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Abstract The debuggers of Ref. 11) and most of their derivatives are 
of the meta-interpreter type. The computation of the debugger tracks the 
computation of the program to be diagnosed at the level of procedure call. 
This is adequate if the intuitive understanding of the programmer is in terms 
of procedure calls; as is indeed the case in Prolog. 

I n s 1 6 3  however, while the semantics of the language are described in 
a bottom-up, fixpoint model of computation, s) the actual execution of a 
program is a complex sequence of low-level procedure calls determined (and 
optimized) by the compiler. Consequently, a trace of these procedure calls is 
of little use to the programmer. Further, one cannot "execute" an s163 
program as if it was a Prolog program; the program may simply not 
terminate in its Prolog reading and severals163 constructs have no obvious 
Prolog counterparts. 

We identify the origin of a fault in the s 1 6 3  program by a top-down, 
query/subquery approach. The basic debugger, implemented in Prolog, is a 
shell program between the programmer and the s 1 6 3  program: it poses 
queries and uses the results to drive the interaction with the user. It closely 
resembles the one presented in Ref. 11). The core of a more sophisticated 
debugger is presented as well. 

Several concepts are introduced in order to quantify debugging 
abilities. One is that of a generated interpretation, in which the structureless 
intended interpretation of Ref. 11) is augmented with causality. Another is 
the (idealized) concept of a reliable oracle. We show that given an incorrect 
program and a reliable oracle which uses a generated interpretation, a cause 

* Research partially supported by the Fund for Promotion of Research at the Technion. 
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for the fault will be found in finitely many steps. This result carries over to 
the more sophisticated debugger. 

Keywords: Logic Programming, Debugging, Diagnosis, Deductive Databases 

w Introduction 
The term diagnosis is used in the context of  programming to denote the 

process which is intended to explain the differences, if any, between the actual, 
observed behavior of  a program during execution and its intended behavior. The 
intended behavior  is either conveyed by a formal specification or, more often, it 
is left unspecified and manifests itself in the expectations of  the programmer with 
respect to the program. In either case, program diagnosis is impossible without 
imparting this knowledge of  the intended behavior to the diagnostic s y s t e m -  
either in advance or, alternatively, during the human/system interaction that 
governs the process. 

Tradit ionally,  programs are written using procedural languages such as 
Fortran or C. The behavior  (semantics) of  such programs is described in terms 
of  states, represented by the values of  the declared program variables and 
data-structures, and the computat ion-induced transitions among states. This 
model of  behavior  is an abstraction of  the real program behavior  and the 
programmer uses it as a guidance in the debugging of his/her  program. The 
tool-set at his /her  disposal supports this model and typically includes means to 
either observe selected states (traps, checkpoints) or the tracing and display of  
selected variables during the sequence of  state transitions.* The information, 
obtained by these tools, helps the programmer  in inferring the changes that must 
be made to the present version of  the program so as to modify its behavior to 
the intended behavior. 

Databases are usually accessed either by ad-hoc queries or using DML 
statements (e.g. SQL) embedded in a conventional  programming language (e.g. 
COBOL). So, for databases, debugging needs were met essentially by traditional 
techniques. Recently, there is a trend of  increasing DML capabilities with 
predominant ly declarative constructs (e.g. D A T A L O G , s 1 6 3  NAIL!  ). Declara- 
tive languages i.e., languages that enable problem-statement in terms of  what 
needs to be computed,  as opposed to how it should be computed, provide the 
user with the same level of  abstraction as the specifications, used to convey the 
intended behavior  in the procedural programming case. Consequently, the 
model of  computa t ion  that guides the programmer in the procedural case, is of  
no value in this context. In particular, there is no notion of  a state** and even 
though the declarative specification may be compiled into procedural  target 

* We assume that the class of programs here contains only sequential ones. We will not elaborate 
on the class of concurrent programs in which clearly the model of computation is more complex. 

** We will reintroduce this notion in the sequel when we discuss updates. 
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code, tracing the behavior  at that level is of  little value to the programmer. 
Clearly other means are needed. These are the topic of  this paper. We will 

confine ourselves to means which are of  use with logic programming languages 
and will demonstrate how they could be used within s163 The most interesting 
feature of  the diagnosis of  these languages is that the same logic, that is used by 
the programmer to specify the problem, can be used in its diagnosis. Thus, the 
debugging process is shifted thus from the intuitive at the procedural level, to the 
system-directed at the declarative level. We will demonstrate how the system 
utilizes the program to elicit addit ional  information from the programmer and 
eventually leads h im/her  to a correct program. 

The subject of  algorithmic (or logical) debugging originated with Ref. 
11). There have been many attempts at improving and extending Shapiro's work, 
a non-exclusive list is: 3,4,5,6,9,10) In this paper we concentrate on two aspects. The 

first contribution is in formalizing and structuring the user's mental picture so 
that guarantees can be given as to the convergence of  the debugging process. The 
second contr ibution is in treating the subject of  debugging a compiled language. 
The results reported here first appeared in Ref. 12). 

The paper is organized as follows. Section 2 formalizes concepts relevant 
to debugging s163 programs. Section 3 presents a basic debugger. Section 4 
treats debugging of  updating programs. Section 5 presents a more sophisticated 
debugger. We conclude in Section 6. 

w Debugging Declarative Languages 

2.1 Formalization 
We will  assume a basic f ami l i a r i ty  with the logic  p r o g r a m m i n g  

paradigm, 7) and mainly introduce some additional definitions. Specifically, we 
shall assume familiarity with the concepts of  term, atom, literal, expression, 
interpretation, Herbrand interpretation, clause, Horn clause(or rule), clause 
head, clause body, substitution, instance, unification. A fact is a ground atom, 
i.e. one containing no variables. An expression e is satisfiable in an interpreta- 
tion I if there exists a ground instance e'  of  e which is true w,r.t, the interpreta- 
tion. An expression is valid in an interpretation I if all ground instances of  the 
expression are true w.r.t. I ;  so, for a fact f and I an Herbrand interpretation, f 
is valid in I iff it is in I and ~ f  is valid in I iff it is not in I .  

The set of  predicate symbols is parti t ioned into EDB and IDB predicate 
symbols. The EDB symbols are those of  base relations and the IDB symbols are 
those of  derived relations. The idea is that the interpretation (or extension) of 
base relations is given explicitly as a set of  unit clauses which are part of  the 
program, while that of  derived relations are to be computed using (non-unit) 
program clauses. By convention, EDB predicate symbols may only appear in 
clause bodies or in unit clauses, no generality is lost by this requirement. 
Furthermore, all predicate symbols in unit clauses (i.e. bodyless Horn  clauses) 
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must be in EDB. We shall allow unit clauses with variables, which denote 
infinite EDB relations. 

We will assume a basic familiarity with the E~)E language; for an 
exposition of  the s language features the reader is referred to Ref. 8), and for 
the formal description of its semantics to Ref. 1). E~)E is based on Horn  clauses. 
Its repertoire includes predicate symbols, (free) function symbols, variables and 
constants. So far an EWE program is a definite program as defined in Ref. 7 ) -  
both in syntax and semantics. However, the language has addit ional constructs 
that set it apart  from the definite programs. First is the use of  (stratified) 
negation. Second, E~E's universe includes sets, and is therefore quite different 
than the tradit ional Herbrand universe; for this paper, however, we shall assume 
that the E:DEuniverse is identical to the Herbrand universe. Finally, there are 
constructs in s 1 6 3  that futher diverge from definite programs. Facilities are 
provided for grouping elements into sets. Facilities are also provided for 
updates, i.e. changing the extensions of  (base) predicates. 

An E~E program is a finite set of  clauses obeying the restrictions concern- 
ing IDB and EDB predicate symbols. An s query (or simply, query) is a 
conjunction of literals. A query form is a query representing a family of  queries. 
It only uses predicate symbols and the constants h and f. It specifies the predicate 
symbols of  literals of  the query and for each one it says whether the actual 
queries have this argument ground (b) or not (f). 

Let q be a single literal query. For  a set S of facts define the projection 
of  S on q, denoted rcq(S), to be that subset of  S of facts that are unifiable with 
q. Let P be an EWE program. The semantics of  s 1 6 3  defines the model of  P, 
M(P), which is obtained by repeated bot tom-up derivations using the rule-set. 
The answers computed by a program P for query q are defined by the s  
semantics as 7cq(M(P)). The answers are facts for the predicate symbol of  q. 

I f  negation is used in an EDs program then the program need be layered 
(or stratified). The layering scheme is a prescription for one of  the possibly 
many minimal models of  the program. Layering means part i t ioning the predi- 
cate symbols of  a progam P into disjoint sets, called layers, and a total order 
(from lowest to highest) is defined on the layers. I f  predicate symbol p appears 
in a clause whose head predicate symbol is q, then q must be in a higher layer 
than p or in the same layer as p. Furthermore,  if the appearance of p is negated 
then q must be at a higher layer. M(P)  is built one layer at a time, from lowest 
to highest. In each layer, facts for the predicate symbols in this layer are 
produced from P by repeated bot tom-up "firing" of  clauses defining the layer's 
predicates, facts produced for lower layers are taken as if they were EDB facts. 
In this paper  we employ the following convention, the first layer of  a program 
includes all, and only, unit clauses whose head predicate symbol is in EDB. 

An E~)E compiler  is correct for a class C of (program, query) pairs if for 
all such pairs the run-time code computes, within finite time, exactly the set of  
answers that is prescribed by the semantics of  the language. In this paper, the 



Logical Diagnosis of s163 Programs 281 

class C of  interest contains those programs and queries for query forms that are 
certified by the compiler as safe, i.e. termination (and therefore finiteness of 

answer) has been certified by the s163  compiler. We assume that s163 compiler 
is correct for C. This implies that the above certification is correct. 

2 . 2  Overview of the Debugging Process 
In the classical reading, the truth value of a ground atom of a program 

P is determined by P's interpretation. This notion is insufficient however to 

capture the programmer's intuition with respect to the required outcome of  a 
computa t ion-- i t  lacks an element of  causafity that would capture the additional 
knowledge the programmer has, regarding the origin, or reason for the existence, 

of any particular fact in the expected outcome. The programmer reasons that a 

given fact is in the expected outcome either because it is a basic (i.e. should be 
an EDB) fact, or because it is derived, in a number of  steps, from one or more 
of the basic facts. A partial ordering of  facts in the interpretation is thus implied 

and is required to properly capture the programmer's intuition. 
An intended interpretation is the one the user has in mind for his/her 

program; it usually embodies the user's intuition. We will denote the intended 

interpretation by I and use it to define the two central notions relevant to the 
process of  diagnosis: those of  a wrong fact  i.e., a fact in M(P)  but not in I ,  and 

a missing fact i.e., a fact in I but not in M(P). Wrong facts and missing facts 
are the manifestation of errors that are observed by the programmer. Their 

causes stem from either a missing basic fact  or a wrong clause in the program 
P. We will define these concepts in the sequel. The diagnostic system or 
synonymously, the debugger, is a program that accepts as input (1) a program 

P and (2) a missing or a wrong fact. Upon input, the debugger, 

(1) Drives an interactive dialogue, by occasionally prompting the program- 
mer for information about the intended model of  the program. 

(2) Provides a conclusion in the form of the identification of either a missing 

basic fact or a wrong clause in the program. 

The diagnosis proceeds on a fact-by-fact basis.* For each instance of  a 

missing or wrong fact submitted, a conclusion is provided. Therefore, the 
correctness of  a program after diagnosis and the application of  the corrections 

is not absolute but is relative to the facts that were submitted for diagnosis. 
The event of  a wrong fact in the answer is diagnosed using a proof-tree. 

The user directs the diagnostic system "down" the proof-tree until an incorrect 

clause is discovered. The process is as follows. Suppose that a wrong fact was 
produced by a clause, whose body literals were satisfied. If  all the body literals 
were correctly satisfied, yet the conclusion should not have been derived, the 

clause is labeled as wrong. Otherwise, one of these body literals, say b, must have 

�9 Observe that a single "programming error" may result in both missing and wrong facts; it may 
be discovered by treating either. 
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been wrongly satisfied; otherwise, the conclusion would have been correct. Thus, 
the user must identify b and the process recurs on it. The responsibility of 

producing and maintaining these proof-trees is relegated to the s 1 6 3  compiler. 
Technically, this is not a difficult problem. 

The event of  a missing fact occurs because either there is no rule in the 

program such that its head unifies with the missing fact, or if such a clause exists, 

its body can not be satisfied in M(P), following the unification. In the latter 
case, there are two possibilities. If the clause instance is satisfied in the intended 

interpretation, subject to causality constraints, then there is a body literal which 
is satisfied in I but is not in M(P), such a literal b is identified and the reason 

for b being missing is searched for, recursively. In case all clause instances fail 
to be satisfied in I ,  subject to causality constraints, a cause has been identified. 

As mentioned, negation in E~Ds is handled using the idea of  layering 

which means that if ~ q (negative q) appears in the body of a rule with head 

predicate p then q is defined only in terms of  predicates that belong to layers 
lower than that of  p. Now, during the navigation down the proof-tree to 
diagnose a wrong fact, a negated predicate, say ~ q, may be visited. To claim 

that -~q is wrong is equivalent to claiming that q should have been produced 
in a lower layer i.e., it is treated as missing in a lower layer. Likewise, if ~ q is 

missing, the reason may be because q is erroneously derived in a lower layer and 
hence, it becomes a wrong fact in the layer of  q. Therefore, in diagnosing 

stratified s 1 6 3  programs there is an interplay between the procedures required to 
analyze wrong and missing facts. This presents no great difficulty. This interplay 

is well-known in similar dubugging contexts, see Ref. 6). 

2 . 3  The User's Menta l  Picture 
We introduced the notion of  an intended interpretation and noted that 

we use this notion as an embodiment of  the users' intuition with respect to the 

program. The exact reason as to why the user would consider a fact to belong 
to his/her intended interpretation falls within the realm of  the human psyche 

and does not follow from the definition, nor is it dependent on the program P. 
The purpose of this concept is, however, to provide a formal guarantee, that if 
the user interacts with the system in accordance with this definition, i.e., the user 

"plays by the rules", then convergence to the origin of  his reported problem, in 
the program P, can be guaranteed. In this section and the next we elaborate on 

various interpretations that can be used to formalize this reasoning process and 
settle on one version that we assume the user to follow when he/she debugs an 
s163 program. 

I f p  is a fact then ~ p  is a negative fact, we shall also refer to a fact as 

a positive fact; a general fact is a positive or a negative fact. The user thinks of 
a set of  general facts. Each of these general facts may be justified by the user in 
terms of other facts. We will use the notation p --~ q to denote that the user uses 

general fact p to justify general fact q. The relation --~ is called the justification 
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relation. 
This model of  reasoning would imply a directed graph ( V, E)  in which 

the nodes in V denote facts, positive or negative, and the edges in E denote 
justifications. So, there is an edge (p, q) in E from general fact p directed to 
general fact q iff p - *  q is in the justification relation. This could possibly 
include circular justifications. This framework is too general however for our 
purposes. Addi t ional  restrictions are assumed to allow effective debugging. The 
additional restrictions that we need are as follows: 

(1) The set of  general facts the user thinks of  is consistent, i.e. for no fact p 
in that set is ~ p  also in the set, and vice versa. 

(2) The justification relation is acyclic. This prevents circular reasoning. 
(3) Negative facts can only be used for a justification but cannot  be justified 

themselves-- they are given. In other words, an edge of  the type -~p ~ q 
is admissible but p ~ ~ q  or ~ p  ~ ~ q  is not. 

(4) In addit ion to restriction (2) we assume that facts are graded, or categor- 
ized, as more basic or less basic, and that there are no arcs from a less 
basic fact to a more basic fact. We impose a layering scheme on the set 
of  general facts. The scheme is such that the lower the layer the more 
basic are facts in the layer. The number of  layers is finite while the 
number  of  facts in each layer is potentially infinite. Furthermore, for all 
predicate symbols p, the facts for p must be of  the same layer. 

(5) Each fact is justified by a finite number  of  facts i.e., the in-degree to a 
node representing a fact is finite (it may also be zero, i.e. no incoming 

edges at all). 
(6) Each descending justification chain from a fact to one if its justifying 

facts, to one of its justifying facts etc., is finite. 

We will refer to a structure that meets the restrictions mentioned here as an 
acceptable structure. 

2 . 4  Generated Interpretations 
A generated interpretation is an acceptable structure which is constructed 

in a particular fashion, as detailed below. This "construction" is done in the 
user's mind and there may be no program which can manufacture it. So, a 
generated interpretation is another, more refined, abstraction as to what kind of 

structures users may have in mind. 
First consider a single layer generated interpretation for a set of  predicate 

symbols 6f  interest; intuitively, the predicate symbols of  a program P without 
negation (or a single layer in a program P). 

A generated interpretation is built  in stages. In each stage a set of  facts 
is added. At stage 0 a set So containing basic facts is created; this set may be 
infinite. A fact added at stage i is said to be /-generated. I f  s is /-generated and 
t is j-generated, i < j ,  then s is generated prior to t and t is generated following 
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s. The number of  stages may be finite or infinite. A fact may be added only once. 
Clearly, if s is /-generated then it is not j-generated, unless i = j .  

At each stage, finitely or infinitely many facts may be added. Finally, for 
all facts q for predicate symbols in the set of  interest which are not added in any 
stage, add ~ q  to stage 0. (When presenting generated interpretations, this 
addition is implicit and will not be shown.) 

There is an additional structure which is added to the interpretation, 
namely, a justification relation. Each fact f in a stage may be connected via 
justification edges to a finite number of  facts at lower stages (which justify f ) .  
By construction, a generated interpretation satisfies the six requirements for 
being an acceptable structure. (The set of  facts is consistent, an acyclic---, 
relation, no edge enters a negative fact, there is a single layer, the number of  
edges entering a fact is finite, the stages limit the length of  descending chains.) 

Now consider a multi-layer generated interpretation, intuitively, for a 
program P with negation. Such a generated interpretation is formed from a 
collection of  generated interpretations, one for each layer. With respect to edges, 
a fact in (some stage of) layer k may also be connected to finitely many facts 
whose predicate symbols are in layers lower than k. All facts in layers lower 
than layer k are considered of a prior generation with respect to the facts of  layer 
k. By construction, the result is an acceptable structure. 

Notationally, a generated interpretation is a 5-tuple GI = (k,  I ,  L, S, E)  
where k is the number of layers, I is the set of  positive facts, L is a function from 
I to {1 ..... k}, S is a function that assigns to each fact in I a stage number (a 
non-negative integer), and E is the set of  edges. When we talk about a generated 
interpretation as an interpretation we shall refer to its I component  which is a 
subset of the Herbrand base. While the user reasoning process that conceptually 
produces a generated interpretation resembles the process of  bottom-up repeated 
rule-applications, there is not necessarily a program underlying this process--the 
programmer's intuition may be wrong and a program for which I is a model 
may not even exist. 

For  programs that may use negation we make the following assumption: 
the layers in the program and those in the definition of  an acceptable structure 
coincide. This assumption means that the user has defined the layers in his 
program in accordance with the layering scheme in the generated interpretation. 
Also, recall our assumption about layered programs that the first layer (i.e. layer 
1) of  a program is composed exclusively of  EDB predicate symbols. 

Figure 1 graphically shows an instance of  a generated interpretation. The 
small horizontal lines denote stages within the layers, the circles on line seg- 
ments denote specific facts in the layers, and the arrows denote the causal 
connections. We maintain that most intended interpretations are generated ones; 
this is not a formal claim and hence can not be proved. 

Let GI be a generated interpretation. Let P be a layered program. 
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Fig. l A Generated Interpretation. 

Definit ion 2.1 (Missing Atom,  Missing Fact)  

An  a tom s is a missing atom (ma) w.r.t. GI in program P if 

It is satisfiable in I ,  i.e. there is an instance s '  ~ I o f  s. 
It is missing in M ( P ) ;  i.e. no instance o f  this a tom is in M(P). 

I f  s is g round  then s is a missing fact (mf) .  [] 

We now define the no t ion  o f  a missing basic fact (mbf)  w.r.t. GI that  

identifies a basic deficiency o f P  w. r . t . I .  Namely,  a fact f , f  ~ I -- M(P)  such 
that f could  not  be derived in P, where the derivation uses I as EDB facts and 
respects the causali ty manifested by generations, layering, and edges. 

Definit ion 2.2 (Missing Basic Atom,  Missing Basic Fact)  

An  a tom s is a missing basic atom (tuba) w.r.t. GI in p rogram P if  

It is a missing atom. 
There is no g round  instance o f  a rule in P,  such that  its head is an 
instance o f  s and its b o d y  is satisfied in I in such a way  that  the head 
instance is some generated fact in I ,  and each b o d y  literal instance is 

some general fact, o f  a lower stage or  a lower layer, which  is connected 

to s via an edge in E.  

If  s is g round  then s is a missing basic fact (mbf). [] 

Defini t ion 2.3 (Incorrect  Clause) 
A clause r in P is incorrect w.r.t. GI if it is not  satisfied in I (as a logic formula).  
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Definit ion 2.4 (Correct  Program, Incorrect  Program) 

A program P is correct w.r.t. GI if  M ( P )  = I ;  otherwise P is incorrect. [] 

Consider  a p rogram P consist ing o f  the clause a ~ - a ,  the intended 

generated interpretat ion GI has a single layer conta in ing  a single fact, a, and no 
justification edges. M ( P )  is apparent ly  empty. Then, P has a mbf, namely a. 
This is because a is in I -  M ( P )  and the (only) clause a ~ - a  cannot  be 

properly satisfied in I .  Indeed, the clause head, namely a, is in I ,  but  its body  

literal, again a, is not  connected to a via a justification edge. N o w  consider a 
program P '  consist ing o f  the clause b ~ - ,  the intended interpretat ion is empty 

and M ( P )  = {b}. Then,  P '  has an incorrect  (unit) clause, namely b ~-~, because 
it is not  satisfied in I due to b's absence. The above two cases illustrate simple 

instances generalized by the fo l lowing theorem. 

Theorem 2.1 
P is incorrect w.r.t. GI iff either P has an incorrect  clause or  a missing basic fact. 

Proof 
(,--) We consider  the two cases: 

Case (i): Let r be an incorrect clause instance for a clause in P;  thus r is not  
satisfied in I .  However ,  since M ( P )  is a model  for P, r is satisfied in M ( P ) .  This 
implies M ( P )  4= I. 

Case (ii): Let s be a mbf; this implis M ( P )  ~ I.  

In both  cases P is incorrect by definition. 

(-->) By definition, M ( P )  4= I. The p r o o f  is by induct ion  on the number  o f  
layers, e, in P. 

Basis (Major  Induction): e : 1. 

So, the program on ly  has unit  clauses. 

Case 1: there is a fact s ~ M ( P )  -- I.  As s is an instance o f  a unit  clause in P, 
this unit  clause is incorrect  since it is not  satisfied in I .  

Case 2: there is a fact s E I - M ( P ) .  Since s ~ I -- M ( P )  it cannot  unify with 

any unit  clause o f  P. Since e = 1 there are on ly  unit  clauses. Thus,  this fact is 
a mbf  as it can not  unify with any rule head in P. 

Induc t ion(Major  Induction): e > 1. 

Case 1: there is a fact s ~ M ( P )  -- I.  Consider  a partial proof-tree T for s in 
which each internal node  is a positive fact together with a rule in P used to 

derive it, and the fact and its children comprise  a g round  instance o f  the rule. 
The root  is s. Each  leaf is either an E D B  fact or o f  the form ( ~ p )  where p is 

a fact. Use f a c t ( v )  to denote  the g round  literal in node v. Let v be a node  in T 
such that f a c t ( v )  is not  satisfied in I but  all o f  v's children are satisfied in I .  The 
existence o f  v fol lows by (minor)  induc t ion  on the height o f  T. I f  v is an internal 
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node then the rule labeling v is incorrect. If  v is a leaf and positive then fact(v) ,  
which it represents, is incorrect; this fact is an instance of  a unit clause in P, this 

unit clause is incorrect. If v is a leaf and negative, say ( ~  q), then q is a fact 
which is not in M ( P )  but is in I. Let z be the layer of  P where the relation for 

the predicate symbol of q is defined, let z = 0 if the relation is not defined in 
any layer of  P. If  z -- 0 then P has a mbf. Otherwise, consider P '  which is P 

minus rules defining predicates in layers higher than z. Since P '  is layered and 
z < e, and using the induction hypothesis, it follows that either P '  has an 

incorrect clause or a missing basic fact. In either case P has an incorrect clause 
or a missing basic fact. 

Case 2: there is a fact s ~ I - M ( P ) .  If  (the predicate symbol of) s belongs to 
a lower layer than e, say l, then, by induction, we are done. So, let s be a 

k-generated general fact of this layer (e). We prove by (minor) induction on k 

that P has either a mbf w.r.t. GI or an incorrect clause. 

Basis(Minor Induction): k -- O. 
If there is no (ground) instance r '  of  a rule r in P, such that its head is s and 
its body is satisfied in I (in the usual logical sense) where each body literal of 

r '  is some fact in I ,  generated prior to s, which is connected to s via an edge in 
E, then s is a mbf. 

Suppose such a (ground) instance r '  exists. Since k 0, there are no 
body literals from this layer (e). If the body is empty then r '  is a unit clause and 

therefore s ~ M(P) ;  contradiction. 
Hence the body of  r '  must consist solely of  (i) positive literals q ~ I, where q 

is defined at a lower layer, or (ii) negative literals (-~ q) such that q q~ I. It can 
not be that all positive body literals in this rule instance are in M ( P )  and all 

negative literals ( ~ q) are such that q ~ M(P) ,  for this would imply that s is in 

M ( P )  as well. 

Case (i): there exists s" ~ M ( P )  a (ground) positive literal in this rule instance 

which is in I. Clearly, s' comes from a lower layer. Then, by major induction, 
there is a mbf for P '  w.r.t. GI or an incorrect clause in P '  where P '  is P minus 
all clauses in layers above the layer defining the predicate of  q. In either case so 

does P. 
Case (ii): there exists, in this rule instance, a negative literal (-7 q) such that q 

M ( P ) .  Since q ~ I,  q ~ M ( P ' )  -- I where P '  is P minus all clauses in layers 
above the layer defining the predicate of  q. By (major) induction, P '  has either 

a mbf w.r.t. GI or an incorrect clause, in either case so does P. 

Induction (Minor): k >0. 
If  no rule head in P unifies with s we are done, because s is a mbf. Suppose there 

is a (ground) instance of a rule in P such that its head is s and its body is 
satisfied in I with positive facts which are either generated prior to s or at a layer 
lower than e, and some negative ground literals which are satisfied in I (with the 
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edge restrictions of  E). It can not be that all positive body literals in this rule 
instance are in M ( P )  and all negative literals (-7 q) are such that q ~ M(P),  for 
this would imply that s is in M(P)  as well. 

Case (i): there exists s" ~ M(P)  a (ground) positive literal in this rule instance 
which is in I .  First suppose that s" is in the same layer as s. Since s '  is 
j-generated for some j < k, it follows by minor  induction that there is a mbf  for 
P w.r.t. GI or an incorrect clause in P. 
Now suppose s '  comes from a lower layer. Then, by major  induction, there is a 
mbf  for P '  w.r.t. GI or an incorrect clause in P '  where P '  is P minus all clauses 
in layers above the layer defining the predicate of  q. In either case so does P. 
Case (ii): there exists, in this rule instance, a negative literal ( ~  q) such that q 
E M(P).  Since q ~ I, q ~ M(P')  -- I where P '  is P minus all clauses in layers 
above the layer defining the predicate of  q. By (major) induction, P '  has either 
a mbf  w.r.t. GI or an incorrect clause, in either case so does P. [] 

It should be noted that the above theorem is analogous to Proposi t ion 3 
in Ref. 6). 

2 .5  Debugger-User Interaction 
We introduced the notion of  a diagnostic system and mentioned that it 

prompts the user for information, that will be used to converge to a conclusion. 
The user, or alternatively a specification of  the program that interacts with the 
debugger, acts thus as an oracle, knowledgeable about the generated interpreta- 
tion. During interaction, the user must meet the following requirements: 

When asked about  the validity of  a general fact or is asked to satisfy an 
atom p, the user responds truthfully, i.e., consistent with the generated 
interpretation G1. 
When asked by the debugger to justify a fact f ,  by satisfying a rule body 
that would have generated f ,  the user responds by using only general 
facts, belonging to stages (or layers) lower than that o f f  and which are 
edge connected to f .  

Note that these conditions are, again, part  of  the idealized "rules of  the 
game" that, formally guarantee the convergence of  the debugging process. In 
practice, the user receives considerably more assistance from the system and is 
thus not expected to possess all of  the knowledge that these condit ions would 
imply. 

Any oracle that meets these requirements is called a reliable oracle. 
Example 2.1 demonstrates these concepts. 

Example 2.1 
Consider the program P: 

p(X)*-w(X, Y), q(Y). 
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w(i, 2). 
q(2). 

Assume the generated interpretation GI to be a two layer structure and be 
represented as: 

Layer 1: 

Layer 2: 

{(0; q(2)), (0; w(1, 2), (0; w(5, 17)), (0; w(5, 20))} 

{(0; p(1)), (1; q(17)), (2; p(5)), (3; q(20))}. 

Each element of  I is of the form (stage-number; fact).  Furthermore, assume that 
each fact in layer 2 is edge-connected to all of  the facts in stages below its own 
or in layer 1. 

The response to the query ?p(X) is p( l ) .  The user expects to receive in 
addition the answer p(5) and thus submits P and missing fact  p(5) to the 
debugger. Note that the stage number of  the missing fact is 2. The debugger 
responds by a request to satisfy the rule: p ( 5 ) ~ - w ( 5 ,  Y), q(Y).  The user 
response in form of: p(5) ~ w(5, 17), q(17) would be reliable, since only facts 
from stages < 2 are used. The user response: p(5) *-- w(5, 20), q(20), would be 
unreliable since q(20) from stage 3 ( > 2) is used in the justification. [] 

A problematic fact  is either a missing fact s ~ I -- M ( P ) ,  or a wrong 
fact s ~ M ( P )  -- I, together with an indication as to which is the case. 

Definition Z5 (Debugger Input) 
The input to a debugger consists of: 

A program P. 
A problematic fact. 
A reliable oracle. [] 

The debugger responds either by not generating output (it loops forever), or by 
an atom identified as a basic missing fact, or by identifying a clause as an 
incorrect clause. 

Definition Z6 (Sound Debugger) 
A debugger is sound if, for all debugger inputs, 

A clause returned and identified as wrong is indeed wrong, or, 
An atom returned and identified as missing is indeed a basic missing 
atom. [] 

Definition 2.7 (Total Debugger) 
A debugger is total if it is sound, and for all debugger inputs it returns an 
answer (i.e. does not loop forever). [] 
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w Implementation of Diagnostic Systems 

3.1 Diagnosis of Compiled Programs 
The debuggers of  Ref. 11) are of  the meta-interpreter type. The computa- 

tion of the debugger tracks the computat ion of  the program to be diagnosed at 
the level of  the procedure call. This solution is adequate if the intuitive 
understanding of  the programmer w.r.t, h is /her  program is in terms of  procedure 
calls; as is indeed the case in Prolog. When we come to s163  however, we cannot 
rely anymore on this simple model of  execution. While the semantics of  the 
language are described in a bottom-up,  fixpoint model of  computat ion,  8) the 
actual execution of  a program is a complex sequence of  low-level procedure 
calls. This sequence is the result of  the compilat ion of  the program and is 
optimized to take advantage of whatever information the user supplied. In 
particular, different query forms in the queries may result in different execution 
strategies. Consequently, a simple trace of  these procedure calls is of  little use to 
the programmer in understanding the behavior  of  his/her  program. We consid- 
ered several options and chose the following 

Indentify the origin of  a fault in the real program by a top-down, 
query/subquery approach. The debugger, which itself is im- 
plemented in another language e.g., Prolog, is a shell program 
between the programmer and his /her  s163 program: it poses 
queries and uses the results to drive the interaction with the user. 
In this process, the user is expected to act as a reliable oracle. 

In the following section we present a basic version of  this system and 
provide a p roof  for its totality. The basic scheme can be applied to s163 
programs without set-terms, grouping terms, updates or the choice construct. 

3.2 The Basic Debugger 
The basic debugger presented in this section closely resembles that of  Ref. 

11). Let P be the program to be debugged. We make the following, fairly strong, 
important  assumption: 

(A1) Only queries q such that (P,  q) is in C are posed through- 
out the debugging process. This implies that all such queries will 
be correctly answered by the s163 run-time system within finite 
time. 

The basic debugger and its variations are expressed in a Prolog* like 
language plus additional,  ad-hoc constructs that serve to query thes163  program 
to be debugged. We are only interested in the first answer returned by the 

* We could have used any other language for the purpose as well. The use of Prolog is merely 
a question of convenience. 
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debugger. The addit ional constructs that we use to obtain access to the s163  
source program are the predicate clause(A, B) where A is instantiated to a 
clause-head and B to its body, the body is either a single literal (true is used for 
representing an empty body) or of  the form (B 1, B2) where B2 is a body. The 
debugger can execute an s163 query by executeLDL(q) where q is a single literal 
query. A crucial assumption is that each call of  executeLDL(A) terminates 
correctly: either it fails, i.e. it correctly returns no answers, or it succeeds in 
which case the Prolog backtracking mechanism will eventually consider all, and 
only finitely many correct answers for A. 

Unlike Prolog, s163 does not employ negation by failure. The answer to 
executeLDL(q) is always a set of  general facts, which are ground instances of  q, 
this is so regardless of  whether q is a positive or a negative literal. That  set may 
of course be empty, if this is the case then the Prolog call to executeLDL(q) 
fails. 

It turns out that for the basic debugger of  this section we can weaken the 
above assumption (A1). For  the basic debugger the following assumption, 
concerning the program to be debugged, suffices: 

(A2) All of  the ground single literal queries q, that can be posed 
to the program P are such that (P, q) is in C. Again, this implies 
that all such queries will be correctly answered by the s 
run-time system within finite time. 

In general, it is unclear whether the fact that the program is safe w.r.t, the 
original query form and the assumption (A2) above imply that all the queries, 
invoked by some debugger's interactions, are safe too. However, in the basic 
debugger of  this section, executeLDL is called only with (single) ground literals. 
In this case, due to (A2), all of  the interactions are safe. 

The program in Fig. 2 implements the debugging process. For  typographi- 
cal reasons we use not(q) instead of  ~ q. The meaning of  the statement: 

is: 

Q:- A, ~ R then B eke C, D. 

Q : - A , P , D .  
P : - R , B .  
P:- ~ R , C .  

The debugger receives from the user (the oracle) a fact A in M(P)  -- I or 
a fact A in I -- M(P) ,  together with its proper classification. Initially, the search 
is directed to wrong(A, R) or to miss(A, R, A). In the above calls, R will contain 
the debugging conclusion. The third argument to miss serves as a context, i.e. 
the ground instance of  the head of  the clause for which the user is asked to 
supply ground instances for the body literals which are true in I ,  subject to 
causality constraints (i.e. justification edges from previously generated general 
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facts). The context is needed because the n body literals are treated separately 
(see below). 

In analyzing body non-satisfaction, n nested loops, for the n body 
literals, are handled by the two clauses of  missl. The first handles the case of a 
body composed of  more than one literal and the second handles the case of  a 
single literal body or the rightmost body literal (the innermost loop). Basically, 
we are doing a nested-loop-join of  relations such that Ri contains all possible 
valid ground instances for body literal li in I,  1 <_ i <_ n. While doing this join, 
each candidate added to form a result fact, is checked using/;79s Another point 
worth mentioning is that the oracle's answers are guaranteed to form descending 
chains in the generated interpretation. This is essential for arguing termination. 
Example 3.1 shows a complete debugging session. 

Example 3.1 
Consider the program P: 

q(X, Y)*-r(X,  Y). 
q(X, Z)~--q(X, V), r(Y, Z). 
r(I, 2). 
r(3, 4). 

The user poses the query ?q(1, 4) and receives the response false. Since 
the user expects to receive true, he submits q(1, 4) missing to the debugger. The 
interpretation GI that the user has in mind has two layers. We assume that each 
fact is edge connected to all facts in stages or layer lower than its own. GI is 
represented as follows: 
First layer: 

{(1; r(2, 3)), (2; r(3, 4)), (3; r(1, 2))}. 

Second layer: 

{(0; q(1, 2)), (1; q(3, 4)), (2; q(2, 3)), (3; q(1, 3)), (4; q(l ,  4)), 
(5; q(2, 4))}. 

The chronology of events, between the user, the debugger, and the s 
system is described in Fig. 3. The debugger will return the conclusion 
noClauseMateh( r( 2, 3)) indicating that r(2, 3) is a mbf. Note that the user 
responds to the debugger promptings in accordance with the interpretation GI. 
To prompts pertaining to facts e.g., "r(1, 4) ? " the user response is "no"  since 
r(1, 4) ~ I. To prompts pertaining to non-ground atoms e.g., "q(1, Y) ? " the 
user response is with a fact from a lower stage in GI. The user response to 
q(1, Y) in the context of  the missing q( l ,  4) is q(1, 3) which is at a lower stage 
in GI. [] 

We assume that there are no system, i.e. built-in, predicates. Adding such 
predicates presents little difficulty. Basically validground asks s instead of the 
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/ *  invariant for miss is that query is valid but fails in LDL * /  
miss(not(Q), R, Context):- wrong(Q, R). 
miss(A, R, Context):- 

if clause(A, B) fails 
then R - noClauseMatch(A) else fail. 

miss(A, R, Context):- if (clause(A, B), miss l (B, R I, A)) succeeds 
then R = R I 
else R =atom(A). / *  a mbf found * /  

miss l((A, B), R, Context):- validground(A, Context), 
if executeLDL(A) succeeds 
then (if missl(B, RI, Context)) succeeds 

then R = RI else fail) 
else miss(A, R, A). 

miss l(A, R, Context):- validground(A, Context), 
/ *  the if check below is redundant * /  
if executeLDL(A) fails then miss(A, R, A) 

else fail. 

/ *  invariant for wrong is that query is invalid but succeeds * / 
wrong(A, R):- executeLDLplusTree(A, T), 

navigateDown(T, R). 

executeLDLplusTree(A, T):- perform ExecuteLDL(A), returning one 
instance A' at a time via backtracking. 
Let T be the (partial) proof-tree for A'. 

navigateDown(T, R):- T is a (partial) proof-tree. 
case I: T is a leaf 
if T - (not(AI)) then miss(AI, R~ AI); 
if T - (A, AI) then R = wrongUnitClause(AI); 
case 2: T = (clause, f, T I ..... Tm) 
if all children of T are valid in I 
then R = wrongClause(clause) 
else let Ti be T's first child which is 

not valid in I ,  navigateDown(Ti, R) 

validground(A, Context):- A reliable oracle: returns a valid 
general fact for literal A with 
generation prior to Context, and 
which is edge-connected to Context. 

Fig. 2 Basic Debugger. 
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user for valid ground instances. Because of the invariant for miss that query is 
valid but fails by executeLDL, there is never a possibility that missl will be 
called with A = true. An idiot-proof debugger can trap for this condition. 

The notation for (partial) proof-trees T is as follows. If  the tree is a leaf 
containing a negated fact -~f  then T = (not ( f ) ) .  If  the tree is a leaf containing 

a fact f for unit clause A, then T = (A, f ) .  Otherwise T is of  the form (clause, 
f ,  7"1 ..... Tm) where the first entry is the labeling clause for T's root, the second 
entry is the fact instance of  the clause head contained in the root, and Ti, 1 _< 

i -< m, are the subtrees whose roots are the children of  the root of  T. Also, true 
leaves are pruned from proof-trees. 

Theorem 3.1 below is similar in structure to Theorem 2.1. The difference 
is that we are to prove correct a particular algorithm that implements the ideas 

of  Theorem 2.1. This implies that we must take a careful look at the inner 
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workings of  the basic debugging algorithm and see how the assumptions we 
made guarantee totality, miss and wrong in Theorem 3.1 pertain to the miss and 
wrong clauses of  the basic debugger in Fig. 2. The basic debugger supplies the 
following information. A wrong clause is classified as a wrongUnitClause or a 
wrongClause. A m b f  is classified as either a noClauseMatch fact or an atom, the 
latter means there are matching clauses but the fact returned is a mbf. 

Theorem 3.1 
Given f ~ I - M ( P )  as input to miss or given f ~ M ( P )  -- I as input to 
wrong, either a missing basic fact or an incorrect clause is returned. 

Proof  
See Appendix 1. [] 

3 . 3  Modif icat ions  to the Basic  Debugger 
As observed by Refs. 9) and 11), the basic debugging scheme can be 

improved by, (1) Utilizing the user-knowledge of those rules that were never 
meant to participate in the product ion of  the missing fact and, (2) Reducing the 
number of  questions to the oracle. The basic debugger does not take advantage 
of  user's knowledge of  which clauses are the relevant ones, i.e., they could be the 
potential source of  the problem, and which clauses are not, i.e., they were never 
meant to participate in the production of  the missing fact. Next, we try to take 
advantage of  this knowledge. The clause: 

miss(A, R, Context):- if (clause(A, B), missl(B, RI, A)) succeeds 
then R = R I 
else R = atom(A). 

becomes now: 

U s e r ( O r a c l e )  

q( l ,  4) miss ing  

n o !  

yes, q ( l ,  3)! 

q ( l ,  3) miss ing  

no !  

yes, q(I ,  2)!  

yes ! 

r(2, 3) mi s s ing !  

D e b u g g e r  C o n t e x t  El9s 

q( l ,  4) 
r(1, 4) ? q(1, 4) -- 

q(1, Y) ? q(1, 4) -- 

- -  ? q ( 1 ,  3 ) ,  n o  ! 

- -  q ( 1 ,  3 )  - -  

r ( 1 ,  3)?  q(1, 3) -- 

q(1, Y ) ?  q( l ,  3) 

-- -- ?q( l ,  2), yes ! 
r(2, 3 )?  q(1, 3) -- 

- -  ? r ( 2 ,  3 ) ,  n o  ! 

- -  r ( 2 ,  3)  - -  

n o C l a u s e M a t c h ( r ( 2 ,  3)) -- 

Fig. 3 User -Debugger  Interaction.  
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miss(A, R, Context):- if (askclause(A, B, Context), missl(B, RI, A)) 
succeeds then R -- R I 

else R -- atom(A). 

Predicate askclause(A, B,  Context) is true if A : -  B is a clause instance which 
is satisfied in I so that the satisfying instance respects causality viz. Context and 
viz. the generation numbers of  the head and the body literals. This is basically 
an oracle call to be answered by the user; giving an incorrect yes answer can not 
hurt, giving a correct no answer can limit the amount of  questions asked by the 
debugger, giving an incorrect no answer may result in failure to find an answer 
(i.e. identifying a bug). 

Further improvements can be introduced by changing the missl clause for 
conjunction so that validground is "pushed" inside. This change has the 
potential of  reducing the number of  oracle questions. The clause becomes: 

miss l ((A, B), R, Context):- if (executeLDL(A), miss l (B, R I, Context)) 
succeeds then R -- R I 

else (validground(A, Context), 
if executeLDL(A) fails 

then miss(A, R, A) 
else fail). 

Observe that it is now possible that executeLDL(A)  be called with ,4 : 
q. Clearly, if A is not ground then there may be infinitely many answers to the 

invocation. To satisfy assumption AI ,  either we exclude programs in which the 
above scenario may happen or we use the new missl clause above only when A 
is positive, and otherwise use the older version of  missl. The same choices apply 
in the comprehensive debugger and its extensions (see Section 5). 

It is shown that this debugger is total as well. 

Theorem 3.2 
For  the debugger with the improvements of  this section, given f ~ I - M ( P )  

as input to miss or given f ~ M ( P )  -- I as input to wrong, either a mbf  or an 
incorrect clause is returned. 

Proof 
See Appendix 1. [] 

w A Debugging Scheme for / :DE Updates 
The basic debugging scheme, discussed in the previous section, can be 

applied to r.~Ds programs that do not include any set, or grouping constructs. 
Nor  can they include any update rules or procedural extensions. In this paper we 
only discuss in some detail the extensions required for updates; the extensions 
required for handling sets, for the procedural  extensions i.e., i f - t h e n - e l s e ,  

forever and the choice construct will not be detailed. 
For  a detailed description of  updates in s163 the reader may consult Ref. 
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8). Briefly, updates apply  only  to base relations. There are two kinds o f  updates: 

for adding facts, an EDB atom prefixed with ' + ' ,  and for deleting facts, an EDB 
atom prefixed with ' - - ' .  A n  updat ing  literal is called an updater. Due to E~DE's 
restrictions, any legal s163 program con ta in ing  updates can be t ransformed into 

the fo l lowing canonica l  form: 

h ~ Lo, Uo ..... Ln-,, U,,-1, L,,. 
p l  ~-- bl .  

pm ,-- bm. 

Above,  each L~, i = 1 ..... n, is a sequence o f  literals whose predicates are defined 

by rules within pi *-- bi, i = 1 .... m, Us, j = 1 ..... n - 1, is an updater,  and no 
rule references in its b o d y  the predicate in h. 

So, wi thou t  loss o f  generality, we consider  a p rogram conta in ing  a single 
updat ing  rule where the head predicate o f  this rule does not  appear  in any clause 

body. The semantics o f  the constructs in this section is based on the not ion  o f  
a state. The state o f  the program contains  all o f  the facts o f  the p rogram at some 
point  in time. As a result o f  the execution o f  an update the state may  change to 
a new state. 

Lo. Uo = ~ - ~  LI"U1 ... L. r U. 1 

forwardo forward~ forward, 

i 1 2 

Fig. 4 State Transitions in the Presence of Updates. 

Suppose we have a terminat ing program.  Figure 4 depicts the execut ion--  

a sequence o f  states So, $1 ..... Sn. Each  state-transition (&, Si+l), i = 0 ..... n -- 
l, is associated with a part icular  updater U~, i.e. + p ;  or  - p ;  where pi is an 

atom, i = 0, ..., n -- 1. For  debugging purposes  this sequence o f  states must  be 
kept as well as the part icular  updater  appl ied to each state. Each  literal in the 
execution is interpreted relative to a current  s t a t e - t h e  one generated as a result 

o f  the execution o f  the most  recent updater  in the execmion path. Wi th  each Si 
there is a relat ion forwardi of  a l lowed combina t ions  o f  b indings  that  were 
applicable in all o f  the states S~, j < i. 

Intuit ively,  forwardi can be t hough t  o f  as the relat ion for the jo in  o f  the 
relations cor responding  to the body  literals upto  the i-th updater,  projected onto  
columns  each o f  which  corresponds to a variable appear ing in these literals or  

the head. forwardo contains  the b indings  suppl ied from the rule head, if  any. The 
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sequence of literals, between two consecutive updaters Us and Us+h is denoted 
as Li. L0 precedes the first updater (may be empty), and Li which follows the i-th 
updater, for i >0 ,  may also be empty. 

The exact actual implementat ion of recording the f o rwards  relations and 
the Ss states is left unspecified; one way is to record changes from the previous 
Ss or f o rward i .  The user's mental picture is assumed to be a sequence of 
generated interpretations. Given some recording mechanism, the debugger 
presents the states, one at a time in order, to the user. With each such presenta- 
tion, the user is asked to certify the state as correct, i.e. agreeing with the 
corresponding generated interpretation. The certification may be done by the 
user by examining the facts o f f o r w a r d ~  and Ss directly, by asking queries against 
S~ or f o rward i ,  or by simply assuming they are correct. Let Sw be the first state 
that is not certified as correct. The reasons for non-certification which we 

analyze are: 

There is wrong fact p(t~ ..... tn) in Sw; there are three cases to consider: 

(1) Sw was neither created by an updater +p(T1 . . . . .  Tn) nor by an 
updater -p(7"1 ..... Tn). The p-content of  Sw is the same as that of  
S~ 1. Then, the certification is incorrect, i.e., S~_~ should not have 
been certified as correct. 

(2) S~ was created by an updater  +p(Ta  ..... Tn). Intuitively, p(t~ . . . . .  &) 

should not have been added, however, it was added. 
Let P '  be P together with a new clause 

a ~ - - fo rward~_h  L ~ - h  7"1 = tl . . . . .  T~ = & 

where a is a new predicate symbol. Perform w r o n g ( a )  on P '  with 
the relations for E D B  predicate symbols being S~ 1. This may 
identify the reason why p(t~ . . . . .  t~) was added. I f  the reason is not 
found then, again, S~_~ should not have been certified as correct. 

(3) Sw was created by an updater --p(T1 ..... T~). Intuitively, p( f i  . . . . .  &) 

should have been deleted, however, it was not deleted. 
Let P '  be P together with a new clause 

a ~- - forward~  1, L~  1, Ta = tl, ..., T ,  = t~ 

where a is a new predicate symbol. Perform miss ing (a )  on P '  with 
the relations for E D B  predicate symbols being Sw_~. This may 
identify the reason why p(tl ..... &) was not deleted. I f  the reason is 
not found then, again, S~-1 should not have been certified as 

correct. 

There is a missing ground atom p( t l  . . . . .  &) in S~. Again, there are three 
cases similar to the ones analyzed above. 

We expect the system to inform the user about  the column names (i.e. 
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variables) of  table forwardw-1. 

w A C o m p r e h e n s i v e  D e b u g g e r  
The debuggers, that we have discussed so far, suffer from some 

deficiencies. First, if executeLDL(A) is used, instead of  validground, to guide 
the search then a call may generate an incorrect result, i.e. in M(P) - I. Based 
on this result miss(B, R1, Context) is used and it may discover a bug. This bug 
may look confusing as it comes from an unexpected source. The sequence of  
questions leading to this bug may also appear strange. It seems that wrong 
should be invoked, if possible, on this incorrect ExecuteLDL(A) answer. This 
idea is used in the N.3 debugger by Naish. 9) However, it seems bothersome to ask 
a question for each fact. The alternative is to ask a question for each fact-set 
containing all ExeeuteLDL(A) answers. 

Second, the search is not deterministic. Depending on (accidental) scan- 
ning order, the bug discovered may be different. If all answers to ExecuteLDL(A) 
are generated then it is possible to ask the user (a) are all answers correct, and 
(b) are all Correct answers present. Then, we can decide which direction takes 
precedence when multiple bugs are present, e.g. if the answer to (a) is no and to 
(b) is no, we can decide that we always activate wrong on an incorrect answer. 

/ *  invariant for miss is that query is valid but fails in LDL * /  
miss(not(Q), R, Context):- wrong(Q, R). 
miss(A, R, Context):- 

if clause(A, B) fails 
then R = noClauseMatch(A) else fail. 

miss(A, R, Context):- if (clause(A, B), missl(B, RI, A)) succeeds 
then R --- R I 
else R = atom(A). 

miss l((A, B), R, Context):- allAnswersExecuteLDL(A, S), 
if examineSet(A, S, RI, Context) succeeds 
then R = R I 
else (member(A, S), miss l(B, R, Context)). 
/ *  (member(A, S) is used to obtain bindings as in executeLDL(A) * /  

miss l(A, R, Context):- allAnswersExecuteLDL(A, S), 
if examineSet(A, S, R I, Context) succeeds 
then R -- RI else fail. 

examineSet(A, S, R, Context):- 
if there is Q in S such that Q is not valid in I 
and (Q - not(Q I) or Q's layer is lower than that of Context) 
then wrong(Q, R) 
else 

(if notExhaustive(A, S, Missingone, Context) 
then miss(Missingone, R, A) else fail). 

notExhaustive(A, S, Missingone, Context):- 
Missingone is a valid instance of A whose 
generation is prior to Context which is not in S. 

allAnswersExecuteLDL(A, S):- 
S is the set of all answers to executeLDL(A). 

/ *  invariant for wrong is that query is invalid but succeeds * /  
/ *  wrong, navigateDown: as before. * /  

Fig. 5 Comprehensive Debugger. 
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These ideas led to the comprehensive debugger shown in Fig. 5. 

Theorem 5.1 
For the comprehensive debugger, given f ~ I -- M ( P )  as input to miss or given 
f ~ M ( P ) -  I as input to wrong, either a mbf  or an incorrect clause is 
returned. 

Proof 
See Appendix 1. [] 

w Conclusion 
We have addressed the problem of  debugging declarative programs. A 

major  contr ibution of  this paper is in modeling the user's "mental  picture" viz. 
acceptable structure and generated interpretation. Some formalization is needed 
in order to guarantee bug discovery by an algorithm which interacts with the 
user. It  is an open question whether all the conditions specified for an acceptable 
structure are needed. The same question applies to the definition of  a generated 
interpretation. Another  issue is whether these concepts indeed capture the 
essence of  "mental  pictures". 

We have presented a basic debugger and proved that under certain 
assumptions it is total. Extensions for handling updates and improving user- 
debugger interactions, as well as a more sophisticated debugger, were also 
presented. 

"It  is argued that declarative error diagnosers will be indispensable 
components  of  advanced logic programming systems. ''~) Our formalization 
differs from that o f  Ref. 6) in that a different language is addressed with different 
semantics (especially w.r.t negation) and hence, we have a different notion of  
correctness. Other than that, we fully agree with the above statement. 
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Appendix 1 
We first define generation numbers. Consider a program P and a general fact f .  

Let L be the layer in P in which the predicate of f is defined. Let m be the stage 
number o f f  within L i f f  E I and otherwise m = 0. The generation number o f f  is 
the tuple (L, m); define (L, m) < (L1, m l )  if  either L < LI  or L = L1 and m < ml .  

Proof of Theorem 3.1 
The proof  is divided into two parts: (a) showing that the debugger terminates, 

and (b) showing that it returns an answer and that this answer is sound. 
We show that each invocation of  the debugger terminates. First, note that each 

call to ExecuteLDL terminates, by assumption. There are two basic loops which may 
invoke each other recursively. One is the loop involving miss and miss 1 and the other 
is the NavigateDown loop. Calling from one loop to another loop decreases the layer 
number and hence can only be done a finite number of  times. Thus, it suffices to show 
that each loop by itself terminates, i.e. with calls to the other loop considered as a single 
statement. 

First, we argue that the NavigateDown loop terminates. As proof-trees are finite, 
each call to navigateDown either terminates or reaches a leaf in finitely many steps. 
Thus, each invocation of  navigateDown terminates. 

The characteristics of  the loop involving miss and miss l are as follows. One 
possible behavior is that once procedure miss calls miss 1, miss 1 recurses on itself a 
number of times without calling miss, including backtracking. We now show that this 
possible behavior terminates, validground supplies finitely many answers whose genera- 
tion numbers are less than the context's generation number. Each executeLDL call, 
which is issued by the debugger, terminates (by assumption A2). Thus, each invocation 
of  miss 1, under this behavior, terminates. 

Procedure miss l can also call miss, recursively. Suppose miss 1 is called from 
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miss operating on f .  The answers to validground in miss 1 are of generation numbers 
smaller than that of f ,  since a reliable oracle is assumed. This is true also for the 
recursive invocations of miss 1, if any. Thus, the generation number in the recursive call 
from missl to miss is smaller than that o f f .  As there are no infinite decreasing chains 
in a generated interpretation, this global behavior of miss calling miss 1 which calls 
miss etc., can be repeated only finitely many times. Thus the loop involving miss and 
miss 1 terminates. 

We conclude that the debugger terminates. We now prove that the debugger 
always returns an answer and that the answer is sound. The proof is by induction on 
generation numbers. The induction hypothesis is the following, where f is a general 
fact. Given f valid in I but not valid in M(P)  as input to miss or given f valid in 
M(P)  but not valid in I as input to wrong, either a missing basic fact or an incorrect 
clause is returned. (The hypothesis is stronger than what is strictly needed to prove the 
theorem.) 

Basis: (L, m) ~ (1, 0) 
If miss(f,  R, f )  is called with f positive, then since f is a fact for an EDB predicate, 
no clause head can unify with f and noClauseMatch(f) is correctly returned identify- 
ing f as a mbf. If miss(f ,  R, f )  is called with f = ~ q, then q ~ M(P)  although q 

I; wrong(q, R) is invoked with q a positive EDB fact. Procedure wrong invokes 
navigateDown with T consisting of a single leaf with a positive literal, and 
wrongUnitClause(q) correctly identifies an incorrect unit clause. The basis case of 
wrong called with a positive fact is thus treated as well. Now suppose wrong is called 
with -Tq; i.e. q ~ M(P)  and q E I; wrong calls navigateDown which invokes miss(q, 
R, q). As argued above this call correctly identifies a mbf. 

Induction: (L, m) > (1, 0) 
Case 1: f is valid in M(P)  but f is not valid in I.  Let T be a partial proof-tree for 
f ,  recall that such a tree has leaves which are either positive facts, which are instances 
of unit clauses, or of the form ~ q. Since the tree is of finite height, navigateDown 
eventually stops, following some number of recursive calls, at an internal node or a leaf 
containing q. If it stops at an internal node, an incorrect clause has been identified. So, 
suppose it stops at a leaf. 

If q is positive an incorrect unit clause is identified. If q = ~ p  then p ~ M(P)  
and p ~ I; miss(p, R, p) is called with a smaller (L, m) as p is defined in a layer below 
that of q, by induction hypothesis a mbf or an incorrect clause is returned. 
Case 2: f is valid in I but f is not valid in M(P).  Suppose f = -~ q. Then, wrong(q, 
R) is called with q ~ M(P)  -- I. This was handled in Case 1 above. So, suppose f is 
positive. If noClauseMatch(f) is returned, clearly f is a mbf. We now treat the" case 
where the third clause of miss was invoked at the top level call. Either an answer is 
returned by the then-branch or one is returned via the else-branch, at any case an 
answer must be returned because the invocation of the third clause of miss terminates. 
It remains to show that if an answer is returned by the third clause of miss then indeed 
a mbf or an incorrect clause instance is returned. 

So, the answer came either from (i) the then-branch or (ii) the else-branch. 

( i ) An answer from the then-branch was supplied recursively by miss 1. However, 
miss 1 manufactures only answers that are obtained from miss. Furthermore, a 
call to miss must have used a fact, say q, generated prior to f such that g is valid 
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in I but not in M(P) ;  this is ensured explicitly by the code. By induction, this 
answer is either a mbf or an incorrect clause. 

( ii ) An answer was supplied from the else-branch; the answer is atom(f). For the 
sake of deriving a contradiction assume an incorrect answer was returned, i.e. f 
is not a mbf. So, there is a clause instance A': -B~  ..... B;~ for some clause C: 
A: --B~ ..... Bn in P such that A' = f and for i -- 1 ..... n, B~ is valid in I and 
in which B~, 1 <_ i ~ n, are of generations prior to that o f f .  Clearly, C cannot 
be a unit clause, this would imply f ~ M(P).  

Consider now the if condition in the third clause of miss. Clearly, miss 1 will be 
invoked as C's head unifies with f ,  If n -- 1 the second clause of miss 1 is invoked with 
a literal g. Let g' be a result to validground(g). If executeLDL(g') succeeeds then f 
M(P), a contradiciton. So, executeLDL(g') fails. This results in miss being called on 
g' which is generated prior to f and such that g' is valid in I but is not valid in M(P). 
By induction, an answer is returned; this would imply an answer which is supplied from 
the then-branch of the third clause of miss, a contradiction. 

So, suppose n > 1, thus the first clause of miss 1 is invoked. Suppose it is called 
with ((A, B), R, Context) and let A' be returned by validground(A). The else-branch 
in the first clause of miss 1 is not taken, if it is taken then, by induction, an answer 
would be returned as A' is valid in I but not in M(P)  and A' is of a generation prior 
to that of f .  This would imply an answer which is supplied from the then-branch of 
the third clause of miss, a contradiction, Thus, the miss 1 internal loop (first miss 1 
clause) basically performs, with backtracking, the following query: 

validground( Bl), executeLDL( B~) ..... validground( Bn-1), 
executeLDL( Bn_l). 

However, validground(B1) will eventually supply the answer B~. ExecuteLDL will 
succeed on B~, then validground(B~) will eventually be supplied and again executeLDL 
will succeed on B~. This will be repeated for B3 through Bn-~ since if at any point j 
executeLDL(B~) fails then the else-branch will be taken in the first clause of missl. 
Finally, for Bn, the second clause of miss 1 is invoked with Bn. This case was handled 
above (the case n = 1 and q = B~) and resulted in a contradiction. [] 

Proof of Theorem 3.2 
The proof is similar to that of Theorem 3.1 with the following differences. 
Termination of the loop involving miss and miss I hinges on the observation 

that, by assumption A l, executeLDL(A) can return only finitely many answers whether 
it is preceded with validground(A) or not. 

Induction, Case 2, part (ii) 
The first two paragraphs here are the same as in the proof of Theorem 3.1. The rest of 
the proof is as follows. 

So, suppose n > l, thus the first clause of miss 1 is invoked. Suppose it is called 
with ((A, B), R, Context). The then-branch in the first clause of missl is not taken, if 
it is taken then, this would imply an answer which is supplied from the then-branch of 
the third clause of miss, a contradiction. Thus, the miss 1 internal loop (first miss l 
clause) basically performs, with backtracking, the following query: 
For 1 ~ i < n: 
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ci(Bi, R, Context): --executeLDL(Bi), c~+l(B~+a, R, Context) 
ci( B~, R, Context): -~(executeLDL(Bi), ci+a(B~+~, R, Context)), 

validground( Bi, Context), -~ executeLDL( B~), 
miss(Bi, R, Bi) 

For i -- n the second clause of miss 1 does: 

cn( Bn, R, Context): --validground(Bn, Context), executeLDL( B~), fail 
c~( B~, R, Context): --validground(Bn, Context), ~ executeLDL( B~), 

miss(B~, R, Bn) 
Since no answer was returned, the second clause of ca was tried. During the 

execution validground(B;, Context) was returned in the second clause of cl. Since miss 
was not called, executeLDL(B~) succeeded. Thus the value B~ was also returned by 
executeLDL(Bb Context) in the first clause of ca. By the same reasoning, 
validground(B;, Context) was returned in executing the first clause of c~, 1 < i < n. 
Now, it cannot be that this holds for 1 <_ i < n, because then either the second clause 
for c~ does not call miss, which means that executeLDL(B~) succeeds and hence f is 
in M(P) ,  or the second clause for c, would execute miss and an answer will be 
returned, by induction, to the then-part of the third clause of miss. In both alternatives 
we have a contradiction. [] 

Proof of Theorem 5.1 
The proof is similar to that of Theorems 3.1 and 3.2. Termination follows from 

previous arguments and the following observations: 

The call to wrong ensures either decreasing context or decreasing layer number. 
The call to notExhaustive returns a lower context for Missingone. 
The line (member(A, S), missl(B, R, A)) is doing essentially what 
(executeLDL(A), missl(B, R1, A)) did before. One difference is that 
member(A, S) may return a fact whose generation is not prior to Context. 
However, we assumed that S is finite and hence termination is not affected. 

The correctness argument is as in Theorem 3.2. The possibility that member(A, 
S) may return a fact whose generation is not prior to Context presents no major 
problem as the proof of Theorems 3.1 and 3.2 depended on (i) that finitely many 
solutions to A be considered, and (ii) that all valid facts are scanned through. Fact (ii) 
still holds as executing (member(A, S), miss I(B, R, Context)), implies that S contains 
all valid ground atoms whose generation is prior to Context (with the edge connections 
constraints). [] 


