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Abstract This paper describes a partial evaluation system 
specifically designed to be used as an automatic compilation tool for 
metaprograms in a KBMS (EPSILON) based on Prolog. EPSILON main 
underlying concepts are the extension of Prolog with theories ("multiple 
worlds") and the use of metaprogramming as the basic technique to define 
new inference engines and tools. Our partial evaluator is oriented towards 
theories and metainterpreter specialization. Being designed to be used as an 
automatic compiler, it does not require declarations from the user to control 
the unfolding process. It handles full Prolog and provides also an elegant 
solution to the problem of the partial evaluation of incomplete and self- 
modifying programs, by exploiting the multiple worlds feature added to 
Prolog. EPSILON partial evaluation system turned out to be a very useful 
and powerful tool to combine the low cost and the flexibility of 
metaprogramming with the performance requirements of a practical knowl- 
edge based system. 

Keywords: Logic Programming, Metaprogramming, Partial Evaluation, Multiple 
Worlds, Metainterpreter Compilation, Knowledge Base Management 
Systems 

w Introduction 
In this paper we describe a partial evaluation system, specifically designed 

to be used as an automatic compilation tool in a Knowledge Base Management 
System (KBMS) based on Prolog. In our KBMS, metaprogramming is the basic 

technique to define new inference engines and tools and partial evaluation is 

* Partially supported by ESPRIT, project 530 (EPSILON). 
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used as a systematic method to "compile" metaprograms. Our approach is 
similar to other proposals, z9'27) However, our algorithm has some interesting new 
features, which solve some relevant open problems. In fact, our partial evaluator 

(1) handles (an extension of) full Prolog, including builtins, side-effects and 
cut, 

(2) is designed to be used as an automatic compiler, with no need for 
"declarations" from the user to control the unfolding process, 

(3) allows the compilation of partial (open) programs, by exploiting the 
multiple worlds feature added to Prolog. 

The structure of the paper is the following. We first give an overview of 
the KBMS, to provide a better understanding of the environment, of the 
potential applications and of the role of partial evaluation. We then discuss 
partial evaluation of logic programs, in the case of pure logic programs, full 
Prolog and Prolog metaprograms. The description of our partial evaluation 
algorithm comes after an informal discussion of issues related to the "multiple 
worlds" case. We finally give some examples with the results of performance 
comparison between the original programs and the compiled programs. 

w The EPSILON Knowledge Base Management System 
The partial evaluator, that will be described in the following, is a 

component of the Knowledge Base Management System developed within the 
Epsilon project. 2'3'2~ 

Epsilon is a prototype of a knowledge base management system built on 
top of commercial PROLOG and Relational Data Base Management systems, 
running on standard UNIX environments. The main concepts underlying the 
Epsilon approach are: 

(1) the extension of PROLOG with theories (multiple worlds), 
(2) the definition of a transparent interface from PROLOG to Relational 

Data Base Management Systems, 
(3) the use of metaprogramming as the basic technique to define new infer- 

ence engines and tools, 
(4) the use of partial evaluation techniques as a systematic method to 

"compile" metaprograms, 
(5) the definition of a graphical user interface on a personal computer. 

The theory is the basic component of the Epsilon knowledge base. 
Theories are similar to worlds in MULTILOG x6) and to unit worlds and 
instances in MANDALA. 8) Namely, they are composed of a chunk of knowl- 
edge, associated to a specific inference machine (theory processor). A theory 
corresponds to a chunk of knowledge contained in a file and is associated to a 
window in the graphical user interface. The theory processor contains opera- 
tions to query the theory, to update and search the theory, to load/unload the 
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theory, considered as an atomic separate object. The theory processor can also 
contain tools (debugger, tracer, explanator, query-the-user). Epsilon provides 
two primitive theory processors (or classes) : the first one handles the language 
PROLOG extended with the theory feature, while the second one handles Data 
Base theories. As we will discuss later, new classes (theory processors) can be 
defined. 

Adding theories to standard PROLOG allows to define a structure on the 
PROLOG workspace. This mechanism is currently simulated on top of a 
commercial PROLOG compiler. 

The kernel of Epsilon maintains a Knowledge Base Dictionary, which 
contains a description of the existing theories (in particular, their classes). 
Theories can communicate by making a reference to the generic operations for 
querying and updating theories. The kernel uses the Knowledge Base Dictionary 
to select the operations of the proper inference engine. 

Inference engines are handled as first-class citizens in Epsilon, since new 
inference engines can be defined inside theories. A knowledge base is then 
composed by homogeneous objects (theories) that can be either user (object 
level) theories or theory processors for other theories. If a theory T has class C, 
there exists a theory named C contaning the inference engine of T. It is therefore 
possible to build in a cleaner and natural way knowledge bases relying on 
specific domain knowledge and multiple layers of general (control) knowledge, 
and to extend in a simple and efficient way the features of the system without 
modifying the kernel. 

A theory defining an inference engine for a class of theories must define 
the programs for querying (call) and for updating (assert and retract). Moreover, 
an engine can define tools. Metaprogramming is used to define the various 
inference machines. The definition of "enhanced" metainterpreters z6~ is attrac- 
tive, because it allows to befine new functionalities without modifying the 
program (the object level knowledge) and the basic interpreter. Enhanced 
metainterpreters can embed new control strategies, extend the logic language 
with new useful constructs (for instance, knowledge structure, or uncertainties) 
and the related inference rules (inheritance or approximate reasoning), or define 
analysis tools, to provide typical expert systems (explanation, query-the-user, 
etc.) or interactive monitoring (debugger, tracer, etc.) capabilities. One of the 
main features of the metaprogramming approach is its ability to extend the 
language, the inference machine and the environment, without modifying the 
basic building blocks, i.e. the PROLOG interpreter and compiler. The exten- 
sions defined as (PROLOG) metaprograms are easy to define and portable. Their 
performance is anyway rather poor, if compared to what could be obtained by 
an ad-hoc implementation of the new language/environment, which, however, is 
a very expensive solution, and, in addition, is not necessarily open to further 
extensions and modifications. Metaprogramming is, instead, easy, more flexible 
and clean, since the knowledge (the rules in the possibly extended language) and 
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the inference engine (the metainterpreter) are separate and easy to understand, 
and all the extensions in the inference engine are clearly defined at the meta- 
level. 

A new inference engine conceptually defines a new knowledge represen- 
tation language. The new language features can either affect the object level 
description language (as is the case, for instance, of  clauses extended with 
uncertainties and of  PROLOG extended with coroutining) or be represented at 
the meta-level, as relations among theories. We will mainly be concerned with 
the last case, which is realized in Epsilon defining links between theories and by 
representing them in the Knowledge Base Dictionary. 

Some links define "new" inference rules for a theory. In such a case, the 
inference rule must be embedded in the query metainterpreters of  the theory 
processors. For  example, default communication mechanisms between theories 
T1 and Tz are achieved by defining an inheritance link from T2 to T1. This link 
is interpreted by the query handler of T1 as  follows. If  a subgoal cannot be 
solved in T1, it is solved in Tz. Multiple inheritance is possible. If  the two 
theories share the same inference engine, the result is inheritance of  the "object 
level" knowledge (i.e., the clauses of T2 are available in T1). Otherwise, in the 
case of  theories having different inference engines, the subgoal is solved by the 
inference engine of  Tz. 

The real drawback of metaprogramming is performance. There exists, 
however, an interesting technique (partial evaluation of  metainterpreters), which 
allows to combine the low cost and the high flexibility of metaprogramming 
with performance. This technique will be discussed in this paper, starting with 
the case of pure logic programs. 

w Partial Evaluation in Logic Languages 
Partial evaluation (Ershov's mixed computation 4'5)) is a procedure, 

which, given a logic program P and a (partially instantiated) goal G, derives a 
new program P', which behaves like P under the partial instantiations in G. 
Logic languages (and, more generally, all the unification-based languages) are 
naturally handled by partial evaluation, since the partial evaluation inference 
rule is the same as the standard evaluation rule. In fact, the language supports 
unbound inputs (represented by logical variables), unfolding (i.e. resolution) is 
possible even if the arguments are partially determined and unification directly 
supports forward and backward data structure propagation. Moreover, input 
values are not forced to be constant values but can be partially determined data 
structures. The strong relation between partial evaluation and standard interpre- 
tation suggests that the partial evaluator should naturally be definable as a 
metainterpreter. 

The first attempts to apply partial evaluation to logic programs were 

the definition of  a PROLOG partial evaluator derived from a 
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specification of  a PROLOG abstract machine (interpreter) in META- 
IV. '7,'s) The partial evaluator transformations were formally proved to 
preserve the meaning of programs. 
the derivation of  a PROLOG compiler in LISP 14'15) from a PROLOG 
interpreter and a LISP partial evaluator written in PROLOG. 
a partial evaluator for full PROLOG (including builtins and cut), defined 
as a PROLOG metainterpreter, al) and its application to data base query 
optimization. 

Let us first consider partial evaluation in the case of  pure Horn clauses. 
Given a logic program P and a simple query :-g, consider one SLD-tree 

for :-g and assume that all the paths are either success paths of  finite failure 
paths. Finite failure paths are evaluated as much as possible, i.e. when an atom 
in a goal cannot be rewritten, the other atoms in the goal are expanded. Each 
path i of  the tree has an associated substitution A, and a leaf node labeled by a 
(possibly empty) goal :-g,. The partial evaluation of P with respect to the goal 
:-g is then the set of  clauses: 

[g~A1 :-gl, [g]Az :-g2 ..... [g~An :-gn. 

In the case of  recursive programs, the SLD-tree will generally have 
infinite paths and partial evaluation would be nonterminating. It is therefore 
necessary to select a suitable finite subtree, using some termination strategy. It is 
worth noting that the program derived for any strategy is always a logical 
consequence of  the original program. However, only some termination strategies 
allow to derive a program which is equivalent to the original one, under the 
partial instantiations in :-g. The problem of  defining a correct termination 
strategy is undecidable for the general case and has known solutions only for 
restricted classes of  logic programs. 6) 

The termination of  recursive programs is just one case where one is faced 
with the problem of  defining a strategy to inhibit  the unfolding process. Similar 
problems arise when trying to control the size of  the transformed program or the 
number of  backtrackings (see below) and in "incremental" partial evaluation 
(see Section 6). A partial evaluation algorithm for logic programs is therefore 
essentially a strategy to control unfolding. Such a strategy can fruitfully be based 
on program analysis techniques, TM which could provide the information about 
"when to inhibit unfolding". 

Let us now briefly discuss the problems related to backtracking. The 
program derived by partial evaluation defines SLD-derivations which usually 
require a lower number of  inferences (because some procedures are expanded). 
However, nondeterministic branchings are moved earlier in the SLD-tree, as 
shown by the following example. Consider the program P, defined by the clauses 

1. A(X) :-B(X), C(X) 
2. C ( X ) : - D ( X )  
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3. C ( X ) : - E ( X )  

The partially evaluated version P' of  P with respect to the goal : -A(X) is 
defined by the following clauses 

4. A(X) :-B(X), D(X) 
5. A(X) :-B(X), E(X) 

A single derivation path for a call of  the procedure A in P' is shorter than 
the corresponding path in P. However, with a search rule based on backtracking, 
if the call of the procedure D fails, a call of  the procedure B is repeated, while 
trying to apply rule 5. This would not be the case for program P, where a failure 
on D would only require an attempt to evaluate E. A satisfactory solution, only 
when the different cases are characterized by the same variable bindings, is the 
introduction of  the OR operator, as suggested in Ref. 31. In our example, we 
would obtain the clause 

6. A(X) :-B(X), (D(X); E(X)). 

The above sketched situation arises, whenever in the SLD tree one 
generates a goal of  the form :-A1, Az ..... An, such that, for some index j, 

( i ) at least one of  the atoms A1, ..., Aj_l is delayed (i.e. cannot be unfold- 
ed), 

( i i )  the partial evaluation of  Aj generates new branchings in the tree. 

In such a case, it is better not to expand atom Aj. Our solution, lz) similar 
to the one proposed in Ref. 10, is based on the following algorithm (multiple 
partial evaluations algorithm): 

When a goal of  the form :-A1, Az ..... An is generated and A1 cannot be 
unfolded, perform the following steps: 

( i ) (new predicate introduction) Add to the program the clause 
newP(Xa . . . .  , Xr) :-Az ..... An, 

where X1 ..... Xr are all the variables occurring in A2 ..... An and either 
in A~ or in the goal at the root  o f  the SLD-tree. 

( i i )  (folding) Replace the conjunction A2 ..... An in the goal by the new 
clause head. The resulting goal is :-A~, newP(X1 ..... Xr). 

(iii) (separate partial evaluation) Perform a separate partial evaluation of  
the goal 

:-newP(X1 ... . .  Xr). 
which returns a set C of  new clauses for newP. 

(iv) (unfolding) If  C contains one clause only, unfold the call to newP in 
the goal with the new clause. Otherwise 

( v )  (binding propagation without unfolding) Compute the atom a, 
which is the minimal generalization of  all the heads of  the clauses 
generated for newP. A generalization o f  a set of  atoms { a~ ..... an } is an 
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atom a, such that there exist substitutions zll ..... zl. such that [a]/ll = al, 
.... [a]/ln=an. A generalization a is minimal if there is no other 
generalization h such that Ea]/ l=h.  The binding propagat ion  is 
achieved by unfolding the a tom newP(X~ ..... Xr) with the clause a :-a. 

As we will show in the next section, steps (iv) and (v) become more 
complex, if we take into account the properties of  specific P R O L O G  primitives. 

w Partial Evaluation in PROLOG 
When moving from pure Horn clauses to PROLOG,  we are faced with the 

problem of handling the various primitives. 
In the partial evaluation of  primitive calls, two cases may occur. 

the primitive call can be evaluated, resulting in either success or fail, 
the primitive call must be delayed, i.e. left unchanged in the current goal. 

For  each primitive, the partial evaluator knows under which condit ions the 
primitive call can be evaluated. For  example,  a primitive call of  the form 
clause(X, Y) can only be evaluated if its first argument is not a variable. A call 
of  the form functor(T, F, A) can be evaluated if T is not a variable or if F and 
A are bound to a functor and to a natural number  respectively. In all the other 
cases, the primitive calls are delayed. Of  course, calls of  primitive operations 
which cause side-effects (such as assert, retract, read and write) are always 
delayed. 

Steps (iv) and (v) in the multiple partial  evaluation algorithm must be 
modified to correctly handle calls of  primitives which cannot be subject to 
backward binding propagat ion (unification). The problem arises because some 
primitives do not define relations and some parameters can only be used either 
as inputs or as outputs.  In such a case, in fact, we cannot al low backward 
propagat ion of variable bindings to that atom. Let us consider an example, in 
which, the SLD tree contains a goal of  the form :-Prim(X, Y), B(X), C(Y), 
where Prim is a built in whose arguments are both input parameters. The 
procedure call Prim(X, Y) is delayed, but the expansion of procedures B and C 
is not allowed to bind variables X and Y, since this would change the input- 
output  behaviour of  the call to Prim in the partially evaluated program. I f  this 
is the case, variables X and Y become "frozen". Moreover, as noted in Refs. 22) 
and 32), values cannot  be backward propagated over builtins which cause 
side-effects. 

Steps (iv) and (v) must then be extended to check that the unfolding and /  
or the binding propagat ion  do not instantiate any frozen variable. Note that all 
the variables occurring in calls of  primitives with side-effect are frozen. 

There is still an open problem related to the primitives assert and retract: 
some "self-modifying" programs cannot be correctly partially evaluated, as 
shown by the following example: 
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p(X) :-q(X).  
p(X) :-assert(q(a)). 
q(b). 

The result of  partial evaluation 

p(b). 
p(X) :-assert(q(a)). 
q(b). 

is not equivalent to the original program, since it will never compute the answers 
X = a  to the query p(X). Our solution to this problem will be discussed in 
Section 6. 

A last relevant problem is related to the partial evaluation of  meta-level 
pr imit ive calls (such as call, not, if-then-else, etc.) and of the pure control 
primitives cut and fa i l .  We will discuss our treatment of  cut later. 

w Partial Evaluation of Metaprograms 
Partial evaluation techniques were recently applied to metaprograms in 

the framework of PROLOG,  zS'zo'l~ Flat Concurrent Prolog z3'z4,zS'3~ and of a 
functional language. TM As we will discuss in the following, it can be viewed as 
a powerful, systematic and clean compilation technique. It has been used to 
effectively derive an efficient compiler-compiler TM and to define the various 
virtual machines of  L O G I X Y  '24'2s~ Our interest is verifying the feasibility of  
combining partial evaluation with metainterpreters, used to define language 
extensions or tools. The same approach is being pursued in Refs. 28), 29), 27) 
and 7). 

In partial evaluation of metaprograms, the partial input values are 
procedure calls. The partial evaluation of  the metaprogram M applied to a call 
of  the procedure P generates a specialization of  M, which can be viewed as a new 
version (P') of P. The new definition of P is a version of  P, embodying some of 
the features relevant to M. This allows to replace a metacall to P (by means of  
M) by a direct call to P'. 

Let us consider, as an example, a metainterpreter eval, which takes a 
procedure call and returns 

true, if the procedure call succeeds, 
false, if the procedure call finitely fails. 

1. eval(true, A) :-!, A=t rue .  
2. eval((A, B), C) :-!, eval(A, E), eval(B, F), and (E, F, C). 
3. eval(A, B) :-syspred (A), !, call(A), B=true.  
4. eval(A, B) :-clause(A, D), eval(D, B), 
5. eval(A, false) : -not  clause(A, D). 

Consider now an "object level" procedure member, defined as follows: 
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6. member(X, X.L). 
7. member(X, Y.L) : - X \ =  =Y,  member(X, L). 

The partial evaluation of the goal eval(member(X, L), Y). derives the clauses 

8. eval(member(A, [A]B]), true). 
9. eval(member(A, [BlC]), true) : - A \ =  = B, eval(member(A, C), 

true). 
10. eval(member(A, [B]C]), false) : - A \ =  =B, eval(member (A, C), 

false). 
11. eval(member(A, B), false) :-not clause l(member(A, B), C). 
12. clause l(member(A, [A[B]), true). 
13. clause l(member(A, [B[C]), ( A \ =  =B, member(A, C))). 

If we define memberl(X, L, Y)--eval(member(X, L), Y), we obtain a version of 
the member procedure which contains the extra information provided by eval: 

8'. memberl(A, [A]B], true). 
9'. memberl(A, [B[C], true) : - A \ =  =B, memberl(A, C, true). 
10'. memberl(A, [B[C], false) : -A\-- - -B,  memberl(A, C, false). 
11'. memberl(A, B, false) :-not clausel(member(A, B), C). 

Each metacall of the form eval(member(X, L), Y) can now be replaced by a 
more efficient direct call of the form memberl(X, L, Y). 

The example shows the key aspect which makes partial evaluation inter- 
esting in the case of metaprograms. Metainterpreters, in fact, introduce some loss 
of efficiency, since metacalls are more expensive than direct calls. The flexibility 
of metaprogramming can then be combined with efficiency, if partial evaluation 
is used to transform all the metacalls into direct calls. 

The construction, based on the first Futamura projection, 9) is the follow- 
ing. 

metaprogramming can be viewed as a method to implement a new 
language L', by defining an interpreter of L', written in the (already 
implemented) language L. 
the partial evaluation of the interpreter applied to a program in L' 
generates a compiled program which can directly be executed on the 
abstract machine associated to L. 

The partial evaluation of a goal consisting of a metainterpreter M applied 
to a call of the procedure P returns a new version P' of P, such that the direct 
execution of P' is equivalent to the execution of P through the metainterpreter 
M. 

If M is the pure metainterpreter (without new inference rules or extended 
features), P' must be equivalent to P. Partial evaluation is therefore essentially 
the first reflection principle, II which reflects a metalevel proof (simulation) into 
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the equivalent object level proof (direct execution). 
If the metainterpreter M contains additional inference rules (and the 

corresponding additional features), partial evaluation compiles the new features 
in the procedure P. For example, 

If M is the explanation metainterpreter, the procedure P' is a version of 
P, providing the explanation feature, when executed by the standard 
interpreter. 
If M is a debugger metainterpreter, P" is the version of P "instrumented" 
to allow the debugging with the standard execution. 
If M is a "query-the-user" metainterpreter, P' is the version of P which 
queries the user when executed by the standard interpreter. 
If the "new" language contains negative atoms, in the form of calls to a 
metainterpreter evalnot, which defines the "negation as finite failure" 
inference rule, P' is a version of P which allows to compute negative 
atoms through direct calls (i.e. in the original language). 
If the "new" language contains structuring concepts, such as multiple 
worlds and inheritance links, supported by metainterpreters embodying 
the corresponding inference rules, the language can be compiled to the 
original unstructured language. 

w Partial Evaluation in a Multiple Worlds Logic Language 
(Epsilon) 

The general case of partial evaluation of theories as viewed by metapro- 
grams is shown in Fig. 1, where T3 is obtained by partially evaluating the 
knowledge in T1, under the metainterpreter demo, belonging to the inference 

class 

class 

~ "  version(demo) @ 

Fig. 1 Partial evaluation of theories with metaprograms. 
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engine M1 of T1. 
T3 is linked to T1 by the link version(demo) The semantics of  such a link 

is twofold. When a call of demo applied to some predicate in T1 is found, it is 
converted into the corresponding call in T3. Moreover, when T1 is updated, T3 
must be kept consistent with T1 updatings. Note  that the compilation of  one 
interpretation layer is shown by the fact that the inference engine of  T3 is now 
M2. 

Partial evaluation of  a theory, as viewed by a specific metaprogram, is 
achieved by a procedure 

compile(Source_theory, Meta_program, Target_theory), 

which, given a Source_theory and a Meta_program (in the inference engine of 
Source_theory), creates a derived theory Target_theory, linked to Source_theory 
by the link 

version(Meta_program ). 

Assume that Source_theory contains a definition for the predicates p~ ..... pk with 
arities n~ . . . . .  nk, and assume that the metaprogram m has the form m("object- 
level-atom", ...) 

The derived theory will contain the result of  partial evaluation, in Source 
_theory, of all the goals of  the form m(p~(X1 .. . .  , Xn~) . . . .  ), i.e. each goal is the 
application of the metaprogram rn to a call of  a procedure pj, with no con- 
straints on the inputs. 

bibrules 

brother(A, B) :- 
mo the r (C ,A) ,  
mother(O, B),  
f a t he r (D ,A ) ,  
father(D, B),  
smnot ident ioal(A, B). 

grand_mother(A, B) :- 
mother(A, O), 
parent(O, B).  

)arent(A, B) :- 
mother(A, B). 

)arent(A, B) :- 
f a t he r (A ,B ) .  

uncle(A, B) :- 
father(O, B),  
brother(A, O). 

bibfacts 

father(abraham, isaac.). ~":~: 
father( isaac, esau). "-: ;: i 
father(jacob, reuben).  "~..,.... 
father(jacob, simon), i!iiiiii~::: 
mother(sarah, isaac). ?i:i:i: ',.;, 
mother(rebecca, jacob). 
mother(rebecca, esau).  

scal l (brother(A,  B) ,b ibru les)  :- 
sca l l (mo the r (O ,A ) ,b ib fac t s ) ,  
sca l l (mo the r (O ,B) ,b ib fao ts ) ,  
soa l l ( f a the r (D ,A) ,  b ib facts) ,  
scal l ( fa ther(D,  B), b ibfaots) ,  
smnot ident ica l (A,B)  

soal l (grand-mother(A,  B) ,b ib ru les)  :- 
sca l l (mo the r (A ,O) ,b ib fac t s ) ,  
(scal l (mother(O, B ) ,b ib fao ts )  ; 
scal l ( father(O, B ) , b i b f a c t s ) ) .  

sca l l (parent(A,  B), bibrules) :- 
( sca l l (mother (A ,B) ,  b ibfaots) ; 
soa l l ( f a t he r (A ,B ) , b i b f ac t s ) ,  

scal l (unole(A,13) ,b ibru les)  :- 
sca l l ( ra ther (O,13) ,b ib fac ts) ,  
soa l l (mo the r (D ,A ) ,b ib fao ts ) ,  
sca l l (mother (D,O) ,  b ib facts) ,  
s ca l l ( f a t he r (E ,A ) ,  b ib facts) ,  
soal l ( fa ther(E,  O), b ib facts) ,  
smnot ident ical(A, O). 

•IOOOO~176176176176176176176176176176176176176 ~3~:.:.:.:.:.:~:~:~:~:~:~:~:~:.:.:.:.~.:~:~:.:.:~:~:~:.:~:.~:~:~:~:~:~:~:~:.:~:~:+N 

Fig. 2 Two theories and the result of partial evaluation. 
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_----[7 engine 

s e a l l ( A ,  B )  :-  p r o q u e r y ( A ,  B ) .  ~ 4  
p r o q u e r y (  t ,  A )  :-  [. 
p r o q u e r y ( ( A ,  B ) ,  C) : -  ! s o l v e _ b o d y ( ( A ,  B)  D, E, C) .... ' �9 ' , x - ; +  - 

( s m i d e n t i c a l ( D ,  o u t ) ,  !, p r o q u e r y ( E ,  O) :::::::.. 
"i ; s m s u o o e e d ) .  -:i:!:i:i:. 
;~ p r o q u e r y ( A ,  B ) : - s m o g s y s p r e d ( A ) ,  , ,  s m o a l l ( A ) ,  iiiii!i, 

p r o q u e r y ( A ,  B)  : - s m c l a u s e ( A , O , B ) , s o l v e  b o d y ( C , D , F , B ) ,  i:iii:ili! 
( s m i d e n t i o a l ( O , c u t ) ,  !, p r o q u e r y ( E ,  B)  :::::::::: 
; s m s u o o e e d ) .  - ' . ' . . . '  

�9 . p r o q u e r y ( A ,  B )  : - f o l l o w l i n k ( B ,  C, A )  ::iiiiiii:i 
s m o l a u s e ( A ,  D, O) ,  p r o q u e r y ( D ,  B)  ii!!i!i:i 

�9 " p r o q u e r y ( A ,  B )  : -  e x i s t l i n k ( B ,  O, c l s i n h e r ) ,  ::::::::::' 
�9 ~ s m f u n o t o r ( A , D ,  E)  s m n o t ( s r n t h p r e d s ( B ,  D, E ) )  "iii!!iiii" ;4 ' , 
�9 4 s o a l l ( A ,  O) "::: : :" 
~ s o l v e _ b o d y (  ! , ou t ,  s m s u o o e e d ,  A )  : -  !. :::::::::" 
�9 ". s o l v e _ b o d y ( (  ?. A ) ,  ou t ,  A,  B)  :-  !. iiiiiiiii:: 
~ s o l v e _ b o d y ( ( A ,  B ) ,  C, D, E)  :- [ ,  p r o q u e r y ( A ,  E ) ,  'i:i:i:!:':' 

s o l v e _ b o d y ( B ,  O, D, E ) .  ::::::::': 
:I s o l v e _ b o d y ( A ,  noou t ,  s m s u o o e e d ,  B ) : - p r o q u e r y ( A ,  B) .  :?:i:!:i: 
:! f o l l o w l i n k ( A ,  B, O) : - e x i s t l i n k ( A ,  B, o l s i s a ) ,  i:i:!.i:i: 

s m n o t ( s m c l a u s e ( C ,  D, A )  ) .  :i 
f o l l o w l i n k ( A ,  B,  O) : - e x i s t l i n k ( A ,  D, o l s i s a ) ,  ii 

s m n o t ( s m o l a u s e ( O ,  E, A )  ) ,  f o l l o w l i n k ( D ,  B, O) ~ ' :  
4} 

Fig. 3 The query metainterpreter of the inference engine engine. 

As an example, let us consider the theory bibrules (in Fig. 2), whose 
inference engine (the theory engine) contains the metaprogram (query- 
metainterpreter) scall (in Fig. 3). 

scall defines a language which is essentially PROLOG (including cut), 
extended with some inheritance rules, based on the links clsinher and clsisa. If 
T1 inherits from T2 through the link clsinher, then queries failed in T1 can be 
solved in T2. If TI inherits from T2 through the link clsisa, then queries failed 
in T1 can be solved (in T1) using clauses of  T2. The language used in all the 
examples is the PROLOG variant used in our project, where PROLOG primi- 
tives have generally the prefix "sm". 

A call to the partial evaluator of the form compile(bibrules, scall, cal- 
lrules) creates in the theory callrules the result of the partial evaluation of the 
goals 

scall(brother(X, Y), bibrules), 
scall(grand_mother(X, Y), bibrules), 
scall(parent (X, Y), bibrules), 
scall(uncle(X, Y), bibrules). 

A program (theory) can be made parametric with respect to some of the 
theories it uses or inherits. This is relevant to the optimization of incomplete 
knowledge, which can be encapsulated into a theory T*, which may be made 
visible to a theory T, by defining a suitable link interpreted by the inference 
engine of T. Such a link, however, is not visible to the partial evaluator, which, 
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soall(grand-mother(sarah, esau), bibrules). 
soall(grand_mother(rebecca, reuben), bibrules). 
soall(grand-mother(rebecca, simon),bibrules). 
scall(parent(sarah, issao),bibrules). 
scall(parent(rebecoa, jacob),bibrules). 
scall(parent(rebecca, esau),bibrules).  
scall(abraham, issac), bibrules). 
seall(pare nt ( issac, esau), bibrules). 
seall(parent(jacob, reuben), bibrules). 
soall(parent(jacob, simon), bibrules). 
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Fig. 4 Partial evaluation, with bibfacts visible. 

when applied to T, cannot evaluate all the references to T*. Thus the partial 
evaluation of T is independent from the current content of T*. 

In our example, the theory bibfacts can be inherited from bibrules (link 
elsinher). If we make bibfaets not visible to partial evaluation, the result of 
eompile(bibrules, stall, callrules) is that shown in the theory eallrules in Fig. 2. 
Programs in callrules are much more efficient than the application of  the 
metainterpreter scall to the original programs in bibrules. For example, comput- 
ing all the answers to the query parent(X, Y) in bibrules requires 138 logical 
inferences, while the same task in callrules requires 72 logical inferences only. 
All the metainterpreter components which can be "statically" evaluated dis- 
appear from the "compiled program". Note also that the metalevel simulation of 
the standard PROLOG interpreter (first 4 clauses of proquery) is not needed. In 
particular, since the main functor of  the first argument of  stall is known, all the 
accesses to clauses in bibrules can statically be solved and the only metacalls are 
those to the invisible theory bibfaets. 

The result of  the same partial evaluation, with theory bibfaets visible, is 
shown in the theory crulfacts in Fig. 4. Computing all the answers to the query 
parent(X, Y) in crulfaets requires now 7 logical inferences only. However, the 
result depends on the current content of  bibfacts. 

One important  feature of our partial evaluation method is that not only 
the inputs but the program itself can be partial/y specified. This feature is 
relevant to the case of  optimization with incomplete knowledge, which is typical 
of  artificial intelligence applications. Another  example comes from deductive 
databases, where the set of  tuples (or ground facts) is stored in secondary storage 
and is usually subject to modification. The optimization of  the deductive 
component (logic program) should not be affected by the current contents of  the 
database. We can therefore split the logic program into separate theories, with 
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links interpreted by the inference engines, yet not visible to the partial evaluator. 
All the references to theories which are not visible to the partial evaluator will 
then be delayed. 

It is worth mentioning that our mechanism provides an elegant solution 
to the problem of partial evaluation of "open programs", 27) which is either faced 
by requiring explicit declarations from the user a*'z8~ or by-passed by assuming 
only complete closed programs. 27) In our case, incomplete knowledge can only 
be related to non visible theories, while theories visible to partial evaluation are 
considered "closed-worlds". With our technique, we obtain an "incremental 
compilation": the result of partial evaluation does only depend upon the current 
contents of visible theories and must accordingly be kept consistent with 
updating on those theories only. 

This feature can also be exploited to provide a solution to the self- 
modifying programs problem, mentioned in Section 4. The knowledge (of a 
theory) can be splitted into a static component P (the program) and a dynamic 
component S (the modifiable program state), represented as separate theories. 
The theory S is inherited by P and, when P is partially evaluated, S is made 
invisible. The example of Section 4 can now be rephrased as follows: 

theory P: p(X) :-q(X). 
p(X) :-smassert(q(a), S). 

theory S: q(b). 

The partial evaluation of P is now the theory 

p(X) :-smcall(q(X), S). 
p(X) :-smassert(q(a), S). 

which correctly interacts with the updates in S. 

w The Partial Evaluation Algorithm 
This section describes the partial evaluation algorithm used within 

compile. Such an algorithm is specifically oriented towards theories and recta- 
programs. In principle, the algorithm for metainterpreter specialization could be 
simpler than the partial evaluation algorithms used for program optimization. 
In fact, in metainterpreter specialization we are faced with three possibly in- 
dependent subproblems: 

(1) removing all the book-keeping associated with one layer of interpreta- 
tion, 

(2) optimization of the metainterpreter algorithm, 
(3) optimization of the source program. 

Subproblem (1) (i.e. pure metainterpreter specialization) can be satisfactorily 
solved by a very simple algorithm (see, for example, Ref. 27), which 
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requires almost no unfolding, 
has no backwards unification and termination problems, 
generates target programs whose sizes are similar to the sizes of the source 
programs. 

We are essentially interested in pure metainterpreter specialization, even 
if we obtain some further optimization by using a more liberal unfolding 
control and by allowing backward substitutions. In fact, pure metainterpreter 
specialization allows us to eliminate the loss of  performance introduced by the 
metainterpreter, which is usually at least one order of magnitude. More sophisti- 
cated partial evaluation algorithms would probably require user interaction and 
would not allow their use as an automatic compilat ion tool. 

Our algorithm is based on two mutually recursive procedures, parteval 
and unfold, that are informally described in the following. 

parteval(G, Source_theory, Target_theory) 
Asserts in Target theory all the clauses which are obtained by 
partially evaluating the goal G in Source_theory. For each path in 
the SLD-tree of  G, parteval provides for the generation o f  a call 
to unfold(G, Newg) and asserts the clause G :-Newg. Moreover, 
it contains the treatment of  occurrences of  cut in Newg (see 
below). 
Goals submitted to parteval within the same call of compile on 
Source_theory are stored, so as to avoid multiple partial evalua- 
tions (and clause generations). Namely, if the current goal G is a 
variant of  a goal already submitted to parteval, it is ignored. 

unfold(Input_goal, Output_goal) 
Instantiates OutpuLgoal  to the unfolding of  the InpuLgoal .  
Unfolding is the repeated application of  leftmost SLD resolution, 
until the first atom in the current goal is delayed, i.e. it cannot  be 
rewritten. 
An atom A is delayed in unfold if  one of  the following conditions 
is satisfied: 

A is a (recursive) procedure call, which is an instantiation 
of  a previous call within the same unfold process. If  A is a 
metainterpreter call, recursion is detected on its "procedure 
call" argument. 
A is a primitive call which cannot  be evaluated. As already 
mentioned, unfold contains an explicit description of  all 
the conditions which must be verified for the evaluation of  
primitive calls. 
A is the call of a procedure which could be resolved with 
clauses whose bodies contain occurrences of cut (and A is 
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different from the goal argument of  the most recent call of  
parteval). In such a case, the unfolding would not, in fact, 
be correct. 

When in the current goal G1, G2 ..... G, ,  the atom G~ is delayed, 
unfold is suspended and a new parteval process is created, accord- 
ing to the multiple partial evaluations algorithm described in 
Section 3. If  the new predicate call can be unfolded, the corre- 
sponding clause generated by parteval is retracted from Target_ 
theory. The analysis on the applicability of  unfolding and binding 
propagation can only be made if suitable information is associated 
to delayed atoms. Namely, for each delayed atom we must know 
whether it has side-effects and which are the frozen variables. Note 
that delayed calls of  recursive procedures (and procedures contain- 
ing cut) have no frozen variables and are analyzed to decide 
whether they have side-effects. 

As already noted, a procedure call G, such that its unfolding would use clauses 
whose body contains cut, is unfolded only if G is the argument of  the most 
recent call of  parteval. Each clause produced by the unfolding is then analyzed 
by parteval. If a clause has a cut as the first atom, the cut is removed. Moreover, 
the remaining alternative unfoldings are ignored, if the head of the currently 
generated clause is a variant of  the original goal submitted to parteval. 

If G is not the argument of  the most recent call of  parteval, it is delayed 
by unfold and a new activation of parteval on G is created (this will allow to 
unfold G separately). If  the resuly of  parteval is a set of clauses which do not 
contain cut, the unfolding of  G (with the new clauses) can be resumed. 

It is worth noting that metainterpreters usually contain several disjoint 
cases, implemented by means of  cuts. The "compilat ion" of  metainterpreters, 
strongly relies upon the ability to eliminate unnecessary cuts. This is why our 
algorithm is more concerned with cut elimination than with cut optimization. 
Note also that all the existing partial evaluation systems oriented towards 
metaprograms 29'27~ do not  handle cuts, thus imposing too strong constraints on 
the language to be used for metaprogramming. 

w One Example: Partial Evaluation of a Forward Chaining 
Metaprogram 

The metaprogram contained in the inference engine engine in Fig. 5 
defines a procedure forw, which, given a new fact Fact, generates all its conse- 
quences in the theory Th and puts them in the theory ThRes. 

The procedure forw defines the following algorithm. For  each clause in 
the theory (smthpreds (Th, P, N) is a backtrackable operation defined on a 
theory Th which returns the name P and the arity N of  each predicate defined 
in Th), whose body contains an atom which is unifiable with Fact, if  all the 
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engine 
F~ 

fo rw(A,  B, C) :- 
smthpreds(B,  D, E) ,  I~i~ii' 
smfunc to r (F ,  D, E),  
fo rwo lause(F ,  G, A, B) ,  
s ta l l (G,  B) ,  [-~- iii 
s m no t (s mcla use (F, s m su oo e e d, C)),[:i::ii~i 
smasse r t z (F ,  O), [!~i::i::i 
f o rw (F ,  B, O), li:..:.iiii:: 
s m fail. liiii:iii 

fo rw(A ,  B, O). I~::i::i:: 
fo rwc lause(A,  B, O, D) :- [i:.~i~i 

smclause(A,  E, D),  [i~ii::ii 
is in(C, E, B).  [:iiiii:i 

isin(A, B, C) :- [iiiii! 
is inbody(smsuooeed B, A, O).  [i::i::i::i:: 

is inbody(A, B, B, A) 
is inbody(A, (B, O), B, D) :- 

and(A,  O, D). 
is inbody(A, (B, O), D, E) :- 

and(A,  B, F),  
isinbody(I =, O, D, E).  

and(smsucoeed,,  A, A) .  
and(A, B) ,  O, (A, D))  :- 

and(B,  O, D). 
and(A, B, (A, 13)) :- 

Fig. 5 

iiiiiiiiiiiiiiiiiiiiii!ii! 
to .~176176176176 o%%~ 

.%%%%%%% o%%%%' .%%%%%%% ,%%%%1 

.%%%%%%% o%%%% I 

!iiiiiiiiiiiiii;ii!iiiiii 
iiiiiiiiiiiiii iiiiiiiii 
% % % % % % %  ,%%%*1 
% % % % % % %  .%%%*q 
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,:':'i ' i ' i ' i ' i '. ';':'>:'i 
~ ~  

�9 �9 %* I o % % % % % % % *  q �9 o o . e e e o e q  

ibrut 

brother( laoob,  esau).  
brother(esau,  jacob). 
unole(esau, reuben). 
uncle(esau, s imon).  
parent ( issac,  jacob).  
grand_mother(sarah,  jacob) .  

smnot ident ioal(A,  smsucceed) .  

The metaprogram forw and the result of its application to bibrules. 

f o rw( fa the r (A ,  B) ,  bibrules, C) :- ( s ta l l (mo the r (D ,  B ) , b i b f a o t s ) ,  
s o a l l ( m o t h e r ( D , E ) , b i b f a c t s ) ,  soa l l ( fa ther (A ,  E) ,  b ib fac ts ) ,  
smnot ident ica l (B,  E) ,  
s m n o t ( s m o l a u s e ( b r o t h e r ( B , E ) ,  smsucceed,  C ) ) ,  
smasser t z (b ro the r (B ,  I=), C),  

(sca l l ( fa ther (E ,  F ) , b i b f a c t s ) ,  
smnot (sme lause(unc le (B ,  F ) ,  smsuooeed, C) ), 
s m a s s e r t z ( u n o l e ( B , F ) ,  O),  smfa i l ; smsuooeed) ,  smfai l ;  

soal l (mother(G,  H ) , b i b f a c t s ) , s c a l l ( m o t h e r ( G ,  B),  b ib fac ts ) ,  
sca l l ( fa ther (A,  H),  b ib fac ts ) ,  smnot ident ioal (H,  B) ,  
smnot (smolause(bro ther (H,  B),  smsucceed,  O) ) ,  
smasser t z (b ro the r (H ,  B) ,  O),  

(soa l l ( fa ther (B,  I ) , b i b f a o t s ) ,  
smnot (smolause(uno le(H,  I) ,  smsucoeed, 0 ) ) ,  
smasser tz (unc le (H,  I), C),  smfa i l ; smsucoeed) ,  smfai l ;  

s m n o t ( s m o l a u s e ( p a r e n t ( A , B ) , s m s u c c e e d ,  O) ) ,  
smasse r t z (pa ren t (A ,  B),  O) ,  

( s o a l l ( m o t h e r ( J , A ) , b i b f a o t s ) ,  
smnot (smolause(grand_mother (J ,  B),  smsucceed,  O ) ) ,  
smasser tz (g rand_mother (J ,  B) ,  O, smfai l  ; smsucceed) ,  

smfai l ;  
soa l l (mother (K,  L ) ,  b ib faots) ,  s o a l l ( m o t h e r ( K , A ) ,  b ib fao ts ) ,  
sca l l ( fa ther (M,  L ) , b i b f a c t s ) ,  s o a l l ( f a t h e r ( M , A ) , b i b f a o t s ) ,  
smnotiden t ioa l (L ,A) ,smnot (smo lause  (u ncle(L,  B),smsucceed,O)),  
smasser t z (unc le (L ,  B ) , O ) ,  smfai l ;  
smsuooeed) .  

Fig. 6 The result of the partial evaluation offorw(father(X,Y), bibrules, Z). 
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--[--] f ru l fae t s  

fo rw( fa ther ( isaac ,  jaoob) ,b ibru les ,  A) :- 
smnot (smc lause(bro ther ( jacob,  esau) ,  smsucceed, A) ),  
smasser tz (b ro ther ( jacob ,  esau),  A ) , sm fa i l .  

fo rw( fa ther ( isaao,  jacob) ,  bibrules, A) :- 
smnot (smolause(bro ther (esau,  j a c o b ) , s m s u c c e e d , A ) ) ,  
smasser tz (b ro the r (esau ,  jacob),  A ) ,  
( smnot (smolause(uno le(esau,  r e u b e n ) , s m s u c c e e d , A ) ) ,  

smasser tz (unc le(esau,  reuben) ,  A ) ,  smfail 
; smnot (smolause(uno le(esau,  s imon) ,  smsucoeed, A) ) ,  

smasser tz (unc le (esau,  s i m o n ) , A ) ,  smfail 
; smsucoeed) ,smfa i l .  

fo rw( fa ther (A ,  B) ,  bibrules, O) :- 
s m n o t ( s m c l a u s e ( p a r e n t ( A , B ) ,  smsucoeed,  C ) ) ,  
smasse r t z (pa ren t (A ,  B) ,  O), 
forw 16 (pa ren t (A ,B ) ,b ib ru les ,  O), smfail.  

f o rw( fa the r (A ,  B ) ,b ib ru les ,  O). 
f o r w l 6 ( p a r e n t ( i s s a c , A ) ,  bibrules, B) :- 

smno t ( smc lause (g rand_mothe r ( sa rah ,A ) , smsucceed ,  B ) ) ,  
smasse r t z (g rand_mothe r ( sa rah ,A ) ,  B ) , sm fa i l .  

f o r w l 6 ( p a r e n t ( j a c o b , A ) , b i b r u l e s , B )  :- 
smno t (smc lause(g rand-mother ( rebecca ,  A ) , smsucceed ,  B ) ) ,  
smasse r t z (g rand_mo the r ( rebecca ,A ) ,  B ) ,smfa i l .  

f o r w l 6 ( p a r e n t ( e s a u , A ) , b i b r u l e s ,  B) :- 
smno t ( smc lause (g rand -mo the r ( r ebboca ,A ) ,  smsuoceed ,B ) ) ,  
smasser tz (g rand-mother ( rebeooa ,  A ) ,  B) ,  smfail. 

f o r w l 6 ( p a r e n t ( A ,  B) ,  bibrutes, O). 

t~ 

Fig. 7 The result of partial evaluation offorw(father(X, Y) bibrules, Z), with bibfacts visible. 

other atoms in the body can be solved in Th, asserts the instantiated clause head 
in ThRes and recursively derives the consequences of  the new assertion, scall is 
once again the query metainterpreter of  Fig. 3. 

For example, let us consider the theories shown in Fig. 2. By evaluating 
forw(father(isaac, jacob), bibrules, brut) we obtain the theory brut in Fig. 5. 

The algorithm is very inefficient, because there is no fast method to access 
the relevant clauses. Al l  the considerations already made about the partial 
evaluation of the metainterpreter scall apply to forw as well. In this case, 
however, the optimization on clause access is dramatic and allows to statically 
generate the "forward chaining" version of all the relevant clauses. As usual, the 
links between theories must explicitly be made visible to the partial evaluator. 
Let us consider the case where the link between bibrules and bibfacts is not 
visible. The theory tat in Fig. 6 contains the result of  the partial evaluation of  
forw(father(X, Y), bibrules, Z). 

Note that forw has been dramatically simplified and the only  metacalls 
are those related to the invisible theory bibfacts. The result of  the partial 
evaluation is therefore parametric with respect to the content of  bibfacts, since 
we partially evaluate forw only with respect to the general knowledge contained 
in the theory bibrules. 

If bibfacts is made visible to the partial evaluation offorw(father(X, Y), 
bibrules, Z), we obtain the more efficient version (not containing any invocation 
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of  scall), contained in the theory frulfacts in Fig. 7. frulfaets now depends both 
on bibrules and on bibfacts, and must be updated whenever one of  the two 
theories is updated. 

Let us conclude with some experimental performance results. The query 

forw(father(isaac, jacob), bibrules, brut), 

if executed in engine, requires 2567 logical inferences. The same query requires 
459 logical inferences in tat (partial evaluation with respect to bibrules only) 
and 22 logical inferences only in frulfacts (where partial evaluation considers 
bibfacts too). 

w Conclusions 
The partial evaluation system we have described has been tested on 

several rather complex examples and has always given satisfactory results. Our 
treatment of cuts and side-effects primitives is correct, while the multiple worlds 
feature turned out to be very useful and powerful. The gain in performance is 
usually impressive and the partial evaluator succeeded in the compilation of 
levels of  interpretation in all our examples. We are currently performing some 
experiments with metainterpreters affecting the execution control (for example, 
a metainterpreter which executes in a coroutine style Prolog extended with a 
freeze operator). 

The main problem with the current prototype is the efficiency of  the 
compilation process. Optimizations on the basic algorithm have been studied 
and are currently under experimentation. Future developments include 

the self-application of  the partial evaluator (with specific metainter- 
preters) to derive efficient compilers, as already shown in Refs. 13), 29) 
and 7). This would contribute to the performance of  the compilation 
process; 
the study of  techniques which allow to automatically mix the func- 
tionalities of  different metainterpreters, as first suggested by Refs. 27) and 
19). This is an important issue in the framework of  our KBMS, where the 
user can freely define new languages (classes and inference engines), and 
could be relieved from the task of  defining all the language related tools. 
Initial results in this direction can be found in Ref. 21. 
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