
New Generation Computing, 9 (1991) 277-303
OHMSHA, LTD. and Springer-Verlag

�9 OHMSHA, LTD. 1991

Logical Diagnosis of s163 Programs

Oded S H M U E L I *
Department of Computer Science,
Technion- lsrael Institute of Technology,
Haifa, Israel, 32000.
Shalom T S U R
Microelectronics and Computer Technology Corporation,
3500 West Balcones Center Drive,
Austin, TX, 78759.

Received 12 November 1990
Revised manuscript received 21 June 1991

Abstract The debuggers of Ref. 11) and most of their derivatives are
of the meta-interpreter type. The computation of the debugger tracks the
computation of the program to be diagnosed at the level of procedure call.
This is adequate if the intuitive understanding of the programmer is in terms
of procedure calls; as is indeed the case in Prolog.

I n s 1 6 3 however, while the semantics of the language are described in
a bottom-up, fixpoint model of computation, s) the actual execution of a
program is a complex sequence of low-level procedure calls determined (and
optimized) by the compiler. Consequently, a trace of these procedure calls is
of little use to the programmer. Further, one cannot "execute" an s163
program as if it was a Prolog program; the program may simply not
terminate in its Prolog reading and severals163 constructs have no obvious
Prolog counterparts.

We identify the origin of a fault in the s 1 6 3 program by a top-down,
query/subquery approach. The basic debugger, implemented in Prolog, is a
shell program between the programmer and the s 1 6 3 program: it poses
queries and uses the results to drive the interaction with the user. It closely
resembles the one presented in Ref. 11). The core of a more sophisticated
debugger is presented as well.

Several concepts are introduced in order to quantify debugging
abilities. One is that of a generated interpretation, in which the structureless
intended interpretation of Ref. 11) is augmented with causality. Another is
the (idealized) concept of a reliable oracle. We show that given an incorrect
program and a reliable oracle which uses a generated interpretation, a cause

* Research partially supported by the Fund for Promotion of Research at the Technion.

278 o. Shmueli, S. Tsur

for the fault will be found in finitely many steps. This result carries over to
the more sophisticated debugger.

Keywords: Logic Programming, Debugging, Diagnosis, Deductive Databases

w Introduction
The term diagnosis is used in the context of programming to denote the

process which is intended to explain the differences, if any, between the actual,
observed behavior of a program during execution and its intended behavior. The
intended behavior is either conveyed by a formal specification or, more often, it
is left unspecified and manifests itself in the expectations of the programmer with
respect to the program. In either case, program diagnosis is impossible without
imparting this knowledge of the intended behavior to the diagnostic s y s t e m -
either in advance or, alternatively, during the human/system interaction that
governs the process.

Tradit ionally, programs are written using procedural languages such as
Fortran or C. The behavior (semantics) of such programs is described in terms
of states, represented by the values of the declared program variables and
data-structures, and the computat ion-induced transitions among states. This
model of behavior is an abstraction of the real program behavior and the
programmer uses it as a guidance in the debugging of his/her program. The
tool-set at his /her disposal supports this model and typically includes means to
either observe selected states (traps, checkpoints) or the tracing and display of
selected variables during the sequence of state transitions.* The information,
obtained by these tools, helps the programmer in inferring the changes that must
be made to the present version of the program so as to modify its behavior to
the intended behavior.

Databases are usually accessed either by ad-hoc queries or using DML
statements (e.g. SQL) embedded in a conventional programming language (e.g.
COBOL). So, for databases, debugging needs were met essentially by traditional
techniques. Recently, there is a trend of increasing DML capabilities with
predominant ly declarative constructs (e.g. D A T A L O G , s 1 6 3 NAIL!). Declara-
tive languages i.e., languages that enable problem-statement in terms of what
needs to be computed, as opposed to how it should be computed, provide the
user with the same level of abstraction as the specifications, used to convey the
intended behavior in the procedural programming case. Consequently, the
model of computa t ion that guides the programmer in the procedural case, is of
no value in this context. In particular, there is no notion of a state** and even
though the declarative specification may be compiled into procedural target

* We assume that the class of programs here contains only sequential ones. We will not elaborate
on the class of concurrent programs in which clearly the model of computation is more complex.

** We will reintroduce this notion in the sequel when we discuss updates.

Logical Diagnosis of s163 Programs 279

code, tracing the behavior at that level is of little value to the programmer.
Clearly other means are needed. These are the topic of this paper. We will

confine ourselves to means which are of use with logic programming languages
and will demonstrate how they could be used within s163 The most interesting
feature of the diagnosis of these languages is that the same logic, that is used by
the programmer to specify the problem, can be used in its diagnosis. Thus, the
debugging process is shifted thus from the intuitive at the procedural level, to the
system-directed at the declarative level. We will demonstrate how the system
utilizes the program to elicit addit ional information from the programmer and
eventually leads h im/her to a correct program.

The subject of algorithmic (or logical) debugging originated with Ref.
11). There have been many attempts at improving and extending Shapiro's work,
a non-exclusive list is: 3,4,5,6,9,10) In this paper we concentrate on two aspects. The

first contribution is in formalizing and structuring the user's mental picture so
that guarantees can be given as to the convergence of the debugging process. The
second contr ibution is in treating the subject of debugging a compiled language.
The results reported here first appeared in Ref. 12).

The paper is organized as follows. Section 2 formalizes concepts relevant
to debugging s163 programs. Section 3 presents a basic debugger. Section 4
treats debugging of updating programs. Section 5 presents a more sophisticated
debugger. We conclude in Section 6.

w Debugging Declarative Languages

2.1 Formalization
We will assume a basic f ami l i a r i ty with the logic p r o g r a m m i n g

paradigm, 7) and mainly introduce some additional definitions. Specifically, we
shall assume familiarity with the concepts of term, atom, literal, expression,
interpretation, Herbrand interpretation, clause, Horn clause(or rule), clause
head, clause body, substitution, instance, unification. A fact is a ground atom,
i.e. one containing no variables. An expression e is satisfiable in an interpreta-
tion I if there exists a ground instance e' of e which is true w,r.t, the interpreta-
tion. An expression is valid in an interpretation I if all ground instances of the
expression are true w.r.t. I ; so, for a fact f and I an Herbrand interpretation, f
is valid in I iff it is in I and ~ f is valid in I iff it is not in I .

The set of predicate symbols is parti t ioned into EDB and IDB predicate
symbols. The EDB symbols are those of base relations and the IDB symbols are
those of derived relations. The idea is that the interpretation (or extension) of
base relations is given explicitly as a set of unit clauses which are part of the
program, while that of derived relations are to be computed using (non-unit)
program clauses. By convention, EDB predicate symbols may only appear in
clause bodies or in unit clauses, no generality is lost by this requirement.
Furthermore, all predicate symbols in unit clauses (i.e. bodyless Horn clauses)

280 O. Shmueli, S. Tsur

must be in EDB. We shall allow unit clauses with variables, which denote
infinite EDB relations.

We will assume a basic familiarity with the E~)E language; for an
exposition of the s language features the reader is referred to Ref. 8), and for
the formal description of its semantics to Ref. 1). E~)E is based on Horn clauses.
Its repertoire includes predicate symbols, (free) function symbols, variables and
constants. So far an EWE program is a definite program as defined in Ref. 7) -
both in syntax and semantics. However, the language has addit ional constructs
that set it apart from the definite programs. First is the use of (stratified)
negation. Second, E~E's universe includes sets, and is therefore quite different
than the tradit ional Herbrand universe; for this paper, however, we shall assume
that the E:DEuniverse is identical to the Herbrand universe. Finally, there are
constructs in s 1 6 3 that futher diverge from definite programs. Facilities are
provided for grouping elements into sets. Facilities are also provided for
updates, i.e. changing the extensions of (base) predicates.

An E~E program is a finite set of clauses obeying the restrictions concern-
ing IDB and EDB predicate symbols. An s query (or simply, query) is a
conjunction of literals. A query form is a query representing a family of queries.
It only uses predicate symbols and the constants h and f. It specifies the predicate
symbols of literals of the query and for each one it says whether the actual
queries have this argument ground (b) or not (f).

Let q be a single literal query. For a set S of facts define the projection
of S on q, denoted rcq(S), to be that subset of S of facts that are unifiable with
q. Let P be an EWE program. The semantics of s 1 6 3 defines the model of P,
M(P), which is obtained by repeated bot tom-up derivations using the rule-set.
The answers computed by a program P for query q are defined by the s
semantics as 7cq(M(P)). The answers are facts for the predicate symbol of q.

I f negation is used in an EDs program then the program need be layered
(or stratified). The layering scheme is a prescription for one of the possibly
many minimal models of the program. Layering means part i t ioning the predi-
cate symbols of a progam P into disjoint sets, called layers, and a total order
(from lowest to highest) is defined on the layers. I f predicate symbol p appears
in a clause whose head predicate symbol is q, then q must be in a higher layer
than p or in the same layer as p. Furthermore, if the appearance of p is negated
then q must be at a higher layer. M(P) is built one layer at a time, from lowest
to highest. In each layer, facts for the predicate symbols in this layer are
produced from P by repeated bot tom-up "firing" of clauses defining the layer's
predicates, facts produced for lower layers are taken as if they were EDB facts.
In this paper we employ the following convention, the first layer of a program
includes all, and only, unit clauses whose head predicate symbol is in EDB.

An E~)E compiler is correct for a class C of (program, query) pairs if for
all such pairs the run-time code computes, within finite time, exactly the set of
answers that is prescribed by the semantics of the language. In this paper, the

Logical Diagnosis of s163 Programs 281

class C of interest contains those programs and queries for query forms that are
certified by the compiler as safe, i.e. termination (and therefore finiteness of

answer) has been certified by the s163 compiler. We assume that s163 compiler
is correct for C. This implies that the above certification is correct.

2 . 2 Overview of the Debugging Process
In the classical reading, the truth value of a ground atom of a program

P is determined by P's interpretation. This notion is insufficient however to

capture the programmer's intuition with respect to the required outcome of a
computa t ion-- i t lacks an element of causafity that would capture the additional
knowledge the programmer has, regarding the origin, or reason for the existence,

of any particular fact in the expected outcome. The programmer reasons that a

given fact is in the expected outcome either because it is a basic (i.e. should be
an EDB) fact, or because it is derived, in a number of steps, from one or more
of the basic facts. A partial ordering of facts in the interpretation is thus implied

and is required to properly capture the programmer's intuition.
An intended interpretation is the one the user has in mind for his/her

program; it usually embodies the user's intuition. We will denote the intended

interpretation by I and use it to define the two central notions relevant to the
process of diagnosis: those of a wrong fact i.e., a fact in M(P) but not in I , and

a missing fact i.e., a fact in I but not in M(P). Wrong facts and missing facts
are the manifestation of errors that are observed by the programmer. Their

causes stem from either a missing basic fact or a wrong clause in the program
P. We will define these concepts in the sequel. The diagnostic system or
synonymously, the debugger, is a program that accepts as input (1) a program

P and (2) a missing or a wrong fact. Upon input, the debugger,

(1) Drives an interactive dialogue, by occasionally prompting the program-
mer for information about the intended model of the program.

(2) Provides a conclusion in the form of the identification of either a missing

basic fact or a wrong clause in the program.

The diagnosis proceeds on a fact-by-fact basis.* For each instance of a

missing or wrong fact submitted, a conclusion is provided. Therefore, the
correctness of a program after diagnosis and the application of the corrections

is not absolute but is relative to the facts that were submitted for diagnosis.
The event of a wrong fact in the answer is diagnosed using a proof-tree.

The user directs the diagnostic system "down" the proof-tree until an incorrect

clause is discovered. The process is as follows. Suppose that a wrong fact was
produced by a clause, whose body literals were satisfied. If all the body literals
were correctly satisfied, yet the conclusion should not have been derived, the

clause is labeled as wrong. Otherwise, one of these body literals, say b, must have

�9 Observe that a single "programming error" may result in both missing and wrong facts; it may
be discovered by treating either.

282 O. Shmueli, S. Tsur

been wrongly satisfied; otherwise, the conclusion would have been correct. Thus,
the user must identify b and the process recurs on it. The responsibility of

producing and maintaining these proof-trees is relegated to the s 1 6 3 compiler.
Technically, this is not a difficult problem.

The event of a missing fact occurs because either there is no rule in the

program such that its head unifies with the missing fact, or if such a clause exists,

its body can not be satisfied in M(P), following the unification. In the latter
case, there are two possibilities. If the clause instance is satisfied in the intended

interpretation, subject to causality constraints, then there is a body literal which
is satisfied in I but is not in M(P), such a literal b is identified and the reason

for b being missing is searched for, recursively. In case all clause instances fail
to be satisfied in I , subject to causality constraints, a cause has been identified.

As mentioned, negation in E~Ds is handled using the idea of layering

which means that if ~ q (negative q) appears in the body of a rule with head

predicate p then q is defined only in terms of predicates that belong to layers
lower than that of p. Now, during the navigation down the proof-tree to
diagnose a wrong fact, a negated predicate, say ~ q, may be visited. To claim

that -~q is wrong is equivalent to claiming that q should have been produced
in a lower layer i.e., it is treated as missing in a lower layer. Likewise, if ~ q is

missing, the reason may be because q is erroneously derived in a lower layer and
hence, it becomes a wrong fact in the layer of q. Therefore, in diagnosing

stratified s 1 6 3 programs there is an interplay between the procedures required to
analyze wrong and missing facts. This presents no great difficulty. This interplay

is well-known in similar dubugging contexts, see Ref. 6).

2 . 3 The User's Menta l Picture
We introduced the notion of an intended interpretation and noted that

we use this notion as an embodiment of the users' intuition with respect to the

program. The exact reason as to why the user would consider a fact to belong
to his/her intended interpretation falls within the realm of the human psyche

and does not follow from the definition, nor is it dependent on the program P.
The purpose of this concept is, however, to provide a formal guarantee, that if
the user interacts with the system in accordance with this definition, i.e., the user

"plays by the rules", then convergence to the origin of his reported problem, in
the program P, can be guaranteed. In this section and the next we elaborate on

various interpretations that can be used to formalize this reasoning process and
settle on one version that we assume the user to follow when he/she debugs an
s163 program.

I f p is a fact then ~ p is a negative fact, we shall also refer to a fact as

a positive fact; a general fact is a positive or a negative fact. The user thinks of
a set of general facts. Each of these general facts may be justified by the user in
terms of other facts. We will use the notation p --~ q to denote that the user uses

general fact p to justify general fact q. The relation --~ is called the justification

Logical Diagnosis of E/)s Programs 283

relation.
This model of reasoning would imply a directed graph (V, E) in which

the nodes in V denote facts, positive or negative, and the edges in E denote
justifications. So, there is an edge (p, q) in E from general fact p directed to
general fact q iff p - * q is in the justification relation. This could possibly
include circular justifications. This framework is too general however for our
purposes. Addi t ional restrictions are assumed to allow effective debugging. The
additional restrictions that we need are as follows:

(1) The set of general facts the user thinks of is consistent, i.e. for no fact p
in that set is ~ p also in the set, and vice versa.

(2) The justification relation is acyclic. This prevents circular reasoning.
(3) Negative facts can only be used for a justification but cannot be justified

themselves-- they are given. In other words, an edge of the type -~p ~ q
is admissible but p ~ ~ q or ~ p ~ ~ q is not.

(4) In addit ion to restriction (2) we assume that facts are graded, or categor-
ized, as more basic or less basic, and that there are no arcs from a less
basic fact to a more basic fact. We impose a layering scheme on the set
of general facts. The scheme is such that the lower the layer the more
basic are facts in the layer. The number of layers is finite while the
number of facts in each layer is potentially infinite. Furthermore, for all
predicate symbols p, the facts for p must be of the same layer.

(5) Each fact is justified by a finite number of facts i.e., the in-degree to a
node representing a fact is finite (it may also be zero, i.e. no incoming

edges at all).
(6) Each descending justification chain from a fact to one if its justifying

facts, to one of its justifying facts etc., is finite.

We will refer to a structure that meets the restrictions mentioned here as an
acceptable structure.

2 . 4 Generated Interpretations
A generated interpretation is an acceptable structure which is constructed

in a particular fashion, as detailed below. This "construction" is done in the
user's mind and there may be no program which can manufacture it. So, a
generated interpretation is another, more refined, abstraction as to what kind of

structures users may have in mind.
First consider a single layer generated interpretation for a set of predicate

symbols 6f interest; intuitively, the predicate symbols of a program P without
negation (or a single layer in a program P).

A generated interpretation is built in stages. In each stage a set of facts
is added. At stage 0 a set So containing basic facts is created; this set may be
infinite. A fact added at stage i is said to be /-generated. I f s is /-generated and
t is j-generated, i < j , then s is generated prior to t and t is generated following

284 O. Shmueli, S. Tsur

s. The number of stages may be finite or infinite. A fact may be added only once.
Clearly, if s is /-generated then it is not j-generated, unless i = j .

At each stage, finitely or infinitely many facts may be added. Finally, for
all facts q for predicate symbols in the set of interest which are not added in any
stage, add ~ q to stage 0. (When presenting generated interpretations, this
addition is implicit and will not be shown.)

There is an additional structure which is added to the interpretation,
namely, a justification relation. Each fact f in a stage may be connected via
justification edges to a finite number of facts at lower stages (which justify f) .
By construction, a generated interpretation satisfies the six requirements for
being an acceptable structure. (The set of facts is consistent, an acyclic---,
relation, no edge enters a negative fact, there is a single layer, the number of
edges entering a fact is finite, the stages limit the length of descending chains.)

Now consider a multi-layer generated interpretation, intuitively, for a
program P with negation. Such a generated interpretation is formed from a
collection of generated interpretations, one for each layer. With respect to edges,
a fact in (some stage of) layer k may also be connected to finitely many facts
whose predicate symbols are in layers lower than k. All facts in layers lower
than layer k are considered of a prior generation with respect to the facts of layer
k. By construction, the result is an acceptable structure.

Notationally, a generated interpretation is a 5-tuple GI = (k, I , L, S, E)
where k is the number of layers, I is the set of positive facts, L is a function from
I to {1 k}, S is a function that assigns to each fact in I a stage number (a
non-negative integer), and E is the set of edges. When we talk about a generated
interpretation as an interpretation we shall refer to its I component which is a
subset of the Herbrand base. While the user reasoning process that conceptually
produces a generated interpretation resembles the process of bottom-up repeated
rule-applications, there is not necessarily a program underlying this process--the
programmer's intuition may be wrong and a program for which I is a model
may not even exist.

For programs that may use negation we make the following assumption:
the layers in the program and those in the definition of an acceptable structure
coincide. This assumption means that the user has defined the layers in his
program in accordance with the layering scheme in the generated interpretation.
Also, recall our assumption about layered programs that the first layer (i.e. layer
1) of a program is composed exclusively of EDB predicate symbols.

Figure 1 graphically shows an instance of a generated interpretation. The
small horizontal lines denote stages within the layers, the circles on line seg-
ments denote specific facts in the layers, and the arrows denote the causal
connections. We maintain that most intended interpretations are generated ones;
this is not a formal claim and hence can not be proved.

Let GI be a generated interpretation. Let P be a layered program.

Logical Diagnosis of EDs Programs 285

Layerk I

[Layerk l]

0

0

0

0

Fig. l A Generated Interpretation.

Definit ion 2.1 (Missing Atom, Missing Fact)

An a tom s is a missing atom (ma) w.r.t. GI in program P if

It is satisfiable in I , i.e. there is an instance s ' ~ I o f s.
It is missing in M (P) ; i.e. no instance o f this a tom is in M(P).

I f s is g round then s is a missing fact (mf) . []

We now define the no t ion o f a missing basic fact (mbf) w.r.t. GI that

identifies a basic deficiency o f P w. r . t . I . Namely, a fact f , f ~ I -- M(P) such
that f could not be derived in P, where the derivation uses I as EDB facts and
respects the causali ty manifested by generations, layering, and edges.

Definit ion 2.2 (Missing Basic Atom, Missing Basic Fact)

An a tom s is a missing basic atom (tuba) w.r.t. GI in p rogram P if

It is a missing atom.
There is no g round instance o f a rule in P, such that its head is an
instance o f s and its b o d y is satisfied in I in such a way that the head
instance is some generated fact in I , and each b o d y literal instance is

some general fact, o f a lower stage or a lower layer, which is connected

to s via an edge in E.

If s is g round then s is a missing basic fact (mbf). []

Defini t ion 2.3 (Incorrect Clause)
A clause r in P is incorrect w.r.t. GI if it is not satisfied in I (as a logic formula).

286 o. Shmueli, S. Tsur

Definit ion 2.4 (Correct Program, Incorrect Program)

A program P is correct w.r.t. GI if M (P) = I ; otherwise P is incorrect. []

Consider a p rogram P consist ing o f the clause a ~ - a , the intended

generated interpretat ion GI has a single layer conta in ing a single fact, a, and no
justification edges. M (P) is apparent ly empty. Then, P has a mbf, namely a.
This is because a is in I - M (P) and the (only) clause a ~ - a cannot be

properly satisfied in I . Indeed, the clause head, namely a, is in I , but its body

literal, again a, is not connected to a via a justification edge. N o w consider a
program P ' consist ing o f the clause b ~ - , the intended interpretat ion is empty

and M (P) = {b}. Then, P ' has an incorrect (unit) clause, namely b ~-~, because
it is not satisfied in I due to b's absence. The above two cases illustrate simple

instances generalized by the fo l lowing theorem.

Theorem 2.1
P is incorrect w.r.t. GI iff either P has an incorrect clause or a missing basic fact.

Proof
(,--) We consider the two cases:

Case (i): Let r be an incorrect clause instance for a clause in P; thus r is not
satisfied in I . However , since M (P) is a model for P, r is satisfied in M (P) . This
implies M (P) 4= I.

Case (ii): Let s be a mbf; this implis M (P) ~ I.

In both cases P is incorrect by definition.

(-->) By definition, M (P) 4= I. The p r o o f is by induct ion on the number o f
layers, e, in P.

Basis (Major Induction): e : 1.

So, the program on ly has unit clauses.

Case 1: there is a fact s ~ M (P) -- I. As s is an instance o f a unit clause in P,
this unit clause is incorrect since it is not satisfied in I .

Case 2: there is a fact s E I - M (P) . Since s ~ I -- M (P) it cannot unify with

any unit clause o f P. Since e = 1 there are on ly unit clauses. Thus, this fact is
a mbf as it can not unify with any rule head in P.

Induc t ion(Major Induction): e > 1.

Case 1: there is a fact s ~ M (P) -- I. Consider a partial proof-tree T for s in
which each internal node is a positive fact together with a rule in P used to

derive it, and the fact and its children comprise a g round instance o f the rule.
The root is s. Each leaf is either an E D B fact or o f the form (~ p) where p is

a fact. Use f a c t (v) to denote the g round literal in node v. Let v be a node in T
such that f a c t (v) is not satisfied in I but all o f v's children are satisfied in I . The
existence o f v fol lows by (minor) induc t ion on the height o f T. I f v is an internal

Logical Diagnosis of/~Ds Programs 287

node then the rule labeling v is incorrect. If v is a leaf and positive then fact(v) ,
which it represents, is incorrect; this fact is an instance of a unit clause in P, this

unit clause is incorrect. If v is a leaf and negative, say (~ q), then q is a fact
which is not in M (P) but is in I. Let z be the layer of P where the relation for

the predicate symbol of q is defined, let z = 0 if the relation is not defined in
any layer of P. If z -- 0 then P has a mbf. Otherwise, consider P ' which is P

minus rules defining predicates in layers higher than z. Since P ' is layered and
z < e, and using the induction hypothesis, it follows that either P ' has an

incorrect clause or a missing basic fact. In either case P has an incorrect clause
or a missing basic fact.

Case 2: there is a fact s ~ I - M (P) . If (the predicate symbol of) s belongs to
a lower layer than e, say l, then, by induction, we are done. So, let s be a

k-generated general fact of this layer (e). We prove by (minor) induction on k

that P has either a mbf w.r.t. GI or an incorrect clause.

Basis(Minor Induction): k -- O.
If there is no (ground) instance r ' of a rule r in P, such that its head is s and
its body is satisfied in I (in the usual logical sense) where each body literal of

r ' is some fact in I , generated prior to s, which is connected to s via an edge in
E, then s is a mbf.

Suppose such a (ground) instance r ' exists. Since k 0, there are no
body literals from this layer (e). If the body is empty then r ' is a unit clause and

therefore s ~ M(P) ; contradiction.
Hence the body of r ' must consist solely of (i) positive literals q ~ I, where q

is defined at a lower layer, or (ii) negative literals (-~ q) such that q q~ I. It can
not be that all positive body literals in this rule instance are in M (P) and all

negative literals (~ q) are such that q ~ M(P) , for this would imply that s is in

M (P) as well.

Case (i): there exists s" ~ M (P) a (ground) positive literal in this rule instance

which is in I. Clearly, s' comes from a lower layer. Then, by major induction,
there is a mbf for P ' w.r.t. GI or an incorrect clause in P ' where P ' is P minus
all clauses in layers above the layer defining the predicate of q. In either case so

does P.
Case (ii): there exists, in this rule instance, a negative literal (-7 q) such that q

M (P) . Since q ~ I, q ~ M (P ') -- I where P ' is P minus all clauses in layers
above the layer defining the predicate of q. By (major) induction, P ' has either

a mbf w.r.t. GI or an incorrect clause, in either case so does P.

Induction (Minor): k >0.
If no rule head in P unifies with s we are done, because s is a mbf. Suppose there

is a (ground) instance of a rule in P such that its head is s and its body is
satisfied in I with positive facts which are either generated prior to s or at a layer
lower than e, and some negative ground literals which are satisfied in I (with the

288 O. Shmueli, S. Tsur

edge restrictions of E). It can not be that all positive body literals in this rule
instance are in M (P) and all negative literals (-7 q) are such that q ~ M(P), for
this would imply that s is in M(P) as well.

Case (i): there exists s" ~ M(P) a (ground) positive literal in this rule instance
which is in I . First suppose that s" is in the same layer as s. Since s ' is
j-generated for some j < k, it follows by minor induction that there is a mbf for
P w.r.t. GI or an incorrect clause in P.
Now suppose s ' comes from a lower layer. Then, by major induction, there is a
mbf for P ' w.r.t. GI or an incorrect clause in P ' where P ' is P minus all clauses
in layers above the layer defining the predicate of q. In either case so does P.
Case (ii): there exists, in this rule instance, a negative literal (~ q) such that q
E M(P). Since q ~ I, q ~ M(P') -- I where P ' is P minus all clauses in layers
above the layer defining the predicate of q. By (major) induction, P ' has either
a mbf w.r.t. GI or an incorrect clause, in either case so does P. []

It should be noted that the above theorem is analogous to Proposi t ion 3
in Ref. 6).

2 .5 Debugger-User Interaction
We introduced the notion of a diagnostic system and mentioned that it

prompts the user for information, that will be used to converge to a conclusion.
The user, or alternatively a specification of the program that interacts with the
debugger, acts thus as an oracle, knowledgeable about the generated interpreta-
tion. During interaction, the user must meet the following requirements:

When asked about the validity of a general fact or is asked to satisfy an
atom p, the user responds truthfully, i.e., consistent with the generated
interpretation G1.
When asked by the debugger to justify a fact f , by satisfying a rule body
that would have generated f , the user responds by using only general
facts, belonging to stages (or layers) lower than that o f f and which are
edge connected to f .

Note that these conditions are, again, part of the idealized "rules of the
game" that, formally guarantee the convergence of the debugging process. In
practice, the user receives considerably more assistance from the system and is
thus not expected to possess all of the knowledge that these condit ions would
imply.

Any oracle that meets these requirements is called a reliable oracle.
Example 2.1 demonstrates these concepts.

Example 2.1
Consider the program P:

p(X)*-w(X, Y), q(Y).

Logical Diagnosis of EDF.. Programs 289

w(i, 2).
q(2).

Assume the generated interpretation GI to be a two layer structure and be
represented as:

Layer 1:

Layer 2:

{(0; q(2)), (0; w(1, 2), (0; w(5, 17)), (0; w(5, 20))}

{(0; p(1)), (1; q(17)), (2; p(5)), (3; q(20))}.

Each element of I is of the form (stage-number; fact). Furthermore, assume that
each fact in layer 2 is edge-connected to all of the facts in stages below its own
or in layer 1.

The response to the query ?p(X) is p(l) . The user expects to receive in
addition the answer p(5) and thus submits P and missing fact p(5) to the
debugger. Note that the stage number of the missing fact is 2. The debugger
responds by a request to satisfy the rule: p (5) ~ - w (5 , Y), q(Y). The user
response in form of: p(5) ~ w(5, 17), q(17) would be reliable, since only facts
from stages < 2 are used. The user response: p(5) *-- w(5, 20), q(20), would be
unreliable since q(20) from stage 3 (> 2) is used in the justification. []

A problematic fact is either a missing fact s ~ I -- M (P) , or a wrong
fact s ~ M (P) -- I, together with an indication as to which is the case.

Definition Z5 (Debugger Input)
The input to a debugger consists of:

A program P.
A problematic fact.
A reliable oracle. []

The debugger responds either by not generating output (it loops forever), or by
an atom identified as a basic missing fact, or by identifying a clause as an
incorrect clause.

Definition Z6 (Sound Debugger)
A debugger is sound if, for all debugger inputs,

A clause returned and identified as wrong is indeed wrong, or,
An atom returned and identified as missing is indeed a basic missing
atom. []

Definition 2.7 (Total Debugger)
A debugger is total if it is sound, and for all debugger inputs it returns an
answer (i.e. does not loop forever). []

290 O. Shmueli, S. Tsur

w Implementation of Diagnostic Systems

3.1 Diagnosis of Compiled Programs
The debuggers of Ref. 11) are of the meta-interpreter type. The computa-

tion of the debugger tracks the computat ion of the program to be diagnosed at
the level of the procedure call. This solution is adequate if the intuitive
understanding of the programmer w.r.t, h is /her program is in terms of procedure
calls; as is indeed the case in Prolog. When we come to s163 however, we cannot
rely anymore on this simple model of execution. While the semantics of the
language are described in a bottom-up, fixpoint model of computat ion, 8) the
actual execution of a program is a complex sequence of low-level procedure
calls. This sequence is the result of the compilat ion of the program and is
optimized to take advantage of whatever information the user supplied. In
particular, different query forms in the queries may result in different execution
strategies. Consequently, a simple trace of these procedure calls is of little use to
the programmer in understanding the behavior of his/her program. We consid-
ered several options and chose the following

Indentify the origin of a fault in the real program by a top-down,
query/subquery approach. The debugger, which itself is im-
plemented in another language e.g., Prolog, is a shell program
between the programmer and his /her s163 program: it poses
queries and uses the results to drive the interaction with the user.
In this process, the user is expected to act as a reliable oracle.

In the following section we present a basic version of this system and
provide a p roof for its totality. The basic scheme can be applied to s163
programs without set-terms, grouping terms, updates or the choice construct.

3.2 The Basic Debugger
The basic debugger presented in this section closely resembles that of Ref.

11). Let P be the program to be debugged. We make the following, fairly strong,
important assumption:

(A1) Only queries q such that (P, q) is in C are posed through-
out the debugging process. This implies that all such queries will
be correctly answered by the s163 run-time system within finite
time.

The basic debugger and its variations are expressed in a Prolog* like
language plus additional, ad-hoc constructs that serve to query thes163 program
to be debugged. We are only interested in the first answer returned by the

* We could have used any other language for the purpose as well. The use of Prolog is merely
a question of convenience.

Logical Diagnosis of s Programs 291

debugger. The addit ional constructs that we use to obtain access to the s163
source program are the predicate clause(A, B) where A is instantiated to a
clause-head and B to its body, the body is either a single literal (true is used for
representing an empty body) or of the form (B 1, B2) where B2 is a body. The
debugger can execute an s163 query by executeLDL(q) where q is a single literal
query. A crucial assumption is that each call of executeLDL(A) terminates
correctly: either it fails, i.e. it correctly returns no answers, or it succeeds in
which case the Prolog backtracking mechanism will eventually consider all, and
only finitely many correct answers for A.

Unlike Prolog, s163 does not employ negation by failure. The answer to
executeLDL(q) is always a set of general facts, which are ground instances of q,
this is so regardless of whether q is a positive or a negative literal. That set may
of course be empty, if this is the case then the Prolog call to executeLDL(q)
fails.

It turns out that for the basic debugger of this section we can weaken the
above assumption (A1). For the basic debugger the following assumption,
concerning the program to be debugged, suffices:

(A2) All of the ground single literal queries q, that can be posed
to the program P are such that (P, q) is in C. Again, this implies
that all such queries will be correctly answered by the s
run-time system within finite time.

In general, it is unclear whether the fact that the program is safe w.r.t, the
original query form and the assumption (A2) above imply that all the queries,
invoked by some debugger's interactions, are safe too. However, in the basic
debugger of this section, executeLDL is called only with (single) ground literals.
In this case, due to (A2), all of the interactions are safe.

The program in Fig. 2 implements the debugging process. For typographi-
cal reasons we use not(q) instead of ~ q. The meaning of the statement:

is:

Q:- A, ~ R then B eke C, D.

Q : - A , P , D .
P : - R , B .
P:- ~ R , C .

The debugger receives from the user (the oracle) a fact A in M(P) -- I or
a fact A in I -- M(P) , together with its proper classification. Initially, the search
is directed to wrong(A, R) or to miss(A, R, A). In the above calls, R will contain
the debugging conclusion. The third argument to miss serves as a context, i.e.
the ground instance of the head of the clause for which the user is asked to
supply ground instances for the body literals which are true in I , subject to
causality constraints (i.e. justification edges from previously generated general

292 O. Shmueli, S. Ysur

facts). The context is needed because the n body literals are treated separately
(see below).

In analyzing body non-satisfaction, n nested loops, for the n body
literals, are handled by the two clauses of missl. The first handles the case of a
body composed of more than one literal and the second handles the case of a
single literal body or the rightmost body literal (the innermost loop). Basically,
we are doing a nested-loop-join of relations such that Ri contains all possible
valid ground instances for body literal li in I, 1 <_ i <_ n. While doing this join,
each candidate added to form a result fact, is checked using/;79s Another point
worth mentioning is that the oracle's answers are guaranteed to form descending
chains in the generated interpretation. This is essential for arguing termination.
Example 3.1 shows a complete debugging session.

Example 3.1
Consider the program P:

q(X, Y)*-r(X, Y).
q(X, Z)~--q(X, V), r(Y, Z).
r(I, 2).
r(3, 4).

The user poses the query ?q(1, 4) and receives the response false. Since
the user expects to receive true, he submits q(1, 4) missing to the debugger. The
interpretation GI that the user has in mind has two layers. We assume that each
fact is edge connected to all facts in stages or layer lower than its own. GI is
represented as follows:
First layer:

{(1; r(2, 3)), (2; r(3, 4)), (3; r(1, 2))}.

Second layer:

{(0; q(1, 2)), (1; q(3, 4)), (2; q(2, 3)), (3; q(1, 3)), (4; q(l , 4)),
(5; q(2, 4))}.

The chronology of events, between the user, the debugger, and the s
system is described in Fig. 3. The debugger will return the conclusion
noClauseMateh(r(2, 3)) indicating that r(2, 3) is a mbf. Note that the user
responds to the debugger promptings in accordance with the interpretation GI.
To prompts pertaining to facts e.g., "r(1, 4) ? " the user response is "no" since
r(1, 4) ~ I. To prompts pertaining to non-ground atoms e.g., "q(1, Y) ? " the
user response is with a fact from a lower stage in GI. The user response to
q(1, Y) in the context of the missing q(l , 4) is q(1, 3) which is at a lower stage
in GI. []

We assume that there are no system, i.e. built-in, predicates. Adding such
predicates presents little difficulty. Basically validground asks s instead of the

Logical Diagnosis of/;D/; Programs

/ * invariant for miss is that query is valid but fails in LDL * /
miss(not(Q), R, Context):- wrong(Q, R).
miss(A, R, Context):-

if clause(A, B) fails
then R - noClauseMatch(A) else fail.

miss(A, R, Context):- if (clause(A, B), miss l (B, R I, A)) succeeds
then R = R I
else R =atom(A). / * a mbf found * /

miss l((A, B), R, Context):- validground(A, Context),
if executeLDL(A) succeeds
then (if missl(B, RI, Context)) succeeds

then R = RI else fail)
else miss(A, R, A).

miss l(A, R, Context):- validground(A, Context),
/ * the if check below is redundant * /
if executeLDL(A) fails then miss(A, R, A)

else fail.

/ * invariant for wrong is that query is invalid but succeeds * /
wrong(A, R):- executeLDLplusTree(A, T),

navigateDown(T, R).

executeLDLplusTree(A, T):- perform ExecuteLDL(A), returning one
instance A' at a time via backtracking.
Let T be the (partial) proof-tree for A'.

navigateDown(T, R):- T is a (partial) proof-tree.
case I: T is a leaf
if T - (not(AI)) then miss(AI, R~ AI);
if T - (A, AI) then R = wrongUnitClause(AI);
case 2: T = (clause, f, T I Tm)
if all children of T are valid in I
then R = wrongClause(clause)
else let Ti be T's first child which is

not valid in I , navigateDown(Ti, R)

validground(A, Context):- A reliable oracle: returns a valid
general fact for literal A with
generation prior to Context, and
which is edge-connected to Context.

Fig. 2 Basic Debugger.

293

user for valid ground instances. Because of the invariant for miss that query is
valid but fails by executeLDL, there is never a possibility that missl will be
called with A = true. An idiot-proof debugger can trap for this condition.

The notation for (partial) proof-trees T is as follows. If the tree is a leaf
containing a negated fact -~f then T = (not (f)) . If the tree is a leaf containing

a fact f for unit clause A, then T = (A, f) . Otherwise T is of the form (clause,
f , 7"1 Tm) where the first entry is the labeling clause for T's root, the second
entry is the fact instance of the clause head contained in the root, and Ti, 1 _<

i -< m, are the subtrees whose roots are the children of the root of T. Also, true
leaves are pruned from proof-trees.

Theorem 3.1 below is similar in structure to Theorem 2.1. The difference
is that we are to prove correct a particular algorithm that implements the ideas

of Theorem 2.1. This implies that we must take a careful look at the inner

294 O. Shmueli , S. Tsur

workings of the basic debugging algorithm and see how the assumptions we
made guarantee totality, miss and wrong in Theorem 3.1 pertain to the miss and
wrong clauses of the basic debugger in Fig. 2. The basic debugger supplies the
following information. A wrong clause is classified as a wrongUnitClause or a
wrongClause. A m b f is classified as either a noClauseMatch fact or an atom, the
latter means there are matching clauses but the fact returned is a mbf.

Theorem 3.1
Given f ~ I - M (P) as input to miss or given f ~ M (P) -- I as input to
wrong, either a missing basic fact or an incorrect clause is returned.

Proof
See Appendix 1. []

3 . 3 Modif icat ions to the Basic Debugger
As observed by Refs. 9) and 11), the basic debugging scheme can be

improved by, (1) Utilizing the user-knowledge of those rules that were never
meant to participate in the product ion of the missing fact and, (2) Reducing the
number of questions to the oracle. The basic debugger does not take advantage
of user's knowledge of which clauses are the relevant ones, i.e., they could be the
potential source of the problem, and which clauses are not, i.e., they were never
meant to participate in the production of the missing fact. Next, we try to take
advantage of this knowledge. The clause:

miss(A, R, Context):- if (clause(A, B), missl(B, RI, A)) succeeds
then R = R I
else R = atom(A).

becomes now:

U s e r (O r a c l e)

q(l , 4) miss ing

n o !

yes, q (l , 3)!

q (l , 3) miss ing

no !

yes, q(I , 2)!

yes !

r(2, 3) mi s s ing !

D e b u g g e r C o n t e x t El9s

q(l , 4)
r(1, 4) ? q(1, 4) --

q(1, Y) ? q(1, 4) --

- - ? q (1 , 3) , n o !

- - q (1 , 3) - -

r (1 , 3)? q(1, 3) --

q(1, Y) ? q(l , 3)

-- -- ?q(l , 2), yes !
r(2, 3)? q(1, 3) --

- - ? r (2 , 3) , n o !

- - r (2 , 3) - -

n o C l a u s e M a t c h (r (2 , 3)) --

Fig. 3 User -Debugger Interaction.

Logical Diagnosis of s163 Programs 295

miss(A, R, Context):- if (askclause(A, B, Context), missl(B, RI, A))
succeeds then R -- R I

else R -- atom(A).

Predicate askclause(A, B, Context) is true if A : - B is a clause instance which
is satisfied in I so that the satisfying instance respects causality viz. Context and
viz. the generation numbers of the head and the body literals. This is basically
an oracle call to be answered by the user; giving an incorrect yes answer can not
hurt, giving a correct no answer can limit the amount of questions asked by the
debugger, giving an incorrect no answer may result in failure to find an answer
(i.e. identifying a bug).

Further improvements can be introduced by changing the missl clause for
conjunction so that validground is "pushed" inside. This change has the
potential of reducing the number of oracle questions. The clause becomes:

miss l ((A, B), R, Context):- if (executeLDL(A), miss l (B, R I, Context))
succeeds then R -- R I

else (validground(A, Context),
if executeLDL(A) fails

then miss(A, R, A)
else fail).

Observe that it is now possible that executeLDL(A) be called with ,4 :
q. Clearly, if A is not ground then there may be infinitely many answers to the

invocation. To satisfy assumption AI , either we exclude programs in which the
above scenario may happen or we use the new missl clause above only when A
is positive, and otherwise use the older version of missl. The same choices apply
in the comprehensive debugger and its extensions (see Section 5).

It is shown that this debugger is total as well.

Theorem 3.2
For the debugger with the improvements of this section, given f ~ I - M (P)

as input to miss or given f ~ M (P) -- I as input to wrong, either a mbf or an
incorrect clause is returned.

Proof
See Appendix 1. []

w A Debugging Scheme for / :DE Updates
The basic debugging scheme, discussed in the previous section, can be

applied to r.~Ds programs that do not include any set, or grouping constructs.
Nor can they include any update rules or procedural extensions. In this paper we
only discuss in some detail the extensions required for updates; the extensions
required for handling sets, for the procedural extensions i.e., i f - t h e n - e l s e ,

forever and the choice construct will not be detailed.
For a detailed description of updates in s163 the reader may consult Ref.

296 O. Shmueli, S. Tsur

8). Briefly, updates apply only to base relations. There are two kinds o f updates:

for adding facts, an EDB atom prefixed with ' + ' , and for deleting facts, an EDB
atom prefixed with ' - - ' . A n updat ing literal is called an updater. Due to E~DE's
restrictions, any legal s163 program con ta in ing updates can be t ransformed into

the fo l lowing canonica l form:

h ~ Lo, Uo Ln-,, U,,-1, L,,.
p l ~-- bl .

pm ,-- bm.

Above, each L~, i = 1 n, is a sequence o f literals whose predicates are defined

by rules within pi *-- bi, i = 1 m, Us, j = 1 n - 1, is an updater, and no
rule references in its b o d y the predicate in h.

So, wi thou t loss o f generality, we consider a p rogram conta in ing a single
updat ing rule where the head predicate o f this rule does not appear in any clause

body. The semantics o f the constructs in this section is based on the not ion o f
a state. The state o f the program contains all o f the facts o f the p rogram at some
point in time. As a result o f the execution o f an update the state may change to
a new state.

Lo. Uo = ~ - ~ LI"U1 ... L. r U. 1

forwardo forward~ forward,

i 1 2

Fig. 4 State Transitions in the Presence of Updates.

Suppose we have a terminat ing program. Figure 4 depicts the execut ion--

a sequence o f states So, $1 Sn. Each state-transition (&, Si+l), i = 0 n --
l, is associated with a part icular updater U~, i.e. + p ; or - p ; where pi is an

atom, i = 0, ..., n -- 1. For debugging purposes this sequence o f states must be
kept as well as the part icular updater appl ied to each state. Each literal in the
execution is interpreted relative to a current s t a t e - t h e one generated as a result

o f the execution o f the most recent updater in the execmion path. Wi th each Si
there is a relat ion forwardi of a l lowed combina t ions o f b indings that were
applicable in all o f the states S~, j < i.

Intuit ively, forwardi can be t hough t o f as the relat ion for the jo in o f the
relations cor responding to the body literals upto the i-th updater, projected onto
columns each o f which corresponds to a variable appear ing in these literals or

the head. forwardo contains the b indings suppl ied from the rule head, if any. The

Logical Diagnosis of s163 Programs 297

sequence of literals, between two consecutive updaters Us and Us+h is denoted
as Li. L0 precedes the first updater (may be empty), and Li which follows the i-th
updater, for i >0 , may also be empty.

The exact actual implementat ion of recording the f o rwards relations and
the Ss states is left unspecified; one way is to record changes from the previous
Ss or f o rward i . The user's mental picture is assumed to be a sequence of
generated interpretations. Given some recording mechanism, the debugger
presents the states, one at a time in order, to the user. With each such presenta-
tion, the user is asked to certify the state as correct, i.e. agreeing with the
corresponding generated interpretation. The certification may be done by the
user by examining the facts o f f o r w a r d ~ and Ss directly, by asking queries against
S~ or f o rward i , or by simply assuming they are correct. Let Sw be the first state
that is not certified as correct. The reasons for non-certification which we

analyze are:

There is wrong fact p(t~ tn) in Sw; there are three cases to consider:

(1) Sw was neither created by an updater +p(T1 Tn) nor by an
updater -p(7"1 Tn). The p-content of Sw is the same as that of
S~ 1. Then, the certification is incorrect, i.e., S~_~ should not have
been certified as correct.

(2) S~ was created by an updater +p(Ta Tn). Intuitively, p(t~ &)

should not have been added, however, it was added.
Let P ' be P together with a new clause

a ~ - - fo rward~_h L ~ - h 7"1 = tl T~ = &

where a is a new predicate symbol. Perform w r o n g (a) on P ' with
the relations for E D B predicate symbols being S~ 1. This may
identify the reason why p(t~ t~) was added. I f the reason is not
found then, again, S~_~ should not have been certified as correct.

(3) Sw was created by an updater --p(T1 T~). Intuitively, p(f i &)

should have been deleted, however, it was not deleted.
Let P ' be P together with a new clause

a ~- - forward~ 1, L~ 1, Ta = tl, ..., T , = t~

where a is a new predicate symbol. Perform miss ing (a) on P ' with
the relations for E D B predicate symbols being Sw_~. This may
identify the reason why p(tl &) was not deleted. I f the reason is
not found then, again, S~-1 should not have been certified as

correct.

There is a missing ground atom p(t l &) in S~. Again, there are three
cases similar to the ones analyzed above.

We expect the system to inform the user about the column names (i.e.

298 O. Shmueli, S. Tsur

variables) of table forwardw-1.

w A C o m p r e h e n s i v e D e b u g g e r
The debuggers, that we have discussed so far, suffer from some

deficiencies. First, if executeLDL(A) is used, instead of validground, to guide
the search then a call may generate an incorrect result, i.e. in M(P) - I. Based
on this result miss(B, R1, Context) is used and it may discover a bug. This bug
may look confusing as it comes from an unexpected source. The sequence of
questions leading to this bug may also appear strange. It seems that wrong
should be invoked, if possible, on this incorrect ExecuteLDL(A) answer. This
idea is used in the N.3 debugger by Naish. 9) However, it seems bothersome to ask
a question for each fact. The alternative is to ask a question for each fact-set
containing all ExeeuteLDL(A) answers.

Second, the search is not deterministic. Depending on (accidental) scan-
ning order, the bug discovered may be different. If all answers to ExecuteLDL(A)
are generated then it is possible to ask the user (a) are all answers correct, and
(b) are all Correct answers present. Then, we can decide which direction takes
precedence when multiple bugs are present, e.g. if the answer to (a) is no and to
(b) is no, we can decide that we always activate wrong on an incorrect answer.

/ * invariant for miss is that query is valid but fails in LDL * /
miss(not(Q), R, Context):- wrong(Q, R).
miss(A, R, Context):-

if clause(A, B) fails
then R = noClauseMatch(A) else fail.

miss(A, R, Context):- if (clause(A, B), missl(B, RI, A)) succeeds
then R --- R I
else R = atom(A).

miss l((A, B), R, Context):- allAnswersExecuteLDL(A, S),
if examineSet(A, S, RI, Context) succeeds
then R = R I
else (member(A, S), miss l(B, R, Context)).
/ * (member(A, S) is used to obtain bindings as in executeLDL(A) * /

miss l(A, R, Context):- allAnswersExecuteLDL(A, S),
if examineSet(A, S, R I, Context) succeeds
then R -- RI else fail.

examineSet(A, S, R, Context):-
if there is Q in S such that Q is not valid in I
and (Q - not(Q I) or Q's layer is lower than that of Context)
then wrong(Q, R)
else

(if notExhaustive(A, S, Missingone, Context)
then miss(Missingone, R, A) else fail).

notExhaustive(A, S, Missingone, Context):-
Missingone is a valid instance of A whose
generation is prior to Context which is not in S.

allAnswersExecuteLDL(A, S):-
S is the set of all answers to executeLDL(A).

/ * invariant for wrong is that query is invalid but succeeds * /
/ * wrong, navigateDown: as before. * /

Fig. 5 Comprehensive Debugger.

Logical Diagnosis of s163 Programs 299

These ideas led to the comprehensive debugger shown in Fig. 5.

Theorem 5.1
For the comprehensive debugger, given f ~ I -- M (P) as input to miss or given
f ~ M (P) - I as input to wrong, either a mbf or an incorrect clause is
returned.

Proof
See Appendix 1. []

w Conclusion
We have addressed the problem of debugging declarative programs. A

major contr ibution of this paper is in modeling the user's "mental picture" viz.
acceptable structure and generated interpretation. Some formalization is needed
in order to guarantee bug discovery by an algorithm which interacts with the
user. It is an open question whether all the conditions specified for an acceptable
structure are needed. The same question applies to the definition of a generated
interpretation. Another issue is whether these concepts indeed capture the
essence of "mental pictures".

We have presented a basic debugger and proved that under certain
assumptions it is total. Extensions for handling updates and improving user-
debugger interactions, as well as a more sophisticated debugger, were also
presented.

"It is argued that declarative error diagnosers will be indispensable
components of advanced logic programming systems. ''~) Our formalization
differs from that o f Ref. 6) in that a different language is addressed with different
semantics (especially w.r.t negation) and hence, we have a different notion of
correctness. Other than that, we fully agree with the above statement.

A ckno wledgemen ts
We'd like to thank the referees for their useful comments and N. Francez

for his many suggestions.

R e f e r e n c e s
1) Beeri, C., Naqvi, S., Shmueli, O. and Tsur, S., "Set Constructors in a Logic Database

Language," Journal of Logic Programming, 10, 3-4, pp. 181-232, April/May 1991.
2) Chimenti, D. and Gamboa, R., "The SALAD Cookbook; A User/Programmers'

Guide," MCC Technical Report, ACT-ST-346-89.
3) Dershowitz, N. and Lee, Y., "Deductive Debugging," in Proceedings Fourth IEEE

Symposium on Logic Programming, San Francisco, California, pp. 298-306, Aug. 1987.
4) Drabent, W., Nadjim-Tehrani, S. and Maluszynski, J., "Algorithmic Debugging with

Assertions," in Proceedings Workshop on Meta-Programming in Logic Programming,
University of Bristol, June 1988.

O. Shmueli, S. Tsur 300

5) Ferrand, G., "Error Diagnosis in Logic Programming: An Adaptation of E. Y.
Shapiro's Method," Reporte de Recherche, 375, INRIA, France, 1985.

6) Lloyd, J. W., "Declarative Error Diagnosis," New Generation Computing, 5, pp.
133-154, 1987.

7) Lloyd, J. W., Foundations of Logic Programming (2nd Edition), Springer-Verlag,
1987.

8) Naqvi, S. and Tsur, S., A Logical Language for Data and Knowledge Bases, W. H.
Freeman, 1989.

9) Naish, L., "Declarative Error Diagnosis of Missing Facts," Technical Report, 88/9,
Department of Computer Science, University of Melbourne.

10) Pereira, L. M., "Rational Debugging in Logic Programming," in Proceedings Third
International Conference on Logic Programming, London, England, Springer-Verlag,
LNCS 225, pp. 203-210, July 1986.

11) Shapiro, E. Y., Algorithmic Program Debugging, MIT Press, Cambridge, Massa-
chusettes, 1983.

12) Shmueli, O. and Tsur, S., "Logical Diagnosis of LDL Programs," in Proceedings
Seventh International Conference on Logic Programming, Jerusalem, Israel, pp.
112-129, June 1990.

13) Sterling, L. and Shapiro, E. Y., The Art of Prolog, MIT Press, Cambridge, Massa-
chusettes, 1986.

Appendix 1
We first define generation numbers. Consider a program P and a general fact f .

Let L be the layer in P in which the predicate of f is defined. Let m be the stage
number o f f within L i f f E I and otherwise m = 0. The generation number o f f is
the tuple (L, m); define (L, m) < (L1, m l) if either L < LI or L = L1 and m < ml .

Proof of Theorem 3.1
The proof is divided into two parts: (a) showing that the debugger terminates,

and (b) showing that it returns an answer and that this answer is sound.
We show that each invocation of the debugger terminates. First, note that each

call to ExecuteLDL terminates, by assumption. There are two basic loops which may
invoke each other recursively. One is the loop involving miss and miss 1 and the other
is the NavigateDown loop. Calling from one loop to another loop decreases the layer
number and hence can only be done a finite number of times. Thus, it suffices to show
that each loop by itself terminates, i.e. with calls to the other loop considered as a single
statement.

First, we argue that the NavigateDown loop terminates. As proof-trees are finite,
each call to navigateDown either terminates or reaches a leaf in finitely many steps.
Thus, each invocation of navigateDown terminates.

The characteristics of the loop involving miss and miss l are as follows. One
possible behavior is that once procedure miss calls miss 1, miss 1 recurses on itself a
number of times without calling miss, including backtracking. We now show that this
possible behavior terminates, validground supplies finitely many answers whose genera-
tion numbers are less than the context's generation number. Each executeLDL call,
which is issued by the debugger, terminates (by assumption A2). Thus, each invocation
of miss 1, under this behavior, terminates.

Procedure miss l can also call miss, recursively. Suppose miss 1 is called from

Logical Diagnosis of E1)s Programs 301

miss operating on f . The answers to validground in miss 1 are of generation numbers
smaller than that of f , since a reliable oracle is assumed. This is true also for the
recursive invocations of miss 1, if any. Thus, the generation number in the recursive call
from missl to miss is smaller than that o f f . As there are no infinite decreasing chains
in a generated interpretation, this global behavior of miss calling miss 1 which calls
miss etc., can be repeated only finitely many times. Thus the loop involving miss and
miss 1 terminates.

We conclude that the debugger terminates. We now prove that the debugger
always returns an answer and that the answer is sound. The proof is by induction on
generation numbers. The induction hypothesis is the following, where f is a general
fact. Given f valid in I but not valid in M(P) as input to miss or given f valid in
M(P) but not valid in I as input to wrong, either a missing basic fact or an incorrect
clause is returned. (The hypothesis is stronger than what is strictly needed to prove the
theorem.)

Basis: (L, m) ~ (1, 0)
If miss(f, R, f) is called with f positive, then since f is a fact for an EDB predicate,
no clause head can unify with f and noClauseMatch(f) is correctly returned identify-
ing f as a mbf. If miss(f , R, f) is called with f = ~ q, then q ~ M(P) although q

I; wrong(q, R) is invoked with q a positive EDB fact. Procedure wrong invokes
navigateDown with T consisting of a single leaf with a positive literal, and
wrongUnitClause(q) correctly identifies an incorrect unit clause. The basis case of
wrong called with a positive fact is thus treated as well. Now suppose wrong is called
with -Tq; i.e. q ~ M(P) and q E I; wrong calls navigateDown which invokes miss(q,
R, q). As argued above this call correctly identifies a mbf.

Induction: (L, m) > (1, 0)
Case 1: f is valid in M(P) but f is not valid in I. Let T be a partial proof-tree for
f , recall that such a tree has leaves which are either positive facts, which are instances
of unit clauses, or of the form ~ q. Since the tree is of finite height, navigateDown
eventually stops, following some number of recursive calls, at an internal node or a leaf
containing q. If it stops at an internal node, an incorrect clause has been identified. So,
suppose it stops at a leaf.

If q is positive an incorrect unit clause is identified. If q = ~ p then p ~ M(P)
and p ~ I; miss(p, R, p) is called with a smaller (L, m) as p is defined in a layer below
that of q, by induction hypothesis a mbf or an incorrect clause is returned.
Case 2: f is valid in I but f is not valid in M(P). Suppose f = -~ q. Then, wrong(q,
R) is called with q ~ M(P) -- I. This was handled in Case 1 above. So, suppose f is
positive. If noClauseMatch(f) is returned, clearly f is a mbf. We now treat the" case
where the third clause of miss was invoked at the top level call. Either an answer is
returned by the then-branch or one is returned via the else-branch, at any case an
answer must be returned because the invocation of the third clause of miss terminates.
It remains to show that if an answer is returned by the third clause of miss then indeed
a mbf or an incorrect clause instance is returned.

So, the answer came either from (i) the then-branch or (ii) the else-branch.

(i) An answer from the then-branch was supplied recursively by miss 1. However,
miss 1 manufactures only answers that are obtained from miss. Furthermore, a
call to miss must have used a fact, say q, generated prior to f such that g is valid

302 O. Shmueli, S. Tsur

in I but not in M(P) ; this is ensured explicitly by the code. By induction, this
answer is either a mbf or an incorrect clause.

(ii) An answer was supplied from the else-branch; the answer is atom(f). For the
sake of deriving a contradiction assume an incorrect answer was returned, i.e. f
is not a mbf. So, there is a clause instance A': -B~ B;~ for some clause C:
A: --B~ Bn in P such that A' = f and for i -- 1 n, B~ is valid in I and
in which B~, 1 <_ i ~ n, are of generations prior to that o f f . Clearly, C cannot
be a unit clause, this would imply f ~ M(P).

Consider now the if condition in the third clause of miss. Clearly, miss 1 will be
invoked as C's head unifies with f , If n -- 1 the second clause of miss 1 is invoked with
a literal g. Let g' be a result to validground(g). If executeLDL(g') succeeeds then f
M(P), a contradiciton. So, executeLDL(g') fails. This results in miss being called on
g' which is generated prior to f and such that g' is valid in I but is not valid in M(P).
By induction, an answer is returned; this would imply an answer which is supplied from
the then-branch of the third clause of miss, a contradiction.

So, suppose n > 1, thus the first clause of miss 1 is invoked. Suppose it is called
with ((A, B), R, Context) and let A' be returned by validground(A). The else-branch
in the first clause of miss 1 is not taken, if it is taken then, by induction, an answer
would be returned as A' is valid in I but not in M(P) and A' is of a generation prior
to that of f . This would imply an answer which is supplied from the then-branch of
the third clause of miss, a contradiction, Thus, the miss 1 internal loop (first miss 1
clause) basically performs, with backtracking, the following query:

validground(Bl), executeLDL(B~) validground(Bn-1),
executeLDL(Bn_l).

However, validground(B1) will eventually supply the answer B~. ExecuteLDL will
succeed on B~, then validground(B~) will eventually be supplied and again executeLDL
will succeed on B~. This will be repeated for B3 through Bn-~ since if at any point j
executeLDL(B~) fails then the else-branch will be taken in the first clause of missl.
Finally, for Bn, the second clause of miss 1 is invoked with Bn. This case was handled
above (the case n = 1 and q = B~) and resulted in a contradiction. []

Proof of Theorem 3.2
The proof is similar to that of Theorem 3.1 with the following differences.
Termination of the loop involving miss and miss I hinges on the observation

that, by assumption A l, executeLDL(A) can return only finitely many answers whether
it is preceded with validground(A) or not.

Induction, Case 2, part (ii)
The first two paragraphs here are the same as in the proof of Theorem 3.1. The rest of
the proof is as follows.

So, suppose n > l, thus the first clause of miss 1 is invoked. Suppose it is called
with ((A, B), R, Context). The then-branch in the first clause of missl is not taken, if
it is taken then, this would imply an answer which is supplied from the then-branch of
the third clause of miss, a contradiction. Thus, the miss 1 internal loop (first miss l
clause) basically performs, with backtracking, the following query:
For 1 ~ i < n:

Logical Diagnosis of s163 Programs 303

ci(Bi, R, Context): --executeLDL(Bi), c~+l(B~+a, R, Context)
ci(B~, R, Context): -~(executeLDL(Bi), ci+a(B~+~, R, Context)),

validground(Bi, Context), -~ executeLDL(B~),
miss(Bi, R, Bi)

For i -- n the second clause of miss 1 does:

cn(Bn, R, Context): --validground(Bn, Context), executeLDL(B~), fail
c~(B~, R, Context): --validground(Bn, Context), ~ executeLDL(B~),

miss(B~, R, Bn)
Since no answer was returned, the second clause of ca was tried. During the

execution validground(B;, Context) was returned in the second clause of cl. Since miss
was not called, executeLDL(B~) succeeded. Thus the value B~ was also returned by
executeLDL(Bb Context) in the first clause of ca. By the same reasoning,
validground(B;, Context) was returned in executing the first clause of c~, 1 < i < n.
Now, it cannot be that this holds for 1 <_ i < n, because then either the second clause
for c~ does not call miss, which means that executeLDL(B~) succeeds and hence f is
in M(P) , or the second clause for c, would execute miss and an answer will be
returned, by induction, to the then-part of the third clause of miss. In both alternatives
we have a contradiction. []

Proof of Theorem 5.1
The proof is similar to that of Theorems 3.1 and 3.2. Termination follows from

previous arguments and the following observations:

The call to wrong ensures either decreasing context or decreasing layer number.
The call to notExhaustive returns a lower context for Missingone.
The line (member(A, S), missl(B, R, A)) is doing essentially what
(executeLDL(A), missl(B, R1, A)) did before. One difference is that
member(A, S) may return a fact whose generation is not prior to Context.
However, we assumed that S is finite and hence termination is not affected.

The correctness argument is as in Theorem 3.2. The possibility that member(A,
S) may return a fact whose generation is not prior to Context presents no major
problem as the proof of Theorems 3.1 and 3.2 depended on (i) that finitely many
solutions to A be considered, and (ii) that all valid facts are scanned through. Fact (ii)
still holds as executing (member(A, S), miss I(B, R, Context)), implies that S contains
all valid ground atoms whose generation is prior to Context (with the edge connections
constraints). []

