
New Generation Computing, 6 (1988) 227-247
OHMSHA, LTD. and Springer-Verlag

�9 OHMSHA, LTD. 1988

Partial Evaluation of Metaprograms in a "Multiple
Worlds" Logic Language*

Giorgio LEVI
Dipartimento di Informatica,
Universita di Pisa.
Giuseppe SARDU
Systems & Management SpA, Pisa.

Received 17 March 1988

Abstract This paper describes a partial evaluation system
specifically designed to be used as an automatic compilation tool for
metaprograms in a KBMS (EPSILON) based on Prolog. EPSILON main
underlying concepts are the extension of Prolog with theories ("multiple
worlds") and the use of metaprogramming as the basic technique to define
new inference engines and tools. Our partial evaluator is oriented towards
theories and metainterpreter specialization. Being designed to be used as an
automatic compiler, it does not require declarations from the user to control
the unfolding process. It handles full Prolog and provides also an elegant
solution to the problem of the partial evaluation of incomplete and self-
modifying programs, by exploiting the multiple worlds feature added to
Prolog. EPSILON partial evaluation system turned out to be a very useful
and powerful tool to combine the low cost and the flexibility of
metaprogramming with the performance requirements of a practical knowl-
edge based system.

Keywords: Logic Programming, Metaprogramming, Partial Evaluation, Multiple
Worlds, Metainterpreter Compilation, Knowledge Base Management
Systems

w Introduction
In this paper we describe a partial evaluation system, specifically designed

to be used as an automatic compilation tool in a Knowledge Base Management
System (KBMS) based on Prolog. In our KBMS, metaprogramming is the basic

technique to define new inference engines and tools and partial evaluation is

* Partially supported by ESPRIT, project 530 (EPSILON).

228 G. Levi and G. Sardu

used as a systematic method to "compile" metaprograms. Our approach is
similar to other proposals, z9'27) However, our algorithm has some interesting new
features, which solve some relevant open problems. In fact, our partial evaluator

(1) handles (an extension of) full Prolog, including builtins, side-effects and
cut,

(2) is designed to be used as an automatic compiler, with no need for
"declarations" from the user to control the unfolding process,

(3) allows the compilation of partial (open) programs, by exploiting the
multiple worlds feature added to Prolog.

The structure of the paper is the following. We first give an overview of
the KBMS, to provide a better understanding of the environment, of the
potential applications and of the role of partial evaluation. We then discuss
partial evaluation of logic programs, in the case of pure logic programs, full
Prolog and Prolog metaprograms. The description of our partial evaluation
algorithm comes after an informal discussion of issues related to the "multiple
worlds" case. We finally give some examples with the results of performance
comparison between the original programs and the compiled programs.

w The EPSILON Knowledge Base Management System
The partial evaluator, that will be described in the following, is a

component of the Knowledge Base Management System developed within the
Epsilon project. 2'3'2~

Epsilon is a prototype of a knowledge base management system built on
top of commercial PROLOG and Relational Data Base Management systems,
running on standard UNIX environments. The main concepts underlying the
Epsilon approach are:

(1) the extension of PROLOG with theories (multiple worlds),
(2) the definition of a transparent interface from PROLOG to Relational

Data Base Management Systems,
(3) the use of metaprogramming as the basic technique to define new infer-

ence engines and tools,
(4) the use of partial evaluation techniques as a systematic method to

"compile" metaprograms,
(5) the definition of a graphical user interface on a personal computer.

The theory is the basic component of the Epsilon knowledge base.
Theories are similar to worlds in MULTILOG x6) and to unit worlds and
instances in MANDALA. 8) Namely, they are composed of a chunk of knowl-
edge, associated to a specific inference machine (theory processor). A theory
corresponds to a chunk of knowledge contained in a file and is associated to a
window in the graphical user interface. The theory processor contains opera-
tions to query the theory, to update and search the theory, to load/unload the

Partial Evaluation of Metaprograms in a "Multiple Worlds" Logic Language 229

theory, considered as an atomic separate object. The theory processor can also
contain tools (debugger, tracer, explanator, query-the-user). Epsilon provides
two primitive theory processors (or classes) : the first one handles the language
PROLOG extended with the theory feature, while the second one handles Data
Base theories. As we will discuss later, new classes (theory processors) can be
defined.

Adding theories to standard PROLOG allows to define a structure on the
PROLOG workspace. This mechanism is currently simulated on top of a
commercial PROLOG compiler.

The kernel of Epsilon maintains a Knowledge Base Dictionary, which
contains a description of the existing theories (in particular, their classes).
Theories can communicate by making a reference to the generic operations for
querying and updating theories. The kernel uses the Knowledge Base Dictionary
to select the operations of the proper inference engine.

Inference engines are handled as first-class citizens in Epsilon, since new
inference engines can be defined inside theories. A knowledge base is then
composed by homogeneous objects (theories) that can be either user (object
level) theories or theory processors for other theories. If a theory T has class C,
there exists a theory named C contaning the inference engine of T. It is therefore
possible to build in a cleaner and natural way knowledge bases relying on
specific domain knowledge and multiple layers of general (control) knowledge,
and to extend in a simple and efficient way the features of the system without
modifying the kernel.

A theory defining an inference engine for a class of theories must define
the programs for querying (call) and for updating (assert and retract). Moreover,
an engine can define tools. Metaprogramming is used to define the various
inference machines. The definition of "enhanced" metainterpreters z6~ is attrac-
tive, because it allows to befine new functionalities without modifying the
program (the object level knowledge) and the basic interpreter. Enhanced
metainterpreters can embed new control strategies, extend the logic language
with new useful constructs (for instance, knowledge structure, or uncertainties)
and the related inference rules (inheritance or approximate reasoning), or define
analysis tools, to provide typical expert systems (explanation, query-the-user,
etc.) or interactive monitoring (debugger, tracer, etc.) capabilities. One of the
main features of the metaprogramming approach is its ability to extend the
language, the inference machine and the environment, without modifying the
basic building blocks, i.e. the PROLOG interpreter and compiler. The exten-
sions defined as (PROLOG) metaprograms are easy to define and portable. Their
performance is anyway rather poor, if compared to what could be obtained by
an ad-hoc implementation of the new language/environment, which, however, is
a very expensive solution, and, in addition, is not necessarily open to further
extensions and modifications. Metaprogramming is, instead, easy, more flexible
and clean, since the knowledge (the rules in the possibly extended language) and

230 G. Levi and G. Sardu

the inference engine (the metainterpreter) are separate and easy to understand,
and all the extensions in the inference engine are clearly defined at the meta-
level.

A new inference engine conceptually defines a new knowledge represen-
tation language. The new language features can either affect the object level
description language (as is the case, for instance, of clauses extended with
uncertainties and of PROLOG extended with coroutining) or be represented at
the meta-level, as relations among theories. We will mainly be concerned with
the last case, which is realized in Epsilon defining links between theories and by
representing them in the Knowledge Base Dictionary.

Some links define "new" inference rules for a theory. In such a case, the
inference rule must be embedded in the query metainterpreters of the theory
processors. For example, default communication mechanisms between theories
T1 and Tz are achieved by defining an inheritance link from T2 to T1. This link
is interpreted by the query handler of T1 as follows. If a subgoal cannot be
solved in T1, it is solved in Tz. Multiple inheritance is possible. If the two
theories share the same inference engine, the result is inheritance of the "object
level" knowledge (i.e., the clauses of T2 are available in T1). Otherwise, in the
case of theories having different inference engines, the subgoal is solved by the
inference engine of Tz.

The real drawback of metaprogramming is performance. There exists,
however, an interesting technique (partial evaluation of metainterpreters), which
allows to combine the low cost and the high flexibility of metaprogramming
with performance. This technique will be discussed in this paper, starting with
the case of pure logic programs.

w Partial Evaluation in Logic Languages
Partial evaluation (Ershov's mixed computation 4'5)) is a procedure,

which, given a logic program P and a (partially instantiated) goal G, derives a
new program P', which behaves like P under the partial instantiations in G.
Logic languages (and, more generally, all the unification-based languages) are
naturally handled by partial evaluation, since the partial evaluation inference
rule is the same as the standard evaluation rule. In fact, the language supports
unbound inputs (represented by logical variables), unfolding (i.e. resolution) is
possible even if the arguments are partially determined and unification directly
supports forward and backward data structure propagation. Moreover, input
values are not forced to be constant values but can be partially determined data
structures. The strong relation between partial evaluation and standard interpre-
tation suggests that the partial evaluator should naturally be definable as a
metainterpreter.

The first attempts to apply partial evaluation to logic programs were

the definition of a PROLOG partial evaluator derived from a

Partial Evaluation of Metaprograms in a "Multiple Worlds" Logic Language 231

specification of a PROLOG abstract machine (interpreter) in META-
IV. '7,'s) The partial evaluator transformations were formally proved to
preserve the meaning of programs.
the derivation of a PROLOG compiler in LISP 14'15) from a PROLOG
interpreter and a LISP partial evaluator written in PROLOG.
a partial evaluator for full PROLOG (including builtins and cut), defined
as a PROLOG metainterpreter, al) and its application to data base query
optimization.

Let us first consider partial evaluation in the case of pure Horn clauses.
Given a logic program P and a simple query :-g, consider one SLD-tree

for :-g and assume that all the paths are either success paths of finite failure
paths. Finite failure paths are evaluated as much as possible, i.e. when an atom
in a goal cannot be rewritten, the other atoms in the goal are expanded. Each
path i of the tree has an associated substitution A, and a leaf node labeled by a
(possibly empty) goal :-g,. The partial evaluation of P with respect to the goal
:-g is then the set of clauses:

[g~A1 :-gl, [g]Az :-g2 [g~An :-gn.

In the case of recursive programs, the SLD-tree will generally have
infinite paths and partial evaluation would be nonterminating. It is therefore
necessary to select a suitable finite subtree, using some termination strategy. It is
worth noting that the program derived for any strategy is always a logical
consequence of the original program. However, only some termination strategies
allow to derive a program which is equivalent to the original one, under the
partial instantiations in :-g. The problem of defining a correct termination
strategy is undecidable for the general case and has known solutions only for
restricted classes of logic programs. 6)

The termination of recursive programs is just one case where one is faced
with the problem of defining a strategy to inhibit the unfolding process. Similar
problems arise when trying to control the size of the transformed program or the
number of backtrackings (see below) and in "incremental" partial evaluation
(see Section 6). A partial evaluation algorithm for logic programs is therefore
essentially a strategy to control unfolding. Such a strategy can fruitfully be based
on program analysis techniques, TM which could provide the information about
"when to inhibit unfolding".

Let us now briefly discuss the problems related to backtracking. The
program derived by partial evaluation defines SLD-derivations which usually
require a lower number of inferences (because some procedures are expanded).
However, nondeterministic branchings are moved earlier in the SLD-tree, as
shown by the following example. Consider the program P, defined by the clauses

1. A(X) :-B(X), C(X)
2. C (X) : - D (X)

232 G. Levi and G. Sardu

3. C (X) : - E (X)

The partially evaluated version P' of P with respect to the goal : -A(X) is
defined by the following clauses

4. A(X) :-B(X), D(X)
5. A(X) :-B(X), E(X)

A single derivation path for a call of the procedure A in P' is shorter than
the corresponding path in P. However, with a search rule based on backtracking,
if the call of the procedure D fails, a call of the procedure B is repeated, while
trying to apply rule 5. This would not be the case for program P, where a failure
on D would only require an attempt to evaluate E. A satisfactory solution, only
when the different cases are characterized by the same variable bindings, is the
introduction of the OR operator, as suggested in Ref. 31. In our example, we
would obtain the clause

6. A(X) :-B(X), (D(X); E(X)).

The above sketched situation arises, whenever in the SLD tree one
generates a goal of the form :-A1, Az An, such that, for some index j,

(i) at least one of the atoms A1, ..., Aj_l is delayed (i.e. cannot be unfold-
ed),

(i i) the partial evaluation of Aj generates new branchings in the tree.

In such a case, it is better not to expand atom Aj. Our solution, lz) similar
to the one proposed in Ref. 10, is based on the following algorithm (multiple
partial evaluations algorithm):

When a goal of the form :-A1, Az An is generated and A1 cannot be
unfolded, perform the following steps:

(i) (new predicate introduction) Add to the program the clause
newP(Xa , Xr) :-Az An,

where X1 Xr are all the variables occurring in A2 An and either
in A~ or in the goal at the root o f the SLD-tree.

(i i) (folding) Replace the conjunction A2 An in the goal by the new
clause head. The resulting goal is :-A~, newP(X1 Xr).

(iii) (separate partial evaluation) Perform a separate partial evaluation of
the goal

:-newP(X1 Xr).
which returns a set C of new clauses for newP.

(iv) (unfolding) If C contains one clause only, unfold the call to newP in
the goal with the new clause. Otherwise

(v) (binding propagation without unfolding) Compute the atom a,
which is the minimal generalization of all the heads of the clauses
generated for newP. A generalization o f a set of atoms { a~ an } is an

Partial Evaluation of Metaprograms in a "Multiple Worlds" Logic Language 233

atom a, such that there exist substitutions zll zl. such that [a]/ll = al,
.... [a]/ln=an. A generalization a is minimal if there is no other
generalization h such that Ea]/ l=h. The binding propagat ion is
achieved by unfolding the a tom newP(X~ Xr) with the clause a :-a.

As we will show in the next section, steps (iv) and (v) become more
complex, if we take into account the properties of specific P R O L O G primitives.

w Partial Evaluation in PROLOG
When moving from pure Horn clauses to PROLOG, we are faced with the

problem of handling the various primitives.
In the partial evaluation of primitive calls, two cases may occur.

the primitive call can be evaluated, resulting in either success or fail,
the primitive call must be delayed, i.e. left unchanged in the current goal.

For each primitive, the partial evaluator knows under which condit ions the
primitive call can be evaluated. For example, a primitive call of the form
clause(X, Y) can only be evaluated if its first argument is not a variable. A call
of the form functor(T, F, A) can be evaluated if T is not a variable or if F and
A are bound to a functor and to a natural number respectively. In all the other
cases, the primitive calls are delayed. Of course, calls of primitive operations
which cause side-effects (such as assert, retract, read and write) are always
delayed.

Steps (iv) and (v) in the multiple partial evaluation algorithm must be
modified to correctly handle calls of primitives which cannot be subject to
backward binding propagat ion (unification). The problem arises because some
primitives do not define relations and some parameters can only be used either
as inputs or as outputs. In such a case, in fact, we cannot al low backward
propagat ion of variable bindings to that atom. Let us consider an example, in
which, the SLD tree contains a goal of the form :-Prim(X, Y), B(X), C(Y),
where Prim is a built in whose arguments are both input parameters. The
procedure call Prim(X, Y) is delayed, but the expansion of procedures B and C
is not allowed to bind variables X and Y, since this would change the input-
output behaviour of the call to Prim in the partially evaluated program. I f this
is the case, variables X and Y become "frozen". Moreover, as noted in Refs. 22)
and 32), values cannot be backward propagated over builtins which cause
side-effects.

Steps (iv) and (v) must then be extended to check that the unfolding and /
or the binding propagat ion do not instantiate any frozen variable. Note that all
the variables occurring in calls of primitives with side-effect are frozen.

There is still an open problem related to the primitives assert and retract:
some "self-modifying" programs cannot be correctly partially evaluated, as
shown by the following example:

234 G. Levi and G. Sardu

p(X) :-q(X).
p(X) :-assert(q(a)).
q(b).

The result of partial evaluation

p(b).
p(X) :-assert(q(a)).
q(b).

is not equivalent to the original program, since it will never compute the answers
X = a to the query p(X). Our solution to this problem will be discussed in
Section 6.

A last relevant problem is related to the partial evaluation of meta-level
pr imit ive calls (such as call, not, if-then-else, etc.) and of the pure control
primitives cut and fa i l . We will discuss our treatment of cut later.

w Partial Evaluation of Metaprograms
Partial evaluation techniques were recently applied to metaprograms in

the framework of PROLOG, zS'zo'l~ Flat Concurrent Prolog z3'z4,zS'3~ and of a
functional language. TM As we will discuss in the following, it can be viewed as
a powerful, systematic and clean compilation technique. It has been used to
effectively derive an efficient compiler-compiler TM and to define the various
virtual machines of L O G I X Y '24'2s~ Our interest is verifying the feasibility of
combining partial evaluation with metainterpreters, used to define language
extensions or tools. The same approach is being pursued in Refs. 28), 29), 27)
and 7).

In partial evaluation of metaprograms, the partial input values are
procedure calls. The partial evaluation of the metaprogram M applied to a call
of the procedure P generates a specialization of M, which can be viewed as a new
version (P') of P. The new definition of P is a version of P, embodying some of
the features relevant to M. This allows to replace a metacall to P (by means of
M) by a direct call to P'.

Let us consider, as an example, a metainterpreter eval, which takes a
procedure call and returns

true, if the procedure call succeeds,
false, if the procedure call finitely fails.

1. eval(true, A) :-!, A=t rue .
2. eval((A, B), C) :-!, eval(A, E), eval(B, F), and (E, F, C).
3. eval(A, B) :-syspred (A), !, call(A), B=true.
4. eval(A, B) :-clause(A, D), eval(D, B),
5. eval(A, false) : -not clause(A, D).

Consider now an "object level" procedure member, defined as follows:

Partial Evaluation of Metaprograms in a "Multiple Worlds" Logic Language 235

6. member(X, X.L).
7. member(X, Y.L) : - X \ = =Y, member(X, L).

The partial evaluation of the goal eval(member(X, L), Y). derives the clauses

8. eval(member(A, [A]B]), true).
9. eval(member(A, [BlC]), true) : - A \ = = B, eval(member(A, C),

true).
10. eval(member(A, [B]C]), false) : - A \ = =B, eval(member (A, C),

false).
11. eval(member(A, B), false) :-not clause l(member(A, B), C).
12. clause l(member(A, [A[B]), true).
13. clause l(member(A, [B[C]), (A \ = =B, member(A, C))).

If we define memberl(X, L, Y)--eval(member(X, L), Y), we obtain a version of
the member procedure which contains the extra information provided by eval:

8'. memberl(A, [A]B], true).
9'. memberl(A, [B[C], true) : - A \ = =B, memberl(A, C, true).
10'. memberl(A, [B[C], false) : -A\-- - -B, memberl(A, C, false).
11'. memberl(A, B, false) :-not clausel(member(A, B), C).

Each metacall of the form eval(member(X, L), Y) can now be replaced by a
more efficient direct call of the form memberl(X, L, Y).

The example shows the key aspect which makes partial evaluation inter-
esting in the case of metaprograms. Metainterpreters, in fact, introduce some loss
of efficiency, since metacalls are more expensive than direct calls. The flexibility
of metaprogramming can then be combined with efficiency, if partial evaluation
is used to transform all the metacalls into direct calls.

The construction, based on the first Futamura projection, 9) is the follow-
ing.

metaprogramming can be viewed as a method to implement a new
language L', by defining an interpreter of L', written in the (already
implemented) language L.
the partial evaluation of the interpreter applied to a program in L'
generates a compiled program which can directly be executed on the
abstract machine associated to L.

The partial evaluation of a goal consisting of a metainterpreter M applied
to a call of the procedure P returns a new version P' of P, such that the direct
execution of P' is equivalent to the execution of P through the metainterpreter
M.

If M is the pure metainterpreter (without new inference rules or extended
features), P' must be equivalent to P. Partial evaluation is therefore essentially
the first reflection principle, II which reflects a metalevel proof (simulation) into

236 G. Levi and G. Sardu

the equivalent object level proof (direct execution).
If the metainterpreter M contains additional inference rules (and the

corresponding additional features), partial evaluation compiles the new features
in the procedure P. For example,

If M is the explanation metainterpreter, the procedure P' is a version of
P, providing the explanation feature, when executed by the standard
interpreter.
If M is a debugger metainterpreter, P" is the version of P "instrumented"
to allow the debugging with the standard execution.
If M is a "query-the-user" metainterpreter, P' is the version of P which
queries the user when executed by the standard interpreter.
If the "new" language contains negative atoms, in the form of calls to a
metainterpreter evalnot, which defines the "negation as finite failure"
inference rule, P' is a version of P which allows to compute negative
atoms through direct calls (i.e. in the original language).
If the "new" language contains structuring concepts, such as multiple
worlds and inheritance links, supported by metainterpreters embodying
the corresponding inference rules, the language can be compiled to the
original unstructured language.

w Partial Evaluation in a Multiple Worlds Logic Language
(Epsilon)

The general case of partial evaluation of theories as viewed by metapro-
grams is shown in Fig. 1, where T3 is obtained by partially evaluating the
knowledge in T1, under the metainterpreter demo, belonging to the inference

class

class

~ " version(demo) @

Fig. 1 Partial evaluation of theories with metaprograms.

Partial Evaluation of Metaprograms in a "Multiple Worlds" Logic Language 237

engine M1 of T1.
T3 is linked to T1 by the link version(demo) The semantics of such a link

is twofold. When a call of demo applied to some predicate in T1 is found, it is
converted into the corresponding call in T3. Moreover, when T1 is updated, T3
must be kept consistent with T1 updatings. Note that the compilation of one
interpretation layer is shown by the fact that the inference engine of T3 is now
M2.

Partial evaluation of a theory, as viewed by a specific metaprogram, is
achieved by a procedure

compile(Source_theory, Meta_program, Target_theory),

which, given a Source_theory and a Meta_program (in the inference engine of
Source_theory), creates a derived theory Target_theory, linked to Source_theory
by the link

version(Meta_program).

Assume that Source_theory contains a definition for the predicates p~ pk with
arities n~ nk, and assume that the metaprogram m has the form m("object-
level-atom", ...)

The derived theory will contain the result of partial evaluation, in Source
_theory, of all the goals of the form m(p~(X1 , Xn~)), i.e. each goal is the
application of the metaprogram rn to a call of a procedure pj, with no con-
straints on the inputs.

bibrules

brother(A, B) :-
mo the r (C ,A) ,
mother(O, B),
f a t he r (D ,A) ,
father(D, B),
smnot ident ioal(A, B).

grand_mother(A, B) :-
mother(A, O),
parent(O, B).

)arent(A, B) :-
mother(A, B).

)arent(A, B) :-
f a t he r (A ,B) .

uncle(A, B) :-
father(O, B),
brother(A, O).

bibfacts

father(abraham, isaac.). ~":~:
father(isaac, esau). "-: ;: i
father(jacob, reuben). "~..,....
father(jacob, simon), i!iiiiii~:::
mother(sarah, isaac). ?i:i:i: ',.;,
mother(rebecca, jacob).
mother(rebecca, esau).

scal l (brother(A, B) ,b ibru les) :-
sca l l (mo the r (O ,A) ,b ib fac t s) ,
sca l l (mo the r (O ,B) ,b ib fao ts) ,
soa l l (f a the r (D ,A) , b ib facts) ,
scal l (fa ther(D, B), b ibfaots) ,
smnot ident ica l (A,B)

soal l (grand-mother(A, B) ,b ib ru les) :-
sca l l (mo the r (A ,O) ,b ib fac t s) ,
(scal l (mother(O, B) ,b ib fao ts) ;
scal l (father(O, B) , b i b f a c t s)) .

sca l l (parent(A, B), bibrules) :-
(sca l l (mother (A ,B) , b ibfaots) ;
soa l l (f a t he r (A ,B) , b i b f ac t s) ,

scal l (unole(A,13) ,b ibru les) :-
sca l l (ra ther (O,13) ,b ib fac ts) ,
soa l l (mo the r (D ,A) ,b ib fao ts) ,
sca l l (mother (D,O) , b ib facts) ,
s ca l l (f a t he r (E ,A) , b ib facts) ,
soal l (fa ther(E, O), b ib facts) ,
smnot ident ical(A, O).

•IOOOO~176176176176176176176176176176176176176 ~3~:.:.:.:.:.:~:~:~:~:~:~:~:~:.:.:.:.~.:~:~:.:.:~:~:~:.:~:.~:~:~:~:~:~:~:~:.:~:~:+N

Fig. 2 Two theories and the result of partial evaluation.

238 G. Levi and G. Sardu

_----[7 engine

s e a l l (A , B) :- p r o q u e r y (A , B) . ~ 4
p r o q u e r y (t , A) :- [.
p r o q u e r y ((A , B) , C) : - ! s o l v e _ b o d y ((A , B) D, E, C) ' �9 ' , x - ; + -

(s m i d e n t i c a l (D , o u t) , !, p r o q u e r y (E , O) :::::::..
"i ; s m s u o o e e d) . -:i:!:i:i:.
;~ p r o q u e r y (A , B) : - s m o g s y s p r e d (A) , , , s m o a l l (A) , iiiii!i,

p r o q u e r y (A , B) : - s m c l a u s e (A , O , B) , s o l v e b o d y (C , D , F , B) , i:iii:ili!
(s m i d e n t i o a l (O , c u t) , !, p r o q u e r y (E , B) ::::::::::
; s m s u o o e e d) . - ' . ' . . . '

�9 . p r o q u e r y (A , B) : - f o l l o w l i n k (B , C, A) ::iiiiiii:i
s m o l a u s e (A , D, O) , p r o q u e r y (D , B) ii!!i!i:i

�9 " p r o q u e r y (A , B) : - e x i s t l i n k (B , O, c l s i n h e r) , ::::::::::'
�9 ~ s m f u n o t o r (A , D , E) s m n o t (s r n t h p r e d s (B , D, E)) "iii!!iiii" ;4 ' ,
�9 4 s o a l l (A , O) "::: : :"
~ s o l v e _ b o d y (! , ou t , s m s u o o e e d , A) : - !. :::::::::"
�9 ". s o l v e _ b o d y ((?. A) , ou t , A, B) :- !. iiiiiiiii::
~ s o l v e _ b o d y ((A , B) , C, D, E) :- [, p r o q u e r y (A , E) , 'i:i:i:!:':'

s o l v e _ b o d y (B , O, D, E) . ::::::::':
:I s o l v e _ b o d y (A , noou t , s m s u o o e e d , B) : - p r o q u e r y (A , B) . :?:i:!:i:
:! f o l l o w l i n k (A , B, O) : - e x i s t l i n k (A , B, o l s i s a) , i:i:!.i:i:

s m n o t (s m c l a u s e (C , D, A)) . :i
f o l l o w l i n k (A , B, O) : - e x i s t l i n k (A , D, o l s i s a) , ii

s m n o t (s m o l a u s e (O , E, A)) , f o l l o w l i n k (D , B, O) ~ ' :
4}

Fig. 3 The query metainterpreter of the inference engine engine.

As an example, let us consider the theory bibrules (in Fig. 2), whose
inference engine (the theory engine) contains the metaprogram (query-
metainterpreter) scall (in Fig. 3).

scall defines a language which is essentially PROLOG (including cut),
extended with some inheritance rules, based on the links clsinher and clsisa. If
T1 inherits from T2 through the link clsinher, then queries failed in T1 can be
solved in T2. If TI inherits from T2 through the link clsisa, then queries failed
in T1 can be solved (in T1) using clauses of T2. The language used in all the
examples is the PROLOG variant used in our project, where PROLOG primi-
tives have generally the prefix "sm".

A call to the partial evaluator of the form compile(bibrules, scall, cal-
lrules) creates in the theory callrules the result of the partial evaluation of the
goals

scall(brother(X, Y), bibrules),
scall(grand_mother(X, Y), bibrules),
scall(parent (X, Y), bibrules),
scall(uncle(X, Y), bibrules).

A program (theory) can be made parametric with respect to some of the
theories it uses or inherits. This is relevant to the optimization of incomplete
knowledge, which can be encapsulated into a theory T*, which may be made
visible to a theory T, by defining a suitable link interpreted by the inference
engine of T. Such a link, however, is not visible to the partial evaluator, which,

Partial Evaluation of Metaprograms in a "Multiple Worlds" Logic Language

-...:•:.:.:••.•........•..•.;....•:.•.•....•.•.•.•........:..•......••.•:......•..••.•........••:•.•...•..:.:.:•:.:.:•:.:.:
'~r-] cruifacts

soall(grand-mother(sarah, esau), bibrules).
soall(grand_mother(rebecca, reuben), bibrules).
soall(grand-mother(rebecca, simon),bibrules).
scall(parent(sarah, issao),bibrules).
scall(parent(rebecoa, jacob),bibrules).
scall(parent(rebecca, esau),bibrules).
scall(abraham, issac), bibrules).
seall(pare nt (issac, esau), bibrules).
seall(parent(jacob, reuben), bibrules).
soall(parent(jacob, simon), bibrules).

239

.... ~'�9149

Fig. 4 Partial evaluation, with bibfacts visible.

when applied to T, cannot evaluate all the references to T*. Thus the partial
evaluation of T is independent from the current content of T*.

In our example, the theory bibfacts can be inherited from bibrules (link
elsinher). If we make bibfaets not visible to partial evaluation, the result of
eompile(bibrules, stall, callrules) is that shown in the theory eallrules in Fig. 2.
Programs in callrules are much more efficient than the application of the
metainterpreter scall to the original programs in bibrules. For example, comput-
ing all the answers to the query parent(X, Y) in bibrules requires 138 logical
inferences, while the same task in callrules requires 72 logical inferences only.
All the metainterpreter components which can be "statically" evaluated dis-
appear from the "compiled program". Note also that the metalevel simulation of
the standard PROLOG interpreter (first 4 clauses of proquery) is not needed. In
particular, since the main functor of the first argument of stall is known, all the
accesses to clauses in bibrules can statically be solved and the only metacalls are
those to the invisible theory bibfaets.

The result of the same partial evaluation, with theory bibfaets visible, is
shown in the theory crulfacts in Fig. 4. Computing all the answers to the query
parent(X, Y) in crulfaets requires now 7 logical inferences only. However, the
result depends on the current content of bibfacts.

One important feature of our partial evaluation method is that not only
the inputs but the program itself can be partial/y specified. This feature is
relevant to the case of optimization with incomplete knowledge, which is typical
of artificial intelligence applications. Another example comes from deductive
databases, where the set of tuples (or ground facts) is stored in secondary storage
and is usually subject to modification. The optimization of the deductive
component (logic program) should not be affected by the current contents of the
database. We can therefore split the logic program into separate theories, with

240 G. Levi and G. Sardu

links interpreted by the inference engines, yet not visible to the partial evaluator.
All the references to theories which are not visible to the partial evaluator will
then be delayed.

It is worth mentioning that our mechanism provides an elegant solution
to the problem of partial evaluation of "open programs", 27) which is either faced
by requiring explicit declarations from the user a*'z8~ or by-passed by assuming
only complete closed programs. 27) In our case, incomplete knowledge can only
be related to non visible theories, while theories visible to partial evaluation are
considered "closed-worlds". With our technique, we obtain an "incremental
compilation": the result of partial evaluation does only depend upon the current
contents of visible theories and must accordingly be kept consistent with
updating on those theories only.

This feature can also be exploited to provide a solution to the self-
modifying programs problem, mentioned in Section 4. The knowledge (of a
theory) can be splitted into a static component P (the program) and a dynamic
component S (the modifiable program state), represented as separate theories.
The theory S is inherited by P and, when P is partially evaluated, S is made
invisible. The example of Section 4 can now be rephrased as follows:

theory P: p(X) :-q(X).
p(X) :-smassert(q(a), S).

theory S: q(b).

The partial evaluation of P is now the theory

p(X) :-smcall(q(X), S).
p(X) :-smassert(q(a), S).

which correctly interacts with the updates in S.

w The Partial Evaluation Algorithm
This section describes the partial evaluation algorithm used within

compile. Such an algorithm is specifically oriented towards theories and recta-
programs. In principle, the algorithm for metainterpreter specialization could be
simpler than the partial evaluation algorithms used for program optimization.
In fact, in metainterpreter specialization we are faced with three possibly in-
dependent subproblems:

(1) removing all the book-keeping associated with one layer of interpreta-
tion,

(2) optimization of the metainterpreter algorithm,
(3) optimization of the source program.

Subproblem (1) (i.e. pure metainterpreter specialization) can be satisfactorily
solved by a very simple algorithm (see, for example, Ref. 27), which

Partial Evaluation of Metaprograms in a "Multiple Worlds" Logic Language 241

requires almost no unfolding,
has no backwards unification and termination problems,
generates target programs whose sizes are similar to the sizes of the source
programs.

We are essentially interested in pure metainterpreter specialization, even
if we obtain some further optimization by using a more liberal unfolding
control and by allowing backward substitutions. In fact, pure metainterpreter
specialization allows us to eliminate the loss of performance introduced by the
metainterpreter, which is usually at least one order of magnitude. More sophisti-
cated partial evaluation algorithms would probably require user interaction and
would not allow their use as an automatic compilat ion tool.

Our algorithm is based on two mutually recursive procedures, parteval
and unfold, that are informally described in the following.

parteval(G, Source_theory, Target_theory)
Asserts in Target theory all the clauses which are obtained by
partially evaluating the goal G in Source_theory. For each path in
the SLD-tree of G, parteval provides for the generation o f a call
to unfold(G, Newg) and asserts the clause G :-Newg. Moreover,
it contains the treatment of occurrences of cut in Newg (see
below).
Goals submitted to parteval within the same call of compile on
Source_theory are stored, so as to avoid multiple partial evalua-
tions (and clause generations). Namely, if the current goal G is a
variant of a goal already submitted to parteval, it is ignored.

unfold(Input_goal, Output_goal)
Instantiates OutpuLgoal to the unfolding of the InpuLgoal .
Unfolding is the repeated application of leftmost SLD resolution,
until the first atom in the current goal is delayed, i.e. it cannot be
rewritten.
An atom A is delayed in unfold if one of the following conditions
is satisfied:

A is a (recursive) procedure call, which is an instantiation
of a previous call within the same unfold process. If A is a
metainterpreter call, recursion is detected on its "procedure
call" argument.
A is a primitive call which cannot be evaluated. As already
mentioned, unfold contains an explicit description of all
the conditions which must be verified for the evaluation of
primitive calls.
A is the call of a procedure which could be resolved with
clauses whose bodies contain occurrences of cut (and A is

2d2 G. Levi and G. Sardu

different from the goal argument of the most recent call of
parteval). In such a case, the unfolding would not, in fact,
be correct.

When in the current goal G1, G2 G, , the atom G~ is delayed,
unfold is suspended and a new parteval process is created, accord-
ing to the multiple partial evaluations algorithm described in
Section 3. If the new predicate call can be unfolded, the corre-
sponding clause generated by parteval is retracted from Target_
theory. The analysis on the applicability of unfolding and binding
propagation can only be made if suitable information is associated
to delayed atoms. Namely, for each delayed atom we must know
whether it has side-effects and which are the frozen variables. Note
that delayed calls of recursive procedures (and procedures contain-
ing cut) have no frozen variables and are analyzed to decide
whether they have side-effects.

As already noted, a procedure call G, such that its unfolding would use clauses
whose body contains cut, is unfolded only if G is the argument of the most
recent call of parteval. Each clause produced by the unfolding is then analyzed
by parteval. If a clause has a cut as the first atom, the cut is removed. Moreover,
the remaining alternative unfoldings are ignored, if the head of the currently
generated clause is a variant of the original goal submitted to parteval.

If G is not the argument of the most recent call of parteval, it is delayed
by unfold and a new activation of parteval on G is created (this will allow to
unfold G separately). If the resuly of parteval is a set of clauses which do not
contain cut, the unfolding of G (with the new clauses) can be resumed.

It is worth noting that metainterpreters usually contain several disjoint
cases, implemented by means of cuts. The "compilat ion" of metainterpreters,
strongly relies upon the ability to eliminate unnecessary cuts. This is why our
algorithm is more concerned with cut elimination than with cut optimization.
Note also that all the existing partial evaluation systems oriented towards
metaprograms 29'27~ do not handle cuts, thus imposing too strong constraints on
the language to be used for metaprogramming.

w One Example: Partial Evaluation of a Forward Chaining
Metaprogram

The metaprogram contained in the inference engine engine in Fig. 5
defines a procedure forw, which, given a new fact Fact, generates all its conse-
quences in the theory Th and puts them in the theory ThRes.

The procedure forw defines the following algorithm. For each clause in
the theory (smthpreds (Th, P, N) is a backtrackable operation defined on a
theory Th which returns the name P and the arity N of each predicate defined
in Th), whose body contains an atom which is unifiable with Fact, if all the

Partial Evaluation of Metaprograms in a "Multiple Worlds" Logic Language 2,t3

engine
F~

fo rw(A, B, C) :-
smthpreds(B, D, E) , I~i~ii'
smfunc to r (F , D, E),
fo rwo lause(F , G, A, B) ,
s ta l l (G, B) , [-~- iii
s m no t (s mcla use (F, s m su oo e e d, C)),[:i::ii~i
smasse r t z (F , O), [!~i::i::i
f o rw (F , B, O), li:..:.iiii::
s m fail. liiii:iii

fo rw(A , B, O). I~::i::i::
fo rwc lause(A, B, O, D) :- [i:.~i~i

smclause(A, E, D), [i~ii::ii
is in(C, E, B). [:iiiii:i

isin(A, B, C) :- [iiiii!
is inbody(smsuooeed B, A, O). [i::i::i::i::

is inbody(A, B, B, A)
is inbody(A, (B, O), B, D) :-

and(A, O, D).
is inbody(A, (B, O), D, E) :-

and(A, B, F),
isinbody(I =, O, D, E).

and(smsucoeed,, A, A) .
and(A, B) , O, (A, D)) :-

and(B, O, D).
and(A, B, (A, 13)) :-

Fig. 5

iiiiiiiiiiiiiiiiiiiiii!ii!
to .~176176176176 o%%~

.%%%%%%% o%%%%' .%%%%%%% ,%%%%1

.%%%%%%% o%%%% I

!iiiiiiiiiiiiii;ii!iiiiii
iiiiiiiiiiiiii iiiiiiiii
% % % % % % % ,%%%*1
% % % % % % % .%%%*q
% % % % % % % ~176

. % % ~ o % % ~ q
,:':'i ' i ' i ' i ' i '. ';':'>:'i
~ ~

�9 �9 %* I o % % % % % % % * q �9 o o . e e e o e q

ibrut

brother(laoob, esau).
brother(esau, jacob).
unole(esau, reuben).
uncle(esau, s imon).
parent (issac, jacob).
grand_mother(sarah, jacob) .

smnot ident ioal(A, smsucceed) .

The metaprogram forw and the result of its application to bibrules.

f o rw(fa the r (A , B) , bibrules, C) :- (s ta l l (mo the r (D , B) , b i b f a o t s) ,
s o a l l (m o t h e r (D , E) , b i b f a c t s) , soa l l (fa ther (A , E) , b ib fac ts) ,
smnot ident ica l (B, E) ,
s m n o t (s m o l a u s e (b r o t h e r (B , E) , smsucceed, C)) ,
smasser t z (b ro the r (B , I=), C),

(sca l l (fa ther (E , F) , b i b f a c t s) ,
smnot (sme lause(unc le (B , F) , smsuooeed, C)),
s m a s s e r t z (u n o l e (B , F) , O), smfa i l ; smsuooeed) , smfai l ;

soal l (mother(G, H) , b i b f a c t s) , s c a l l (m o t h e r (G , B), b ib fac ts) ,
sca l l (fa ther (A, H), b ib fac ts) , smnot ident ioal (H, B) ,
smnot (smolause(bro ther (H, B), smsucceed, O)) ,
smasser t z (b ro the r (H , B) , O),

(soa l l (fa ther (B, I) , b i b f a o t s) ,
smnot (smolause(uno le(H, I) , smsucoeed, 0)) ,
smasser tz (unc le (H, I), C), smfa i l ; smsucoeed) , smfai l ;

s m n o t (s m o l a u s e (p a r e n t (A , B) , s m s u c c e e d , O)) ,
smasse r t z (pa ren t (A , B), O) ,

(s o a l l (m o t h e r (J , A) , b i b f a o t s) ,
smnot (smolause(grand_mother (J , B), smsucceed, O)) ,
smasser tz (g rand_mother (J , B) , O, smfai l ; smsucceed) ,

smfai l ;
soa l l (mother (K, L) , b ib faots) , s o a l l (m o t h e r (K , A) , b ib fao ts) ,
sca l l (fa ther (M, L) , b i b f a c t s) , s o a l l (f a t h e r (M , A) , b i b f a o t s) ,
smnotiden t ioa l (L ,A) ,smnot (smo lause (u ncle(L, B),smsucceed,O)),
smasser t z (unc le (L , B) , O) , smfai l ;
smsuooeed) .

Fig. 6 The result of the partial evaluation offorw(father(X,Y), bibrules, Z).

244 G. Levi and G. Sardu

--[--] f ru l fae t s

fo rw(fa ther (isaac , jaoob) ,b ibru les , A) :-
smnot (smc lause(bro ther (jacob, esau) , smsucceed, A)),
smasser tz (b ro ther (jacob , esau), A) , sm fa i l .

fo rw(fa ther (isaao, jacob) , bibrules, A) :-
smnot (smolause(bro ther (esau, j a c o b) , s m s u c c e e d , A)) ,
smasser tz (b ro the r (esau , jacob), A) ,
(smnot (smolause(uno le(esau, r e u b e n) , s m s u c c e e d , A)) ,

smasser tz (unc le(esau, reuben) , A) , smfail
; smnot (smolause(uno le(esau, s imon) , smsucoeed, A)) ,

smasser tz (unc le (esau, s i m o n) , A) , smfail
; smsucoeed) ,smfa i l .

fo rw(fa ther (A , B) , bibrules, O) :-
s m n o t (s m c l a u s e (p a r e n t (A , B) , smsucoeed, C)) ,
smasse r t z (pa ren t (A , B) , O),
forw 16 (pa ren t (A ,B) ,b ib ru les , O), smfail.

f o rw(fa the r (A , B) ,b ib ru les , O).
f o r w l 6 (p a r e n t (i s s a c , A) , bibrules, B) :-

smno t (smc lause (g rand_mothe r (sa rah ,A) , smsucceed , B)) ,
smasse r t z (g rand_mothe r (sa rah ,A) , B) , sm fa i l .

f o r w l 6 (p a r e n t (j a c o b , A) , b i b r u l e s , B) :-
smno t (smc lause(g rand-mother (rebecca , A) , smsucceed , B)) ,
smasse r t z (g rand_mo the r (rebecca ,A) , B) ,smfa i l .

f o r w l 6 (p a r e n t (e s a u , A) , b i b r u l e s , B) :-
smno t (smc lause (g rand -mo the r (r ebboca ,A) , smsuoceed ,B)) ,
smasser tz (g rand-mother (rebeooa , A) , B) , smfail.

f o r w l 6 (p a r e n t (A , B) , bibrutes, O).

t~

Fig. 7 The result of partial evaluation offorw(father(X, Y) bibrules, Z), with bibfacts visible.

other atoms in the body can be solved in Th, asserts the instantiated clause head
in ThRes and recursively derives the consequences of the new assertion, scall is
once again the query metainterpreter of Fig. 3.

For example, let us consider the theories shown in Fig. 2. By evaluating
forw(father(isaac, jacob), bibrules, brut) we obtain the theory brut in Fig. 5.

The algorithm is very inefficient, because there is no fast method to access
the relevant clauses. Al l the considerations already made about the partial
evaluation of the metainterpreter scall apply to forw as well. In this case,
however, the optimization on clause access is dramatic and allows to statically
generate the "forward chaining" version of all the relevant clauses. As usual, the
links between theories must explicitly be made visible to the partial evaluator.
Let us consider the case where the link between bibrules and bibfacts is not
visible. The theory tat in Fig. 6 contains the result of the partial evaluation of
forw(father(X, Y), bibrules, Z).

Note that forw has been dramatically simplified and the only metacalls
are those related to the invisible theory bibfacts. The result of the partial
evaluation is therefore parametric with respect to the content of bibfacts, since
we partially evaluate forw only with respect to the general knowledge contained
in the theory bibrules.

If bibfacts is made visible to the partial evaluation offorw(father(X, Y),
bibrules, Z), we obtain the more efficient version (not containing any invocation

Partial Evaluation of Metaprograms in a "Multiple Worlds" Logic Language 245

of scall), contained in the theory frulfacts in Fig. 7. frulfaets now depends both
on bibrules and on bibfacts, and must be updated whenever one of the two
theories is updated.

Let us conclude with some experimental performance results. The query

forw(father(isaac, jacob), bibrules, brut),

if executed in engine, requires 2567 logical inferences. The same query requires
459 logical inferences in tat (partial evaluation with respect to bibrules only)
and 22 logical inferences only in frulfacts (where partial evaluation considers
bibfacts too).

w Conclusions
The partial evaluation system we have described has been tested on

several rather complex examples and has always given satisfactory results. Our
treatment of cuts and side-effects primitives is correct, while the multiple worlds
feature turned out to be very useful and powerful. The gain in performance is
usually impressive and the partial evaluator succeeded in the compilation of
levels of interpretation in all our examples. We are currently performing some
experiments with metainterpreters affecting the execution control (for example,
a metainterpreter which executes in a coroutine style Prolog extended with a
freeze operator).

The main problem with the current prototype is the efficiency of the
compilation process. Optimizations on the basic algorithm have been studied
and are currently under experimentation. Future developments include

the self-application of the partial evaluator (with specific metainter-
preters) to derive efficient compilers, as already shown in Refs. 13), 29)
and 7). This would contribute to the performance of the compilation
process;
the study of techniques which allow to automatically mix the func-
tionalities of different metainterpreters, as first suggested by Refs. 27) and
19). This is an important issue in the framework of our KBMS, where the
user can freely define new languages (classes and inference engines), and
could be relieved from the task of defining all the language related tools.
Initial results in this direction can be found in Ref. 21.

R efeYellce$
1) Bowen, K. A. and Kowalski, R. A., "Amalgamating language and metalanguage in

logic programming," in Logic Programming (K. L. Clark and S.-A. Tarnlund, eds.,
Academic Press, pp. 153-172, 1982.

2) Coscia, P. et al., "The Epsilon Knowledge Base Management System: architecture and
Data Base access optimization," Workshop on Logic Programming and Data Bases,
Venezia, Italy, December, 1986.

246 G. Levi and G. Sardu

3) Coscia, P.,Franceschi, P., Levi, G., Sardu, G. and Torre, L., "Object level reflection of
inference rules by partial evaluation," in Meta-Level Architectures and Reflection (D.
Nardi and P. Maes, eds.), North-Holland, 1987.

4) Ershov, A., "On the partial evaluation principle," Information Processing Letters, Vol.
6, No. 2, pp. 38-41, 1977.

5) Ershov, A., "Mixed Computation : Potential applications and problems for study,"
Theoretical Computer Science, 18, pp. 41-67, 1982.

6) Fanti, L. and Zanobetti, S., Proprietd della valutazione parziale in programmazione
logica (in Italian), Tesi di laurea, Universit~t di Pisa, Italy, 1986.

7) Fujita, H. and Furukawa, K., "A self-applicable partial evaluator and its use in
incremental compilation," in Workshop on Partial Evaluation and Mixed Computa-
tion (D. Bj0rner, A. P. Ershov and N. D. Jones, eds.), G1. Avernaes, Denmark, October,
1987. [to appear in New Generation Computing]

8) Furukawa, K., Takeuchi, A., Kunifuji, S., Yasukawa, H., Ohki, M. and Ueda, K.,
"Mandala : A logic based knowledge programming system," International Conference
on Fifth Generation Computer Systems, Tokyo, Japan, pp. 613-622, 1984.

9) Futamura Y., "Partial evaluation of computation process --an approach to a compiler-
compiler," Systems, Computers, Controls, Vol. 2, No. 5, pp. 45-50, 1971.

10) Gallagher, J., "Transforming logic programs by specializing interpreters," ECA186 7th
European Conference on Artificial Intelligence, Brighton, U. K., pp. 109-122, 1986.

11) Gallagher, J. and Codish, M., "Specialisation of Prolog programs using abstract
interpretation," Workshop on Partial Evaluation and Mixed Computation (D. Bj0rner,
A. P. Ershov and N. D. Jones, eds.), G1. Avernaes, Denmark, October, 1987. Eto appear
in New Generation Computing]

12) Ghelfo, S. and Levi, G., "A partial evaluator for metaprograms in a multiple theories
logic language," ESPRIT Project 530 (Epsilon) Report, October, 1986.

13) Jones, N. D. Sestoft, P. and Sondergaard, H., "An experiment in partial evaluation: The
generation of a compiler-compiler," in Rewriting Techniques and Applications (J.-P.
Jouannaud, ed.), Lecture Notes in Computer Science, Vol. 202, Springer-Verlag, pp.
124-140, 1985.

14) Kahn, K. M., "A partial evaluator of Lisp written in a Prolog intended to be applied
to the Prolog and itself which in turn is intended to be given to itself together with the
Prolog to produce a Prolog compiler," Technical Report, UPMAIL, Uppsala Univer-
sity, Sweden, March, 1982.

15) Kahn, K. M. and Carlsson, M., "The compilation of Prolog programs without the use
of Prolog compiler," International Conference on Fifth Generation Computer Systems,
Tokyo, Japan, pp. 348-355, 1984.

16) Kauffmann, H. and Grumbach, A., "Representing and manipulating knowledge within
"worlds"," Proc. First Int'l Conf. on Expert Data Base Systems (L. Kershberg., ed),
pp. 61-73, 1986.

17) Komorowski, H. J., "A specification of an abstract PROLOG machine and its applica-
tion to partial evaluation," Linkoping Studies in Science and Technology Disserta-
tions, N. 69, Linkoping University, Sweden, 1981.

18) Komorowski, H. J., "Partial evaluation as a means for inferencing data structures in an
applicative language : A theory and implementation in the case of PROLOG," Ninth
A CM Syrup. on Principles of Programming Languages, Albuquerque, New Mexico,
pp. 255-267, 1982.

19) Lakhotia, A. and Sterling, L., "Composing logic programs with clausal join," Work-
shop on Partial Evaluation and Mixed Computation (D. Bj0rner, A. P. Ershov and N.
D. Jones, eds.), G1. Avernaes, Denmark, October, 1987. Eto appear in New Generation
Computing]

Partial

20)

21)

22)

23)

24)

25)

26)

27)

28)

29)

30)

31)

32)

Evaluation of Metaprograms in a "Multiple Worlds" Logic Language 247

Levi, G., Modesti, M. and Kouloumdjian, J., "Status and evolution of the Epsilon
prototype," Proc. ESPRIT Technical Week, Bruxelles, Belgium, 1987.
Levi, G. and Sardu, G., "Meta-level definition and compilation of inference engines in
Epsilon," ESPRIT Project Epsilon (P 530) deliverable 14a, October, 1987.
O'Keefe, R. A., "On the treatment of cuts in Prolog source-level tools," Proc. Int'l
Symp. on Logic Programming, Boston, Mass., 1985.
Safra, S., "Partial evaluation of Concurrent Prolog and its implications," Master's
Thesis, Weizmann Institute of Science, Rehovot, Israel, July CS86-24, 1986.
Safra, S. and Shapiro, E., "Meta-interpreters for real," in Information Processing 86
(H.-J. Kugler, ed.), Dublin, Ireland, North-Holland, pp. 271-278, 1986.
Shapiro, E., "Concurrent Prolog: A progress report," Computer, Iiol. 19, No. 8, pp.
44-58, 1986.
Sterling, L., "Meta-interpreters for expert systems," CAISR TR 134-85, Case Western
Reserve University, 1985.
Sterling, L. and Beer, R. D., "Incremental flavor-mixing of meta-interpreters for expert
system construction," Proc. 3rd Symp. on Logic Programming, Salt Lake City, Utah,
pp. 20-27, 1986.
Takeuchi, A. and Furukawa, K., "Partial evaluation of PROLOG programs and its
application to metaprogramming," ICOT Tech. Report, 1985.
Takeuchi, A. and Furukawa, K., "Partial evaluation of PROLOG programs and its
application to metaprogramming," in Information Processing 86 (H.-J. Kugler, ed.),
Dublin, Ireland, North-Holland, pp. 415-420, 1986.
Takeuchi, A., "Affinity between metainterpreters and partial evaluation," in Informa-
tion Processing 86 (H.-J. Kugler, ed), Dublin, Ireland, North-Holland, pp. 279-282,
1986.
Venken, R., "A PROLOG meta-interpreter for partial evaluation and its application to
source-to-source transformation and query optimization, in ECA1-84: Advances in
Artificial Intelligence (T. O'Shea, ed.), Pisa, Italy, North-Holland, pp. 91-100, 1984.
Venken, R. and Demoen, B., "A partial evaluation system for PROLOG: Theoretical
and practical considerations," in Workshop on Partial Evaluation and Mixed Compu-
tation (D. BjOrner, A. P. Ershov and N. D. Jones, eds.), GI. Avernaes, Denmark,
October, 1987. [to appear in New Generation Computing]

