
New Generation Computing, 22(2004)1-36
Ohmsha, Ltd. and Springer-Verlag EW GEtRATIO COMPUTING

� 9 Ltd. 2004

Proofs of a Set of Hybrid Let-Polymorphic Type
Inference Algorithms"

H y u n j u n EO and Oukseh LEE
Research On Program Analysis System .2
Department of Computer Science
Korea Advanced Institute of Science and Technology

373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea

Kwangkeun YI
School of Computer Science " " * and Engmeermg
Seoul National Universi~.

San 56-1, Shilim-dong, Gwanak-gu, Seou1151- 742, Korea

{poisson; cookcu; kwang} @ropas.kaist.ac.kr

Received 30 September 2002
Revised manuscript received 28 November 2002

Abstract We present a generalized let-polymorphic type inference
algorithm, prove that any of its instances is sound and complete with respect
to the Hindley/Milner let-polymorphic type system, and find a condition on
two instance algorithms so that one algorithm should find type errors earlier
than the other.

By instantiating the generalized algorithm with different parameters,
we can obtain not only the two opposite algorithms (the bottom-up stan-
dard algorithm W and the top-down algorithm A4) but also other hybrid
algorithms which are used in real compilers. Such instances' soundness and
completeness follow automatically, and their relative earliness in detecting
type-errors is determined by checking a simple condition. The set of in-
stances of the generalized algorithm is a superset of those used in the two
most popular ML compilers: SML/NJ and OCaml.

Keywords: Type System, Type Inference Algorithm, Let-Polymorphism, Gen-
eralization.

�9 I This work is supported by Creative Research Initiatives of the Korean Ministry of Science
and Technology

�9 2 National Creative Research Initiative Center, h t t p : / / r o p a s . k a i s t , ac. kr
�9 ~ Work done while the third author was associated with Korea Advanced Institute of Science

and Technology

2 H. Eo, O. Lee and K. Yi

w Introduction

1.1 This Work
In realistic compilers, the let-polymorphic type system14) 's two opposite

algorithms (VV 8'14) and M lo)) are not attractive candidates. In order to gener-
ate helpful type-error messages we need to balance between their two opposite
behaviors in type-checking: the bottom-up algorithm)IV is context-insensitive,
finding type errors too late, while the top-down algorithm AA is as context-
sensitive as possible, finding type errors too early. Because of these behaviors,
the Standard ML of New Jersey (SML/NJ 19)) and Objective Caml (OCamP ~))
compilers use hybrids of the two algorithms.

Several works 2'3'~'s'13'17'23) clearly show that other type checking strategies
are possible. To systematically explore this space of strategies, as well as to
justify the existing hybrid ones, we need a framework (1) for integrating the two
opposite algorithms into one algorithm; (2) for assuring that such an integrated
algorithm is still sound and complete; and (3) for measuring, if possible, how
any two hybrid algorithms differ in behaviour.

We present a generalized let-polymorphic type inference algorithm, prove
that any of its instances is sound and complete with respect to the Hindley/Milner
let-polymorphic type system, and present a condition on two instance algorithms
that ensures that one algorithm always finds type errors earlier than the other.
By instantiating the generalized algorithm with different parameters, we can
obtain not only the two opposite algorithms ()IV and Ad) but also other hybrid
algorithms that lie within this spectrum. The set of hybrid algorithms captured
by the generalized algorithm is a superset of the existing hybrid algorithms in
SML/NJ and OCaml. Within this algorithmic framework, compiler developers
can freely experiment with various combinations without the burden of proving
their correctness every time.

1.2 Notation
We use the same conventional notation as used in Lee and Yi's. 1~ Vector

is a shorthand for { a l , . - . , an}, and V~.T is for Val -. . an.T. Equality of type
schemes is up to renaming of bound variables. For a type scheme a : V~.T, the
set f-tv(a) of free type variables in (r is ftv(~-) \ ~, where ftv(T) is the set of type
variables in type T. For a type environment F, flu(F) -- U~edom(r)~(r(x)). A
(simultaneous) substitution S -- {Ti /ai[1 < i < n} substitutes type Ti for type
variable ai. We write {~/(~} as a shorthand for a substitution {Ti/ai I 1 < i < n}
where ~ and ~ have the same length n, and S~ for { S a l , . . . , San}. For a sub-
stitution S, the support supp(S) is {a I S a r a}, and the set itv(S) of involved
type variables is {a [fl �9 supp(S), a �9 {j3} Uflu(S~)}. For a substitution S and
a type T, ST is the type resulting from applying every substitution component
Ti/ai in S to T. Hence, {}T = T. For a substitution S and a type scheme
a = V~.T, S~ = V~.S{~/~}T, where j n (itv(S) Uflu(a)) = 0. For a substitu-
tion S and a type environment F, SF = {x H S a]x ~-* ~ �9 F}. The composi-
tion of substitutions S followed by R is writ ten as RS, which is { R (S a) / a [a �9

Proofs of a Set of Hybrid Let-Polymorphic Type Inference Algorithms

supp(S) } u { R a / a I c~ e supp(R) \ supp(S) }. Two subst i tut ions S and R are equal
if and only if Sc~ = R a for every a E supp(S) U supp(R). For a subst i tut ion P
and a set of type variables V, we write P t y for { T / a E P I c~ • Y } . The relation
Vd.~-' ~ T holds whenever there exists a subst i tut ion S such t h a t ST' = ~- and
supp(S) c ~. We write F + x: ~ to mean {y ~-* (r ' lx # y , y H a' C F}U{x ~-* a) .
Closr(T) is the same as Gen(F,~-) in Damas and Milner's, s) i.e., V~.T, where

=frv(~) \ ~ (r) .
In present ing type-inference algori thms, we use Robinson ' s unification al-

gori thm:

Theorem 1.1 (Robinson is))
There is an a lgor i thm L/which, given a pair of types, either re turns a subst i tut ion
S or fails; fur ther

�9 If S = L/(T, T') then ST = ST'.
�9 If S ' unifies w and T', then L/(~-,7') succeeds with S and there exists a

subst i tu t ion R such tha t S ' = R S .

Moreover, S involves only variables of z and T t.

1.3 Algorithms V? and A/I
The source language and its Hindley/Milner style le t -polymorphic type

system are shown in Fig. 1. The two opposi te algori thms 042 and A//) are shown

Abstract Syntax
Expr e

Type T

TypeScheme a
TypeEnv F

(CON)

(VAR)

(FN)

(APP)

(LET)

(FIX)

::= ()

I ~x.e
] e e
] let x=e in e
] fix f ~x.e

::= ~ I Va.o
E Var --~ TypeScheme

F~ () : t

r (z) ~- T
F~-X:T

F + x : r l t - e : r 2
F t- Ax.e : vz --* T2

FF-eZ:T1---~T2 F I- e2 : "rl

constant
variable
function
application

constant type
type variable
function type

type environment

F l- el e2 : T2

F I - e l :T1 F + x : Closr(T1)~-e2 :'r2
F ~- let x=el in e2 : T2

F + f : T~- Ax.e :'r
F 1- f i x f Ax.e : T

Fig. 1 Language and Its Let-Polymorphic Type System

4 H. Eo, O. Lee and K. Yi

S u b s t S c_ { ' r /a [a is a type variable, ~- is a type}

W : TypeEnv x Expr ---, Subst x Type

w (r , ())
w (r , x)
w (r , Ax.e)

w (r , el e2)

= (id, ~)
= (id, {~/a}T)
= let

in
= let

w (r , let x=el in e2) =

)/v(r, fix f)~z.e) =

in

where r (x) = V~.'r, new
($1, n) = VV(F + x : / 3 , e), new/3
(S~, 81 /3 - - , n)
(S1, 7"1) ~- ~/~,)(I ~, el)
(S2, ~2) = w (& r , e~)
$3 = L/(S2T1, r2 -~/3), new/3
(S3S2Sl , Sa/3)

let (81, n) =]/V(F, el)
($2, "/'2) --]/V(SIF q- x: CIOSSlF(T1), e2)

in ($2S1, 7"2)
let (S~, ~'~) = W (F + f : / 3 , Ax.e), new/3

S2 = U(Sl/3, n)
in ($2S1, $2T1)

.M : TypeEnv • Expr • Type --~ Subst

M(r , (), p) =
M(r , z, p) =
M(F, Az.e, p) =

M (F , el e2, p) = let

in
f l4 (r , l e t x=el in e2,p) ---

let

M (r , fix f Az.e, p)

u(p, ~)
Lt(p, {ff/t~}T) where F(x) = Vt~.T, new
let $1 ---- ld(p, /31 --*/32), new/31,/32

S2 = M (S I F q -x : S1/31, e, S1/32)
in $2S1

$1 = A4(F, e l , / 3 ~ p), new/3
S2 = M(SW, e2, S1/3)
$2S1

$1 = A4(F, e l , /3) , new/3
$2 = M(S1F + x: Closslr(S1/3), e2, Sip)

in $2S1
M(F + f : p, ,Xz.e, p)

Fig. 2 Algorithm YV and f14. Note that every new type vari-
able is distinct from each other, and the set New of
new type variables introduced at each recursive call
to 14;(F,e) (respectively, .hd(F,e,p)) satisfies New 0
fly(F) : q) (respectively, New N (ftv(F) U fiv(p)) = O).

in Fig. 2.
Algorithm W is context-insensitive. It fails only at an application ex-

pression. It infers types of two sub-expressions independently and checks later
by unification whether those types conflict. Because of this, an erroneous ex-
pression is often successfully type-checked (context-insensitively) long before its
consequence collides. On the other hand, algorithm A4 is as context-sensitive
as possible. It carries a type constraint (or an expected type) implied by the
context of an expression down to its sub-or-sibling expressions. It fails when the
current expression's type cannot satisfy the supplied type constraint. For exam-
ple, for an application expression "el e2" with a type constraint, say of • the
type constraint for el is a -~ • and the constraint for e2 is the type that a

Proofs of a Set of Hybrid Let-Polymorphic Type Inference Algorithms 5

becomes after the type inference of el. For a constant or a variable expression,
its type must satisfy the type constraint that the algorithm has supplied to that
point.

Example 1.1
To illustrate the difference between W and A4, consider the application expres-
sion

1 2.

~V fails at the application expression after having successfully type-checked the
two sub-expressions, while A4 fails at the left expression 1 because its type i n t
conflicts with a function type expected from the context (an application).

w The Generalized Algorithm G

2.1 Overview
Our generalized algorithm is based on the top-down, context-sensitive al-

gorithm A4. The key observation is that we can vary the type-checking strategy
by changing two factors in A4: the amount of information in the type constraints
and the positions of calls to unification. Algorithm A4 carries as much informa-
tion as possible in its type constraints and applies a unification at every value
(constant, variable, and lambda) expression. Algorithm VV, on the other hand,
carries no information at its type constraints and applies a unification at ev-
ery application expression. Tuning these two factors yields other type-checking
strategies:

Example 2.1
Consider an application expression

(IsOne 2) :bool

where Is0ne has type int --~ bool. As we impose less and less constraints in
type-checking sub-expressions yet apply more and more checks later, we obtain
the following type-checking variations:

�9 We type-check Is0ne with constraint g --~ bool, which is the strongest

expectation. After its success, we type-check 2 with the function's domain
type int as its constraint. (714)

�9 We type-check Is0ne with a weaker constraint, ~1 --~ ~2 with ~i and
~2 being new type variables. The constraint forces IsOne's type to be a
function, but does not constrain its domain or range. After its success, we
check whether the function's range type is bool. Then we type-check 2
with the function's domain type int as its constraint.

�9 We type-check Is0ne with no constraint. After its success, we check
whether the result type is a function type to bool. Then we type-check

2 with the function's domain type int as its constraint. (OCaml's type
inference algorithm)

�9 We type-check Is0ne with no constraint. After its success, we check

6 H. Eo, O. Lee a n d K. Yi

whether the result type is just a function type, whatever its domain and
range types are. Then we type-check 2 with the function's domain type
i n t as its constraint. After its success, we check whether the function's
range type is bool.
We type-check I sOne with no constraint. After its success, we check, as
before, whether the result type is just a function type. Then we type-check
2, but with no constraint. After its success, we check whether the function's
type is int --+ bool.
We type-check I sOne with no constraint. After its success, we don't check

anything but continue type-checking the second expression 2 with no con-

straint. After its success, we check everything at once: we check whether

IsOne's type is a function type from int to bool. (]42)

Every type-checking variation in the above example exposes a common
property: it relaxes the type constraints for sub-expressions then checks after-
ward whether the results from the relaxed constraints agree with the contexts
implied from the original constraints.

Our generalized algorithm is one that allows, wherever possible, the re-
laxing of the type constraints and yet makes sure that posterior unifications
compensate for the relaxation. The places for relaxing the constraints are right
before recursive calls for type-checking sub-expressions. The places for posterior
unifications that compensate for the relaxed constraints are after the successful
returns from the recursive-calls. Some unifications may only partially compen-
sate for the relaxed constraints. Thus, before the original call returns, a final
round of unification must be used to enforce any outstanding constraints. For
example, consider type-checking the application expression el e2 with initial con-
straint p. Our algorithm type-checks el with a type constraint that can be more
relaxed than the strongest possible constraint/3 ~ p. Right after its return, it
applies a unification that can compensate, not necessarily completely, for the
relaxed constraint. It then type-checks the argument expression e2 with a type
constraint that can be more relaxed than the type that ~ became. After its suc-
cess, there are no more sub-expressions to type-check, hence it's t ime to finalize
the compensation for the relaxed constraints at the two recursive calls. This is
done by two unifications: each one compensates for the relaxed constraint used
in type-checking each sub-expression. The unifications check whether the types
from the relaxed constraints agree with what the strongest constraint ~ --~ p
implies.

2.2 Algorithm Definition
The generalized algorithm G is shown in Fig. 3. As in Ad, it returns a

substitution from three components: an expression, a type environment, and a
type constraint. The inferred type of the expression is the result of applying the
final substitution to the type constraint of the expression. The type constraints
are just types.

By the phrases of the form 0 > p marked (1) to (7) in the algorithm, the
strongest type constraint p is relaxed into 0 at each recursive call. This relaxed

Proofs of a Set of Hybrid Let-Polymorphic Type Inference Algorithms

G : TypeEnv x Expr x Type --* Subst
G(F, () ,p) = U(p,~)
~(F, x, p) ----/4(p, {fi/c~}r), new fi, F(x) = V~.T
6 (r , ~x.e, p) =

let S1 = Z-~(fll ---)" ~2, O), new ill, new/32,
$2 = 6($1F + x : Sl f l l ,e , Slfl2)
~3 = U(S2SlO, S2SIp)

in $3S2S1
6 (r , e~ e2, p) =

let S1 ---- G(F, el,01), new fl,
S2 = ~4((S101,02),
$3 --- O(S2S1F, e2, 03),
$4 = ~[($3S2S101, $3S2S1(~ ----+ p))
S5 = u (s4&o3 , & & & & g)

in $5S4S3S2S1
Q(F, l e t x = e l i n e2,p) --

let $1 = 6 (r , e l , Z), new/3
$2 = G(S1F + x: Closs~r(Slfl), e2, 0),
& = u (& o , &&p)

in $3S2S1
~(F, fix f Ax.e, p) ---

let F1- - - -F+f :O1 ,

in

(1) O>_p

(G.1)
(G.2)

(~.3)
(~.4)
(6.5)

(2) 01 _> fl --* p (G.6)
(3) 02 _> S~(fl -~ p) (G.7)

(4) 03 ~ S2Slf l (~.8)
((~.9)

(~.10)

(5) 0 _> Sip
(G.11)
(G.12)
(G.13)

(6) 01 _> p (G.14)
S~ = Lt(fl~ --* g2,02), new g~, new/32, (7) 02 >_ O~ (G.15)
$2 ---- ~ (SIF1 + X: S l ~ l , e , Slfl2) (G.16)
$3 = ~/(~2S101, ~2S102, S2Slp) (G.17)
S3S2&

Fig. 3 A Generalized Type Inference Algorithm G. All the
type variables in fry(O) \fly(p) for each 0 _> p are new,
every new type variable is distinct from each other,
and the set New of new type variables introduced at
each recursive call to ~(F, e, p) satisfies New A (ftv(F) U
f~v(p)) = 0.

constraint is one t ha t can be ins tant ia ted to p by a subst i tu t ion t ha t ranges over
the type variables occurr ing only in 8 (but not p):

Definition 2.1 (0 > p)
Type 0 is more general (more relaxed) than type p, wr i t ten 0 _> p, if and only if
there exists a subst i tu t ion G such tha t G0 = p and supp(G) = f t v (O) ~ (p) .

For the variable case (6:2), the variable 's type F(x) must satisfy the cur-
rent type constra int p: /4(p, {fl /G)T). Similarly for the constant case (6.1).

For the l ambda expression case Ax.e with type constraint p, we first decide
on the type constra int for the function 's body e. It can be any type tha t is more
relaxed than the range type of p. We choose such a type by relaxing p first, then
picking up its range component by unification:

SI ---- U (f l i ~ fi2,0), new ill, f12, (1) 8 _> p. (6.3)
Then we use the resulting range type $ifl2 as the constraint in type-checking
the function's body:

$2 = 6($1F + x: Sift1, e, Sifts). (6.4)

8 H. Eo, O. Lee and K. Yi

For example, if we choose the 0 to be a new type variable, then the unification
(G.3) has no effect, hence e's type is inferred without any constraint. The other
extreme is to choose 0 to be just p. Then e's type is inferred with p's range
type, if p is a function type. After returning from the recursive call to e, we have
to compensate for passing the relaxed type constraint. This last step is done
by checking whether the relaxed constraint 0 can agree with the type that its
original p became:

s3 = u(s2318, s2slp). (G.5)
Consider type-checking an application expression el e2 with type con-

straint p. First we decide on the type constraint for the function expression el.
It can be any type that is more relaxed than the most informative constraint
/3 -~ p with/3 being a new type variable:

Sl = 6 (r , el,81), new/3, (2) 81 ~ /3 ~ p. (G.6)

After the success of this recursive call, we can compensate, not necessarily com-
pletely, for passing the relaxed type constraint 81. The compensation may be
varied according to the constraint we wish to impose on the type of el. We can
check the result type against the strongest constraint/3 --* p or we can check
against nothing. Varying the degree of compensation amounts to choosing yet
another more relaxed type 02 than $1 (/3 --, p) and by unifying it with the type
that 01 became:

$2 =~'~(S181,82), (3) 82 >_ Sl(/3 "-"+ p). (6.7)

argument expression e2. It can be any type that is more relaxed than the type
tha t /3 became. Hence the next recursive call is:

S3 = 6(S2Slr, e2, 83), (4) 83 _> $281/3. (6.8)
The finalizing compensation for passing the relaxed type constraints to the two
recursive calls is done by checking whether the first relaxed constraint 01 can
agree with the type that the original type/3 --* p became:

$4 = b1($3S2S181, $3S2S1(/3 ---+ p)) (6.9)

and by checking whether the other relaxed constraint 83 for the argument ex-
pression can agree with what the original type/3 became:

$5 : ~.~(S4S383, S4S3S2S1/3). (6.10)

We don't have to check for 82 because of its unification with 81 at line (G.7).
Consider inferring the type of let-expression l e t x=el i n e2 with type

constraint p. Because there is no context information about the type of the first
expression el, there is no room for varying its type constraint:

$1 = G(F, el,/3), new/3. (6.11)

Next we decide on the type constraint for the body expression e2. It can be any
type that is more relaxed than the given constraint p:

$2 = ~ (S I F -~- x: Closs1r(S1/3), e2, 0), (5) 8 _ Sip. (6.12)

Finally, we have to check whether the relaxed constraint agrees with the type
that the original constraint became:

Proofs of a Set of Hybrid Let-Polymorphic Type Inference Algorithms

G n : TypeEnv • Expr x Type ---* Subst

6~(r , el e2, p) =
let $1 = 6n(C, e2,~3), new 13

S2 = g R (S l r , e l ,01) , 01 ~ Sl(• ~ p)
s3 = u (s 2 o ~ , & s l (~ ~ p))

in $3S2S1

({~.18)
({~.19)
(G.20)

Fig. 4 A Generalized Type Inference Algorithm GR. For
el e2, GR infers the type of e2 first, while G infers
the type of el first. Other parts of GR are the same as
those of G except that every recursive call in inference
algorithm is GR, not G.

$3 = H($20, S~Slp) . (G.13)

The case for recursive function f i x f Ax.e is similar. First, we decide on
the type constraint for f . It can be any type that is more relaxed that the given
constraint p:

l ~ l = F - ~ - f : O l , (6) 01_>]9. (~.14)

Next we decide on what is expected for the type of Ax.e. We choose such a
type by relaxing 01 first, then picking up its domain and range component by
unification:

$1 = ~ ' ~ (~ 1 -"+ 32, 82), new 31, ~2, (7) 02 _> 01. (G.15)

Then we use the resulting range type $1/~2 as the constraint in type-checking
the function body and the domain type $1~1 as the type of x:

$2 -- {~(SIF1 + x : S I ~ I , e, S1~2). (G.16)

Finally, we check whether the relaxed type constraints agrees with the type that
the original constraint became:

$3 = l t($2S101, $2S102, S2Slp) . (~.17)

We have another variant of generalized type inference algorithm G R in
Fig. 4. For the function application el e2, G infers the type of argument
expression e2 first, and then infers the type of function expression el. For other
expressions, G n is the same as G except that every recursive call in inference
algorithm is G R, not G.

Consider type-checking an application expression el e2 with type con-
straint p. Because we do not have any context information about the type of
the argument e2, there is no room for varying its type constraint:

S1 = 6 R (F , e2,/~), new ~. (G.18)

Next we decide on the type constraint for the function expression el. It can be
any type that is more relaxed than the function type from ~ to given constraint
p:

$2 = QR(sIF, eI,SI), 81 _> SI(3 ---+/9). (G.19)

Finally, we have to check whether the relaxed constraint agrees with the type
that the original type/3 -+ p became:

10

s3 = u (& / 9 , s 2 s ~ (g ~ ;) .

H. Eo, O. Lee and K. Yi

(~.20)

2.3 Instances
By determining the relaxed constraints O's in G, we obtain various type-

inference algorithms, including the standard algorithm W, the top-down algo-
r i thm A/I, and the combinations of the two algorithms used in the SML/NJ 19)
and OCamP 1) compiler systems.

�9 14) is an instance of ~ where every oo is a new type variable.
�9 ~4 is an instance of G where every/9 is not relaxed: for each case oo ~ p in

G, we choose p for/9.
�9 The OCaml's type inference algorithm*' is an instance of ~ where the/9 at

(2) (line (G.6)) is a new type variable and other O's are not relaxed.
�9 The SML/NJ 's type inference algorithm .5 is an instance of G where every/9

is a new type variable, except that/92 at (7) (line (G.15)) is the same with
/91 at (6) (line (G.14)).

�9 Other variations than the existing algorithms are also possible from ~. For
example, consider an instance of G where the oo at (~.6) is a new function
type (f~l --*/32 for new variables gl and/32) and other oo's are not relaxed.
Let's call this instance algorithm 7-/.

The oo's used in the five instances are summarized in Fig. 5. Please note that
for SML/NJ's algorithm, the relaxed constraint for the Ax.e case (line G.3) has
two candidates, of which we choose one depending on whether the lambda is
recursive (defined in f • f Ax.e) or not.

W
SML/NJ's
OCaml's

7-/
A~

(1) (2) (3) (4) (5) (6) (7)
0 01 02 03 0 01 02

g3 Zl g2 g3 gl g3 Z4
g3 gl g2 g3 gl g3 01
p gl S l (g ~ p) S2Slg Sip p 01
P ~ - - - ~ 2 S l (~ - - -*p) S 2 S l g S i p p 01
p Z - " + p SI(Z-- -~p) S 2 S l Z S i p p 01

Fig. 5 Five Instances of Algorithm G. g i ' s axe new type vari-
ables introduced in the 0's.

2.4 Every Instance is Sound and Complete
Every instance of ~ is sound and complete with respect to the Hind-

ley/Milner let-polymorphic type system.

Theorem 2.1 (Soundness)
Let e be an expression, F be a type environment, and p be a type. If G(F, e, p)
succeeds with S, then SF ~- e : Sp. The theorem also holds for G R.

.4 We figured out the OCaml's type inference algorithm by 'examining the source codes of
OCaml 3.06.11)

.5 We figured out the SML/NYs type inference algorithm by examining the source codes of
SML/NJ 110.0.7. TM

Proofs of a Set of Hybrid Let-Polymorphic Type Inference Algorithms 11

Proof
See Appendix Section A1.

Theorem 2.2 (Completeness)
Let e be an expression, and let F be a type environment. If there exist a type p
and a substitution P such that P F ~- e : Pp, then G(F, e, p) succeeds with S and
there exists a substitution R such that P[gew = (RS)~New where New is the set
of new type variables used by G(F, e, p). The theorem also holds for GR.

Proof
See Appendix Section A2. �9

Completeness means that if an expression e has a type ~- that satisfies a type
constraint p (i.e., 3P.~-= Pp), then algorithm G for the expression with the
constraint p succeeds with substitution S such that the result type Sp subsumes
r (i.e., the principality, 3R.T : R(Sp)).

2.5 More Restraining Instances of G Detect Errors Sooner
The information amount in the type constraints determines how early the

algorithm detects type errors. Carrying less informative (restraining) constraints
during type-checking sub-expressions makes it more probable that the algorithm
successfully infers their types with being less sensitive to the context, hence
delays detecting type errors as such.

We say that an instance A of ~ is more restraining than another instance
A' whenever A always passes more restraining constraints than A'. The "always"
means that the relaxing operations preserve the restraining order between the
original constraints: for each pair of corresponding relaxations 0~ > p~ in A and
0~ > p~ in A t for the same input, if Pi is more restraining than p'~ then so is 0~
than 0~.

Definition 2.2 (A r- A t)
Let A and A' be two instances of G. A is more restraining than A t, written
A E A', if and only if for each pair of corresponding relaxations 0i _> p~ during
A(F, e, p) and 0~ >_ p~ during A ' (r , e, p), if p, = Rp~ for a substitution R then
0~ = (R[~upp(p) U P)O'~ for a substitution P with supp(P) c_ ftv(Oti) \ftv(pti). We

define A _ A ~ for the instances of G R in the same way.

Lemma 2.1
3/[~ 7/ F OCaml's ~- SML/NJ's E_ W.

Proof
We prove A F- A ~ for each consecutive pair of the instance algorithms. For
each corresponding pair of 0 > p in algorithm A and 0 t _> pt in algorithm A t
with p = Rp' for a substitution R, we must find a substitution P such that
0 : (R~supp(p) U P)Ot.

* case A4 E 7/: They differ only at (2) (G.6). For f14, it is/3 --~ p > /3 --~ p.
For 7/, it is/~t --,/3~ > / 3 t --~ pt. By the assumption, for a substitution R,

12 H. Eo, O. Lee a n d K. Yi

R(/3' --* p') = /3 --~ p. Thus (Rt{~ } U {p/~})(/3 ' -*/3~) = R/3' --~ p = t3 --*
p.

�9 case/-/ [- OCaml's: They differ only at (2) (_~G.6 l. For 7-/, it is 13 ---* /32
/3 --+ p. For OCaml's algorithm, it is/3~ >/3 t p . For any substitution R,
(Ri{~,} U {~ -~ Z2/Z~})Z~ = Z -~/~2-

�9 case ~)Caml's r- SML/NJ's:

- case (1) at (G.3): For OCaml's, it is p > p. For SML/NJ's, it is/3~ > p'.
For any substitution R, (Rt{~i } u {p/~})/3~ = p.

- case (2) at (~.6): For OCaml's, it is/3~ _> p. For SML/NJ's, it is/3~ > p'.
For any substitution R, (R[{zl} U {/31//3~})/3~ =/31.

- case (3) at (G.7): For OCaml's, it is $1(/3 --+ p) > $1(/3 --~ p). For
SML/NJ's, it is /3~ > S~(/3' --+ p'). For any substitution R, (RJ{#~} U

= p) .

- case (4) at (g.8): For OCamI's, it is $2S~/3 >_ S~$1/3. For SML/NJ's, it is
t : > t t t �9 �9 _ s s z. For any subst,tut,on R, U {S S Z/ZD)Z = S S Z.

- case (51 ,at (g.12): For OCaml's, it is Sip > Sip. For SML/NJ's, it is
~3~ >_ S iP . For any substitution R, (R{{~i} U{S1p//3~})/3~ = Sip.

- case (6) at (g.14): For OCaml's, it is p > p. For SML/NJ's, it is/3~ _> p'.
For any substitution R, (R{{zi} U { p / ~ }) ~ = p.

- case (7) at (g.15): OCaml's and SML/NJ 's are the same 0~ > 01.

�9 case SML/NJ's _ W:

- case (7) at (g.15): For SML/NJ's, it is 0~ :> 01. For W, it is/3~ ~ 0~. For
any substitution R, (R[{~} U {0~//3~})~3~ = 01.

- other cases: For SML/NJ's, it is/3~ > T for a type T. For 142, it is/3~ > ~'~
for a type o-'. For any substitution R, (R{{z~} U {~3~//3~})/3~ =/3~.

The time of detecting type errors can be formalized by the notion of call
string. 1~ The call string of G(F, e, p) (written [G(F, e, p)]) is constructed by start-
ing with the empty call string and appending a tuple (F1, el, pl) d (respectively,
(r l , el, pl) u) whenever g (r l , el, Pl) is called (respectively, returned). The d or
u superscript indicates the downward or upward movement of the stack pointer
when the inference algorithm is recursively called or returned. Note that the
call strings of every instance algorithm of g are always finite, because at most
one call to the algorithm occurs for each sub-expression of the program, and
that the order of visiting sub-expressions of the input program in every instance
algorithm's call string is the same.

For two instance algorithms A and A' of g, if A is more restraining than
A' then A stops earlier than A' if the input program is ill-typed:

Theorem 2.3
Let A and A' be instances of ~ such that A z A', F0 be a type environ-
ment, e0 be an expression, and P0 be a type. If lAir0, e0, p0)] has (F, e, p)~/~,
then IA'(r0, e0, p0)~ has (F', e, p,)d/~, and there exists a substitution R such that
RF' ~- F and Rp' = p. The theorem also holds for G R.

Proofs of a Set of Hybrid Let-Polymorphic Type Inference Algorithms 13

Proof
See Appendix Section A4. �9

Because the orders of visiting sub-expressions during the execution of the two
instance algorithms are the same, the above theorem implies that if A is more
restraining than A' then the length (the number of tuples) [IA(F0, e0,P0)]l of
A's call string is shorter than or equal to that I IA'(r0, e0, P0)~l of A s call string,
i.e., A stops earlier than A r.

By Lemma 2.1 and Theorem 2.3, the following order holds:

Corollary 2.1
Let F be a type environment, e be an expression and p be a type.

I IA4(F, e, P)]I < [l[7-t(r, e, P)]I < I[OCaml's(r, e, p)l]l <-
I ISML/NJ's(F, e, P)I[-< I~W(r, e, p)~l

where Is[is the number of tuples in call string s.

w Discussion
We presented a generalized let-polymorphic type inference algorithm, from

which, by changing its degree of context-sensitivity, various hybrid algorithms
can be instantiated. We proved that any of G's instances is sound and complete
with respect to the Hindley/Milner let-polymorphic type system, and showed
a condition on two instance algorithms so that one algorithm should find type
errors earlier than the other. The set of instances of G includes the two opposite
algorithms (W and ,44) and is a superset of those hybrid algorithms used in the
SML/NJ 19) and OCaml.11)

Note that the earliness condition cannot be a criterion to judge the al-
gorithm's goodness in detecting the cause of type-errors. For any algorithm
there exists an ill-typed program that falsifies its type-error message. The earli-
ness condition can just be a criterion by which compiler developers can achieve
different type-checking strategies.

It is possible to further generalize G(F, e, p). We can relax not only the
type constraint p but also the type environment F. Note that algorithm G
passes the most informative type environment to sub-or-sibling expressions; it
accumulates all substitutions in the type environment at its recursive calls. This
is a top-down strategy; bottom-up approaches such as Bernstein and Stark's 3)
and Chitil's ") use unconstrained type environments to check sub-or-sibling ex-
pressions. Between these two opposing strategies lie hybrid ones. 12,2,) These
variations can be formalized, similarly to G, by type-environment relaxing and
posterior unification.

In general settings l's'9,ls'1~'2~ where one views type inference algorithms
as consisting of two separate stages - deriving constraints and solving them - the
parameters in our generalized algorithm ~ can be considered a way to control
when to solve the constraints within the Hindley/Milner type system. We delay
the constraint-solving by passing relaxed constraints to recursive calls, and then
solve the delayed constraints by applying posterior unifications.

14

References

H. Eo, O. Lee and K. Yi

1) Aiken, A. and Wimmers, E. L., "Type Inclusion Constraints and Type In-
ference," in Proc. of Functional Programming Languages and Computer Architecture,
pp. 31-41, 1993.

2) Beaven, M. and Stansifer, R., "Explaining Type Errors in Polymorphic Lan-
guages," ACM Letters on Programming Languages and Systems, 2, pp. 17-30, Mar.-
Dec. 1993.

3) Bernstein, K. L. and Stark, E. W., "Debugging Type Errors (Full Version),"
Technical Report, State University of New York at Stony Brook, 1995.

4) Chitil, O., "Compositional Explanation of Types and Algorithmic Debugging of
Type Errors," in Proc. of the 6th ACM SIGPLAN International Conference on Func-
tional Programming, pp. 193-204, Sept. 2001.

5) Cho, K. and Ueda, K., "Diagnosing Non-well-moded Concurrent Logic Pro-
grams," in Joint International Conference on Logic Programming, pp. 215-229, MIT
Press, 1996.

6) Damas, L. and Milner, R., "Principal Type-scheme for Functional Programs,"
in Proc. of the 9th Annual ACM Symposium on Principles of Programming Languages,
pp. 207-212, ACM Press, New York, 1982.

7) Duggan, D., "Correct Type Explanation," in Proc. of Workshop on ML, pp. 49-58,
1998.

8) Duggan, D. and Bent, F., "Explaining Type Inference," Science of Computer
Programming, 27, 1, pp. 37-83, July 1996.

9) Henglein, F., "Type Inference with Polymorphie Recursion," ACM Transactions
on Programming Languages and Systems, 15, 2, pp. 253-289, April 1993.

10) Lee, O. and Yi, K., "Proofs about a Folklore Let-polymorphie Type Inference Al-
gorithm," ACM Transactions on Programming Languages and Systems, 20, 4, pp. 707-
723, July 1998.

11) Leroy, X., Doligez, D., Garrigue, J., R@my, D. and Vouillon, J., "The Objective
Caml System Release 3.06," Institut National de Recherche en Informatique et
en Automatique, August 2002. h t t p : ~~carol. i n r i a , f r .

12) McAdam, B. J., "On the Unification of Substitutions in Type Inference," in Proc.
of The International Workshop on Implementation of Fuctional Languages (Hammond,
K., Davie, A. J. T. and Clack, C. eds.), vol. 1595 of Lecture Notes in Computer
Science, pp. 139-154, Springer-Verlag, Sept. 1998.

13) McAdam, B. J., "Generalising Techniques for Type Debugging," in Proc. oflst
Scottish Functional Programming Workshop, 1999.

14) Milner, R., "A Theory of Type Polymorphism in Programming," Journal of
Computer and System Sciences, 17, pp. 348-375, 1978.

15) Odersky, M., Sulzmann, M. and Wehr, M., "Type Inference with Constrafined
Types," Theo~ and Practice of Object Systems, 5, I, 1999.

16) R@my, D., "Extending ML Type System with a Sorted Equational Theory,"
Research Report 1766, Institut National de Recherche en Informatique et Au-
tomatisme, Rocquencourt, BP 105, 78 153 Le Chesnay Cedex, France, 1992.

Proofs

17)

of a Set of Hybrid Let-Polymorphic Type Inference ALgorithms 15

Rideau, L. and Th~ry, L., "Interactive Programming Environment for ML,"
Technical Report 3139, Institut National de Recherche en Informatique et en Au-
tomatique, Mar. 1997.

18) Robinson, J. A., "A Machine-oriented Logic Based on the Resolution Principle,"
Journal of ACM, 12, 1, pp. 23-41, Jan. 1965.

19) The Standard ML of New Jersey, release 110.0.7. Bell Labs, Lucent Technologies,
Sept. 2001. http : //am. bell-labs, com/cm/cs/what / smln j.

20) Sulzmann, M., "A General Type Inference Framework for Hindley/Milner Style
Systems," in Proc. of Sth International Symposium on Functional and Logic Program-
ming, Mar. 2001.

21) Sulzmann, M., MOiler, M. and Zenger, C., "Hindley/Milner Style Type Sys-
tems in Constraint Form," Technical Report ACRC-90-O09, University of South
Australia, School of Computer and Information Science, Jul. 1999.

22) Thatte, S. R., "Type Inference with Partial Types," Theoretical Computer Science,
124, 1, pp. 127-148, Feb. 1994.

23) Wand, M., "Finding the Source of Type Errors," in Proc. ofthe 13thAnnualACM
Symposium on Principles of Programming Languages, pp. 38-43, ACM Press, New
York, 1986.

24) Yang, J., "Explaining Type Errors by Finding the Sources of Type Conflicts,"
in Proc. of 1st Scottish Functional Programming Workshop, pp. 387-401, Aug. 1999.

Appendix A

w Soundness Proof

Theorem 2.1 (Soundness)
Let e be an expression, F be a type environment, and p be a type. If G(F, e, p)
succeeds with S, then SF ~- e : Sp. The theorem also holds for G R.

The proof uses Lemmas A1.1-A1.3 and Theorem 1.1.

Lemma AI.1 (Damas and Milner ~))
If F t- e : T, then SF F- e : ST.

Lemlna A1.2 (Damas and Milner 8))
If a ~- a ' then Sa >-- Sc~'.

Lemma A1.3 (Miiner 14>)
Let S be a substitution, F be a type environment, and r be a type. SClosr(T) =
Closs,r(S'T), where S ' = S { ~ / ~ } , ~ =ftv(~-) \ f t v (r) and /~ is new.

Proof of Theorem 2.1
We prove by structural induction on e, and we prove for G and GR simultaneously.

�9 case () : S p = S e = L . S o S F F - () : S p b y (C O N) .

16 H. Eo, O. Lee a n d K. Yi

�9 c a s e x : Sp = S{ f l /d}T -.< SF(x) by Lemma A1.2. So SF F- x : Sp by
(VAR).

�9 case ~x.e : By induction hypothesis, (0.4) implies that S2S1F+x: S2Slfll ~-
e:S~Slfl2. By (FN),

S~S1F ~- Ax.e : S2S1(~1 ~ ~2).

By Lemma AI.1, we can apply $3 to both sides:

Because SI(Zl --~ f12) = S1O by (G.3) and $3S2S19 = $3S2Slp by (0.5),

$3S2S1F ~- Ax.e : $3S2Slp.

�9 case el e2 for G : By induction, (0.6) implies S1F }- el : $181. By Lemma A1.1,
we can apply $5S4S3S2 to both sides:

$5S4S3S2S1F ~ el : ShS4SaS2&01.

Because $4S3S2S101 = SaS3S2SI(fl ---* p) by (0.9) and $5S4S3S2S1Z =
$5SAS303 by (0.10),

ShS4S3S2SIF F el : S5S4S3(03 ~ S2Slp). (1)

By induction, (G.8) implies S3S2S]F F e2 : $3~3. By Lemma A1A, we can
apply $5S4 to both sides:

ShS4S3S2SIF ~- e2 : $5S4S3e~. (2)
Hence by (APP), (1) and (2) imply

ShS4S3S2S , F ~- el e2 : S h & S 3 S 2 S ~ p .

�9 case el e2 for G R : By induction, (~.18) implies S1F ~- ee : Sift. By
Lemma AI.1, we can apply $3S2 to both sides:

S3S2S, F e e2 : S3S2SIZ. (3)

By induction, (0.19) implies S2S1F ~- el : $28. By Lemma AI.1, we can
apply $3 to both sides:

S 3 S ~ S l r ~- e~ : SaSh8.

Because $3S20 = $3S2S1(Z ---+ p) by (0.20),

s~s~s~r e e~ : &S~S~(Z -~ p). (4)

Hence by (APP), (3) and (4) imply

�9 case l e t x=el • e2 : Let S~ -- S~{f~/d}, where d --fro(Sift) \fn~(S~F),
are new type variables, and fl is the new type variable introduced at (Q.11).
By induction, (~.11) implies SIF ~- el : Sift. By Lemma AI.1, we can apply
S~ to both sides:

By induction, (0.12) implies

S2S~r + x: S2Closs,r(Sl/3) F e2 : S2O. (6)

Proofs of a Set of Hybrid Let-Polymorphic Type Inference Algorithms 17

Note t ha t S2S1F = S~S1F because S~ differs f rom S~ only on non-free vari-
ables of S1F, and tha t S~Closslr(S13) = Closs~slr(S~S13) by L e m m a A1.3.
Thus (6) is

S~S1F + x: Closs~slr(S~S13) F- e2: $20. (7)

Hence by (LET) , (5) and (7) imply S~S1F F- l e t x=el i n e2 : S20; t h a t is,

S2SIF ~- l e t x=el i n e2 : $20.

By L e m m a AI .1 , we can apply $3 to b o t h sides:

S3S2S1F F- l e t x=el i n e2 : $3S~0.

Because $3S20 : $3S2Slp by (6.13),

S3S2S1F F- l e t X=el i n e2 : $3S2Slp.

�9 case f i x f Ax.e : By induction, (6.16) implies $2SIF1 + x: $2S131 }- e :
$2S132. By (FN),

$2•1F1 [- Ax.e : $2S1(31 --+ 32)-

By L e m m a AI .1 , we can apply $3 to bo th sides:

$382S1F1 ~- Ax.e : $3S2S1(31 ---+ 32).

Because $1(31 ~ 32) = $102 by (6.15),

SaSeSIF1 F- Ax.e : $3SeS102.

Because F1 = F + f : 01 by (6.14),

$3S2SIF -~- f : ~3S2S101 }-- Ax.c : $3S2S102 .

Because $3S2S101 = $3S~$102 = $3S2Slp by (6.17),

$3S2SIF + f : S3S2S, p }- Ax.e : S 3 S 2 S I p .

Hence by (FIX) ,

SaS2S1F }- f i x f Ax.e : S3S2SIp.

w Completeness Proof

Theorem 2.2 (Completeness)
Let e be an expression, and let F be a type environment . I f there exist a type p
and a subs t i tu t ion P such t ha t P F ~- e : Pp, then G(F, e, p) succeeds with S and
there exists a subs t i tu t ion R such t h a t P~gew = (RS)~gew where New is the set
of new type var iables used by G(F, e, p). The theorem also holds for 6 R.

The comple teness p roof uses L e m m a s A2.1-A2.5.

Lemma A2.1 (Lee and Yi 10))
Let S be a subs t i tu t ion , F be a type envi ronment , and T be a type. Then
SClosr(T) ~ Clossr(ST).

Lemma A2.2 (Damas and Milner ~))
Let F and F t be t ype envi ronments such t h a t F >- F t. I f F ' ~- e : 7, t hen F ~- e : T.

18 H. Eo, O. Lee a n d K. Yi

Lemma A2.3 (Milner 14))
Let R and S be substitutions and T be a type. Then

�9 i tv (RS) C_ i tv(R) U itv(S) and
�9 fn , (ST) c_ftv(T) U itv(S).

Lemma A2.4
If S = G(F, e, p) then itv(S) c_ fry(F) Uflv(p) U New, where New is the set of new
type variables used by ~(F, e, p). The lemma also hols for G n.

Proof
See Appendix Section A3. �9

Lemma A2.5 (Lee and Yi lo))
If itv(S) n Y = 0, then (RS)[v = RIGS.

Proof of Theorem 2.2
We prove by structural induction on e, and we prove for ~ and G R simultaneously.
For a rigorous t reatment of new type variables, we assume that every new type
variable used throughout algorithm ~ is distinct from each other, and that the
set New of new type variables used by each call ~(F, e, p) satisfies N e w N (fry(F) U
ftv(p)) --- 0. Moreover, let us rephrase the part of the algorithm definition that
whenever we use 0 _> p in ~, the substitution G for GO = p is such that supp(G) =
fly(0) \ftv(p) and has only new type variables.

�9 case () and x : The same as the proof for A/[in Lee and Yi's.l~
�9 ease Ax.e : Let the given judgment be P F F- Ax.e : T1 --+ T2 where T1 --*

'7"2 -~- Pp, and New = {ill, f12} U supp(G) U New1 where fll and f12 are new
type variables used at (G.3), G is the substitution for 0 _> p at (~.3), and
New1 is the set of new type variables used by G(SIF + x: Sift1, e, $1fl2) at

First, we prove the unification/d(fll --* f12, 8) at (~.3) succeeds. Let P~ =
(PG)I{&,fl2} U {T1/fll, T2/f12}. Then P ' unifies fll --~ f12 and 0 because

P'O = PGO because the new ill, f12 r
= P p by the definition of G
= T1 --~ T2 by the assumption
= P'(f l l -'-+ f12) by the definition of P' .

Thus by Theorem 1.1, the unification at (G.3) succeeds with $1 such that
for a substitution R1,

R1S1 = P' . (8)

By the (FN) rule, the given judgment implies

P F + x : T1 F- e : T2. (9)

TO apply induction to G(SIF + x: Sift1, e, $1fl2) at (G.4) and (9), we must
prove that there exists a substitution P1 such that 7-2 = PI(S l f l2) and
P F + x: T1 = P I (S I F + x: Sift1). Such P1 is R1 at (8) because

RI(S l f l2) = P'fl2 by(S)
= T2 by the definition of P~

Proofs of a Set

and

of Hybrid Let-Polymorphic Type Inference Algorithms 19

RI(S1F + x: S131)
=p ' (r+x : 31) by (8)
= P G F + x: T1 because the new/~1,j32 Cftv(F)
= PF + x: 71 because supp(G) Nfiv(F) = O.

Thus by induction, Q(S1F + x: Sift1, e, $1fl2) at (Q.4) succeeds with $2 such
that for a substitution R2,

(R2S2)~New~ = Rl~New~. (10)

Note that
itv(S1) C_ {/31,~32} U fry(0) by Theorem 1.1

{[31,/32} Uftv(p) U supp(G)
because supp(G) =ftv(O) \ fry(p), and thus by the definition of G,

New1 n itv(S1) = 0. (11)

Then

(R~S2SI)INe~ = (R2S2)~Newa S1

= Rl~Newl S1

= (R lS l)~Ne~a

= P'~Newl

by Lemma A2.5 and (11)

by (10)

by Lemma A2.5 and (11)

by (8). (12)

Thus the unification at (G.5) succeeds with $3 such that for a substitution
R3,

R3S3 = R2. (13)

Hence 6(F, Ax.e,p) succeeds with $3S2S1, and (R3S3S2S1)[New = P[gew
because

(R3S3S2SI)~Ne~
= (R2S2S1)~New by (13)
= P'tNe by (12)
= because s .pp(O)U{Zl ,Z2} C_ New.

�9 ease el e2 f o r ~ : Let the given judgment be PF F- el e2 : Pp, and New =
{~} Usupp(G1) Usupp(G2) Usupp(G3) UNew 1 UNew2, where/3 is the new type
variable used at (~.6), G1, G2 and G3 are respectively the substitutions for
01 ~ ~ ~ p a t (~.6), 02 ~ $1(~ ~ p) at (G.7), and 03 >_ S2S lg at (~.8),
and New1 and News are respectively the sets of the new type variables used
by G(F, el, 01) at (G.6) and Q(S2S1F, e2, 03) at (G.8).

by (12) and because fry(0) n New1 = O
because the new ~1, ~2 ~f tv(0)
by the definition of G
because fly(p) n supp(G) = O
because the new/31, g2 r
by (12) and because fry(p) n New1 = O.

R2(S~.SIO)
= P'O
= PGO
= P p
= P G p
= p ' p

= R2(S2SIp)

Now we prove the unification U(S2S18, S2Slp) at (0.5) succeeds. R~ unifies
$2S10 and S2Slp because

20 H. Eo, O. Lee and K. Yi

By the (APP) rule, there exists a type T such that

P F ~- el : 7 ~ P p

and

PF F- e2 : T.

(14)

(15)
First, we prove 6(r , ca , 01) at (6.6) succeeds by induction. Let P ' = P~{Z} [J
{T/~}. Then

P'GI01 = P'(t3 ~ p) by the definition of G1
= T --* P p because the new/3 fLftv(p)

and P'alr = P F because fry(F) n (supp(G1) U {/3}) = O. Hence, applying
induction to 6(F, el,01) at (6.6) and (14), there exists a substitution R1
such that

(RiS1) tNewl = (ptG1)~Newl. (16)

Then RIG2 unifies SaO1 and 02 at (6.7) because, by noting that

f t V (S I 0 1) ("1 supp(G2)

c (itv(S1) uftv(01)) nsupp(G2) by Lemma A2.a

_c (ftv(F) U New1 Uftv(01)) n supp(G2) by Lemma A2.4

=0 ,

RIG2(S101)
= R I S 1 0 1

= P'GIO1
= P'(t3 ~ p)
= P 'G1 (/3 -~ p)

= R1 $1 (/~ --~ p)
= R1G2(02)

by (17)
by (16) and because fry(01) A New1 = 0
by the definition of G1
because ftv(13 ---* p) F1 supp(G1) = 0
by (16) and because ftv(/3 ~ p) NNeWl = 0
by the definition of G2.

(17)

= (P'al)[, ,pp(a2)ug~wl (18)

In order to apply induction to 6($2S1F, e2, 03) at (6.8) and (15), we must
prove that there exists a substitution P1 such that P I (S 2 S I F) = P F and
P103 = T. Such P1 is R2G3. First, note that, by the definition of 6,

supp(Ga) nftv(S2S1V) = O (19)

because
ftv(S2S1V)
c_ itv(S2)uitv(S1)Uftv(r) by Lemma A2.3
c_ ftv(02) U fry(01) UNeWl U fry(F) by Theorem 1.1 and Lemma A2.4.

because supp(G2) A itv(S1) = 0

by Lemma A2.4

by (16).

Thus the unification at (6.7) succeeds with $2 such that for a substitution
R2, R2S2 = R1G2. Then

(R2S~Sl)~,upp(C~)uN~Wl
= (R1G2S1)~supp(e2)ugewl

= (RI Sl)Isupp(Gz)UNewl

Proofs of a Set of Hybrid Let-Polymorphic Type Inference Algorithms 21

Thus

Second,

R2G3 (S2SIF)
= R2S2SaF by (19)
= P ' G I F by (18) and

because f ry (r) n (supp(G2) u New1) = 0
= P r because f t v (r) n ({/3} U supp(G~)) = O.

R2G3(03)
= R2S2S1/3
= P'G1/3
= p ' / 3

: T

by the definition of G3
by (18) and because/3 r supp(G2) tA New1
because/3 r supp(G1)
by the definition of P'.

Thus by induction, (~.8) succeeds with $3 such that for a substitution R3,

(RsS3)[yew~ = (R2C3)[yew2. (20)

Moreover, note that

(RsSS)~New2u~.. .(c~) = R~tNew~s. . . (C~)" (21)

Then R3 unifies $3S2S101 and $3S2S1(/3 -'+ p) at (G.9) because
R3S3S2S101

= R2S2S101

-~ P'GIO1

= P'(/3 ~ p)
= P ' G I (/ 3 ~ p)
= R2s2s1(/3 -~ p)

= R 3 S a S 2 S I (/ 3 ~ p)

by (21) and
because ftv(O1) N (Ngw 2 Usupp(G3)) = 0
by (18) and
because ftv(01) N (gewl U supp(G2)) = 0
by the definition of G1
because ftv(/3---* p) nsupp(G1) = 0
by (18) and
becauseftv(/3 ~ p) n (New1 tA supp (G2)) = 0
by (21) and
because ftv(/3 ~ p) N (New2 Usupp(G3)) = ~).

Thus the unification at (G.9)
R4,

R4S4 -- R3.

Finally, R4 unifies $4S303 and SaS3S2Sa/3 at (G.10) because
R4(S4Sses)
= R3Sa03
-~ R2G303
= R2S2S1/3
= R4($4s3s2s1/3)

succeeds with $4 such that for a substitution

(22)

Thus the unification at (G.10) succeeds with $5 such that for a substitution
Rb,

RbS5 = R4. (23)

Hence G(F, el e2, p) succeeds with $5S4S3S2S1.

by (22)
by (20) and becausefiv(03) n New2 = 0
by the definition of G3
by (21) and (22), and
because t3 ~ New2 U supp(G3).

22 n. Eo, O. Lee and K. Yi

Now we prove the rest that (R s S s S 4 S 3 S 2 S 1) ~ N e w -~- Pc~N~ ~ Note that,
by Lemma A2.3 and A2.4 and Theorem 1.1, itv(S2S1) = j . . ~ i ~) Uftv(01) U
ftv(02) U New1, hence by the definition of G,

itv(S2S1) n (New2 U supp(G3)) = 0. (24)

Therefore
(R5S5S4S3S2S1)~ Ne w
= (R4S4S3S2S1)~New by (23)
= (R3S3S2S1)tNew by (22)
= ((R3S3)~gew2us,pp(a3)S2S1)[gew by Lemma A2.5 and (24)

= (R2[gew2usupp(G3)S2S1)lNew by (21)
= (R2S2S1)~New by Lemma A2.5 and (24)
= (PtG1)~New by (18)
= P[New because ({/3} U supp(G1)) c_ New.

�9 case el e2 for G R :
Let the given judgment be P r e el e2 : Pp, and New = {/3} U supp(G) U
New1 U New2, where /3 is the new type variable used at (G.18), G is the
substitution for 0 > $1(/3 --+ p) at (G.19), and Newa and New2 are respec-
tively the sets of the new type variables used by G(F, e2,/3) at (G.18) and
G (& r , e l , 0) at (G.19).
By the (APP) rule, there exists a type ~- such that

P F F el : ~- --* Pp (25)

and

P r ~- e2 : r. (26)

First, we prove that G(F,e~,/3) at (G.18) succeeds by induction. Let P ' =
P~{Z} U {T//3}. Then P'~ = T and P T = P F because/3 C fry(F). Hence by
induction, G(F, e2,/3) at (G.18) and (26) imply that there exists a substitu-
tion R1 such that

(R1Sl)[Newa = Pt~Newl" (27)

Moreover, note that

(nlSl)~{~3}uNewl = P~{Z}UNewl. (28)

In order to apply induction to 6($1F, e~, 0) at (G.19) and (25), we must find
a substitution P1 such that P1S1F = P F and PIO = 7 ---, Pp. Such P1 is
RIG because

RIG(S1F)
= RIS1F

= P F
and

because supp(G) Nftv(S1F) = 0
by Lemma A2.3 and A2.4
by (28) and because ftv(F) n ({/3} ONewl) = O.

Proofs of a Set of Hybrid Let-Polymorphic Type Inference Algorithms 23

Rla(e)
= R1S1(13 --* p) by the definition of G
= P'(/3 --* p) by (27) and becausefiv(t3 --* p) A g e w l = 0
= T --* P ' p by the definition of p i
= ~- --* P p because f~ r

Then by induction, (~.19) succeeds with $2 such that for a substitution R2,

(R2S2)~gew2 = (RIG)[New2. (29)

Moreover, note that

('R2S2)tsupp(G)ugew2 = Rltsupp(G)Ugew2" (30)

Then R2 unifies $20 and $2S1(/3 --~ p) at (G.20) because
R2SeO
= R ae by (29) and fry(9) n New2 = 0
= RISI(• --+ p) by the definition of G
= R2S2S1(~ ~ p) by (30) and because, by Lemma A2.3 and A2.4,

jalv(S2Sl(fl m p)) ('1 (supp(a) N New2) = O.
Thus the unification at (G.20) succeeds with $3 such that for a substitution
R3,

R3S3 = R2. (31)

Hence G(F, el e2, p) succeeds with $3S2S1.
Now we prove the rest that (R3S3S2S1)~Ne~ = PtNe~" Note that, by
Lemma A2.4, itv(S1) c_ ftv(F) U {~} U New1, hence by the definition of
G,

itv(S1) N (supp(G) U New2) = 0. (32)

Therefore
(R3S3S2S1)tNew
= (R2S2S1)~Ne~ by (31)
= ((R2S2)~supp(a)uye~2S1)~yew by Lemma A2.5 and (32)
= (Rl[supp(G)ugew2S1)~gew by (30)
= (RIS1)~New by Lemma A2.5 and (32)
= P~New by (28).

�9 ease :Let x=el i n e2 : Let the given judgment be P F F- l e t x=el • e2 : Pp ,
and New = {j3) 12 supp(G) 12 New1 t2 New2, where j3 is the new type variable
introduced at (G.11), G is the substitution for 0 > S i p at (G.12), and New1
and New2 are respectively the sets of new type variables used by G(F, el, fl)
at (G.11) and G(SIF + x: Closslr(S1/3) ,e2,0) at (G.12).
By the (LET) rule, there exists a type T such that

P F ~- el : T (33)

and

P F + x: Clospr(T) ~- e2 : Pp . (34)

24 H. Eo, O. Lee and K. Yi

Let P ' = P[{Z} U {7//3}. Then P'/3 = 7- and P'F = PF because/3 Cftv(F).
Hence by induction, 6(F, el,/3) at (6.11) and (33) imply that there exists a
substitution R1 such that

(R1S1)~Newl = P'[New~" (35)

Moreover,

(RlSl)[{,O}UNeWl : P[{13}UNeWl" (36)

Note that
R1G(SIF)
= RISIF because supp(G) Nftv(SiF) = 0

by Lemma A2.3 and A2.4
= PV by (36) and because~(V) n ({/3} UNewl) = O,

and
RI G(Clos s lr(S1/3))

ClosR1Gs1F(RI GSI/3)
= ClospF(R1S1/3)

= Clospr(P'/3)
= CIospF(T)

by Lemma A2.1
because supp(G) Aftv(S1/3) = 0
by Lemma A2.3 and A2.4
by (35) and because/3 ~ New1
by the definition of P~;

that is, R1G(S1F + x: Closslr(S1/3)) ~- PF + x: Clospr('r). Then by
Lemma A2.2 and (34),

R1G(S1F + x: Closslr(Sl~3)) ~- e2 : Pp. (37)

In order to apply induction to 6 (SIF + x: Closs~ v ($1/3), e2, O) at (6.12) and
(37), we have to prove that R1GO = Pp:

R 1 G (0)

= R I S l p by the definition of G
= Pp by (36) and because ftv(p) A ({/3} UNewl) = 0.

Thus by induction, 6($1F + x: Closslr(S1/3), e2, 0) at (6.12) succeeds with
$2 such that for a substitution R2,

(R2S2)[g~w2 = (RIG)]N~w~. (38)

Moreover, note that

(RZS2)~supp(G)UNew2 : Rl~supp(G)UNew2" (39)

Then R2 unifies $20 and S~Slp at (6.13) because
R2($20)
= RxGO by (38) and becauseftv(0) •New2 = 0
= R1Slp by the definition of G
= R2(S2Slp) by (39) and because, by Lemma A2.3 and A2.4,

f t v (S l p) CI (supp(G) U New2) = O.
Thus the unification at (6.13) succeeds with $3 such that for a substitution
R3,

RaSa = R2. (40)
Hence, 6(F, l e t x=el i n e2, p) succeeds with $3S2S1.

Proofs of a Set of Hybrid Let-Polymorphic Type Inference Algorithms 25

Now we prove the rest that (RsSsS2S1)tNew = P~New" Note that, by
Lemma A2.4, itv(S1) c_ ftv(F) (3 {/9} U New1, hence by the definition of
G,

itv(S1) N (supp(G) [2 New2) ---- O. (41)

Therefore
(R3S3S2S1)~New
= (R2S2S1)[New by (40)
= ((R2S2) [~u. . (C)uNew2Sl) [Now by Lemma A2.5 and (41)
= (Rl~s,pp(V)ugew2S1)~g~w by (39)
= (R1S1)~gew by Lemma A2.5 and (41)
= Ptg~w by (36).

�9 case f i x f Ax.e : Let the given judgment be PF }- f i x f Ax.e : Pp where
Pp = T1 "-+ 7"2 and New = {/91,/32} t3 supp(G1) U supp(G2) t3 New' where/91
and/92 are new type variables used at (~.15), G1 and G2 are substitutions
for 01 _> p at (G.14) and 02 _> 01 at (G.15), and New' is the set of new type
variables used by ~;(S1F1 + x: $1/91, e, S1~2) at (G.15).
By the (FIX) rule, P F + f : Pp ~- Ax.e: Pp. Because (supp(G1)Usupp(G2))n
fry(F) = O and p = G101 : GIG202,

PGIG2F + f : PG101 ~- Ax.e : PG1G202.

Because F1 -- F + f : 01 by (G.14), and ftv(01) nsupp(G2) = O,

PG1G2F1 ~- Ax.e : PG1G202. (42)

First, we prove the unification H(~I ~ /92,02) at (G.15) succeeds. Let
P' = (PG1G2)t{~,~2} U {7-1/~1, ~'2/~2}. Then P ' unifies/91 --~/92 and 02
because

P'02 = PGIG202

= PGlOl

= Pp

= T1---..). T 2

---- P ' (]91 ---+ Z2)

because the new j31,/92 Cftv(02)

by the definition of G2

by the definition of G1

by the assumption
by the definition of P ' .

(43)

Thus by Theorem 1.1, the unification at (G.15) succeeds with $1 such that
for a substitution R1,

R1S1 = P' . (44)

By the (FN) rule and because PG1G202 = T1 --+ T2 by (43), (42) implies

P G I G 2 F 1 + x : T 1 ~- e : T 2. (45)

To apply induction to G(S1FI + x: $1/31,e, $1~2) at (G.16) and (45), we
must prove that there exists a substitution P1 such that T2 = P1 ($1/92) and
PGIG2F1 + x: T1 = PI(S1F1 + x: $1~1). Such Pl is R1 at (44) because

R1(S1/92) = P'/92 b y (4 4)

= v2 by the definition of P '
and

26 H. Eo, O. Lee and K. Yi

RI(SIF1 -Fx: $1/31)
= P'(F1 + x:/31) by (44)
= PGIG2F1 + x: ~-1 because the new/31,/32 Cftv(F1).

Thus by induction, G(SIF1 + x: $1/31, e, $1/32) at (~.16) succeeds with $2
such that for a substitution R2,

(R2S2)INew, = Rl~New'" (46)
Note that, because supp(G1) =ftv(01)Vtv(p) and supp(G2) =ftv(O2)~etv(01),

itv(&)
_C {/31,/32} Ufiv(02) by Theorem 1.1
__C {/31,/32} uf-tv(O1) U supp(G2)
_c {/31,/32} u fry(p) u supp(G1) U supp(G2)

and thus by the definition of ~,

Then

New' 71 itv(S1) = 0. (47)

(R2S2S1)~New, = (R2S2)INew,~I

= RltNew,S1

= (Rl~l) tNew'
= P ' IN~w, (48)

Now we prove the unification LI(S2SI01, $2S102, S2Slp) at (G.16) succeeds.
R2 unifies S2Sa01, $2S102, and S2Slp because

and

R2($2S102)
= P'02

= PGIG202

= PGI01

= PG1G201

= P'01

= R2($28101)

by Lemma A2.5 and (47)
by (46)
by Lemma A2.5 and (47)
by (44).

by (48) and because fry(02) ;q New' = 0

because the new/31,/32 r

by the definition of G2

because fry(01) n supp(G2) = 0

because the new/31,/32 C fry(01)

by (48) and because ftv(01) ClNew' = 0.

R2($2S102)
= P p
= P G l p
= PG1G2p
= p ' p

= R2(S2Slp)

by (49) and the definition of G1
because ftv(p) rq supp(G1) = 0
because fn,(p) N supp(G2) = 0
because the new/31,/32 Of fry(p)
by (48) and because ftv(p) cq New' = 0.

(49)

Thus the unification at (G.16) succeeds with $3 such that for a substitution
R3,

R3S3 = R2. (50)

Hence G(F, fJ_x f Ax.e,p) succeeds with $3S2S1, and (R3S3S2S1)~New =
P~gew because

Proofs of a Set of Hybrid Let-Polymorphic Type Inference Algorithms 27

(R3S3S2S1)[New
=(R2S2S1)tNew by (50)
=P'~uew by (48)
= P[New because supp (G1) U supp(G2) U {/31, f12 } C New.

w Proof of Lemma A2.4
We prove by structural induction on e.

�9 case () : By Theorem 1.1, itv(H(p, ~)) C ftv(p) Uftv(~) =ftv(p).
�9 c a s e x �9

itv(U(p, {fi/~}7))
C_ ftv(p) Uftv({fi/d}T) by Theorem 1.1
c f~(p) u ~ (~) \ d) u j
= f~(p) uf~(v~.~) u
=f~(p) uf~(r(x)) u j because r(x) = V~.~
c f~(p) u f~ (r) u j .

Note that fi is the set of new type variables used by G(F, x, p).
�9 case Ax.e : Let G be the substitution for 0 _> p at (G.3). Note that all the

type variables in supp(G) are new by definition.
itv(S1)
C frY(0) Uft'y(/31 ----4/32) by Theorem 1.1
C_ftv(p) U supp(G) U {/31,/32} because supp(G) =fry(O) \ftv(p),
itv(S2)
c_ftv(SiF) U fry(S1/31) uftv(Sx/32) UNewl by induction
c_ itv(S1) U fry(F) u {/31,/32} UNewl by Lemma A2.3

where New1 is the set of new type variables used by ~ ($1F + x : $1/31, e, $1/32)
at (G.4), and

itv(S3)
C_ ftv(S2S10) U ftv(S2Slp) by Theorem 1.1
C itv(S2) U itv(Sa) Uftv(0) Uftv(p) by Lemma A2.3
C_ itv(S2) U itv(Sl) U supp(G) Uftv(p).

Therefore itv(SaS2S1) c_ ftv(F) Uftv(p) U (supp(G) U {/31,/32} U New1). Note
that supp(G) U {/31,/32} U NeWl is the set of new type variables used by
G(F, ~z.e, p).

Other cases can be similarly proven. �9

w Relative Earliness Proof

T h e o r e m 2 . 3

Let A and A ~ be instances of G such that A G A ~, F0 be a type environ-
ment, e0 be an expression, and P0 be a type. If IA(F0, e0, P0)l has (F, e, p)d/~,
then [A~(F0, e0, P0)l has (F', e, pt)d/u and there exists a substitution R such that
RF t >- F and Rp ~ = p. The theorem also holds for ~R.

28 H. Eo, O. Lee and K. Yi

The proof of Theorem 2.3 uses Lemmas A4.1 and A4.2.

Lemma A4.1 (Lee and Yi lo))
If F ~- F' then Closr(r) ~- Closr,(T).

Lemma A4.2
Let A and A' be instances of G, F and F' be type environments, and p and p' be
types such that RF' ~- F and Rp' = p for a substitution R. If A(F, e, p) succeeds
with S, then A'(F', e, p') succeeds with S' and there exists a substitution R' such
that (R'S')~Ne w = (SR)~Ne w where New is the set of new type variables used by
A'(F', e, p'). The lemma also holds for G R.

Proof
Because A(F, e, p) succeeds with S, by the soundness of A,

S F F- e : Sp.

By Lemma A1.2, S R F ' ~- S F and Sp = S R p ' . Thus by Lemma A2.2,

S R F ' F- e : SRp ' .

By the completeness of X , A'(F', e, p') succeeds with S' and there exists a sub-
stitution R' such that

(R'S ')~Ne w = (SR)~New.

Proof of Theorem 2.3
We prove by induction on the length of the prefixes of IA(Fo, eo, Po)], and we
prove for G and GR simultaneously. We add superscript prime (') to all names
used by A'(Fo, eo, Po).

�9 base ease: When the prefixes are of length 1, they represent the initial calls
where e is eo. Then the identity substitution R satisfies RFo ~- Fo and
Rpo = Po.

Followings are inductive cases. We first prove for the case that the string ends
with a return: (Fo, eo, po) d . . . (F, e, p)U.

�9 case of the return from e: The case means that IA(Fo, eo, Po)l has

(r, e, p)d. . . (r, e,
By induction hypothesis, IA'(Fo, eo, Po)l has (F', e, p,)d and there exists a
substitution R such that R p ~ = p and RF' >-- F. Then by Lemma A4.2,
A'(F', e, p') succeeds; that is, ~A'(Fo, eo, Po)] has (F', e, p')~.

Now we prove the cases that the string ends with a call: (Fo, eo, Po) �9 "" (F, e, p)d.

�9 case e in ;~x.e: that is, IA(F0, e0, P0)~ has

(r , ,~x.e, p) d (S l F Jr- x : S1/~I, e, S1~2) d

where $1 =/g(f i l ~ ~32, 0) at (G.3), and fll and f12 are the new type variables
at (~.3). By induction, ~A'(r0, e0, P0)~ has (F', Ax.e, p,)d and there exists a
substitution R such that Rp' = p and

RF' >- r. (51)

Proofs of a Set of Hybrid Let-Polymorphic Type Inference Algori thms 29

In order for A'(F' , Ax.e, p') to have a call for e, the unification at (g.3) must
hold. Because A ~- A', there exists a substitution P such that

0 = (R[s,pp(p) U P)O' (52)

and supp(P) C_ ftv(0') \ f i r (/) . Note that by the definition of G,

supp(P) nf~(r ') = O. (53)

Let R0 = R~{~L~Du.,,pp(p) U P U {/31/fll,/32/fll} where/31 and/31 are the
new type variables of A' introduced at (G.3). Then SIR0 unifies/3~ -~/31
and O' at (G.3) because

SIRo(O')
= Sl(R[supp(p) U P)O'
= S I P
= $1(/31 - > / 3 2)

= S1Ro(9~ -~/31)

because the new/~,/31 ~ftv(0')
by (52)
by (g.3)
by the definition of Ro.

Thus the unification of A' at (g.3) succeeds with S~, hence [A'(F0, co, p0)]
has (S~F' + x : S1/31 , e, S l Z 2) .
Now we prove the rest that there exists a substitution R' such that R ' (S~F '+
x: S~/3~) >- (SIF + z: $1t31) and R'(S~/31) = $1/32. Because (G.3) succeeds
with S1, by Theorem 1.1, there exists a substitution R1 such that

SIRo : RIS~. (54)

Then such R' is R1 because
RI(S~F' + x: S1/31)' '
= S l R o (F ' + x: 3~) by (54)
= Sl((R[supp(p) U P)F ' + x: Ro/3~)

because the new ~31,/32 r

and

= S I (R F ' +x: /31)
>- S I (F + x: /31)

] ! !
R I (S I ~) = S1Ro/32

= S i f t2

by (53) and the definition of Ro
by (51) and Lemma A1.2

by (54)
by the definition of Ro.

* case e in e e2 for ins tances o f g: that is, [A(Fo, co, Po)] has
(r, e e2, p / (r , e, 81) d

where 01 is the type relaxed from/3 --* p at (G.8). By induction hypothesis,
IA'(F0, e0, Po)l has (F', e e2, p,)d and there exists a substitution R such that
Rp' = p and

RF' >- F. (55)

Thus by the definition of G, [A'(ro, e0, po)] has (F', e, 0~) d where 0~ is the
type relaxed from/3' -~ / at (g.8).
Now we prove the rest. Let Ro : R~{~,} U {/3//3'} where /3 and /3' are
respectively the new type variables of A and A' at (g.6). Because A _Z A'
and

Ro(/3' ---*/) = /3 ---+ Rp' because the new/3' Cftr(p')
= / 3 ~ p ,

there exists a substitution P such that

30 H. Eo, O. Lee a n d K. Yi

(ROtsupp(p) U P)O' 1 = 01

and supp(P) C_ ftv(0~) \f-tv(g' --+ p'). Note that supp(P) Nftv(F') = 0 by the
definition of G. Thus

(Roi..pp(y) u P) (r ')
= RF ' because ({g} U supp(P)) Aftv(F') = q)
~- F by (55).

�9 c a s e e i n e l e f o r i n s t a n c e s o f G: that is, [A(Fo, co, Po)] has

(F, el e, p)d(F, el , 01) d ' ' ' (F, el, 01)u(S2SIF, e, 03) d
where 01, 02, and 0a are respectively the relaxed types of A at (G.6), (G.7),
and (G.8), $1 = G(F, el,01) at (G.6), and $2 = U($101,02) at (G.7).
By induction hypothesis, IA' (ro , co, po)] has (F , ea e, p) and there exists
a substitution R such that Rp' = p and

RF' >- V. (56)

In order for A'(F' , el e, p') to have a call for e, its call for el at (6.6) must
return and the unification at (G.7) must succeed.

! ! !
- A (F , el, 01) at (6.6) returns: Let Ro = R~{#,} U {g/g '} where g and g'

are the new type variables of A and A', respectively, introduced at (G.6).
Because A _ A t and

Ro(g' ~ p') = g --* Rp' because the new g' •ftv(p')

= # -~ p, (57)

there exists a substitution P1 such that

01 = (Rots,pp(p1) u 1:)1)0 i (58)

and supp(P1) Cftv(0~) \ f tv(g ' --+ p'). Note that by the definition of ~,

supp(P1) n (ftv(r') Uftv(g' ---* p')) = 0 (59)

and thus

(Ro~s,pp(e,) U P1)F' = RF' by (59) and g' Cftv(F')

~- F by (56). (60)

Because ~A(ro, co, Po)~ has (F, el, 01) u, (Ro~,.pp(p,) U POF' >- F (60), and
(Ro[~,pp(p,) UP1)Oi = 01 (58), by Lemma A4.2, A'(F', el, Oi) succeeds with
S~ such that for a substitution R1,

(nlSi)tNew, = (Sl(Rots.pp(p,) U P1))~New, (61)

where New1 is the set of new type variables used by X(F ' , el, 0~).
! f

- Lt(Sl01,0'2) at (G.7) succeeds: Because A r- A' and

RI(S~(# ' ~ p'))
I = Sl(Rot~.~.(p~) u P1)(Z' --* p')

by (61) and because ftv(g' ---+ p') n New1 = 0
= SiRo(g ' -~ p') by (59)

---- S 1 (~ ---+ p) by (57), (62)

Proo f s of a Set of H y b r i d L e t - P o l y m o r p h i c T y p e Inference A l g o r i t h m s 31

there exists a substitution P2 such that

02 = (Rl~s...(p2) U P2)O~

and supp(P2) C_ftv(O'2) \ f tv(S'~(~' -~ p')) . Note that
ftv(S~O~) U/tv(S~/31) Uftv(S~F 1)
C_ itv(S~) Uftv(0~) U {13'} Uftv(V') by Lemma A2.3
C New1 Uftv(0~) U {f/'} Uftv(F') by Lemma A2.4

and thus by the definition of G,
I I 1 I

supp(P2) n (f - t v (S l 0 1) U f t l , ' (S l f l) uf tv (S~c ')) = r

Then S2(R4,.,,(v~ u P2) unifies S'~Oi and 0~ at (~.7) because
S2(R~L.u,,(p,~ u P~)(s~o'l)

S ~ ~' {71 = 2 X t l O 1 1 by (64)
= S 2 S x (a o L . . . (p ~ u P~)01 by (61) and

because ftv(0~) n NeWl = ~)
---- S2S101 by (58)
= $202 by (G.7)

(63)

(64)

= S2(Rlts,pp(p2) U P2)(O~) by (63).
Thus the unification of A I at (G.7) succeeds with S~.

' ' ' e {71 ~d Therefore [A'(Fo,eo,Po)[has ($2S1F , , 3] �9
Now we prove the rest that there exists a substitution R' such that R'{?~3 = {?3
a n d i ? t ! t R (S 2 S I F) ~ S2SaF. Because (G.7) succeeds with $2, by Theorem 1.1,
there exists a substitution R2 such that

R2S~ = S2(Rl~supp(p2) U P2). (65)

Because A r A I and
R - - I 1 I I 1 2(S2Sx~) = S2(R~Is~..(e~> u P2)SI~ by (65)

= S 2 R 1 S ~ 1 by (64)
= $2S1/3 by (62),

there exists a substitution P3 such that
P i {?3 = (R2[,,,pp(p3) U 3){?3

and supp(P3) C_ ftv(O'3) \ f tv(S~S~/3') . Note again that, by Lemma A2.3
and A2.4 and Theorem 1.1,

! ! I ~(S2Slr)
C ftv(01) Uftv(02) U New1 Uftv(F')
C_ supp(P1) Uftv(/3 --~ p) U supp(P2) UNewl Uftv(r ')

and thus by the definition of G,

supp(P3) ' ' ' nftv(S2Sar) = 0. (66)

Therefore, such R' is (R2~s,pp(p3) U P3) because

3 2 H. Eo, O. Lee a n d K. Yi

(R2[supp(p3) U 3) ~ o 2 ~ 1)

= R 2 S i S [F ' by (66)

= S2(Rl[s,pp(p2) U P2)S~F' by (65)
_ c D C'F' by (64) - - ~ 2 1 t l o 1

= S2Sl(Ro~.,.~pp(pa) U P1)F' by (61) and because
f tv(r ') N New1 = (J

>- S2S1F by (60) and Lemma A1.2.

�9 case e in el e for instances of 6R: that is, IA(Fo, eo, po)l has

(r, el e, p)d(r, e,/3)d
where /3 is the new type variable introduced at (6.18). By induction,
IA'(ro,eo,po)] has (F ' ,el e,p ') d and there exists a substitution R such
that RF' ~- F and Rp' = p. By the definition of 6 R, IA'(Fo, eo, Po)] has
(F',e,/3') d where /3' is the new type variable introduced at (6.18). Let
Ro = R[{~,} U {/3//3'}. Then R o r ' = R r ' >- r and Ro/3' =/3.

�9 case e in e e2 for instances of 6R: that is, [A(Fo, eo, Po)l has

(r, e e2, p)d(r, e~,/3)d... (r, e~,/3)u(slr, e, 0) d
where/3 is the new type variable introduced at (6.18), 0 is the relaxed type
at (6.19), and S1 -- 6R(F, e2,/3) at (6.18).
By induction, ~A'(Fo, eo, Po)~ has (F', e e2, p,)d and there exists a substitu-
tion R such that Rp' = p and

RF' ~ r . (67)

Let Ro = R[{Z,} U {/3//3'} where/3' is the new type variable introduced at
(6.18). Then Ro/3' =/3 and

RoF' = R r ' because the new/3' •ftv(F')

~- F by (67). (68)

Thus by Lemma A4.2, A'(F' ,e2, /3 ') at (6.18) succeeds with S~, hence
[A'(ro, eo, po)] has (S~F', el, 0') d.
Now we prove the rest that there exists a substitution R' such that R'O' = 0
and R's~r' ~ s i r . Because (6.18) succeeds with S~, by Lemma A4.2, there
is a substitution R1 such that

(nlstl)~NeWl = (S1no)~Newa (69)

where New1 is the set of new type variables used by A'(F', e2,/3').
Because A E A' and

RI(S~#)
= S1Rop' by (69) and becauseftv(p') ANewa = 0
= SaRp ' because the new/3' Cftv(p')
= Sip ,

there exists a substitution P such that

(Rl[supp(p) U P)O' = O

and supp(P) C_ftv(O') \ f tv(S~p') . Note that

supp(P) N (ftv(S~F') Uftv(S~/3')) = {~. (70)

Proofs of a Set of Hybrid Let-Polymorphic Type Inference Algorithms 33

by the definition of g because
~(S~F') Uf~(S~fl')
C ilv(S~) Uftv(C') U {fl'} by Lemma A2.3
C New1 Uftv(F') U {fl'} by Lemma A2.4.

Therefore, such R' is (Rl~.~,pp(p) U P) because

(Rl~supp(p) U P) (S ~ C ')

= n l (S l r ') by (70)
= SIRoF' by (69) and because New1 Aftv(F') = 0
>- SIF by (68) and Lemma A1.2.

�9 case e in (l e t x=e i n eJ : that is, [A(Fo, co, P0)] has

(r, l e t x=e i n e2, p)d(r, e, fl)d

where fl is the new type variable introduced at (G.11). By induction,
IA'(Fo, co, Po)[has (F', l e t x=e i n e2, p,)d and there exists a substitution
R such that RF >- F and Rp' = p. By the definition of g, [A'(Fo, co, Po)]
has (F', el, fl,)d where fl' is the new type variable introduced at (G.11). Let
Ro = Rt{fl,} U {f l / f l '} . Then RoC' = RF' >- F and Rofl' = ft.

�9 case e in (l e t x=el i n e): that is, [A(Fo, co, Po)~ has

(r , l e t x=el i n e, p)d(F , e, f l)d . . . (r , e, f l)u(SlF q- x: Closs, r(Slf l) , e, 0) d

where fl is the new type variable introduced at (G.11), 0 is the relaxed type
at (Q.12), and $1 = g(r, el,fl) at (6.11).
By induction, [A'(Fo, co, po)] has (F', Ze t z=e i n e2, p,)d and there exists
a substitution R such that Rp = p and

RF' >- r . (71)

Let Ro = R~{Z,} U, {f l / f l '} where fl' is the new type variable introduced at
(6.11). Then Rofl = fl and

RoF' = RF' because the new fl' Cftv(F')

>- F by (71). (72)

Thus by Lemma A4.2, A ' (F ' , e l , f l ') at (6.11) succeeds with S~, hence
t t I d [A'(ro, co, po)] has (S~F' + x: Closs,,r, (S i f t) , e~, 0) .

Now we prove the rest that there exists a substitution R' such that R'0' -- 0
and R'(S~F' + x: Closslr, (S~fl')) >- S1 F q- x : Clo$s1F(Slfl). Because (6.11)
succeeds with S~, by Lemma A4.2, there is a substitution R1 such that

(nlS~)[Newl = (S1no)[New, (73)
where New1 is the set of new type variables used by A'(F', el, fl').
Because A C A' and

RICSip')
= SIRop ' by (73) and becausef-tv(p') n New1 = @
= S I R p ' because the new fl' cdftv(p')
= Sip ,

there exists a substitution P such that

(Rl~s.pp(p) U P)O' = 0

34 H. Eo, O. Lee and K. Yi

and supp(P) c_ ftv(O') \fiv(S~p'). Note that
f~(s~r') u~(s~Z')
C_ itv(S~) Uftv(F') U {/3'} by Lemma A2.3
C_ New1 Uftv(F') U {/3'} by Lemma A2.4

and thus by the definition of ~,

supp(P) A (ftv(S~F') Uftv(S~/3')) = O.

Therefore, such R' is (Rl~s,pp(p) U P) because

(Rl~supp(p) U P) (s ~ r ')

= R l (S ~ r ') by (74)
= SIRoF' by (73) and because New1 Nftv(F') = 0

~- S1F by (72) and Lemma A1.2

and
(Rl~supp(p) U P) (Closs~ F, (S~/3t))
= R1Closs;r, (S~/3')

! !
~- ClosR1s,~r, (RIS1/3)
~- Clossir(R1S~/3')
= Clossir(S1Ro/3')
= Closslr(S1/3)

by (74)
by Lemma A2.1
by (75) and Lemma A4.1
by (73) and/3' ~ New1
by the definition of Ro.

(74)

(75)

because the new/3~,/3~ Cftv(0~)
by (78)
by (~.15)
by the definition of Ro.

Thus the unification of A' at (G.15) succeeds with S~, hence [A'(Fo, eo, Po)l
I ! o I l ! I t~ has (81s + x . S1/31, e, S1/32) �9

SlRo(0D
= S l (R tsupp(e)uP)O~
= S102
= S1(/31~/32)

�9 ease e in (f i x f Ax.e): that is, [A(Fo, eo, P0)] has
(F, s f Ax.e,p)d(SiF1 + x: $1/31, e, $1/32) d

where F1 = F + f : 01 at (~.14), Sx =//(/31 --*/32, 0) at (6.15), and/31 and
/32 are the new type variables at (G.15). By induction, IX(Fo, eo, po)] has
(l v, f i x f Ax.e, pt)d and there exists a substitution R such that Rp' = p
and

RF' ~- F. (76)

In order for A'(F', f i x f Ax.e, p') to have a call for e, the unification at
(G.15) must hold. Because A U A', there exists a substitution P such that

O1 = (Rtsupp(p) U P)O' 1, (77)

02 = (R~s,pp(p) U P)#'2, (78)

and supp(P) C (fry(01) U fry(02)) \J~(p') . Note that by the definition of G,

supp(P) n ~ (r ') = 0. (79)
Let Ro = R[{~,Z~}us,pp(p) U P U {/31//3~,/32//3~} where/3~ and/3~ are the
new type variables of A t introduced at (G.15). Then SIRo unifies/3~ --*/3~
and 0~ at (G.15) because

Proofs of a Set of Hybrid Let-Polymorphic Type Inference Algorithms 35

Now we prove the rest that there exists a substitution R' such that R ' (S[F~+ ;: Sh'~! ~y(ST~Flor+eZ m: S1/31) andR'(S~/3;)= S1f l2 . B e c a u s e (~ . 1 5) s u c c e e d s
it 1.1, there exists a substitution R1 such that

S1Ro -= R1S~.
Then such R' is R1 because

I l I I RI(SIFI +X: $1~1)
= S lR0(r i+z : ~)
= Sl((Rtsupp(p)UP)r'l+X: Ro/3~)

= Sl((Rt.~,~p(p)UP)I'i+x:/3~)
p , -= Sl((Rlsupp(p)U)(F + f : 01)+x: /31)

= S I (R F ' + f : 01+x: ill)
~- S l (r + / : 01+z: ~1)
= S l (r l - t - x : ~1)

and
R I (S ~ ;) = $1Ro/3~

= S 1 3 2

(so)

by (80)

! l I because the new/~], ~2 Cfw(r l)
by the definition of Ro
by (6.14)
by (77) and (79)
by (76) and Lemma A1.2
by (G.14)

by (80)
by the definition of Ro.

Hyunjun Eo: He is a Ph.D. candidate in the Department of Com-
puter Science at KAIST (Korea Advanced Institute of Science
and Technology). He recieved his bachelor's degree and mas-
ter's degree in Computer Science from KAIST in 1996 and 1998,
respectively. His research interest has been on static program
analysis, fixpoint iteration algorithm and higher-order and typed
languages. From fall 1998, he has been a research assistant of
the National Creative Research Initiative Center for Research on
Program Analysis System. He is currently working on developing
a tool for automatic generation of program analyzer.

35 H. Eo, O. Lee a n d K. Yi

Oukseh Lee: He is a Ph.D. candidate in the Department of Com-
puter Science at KAIST (Korea Advanced Inst i tute of Science
and Technology). He received his bachelor's and master 's de-
gree in Computer Science from KAIST in 1995 and 1997, respec-
tively. His research interest has been on stat ic program analy-
sis, type system, program language implementation, higher-order
and typed languages, and program verification. From 1998, he
has been a research assistant of the National Creative Research
Initiative Center for Research on Program Analysis System. He
is currently working on compile-time analyses and verification for
the memory behavior of programs.

Kwangkeun Y|, Ph.D.: His research interest has been on semantic-
based program analysis and systems application of language tech-
nologies. After his Ph.D. from University of Illinois at Urbana-
Champaign he joined the Software Principles Research Depart-
ment at Bell Laboratories, where he worked on various static
analysis approaches for higher-order and typed programming lan-
guages. For 1995 to 2003 he was a faculty member in the Depart-
ment of Computer Science, Korea Advanced Inst i tute of Science
and Technology. Since fall 2003, he has been a faculty member in
the School of Computer Science and Engineering, Seoul National
University.

