (let z=e; ine): that is, [A(To, eo, po)] has
(T, let z=e; in e, p)* (e, 8)¢--- (e, B)*(SiT + z: Closs,r(S15), e, 0)%
where ( is the new type variable introduced at (G.11), 6 is the relaxed type
at (G.12), and S; = G(T',e1, B) at (G.11).
By induction, [A'(To, €0, po)] has (I, let z=e in e, p )d and there exists
a substltutlon R such that Rp' = p and

RI' ~T. (71)

Let Ry = R{ Y {B/5'} where 3 is the new type variable introduced at
(G.11). Then RoS’ = 8 and
RoI” = RI' because the new 3 & fiv(I"”)
=T by (71). (72)
Thus by Lemma A4.2, A'(T",e1,8’) at (G.11) succeeds with Sj, hence
[A'(To, eq, po)] has (SII" +x: Closgi (.S’lﬁ') e2,0)%.
Now we prove the rest that there exists a substitution R’ such that R'0’ = @

and R'(S1I" + z: Closg;1+(818')) > SiT'+z: Closs,r(S16). Because (G.11)
succeeds with S7, by Lemma A4. 2, there is a substitution R; such that
(R]-Sl)l’Newl = (SIROHNewl (73)

where New, is the set of new type variables used by A'(I",e;1,3).
Because A C A’ and

Ri(S16)

= S1Rgp’ by (73) and because ftv(p') N New; = )

= S1Rp’ because the new 3’ & fiv(p')

= Slpv
there exists a substitution P such that

(RlYlsupp(P) U P)Hl =0
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and supp(P) C fv(6') \ ftv ( ¢'). Note that
fov(Sy ') U frv( Sy 8)
C ztv( 1) Uﬁv(F yu{B8'} by Lemma A2.3
C New Ufv(I")U{B'} by Lemma A2.4
and thus by the definition of G,
supp(P) N (frv(ST") U frv(518')) = 0. (74)
Therefore, such R’ is (Rilg,, p) Y P) because

(Rll'supp P UP)(SiF,)
(P)

= R (1) by (74)
= S1RoI” by (73) and because Newy Nfrv(l') = 0
- 5 by (72) and Lemma A1.2 (75)
and
(lefsupp(P) U P)(Clossil—"(silg/))
= R1Closg;r(518') by (74)
= Closg, s1r(R1518") by Lemma A2.1
> Closg,r(R15108) by (75) and Lemma A4.1
= Closg,r(S1Rof3') by (73) and 8 & New;
= Closg,r(515) by the definition of Ryg.

caseein (£ix f Az.e): that is, [A(Lg, eq, po)] has

(T, £ix f \z.e,p)*(SiT1 +z: S1P1, e, S162)°
where 'y =T + f: 6, at (G.14), S1 = U(B1 — [2,6) at (G.15), and B; and
B2 are the new type variables at (G.15). By induction, [A'(Tq, eo, po)] has
(I'",fix f Az.e,p’)? and there exists a substitution R such that Rp’ = p

and
RIV »~T. (76)

In order for A'(I',£ix f Az.e,p’) to have a call for e, the unification at
(G.15) must hold. Because A T A’, there exists a substitution P such that

01 = (Ri,,ppy U P)O1, (77)

02 = (Rlypp(py U P)02, (78)
and supp(P) C (ftv(61) U fiv(62)) \ fiv(p’). Note that by the definition of G,

supp(P) Nfv(l") = 0. (79)

Let Ry = R{{[,l 84} Usurp(P) U P U{B:1/Bi,B2/B5} where B and (35 are the
new type variables of A" introduced at (G.15). Then S; Ry unifies 3] — 35
and 65 at (G.15) because

S1Ro(63)

= S1(Rlyppipy Y P)§, because the new 1, 85 & ftv(65)
= 3102 by (78)

= 51(81 — B2) by (G.15)

= S1Ro(8] — 135) by the definition of Ry.
Thus the unification of A’ at Sg .15) succeeds with Sj, hence [A’(To, €0, po)]
has (ST} + z: 51061, €, 51063)
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Now we prove the rest that there exists a substitution R’ such that R'(S1T}+
z: 816 = (S1T1+x: S161) and R'(S185) = S132. Because (G.15) succeeds
with 57, by Theorem 1.1, there exists a substitution R; such that
S1Ro = R:1S]. (80)

Then such R’ is R; because

Ry(SiT1+z: S1681)

= S1Ro(I" +z: ) by (80)

= S1((Rlgpppy UP)T1 +2: Rofy)

because the new 37, 85 Zfrv(T)

S1((Rlpppy WP+ Br) by the definition of Ry
S1((Rlgpppy UPHI'+ f: 61)+2: B1) by (G.14)
Sl(er+f2 01+x: ﬁl)
Sh(
51

fI

= by (77) and (79)
=S1(T+f:0+z: 61) by (76) and Lemma Al.2
= S1(T1+z: Br) by (G.14)

and

Ry(S183) = SiRoB; by (80)
= 51062 by the definition of Ry.
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