
New Generation Computing, I (1983) 25-48
OHMSHA, LTD. and Springer-Verlag

�9 OHMSHA, LTD. 1983

Object Oriented Programming
in Concurrent Prolog*

Ehud S H A P I R O
Department of Applied Mathematics,
Weizmann Institute of Science,
Rehovot 76100, Israel
Akikazu T A K E U C H I
ICOT Research Center
Institute for New Generation Computer Technology,
Mita-Kokusai Bldg. 21F, 4-28 Mita 1-chome, Minato-ku, Tokyo 108

A b s t r a c t It is shown that the basic operations of object-oriented
programming languages - - creating an object, sending and receiving
messages, modifying an object's state, and forming class-superclass hierar-
c h i e s - can be implemented naturally in Concurrent Prolog. in addition, a
new object-oriented programming paradigm, called incomplete messages, is
presented. This paradigm subsumes stream communication, and greatly
simplifies the complexity of programs definihg communication networks and
protocols for managing shared resources. Several interesting programs are
presented, including a multiple-window manager. All programs have been
developed and tested using the Concurrent Prolog interpreter described in. ~)

w 1 Introduction
Concurrent Pro log I) introduces an operat ional semantics o f parallel

execution to logic programs, thus a l lowing them to express concurrent computa-

tions. Concurrent Pro log can specify process creation, terminat ion, communica -
tion, synchronizat ion, and indeterminacy. This paper focuses on the object-
oriented aspects o f Concur ren t Prolog. It is shown that the language lends itself

natural ly to the p rog ramming idioms and techniques o f Actors 2) and Small-

talk))
The paper is structured as follows. Section 2 reviews Concur ren t Prolog.

Part of this research was carried out while Ehud Shapiro was visiting ICOT, the Institute for
New Generation Computer Technology. Ehud Shapiro is a recipient of the Sir Charles Clore
Fellowship.

26 E. Shapiro, and A. Takeuchi

Section 3 surveys the elements of object-oriented logic programming. Section 4
studies in detail a non-trivial Concurrent Prolog program : a mult iple-window

system. The system is operat ional on the DECSYSTEM-20 and V A X - I I for a
VT 100 terminal. Section 5 compares traditional object-oriented programming to
object-oriented logic programming, and identifies two important programming
techniques not easily available in the former: incomplete messages, and con-
straint propagation.

w 2 Concurrent Prolog
An examination of the abstract computat ion model of logic programs

suggests that they are readily amenable to parallel execution. A computat ion of
a logic program amounts to the construction of a proof to a goal statement from
the axioms in the program. The search space for a proof can be described by an
And-Or tree, where an And-node corresponds to a conjunctive goal, and an Or-
node corresponds to the different way to reduce a unit goal, using axioms in the

program.
An abstract logic program interpreter searching an And-Or tree is assum-

ed to make the c o r r e c t non-deterministic choices at the Or-nodes and can
traverse the And-nodes in an arbitrary order. The sequential Prolog interpreter,
on the other hand, traverses And-Or trees in depth-first, left-to-right order:
conjunctive goals are reduced from left to right, and if there are several alterna-
tive ways to reduce a unit goal, they are tried one by one, using backtracking.

One may attempt to search the And-Or tree in parallel, and two forms of
parallelism are possible: Or-parallelism and And-parallelism. In Or-parallel
execution several alternatives to reduce a unit goal are tried in parallel. In And-
parallel execution the goals in a conjunction are reduced in parallel. Since goals
in a conjunction may have logical variables in common, the processes attempt-
ing to prove each of the conjuncts are not independent and may interfere with
each other by instantiating shared variables to incompatible (non-unifiable)
solutions. Because of this dependency, one needs some means to coordinate the
computat ions of And-parallel processes.

However, concurrent programming is more than attempting to parallelize
the execution of code that can run sequentially : it must have the ability to
respond in real-time to multiple events that occur concurrently. The emphasis on
the declarative reading of logic programs in the past might have suggested that
this formalism will be of no use to ~a l - t ime application, such as the imple-
mentat ion of an operating system. Nevertheless, the contrary is suggested in the
following.

Logic programming was founded on the dual reading of definite clauses.
A definite clause

A : - -B1 , B2 Bn. n >~ O.

reads declaratively : A is true if B1 and B2 a n d . . , and Bn are true. Kowalski ' s
seminal paper n) suggested a second reading to definite clauses, the procedural,

Object Oriented Programming in Concurrent Prolog 2 7

or problem reduction reading: to execute the procedure call A, perform the
procedure calls BI and B2 and . . . and Bn, or : to solve problem A, solve the
subproblems BI and B2 and . . . and Bn. In the procedural reading, a unit goal
is analogous to a procedure call, both in the way it is used and in the way it is

implemented.
Concurrent Prolog ~ and its predecessors, the Relational Language of

Clark and Gregory 5) and the language of van Emden and de Lucena, 6) employ
a third reading of logic programs : the behavioral reading.

In the behavioral reading, a unit goal is analogous to a process, a
conjunctive goat is analogous to a system of processes, and variables shared
between goals function similarly to communicat ion channels. A definite clause
is read behaviorally : a process A can replace itself by the system of processes
that contain B1 and B2 a n d . . , and Bn. A prccess terminates by replacing itself

with the empty system.
In the procedural reading, unification provides a mechanism for param-

eter passing, variable assignment, and data access and construction. In the
behavioral reading it also provides a mechanism for message sending and
receiving and an easy way of specifying the different actions to be taken upon
the receipt of different messages.

In the behavioral reading, the actions a process can take are specified by
the definite clauses in the program : all a process can do is to reduce itself to
other processes. In the course of this reduction, variables shared with other
processes may get instantiated via the unification of the process with the head
of the reducing clause, thus achieving the effect of process communicat ion.

To support process synchronization, Concurrent Prolog introduces a new
syntactic construct, called read-only variables. Variables in a process can be
annotated as read-only. A process suspends if every reduction of it requires the
instantiation of a read-only variable.

Another construct in Concurrent Prolog borrowed from the Relational
Language, the guarded-clause, is similar to Dijkstra 's guarded-command in its
effect. Together with the read-only annotations, guarded-clauses can specify a
wide-range of indeterminate process behaviors.

The subset o f Concurrent Prolog described and used in this paper was
implemented in Prolog-10 on DECSYSTEM-20 and is described in ~ that paper
also includes a full listing of the interpreter. With minor modifications, that
interpreter can run in Pereira's CProlog on the VAX, under Unix and VMS. A
listing of a Concurrent Prolog interpreter written in Waterloo Prolog for IBM /
VM computers is available from the first author upon request.

The rest of this section provides a more detailed description of this subset
of Concurrent Prolog.

2. 1 Syntax
A Concurrent Prolog program is a finite set of guarded-clauses. A

28 E. Shapiro, and A. Takeuchi

guarded-clause is a universally quantified logical axiom of the form
A : - G1, G2 Gm t B1, B2 Bn. rn,n>~ O.

where the G's and theB ' s are atomic formulas, also called unit goals. A is called
the clause's head, the G 's are called its guard, and the B 's its body. When the
guard is empty the commit operator " I " may be omitted. Clauses may contain
variables marked read-only, such as X?. The Prolog-10 syntactic conventions are
followed : constants begin with a lower-case letter, and variables with an upper-
case letter. The special binary term i X I Y] is used to denote the list whose hexad
(car) is X and tail (cdr) is Y. The constant [] denotes an empty list.

2 . 2 Semantics
Concerning the declarative semantics of a guarded clause, the commit

operator reads like a conjunction : A is implied by the G's and the B's. The

read-only annotations can be ignored in the declarative reading.
Procedurally, a guarded-clause functions similarly to an alternative in a

guarded-command. To reduce a process A using a clause A1 : - G I B, unify
,4 with A1, and, if successful, recursively reduce G to the empty system, and, if
successful, commit to that clause, and, if successful, reduce A to B.

The reduction of a process may suspend or fail during almost any of these
steps. The unification of the process against the head of the clause suspends if
it requires the instantiation of variables occurring as read-only in A. It fails if
A and A I are not unifiable. The computat ion of the guard system G suspends
if any of the processes in it suspends, and fails if any of them fails.

The commitment operation is the most delicate, and grasping it fully is
not required for the understanding of the example programs in this paper. It
suffices to say that partial results computed by the first two steps of the reduction
- - unifying the process against the head of the clause and solving the guard - -
are not accessible to other processes in A's system prior to the commitment , and
that after commitment all the Or-parallel attempts to reduce ,4 using other
clauses are abandoned.

The reduction of all processes in a system can be attempted in parallel,
as can the search for a clause to reduce a process. Two restrictions prevent an all-
out parallelism. Regarding Or-parallelism, only the guards are executed in
parallel. Once a guard system terminates, the computat ions of other Or-parallel
guards are aborted. Regarding And-parallelism, read-only annotat ions can
enforce rather severe constraints on the order and pace in which processes can
be reduced, as the example programs below show.

This completes the description of the subset of Concurrent Prolog used in
this paper. One addit ional construct - - otherwise - - is introduced in Section 3.
Our Concurrent Prolog implementation supports also the use of the system
predicates of the underlying sequential Prolog, including arithmetic and exter-
nal I / O.

It is worth mentioning that our Concurrent Prolog interpreter is more of

Object Oriented Programming in Concurrent Prolog 29

a toy than a real implementation, since it is about 100 to 200 times slower than
the underlying sequential Prolog implementation. It runs at approximately the
same speed, 130 reductions per CPU second (LIPS), on a DECSYSTEM 2060
running Prolog-10 and on an IBM 4341 running Waterloo Prolog.

w 3 Object Oriented Programming in Concurrent P r o l o g
Concurrent Prolog is capable of expressing modern programming con-

cepts, including object-oriented programming. The concept of objects in Con-
current Prolog has close resemblance to that of Actor systems, 2) in that a
computation is performed via the cooperation of distributed objects. First a
general scheme for object-oriented programming in Concurrent Prolog is
presented. It is then explained how objects can be created, and how they can
cooperate in computation. A Concurrent Prolog programming technique,
called filters, is then introduced, which achieves the effect of hierarchical
definition of objects and property inheritance, a useful tool in other object-
oriented programming languages. In addition to the usual object oriented
features, Concurrent Prolog can provide new features that originate from the
logical power of unification. One of them is computation by incomplete
messages, and the other is implicit activation of objects, which is similar to a
constraint network. 7,8,9)

3 �9 1 Objects
Our view of objects is based on Hewitt's Actor model of parallel

computation.
An object can be thought of as an active process that receives messages

and performs action on its internal state according to the received message.
During the computation, an object can send messages to other objects.

The general properties of objects are as follows :
(1) An object is a process that can have internal states. It becomes active

when it receives a message.
(2) The internal state of an object can be operated upon from the outside

only by sending it a message, which specifies the operation to be
performed.

(3) An object can exchange messages with other objects during its computa-
tion.

(4) Any number of object-instances can be generated from a definition of an
object.

3 . 2 Realization of Objects
The following shows how Concurrent Prolog realizes objects.

[lJ A (perpetual) object is a process that calls itself reeursively and holds
its internal state in unshared arguments

The state of an object corresponds to the arguments of a process. Its

3 0 E. Shapiro, and A. Takeuchi

internal state corresponds to arguments not shared by other processes. An object
acts by reducing itself to other objects. A perpetual object survives by reducing
itself to itself. A perpetual object changes its state by calling itself recursively
with different arguments.
I2] Objects communicate with each other by instantiating shared variables
Since parallel processes are realized by And-parallelism, they can be linked by
shared variables. These variables are used as communicat ion channels among
objects. Message passing is performed by instantiating a shared variable to a
message. Because a shared variable can be referred to by multiple processes, a
message can be sent to multiple objects at once. Successive communicat ion is
possible by the stream communicat ion technique, that is, by instantiating a
channel variable to the binary term (message). X(Prolog ' s counterpart o f Lisp's
dotted pair, usually written as I(message) I where (message) is a message
to be sent and X is a new variable to be used in the next communicat ion.

I31 An object becomes active when it receives a message; otherwise it is
suspended.

The synchronization mechanism forces a process to suspend when it tries
to instantiate read-only variables to non-variable terms. Since objects peek into
their input stream in read-only mode, they are suspended if the next message is
not available yet.

I41 An object-instance is created by process reduction
An object instance B is created when an object A is reduced via a clause

A : - - . . . B . . .
I51 Response to a message

When an object sends a message which requires a response, the response
can not be sent through the same shared variable, since logical variables are
single-assignment. There are two techniques for sending a response to a message.
One is to prepare another shared stream variable, in which the communicat ion
flows in the opposite direction. The other uses a technique called incomplete
messages, which is explained more fully in Section 5.1. in this technique the
sender sends a message that contains an uninstantiated variable and then
examines that variable in a read-only mode, which causes it to suspend until this
variable gets instantiated to the response by the recipient of the message. For
example, a message show which asks a target object about its internal state is
replaced by the message show(State), where the variable State is used as a
communicat ion channel that carries the response from the target object back to
the sender. The sender will get the response in this variable sometime in the
future, when the message is received and processed. So the sender must wait until
the response variable is instantiated if it needs to refer to the response.

3 . 3 The c o u n t e r Example
A simple example of how to describe an object is shown below.

counter(~clear] S~, State):-

Object Oriented Programming in Concurrent Prolog 31

counter(S ?, 0).
counter([up [S], State) : -

plus(State, 1, NewState), counter(S ?, NewState).
counter([down] S], S ta te) : -

plus(NewState, 1, State), counter(S ?, NewState).
counter([show (State)] S], S ta t e) : -

counter(S ?, State).
counter([], State). % for temination.

The object counter has two arguments. One is an input stream, and the other is
its internal state. When receiving a clear message, it resets the state to 0. When
receiving up and down messages, it increments or decrements its state by 1,
respectively. The process plus(X, Y, Z) suspends until at least two of its
arguments are instantiated, then instantiates the third so that they satisfy the
constraint X + Y = Z . If this constraint cannot be satisfied, plus fails. The
implementation of plus is described in Section 5.2.

When receiving a show(X) message, counter unifies the variable X with
the internal state State. The last clause terminates counter process, upon en-
countering the end of the input stream. Note that the stream variable is used
recursively. In every reduction it is instantiated to a pair : the message and a new
variable, to be used in the next communicat ion.

3 . 4 O b j e c t - i n s t a n c e C r e a t i o n
Object-instance creation is accomplished by parallel-And. A new instance

of an object counter may be created by executing the following code :
terminal(X), use_counter(X ?, C1), counter(C1 7, O)

where terminal is an object that generates the stream of commands produced by
a user at a terminal, use counter is an object receiving commands from the
terminal and passing the commands to the object counter, except for the show
command, which, in addition to passing it to counter, causes the object use-
counter to wait for the response from the object counter and then to output it
to the screen. Note that the first argument of use counter and the second
argument of the object counter are treated as read only variables, because they
are used only as input.

us~counter([show(Val) I Input], [show(Val) I Command]) : -
us~counter(Input ?, Command), waiL write(Val).

use_counter([X] Input], I X I C o m m a n d]) : -
d i f (X, show(Y))[use counter(Input ?, Command).

wait write(X) : - wait(X)] write(X).
wait(X) is a Concurrent Prolog system predicate which is suspended if X is not
instantiated, and succeeds otherwise, di f (X,Y) is a system predicate that succeeds
if and when it can determine that X and Y are different (i. e. not unifiable). Note
that the stream variable is used as an object-instance name. Message passing is
performed against the stream variable and not against the target object itself,

32 E. Shapiro, and A. Takeuchi

because there are no global names in Concurrent Prolog, and the only informa-
t ion about an object that is accessible from outside are the communica t ion
channels to it.

As described before, a new object- instance is created using a defini t ion in
the program. However, object-instances created from the same def ini t ion are
different and can be dist inguished by the names o f their communica t ion
channels. The example below demonstrates this. The object use_many_counters
is similar to use_counter. It receives a c o m m a n d stream from the terminal. When

it receives a create(Name) message, it creates a new object counter and saves its
name and a c o m m u n i c a t i o n channel to it in its internal state. Other messages

must be the form (Name, Command) , where Name specifies the name of an
object counter to which the message C ommand should be sent.

use_many_counters(E create(Name) l lnput ~ , List_of_counters):--
couner(Com ?, 0),
use_many_counters(Input ?, I(Name, Com)] List_of counters]).

use_many_counters(E(Name, show(Val)) l Input], List_of_counters) : -
send(List_of_counters, Name, show(Val), NewList) l
use_many_counters(Input ?, NewList), wait_write(Val).

use_many_counters(IX] Input], List_of_counters) : --
dif(X, create(Y)), dif(X, show(Y)),
send(List.of_counters, Name, X, NewList)]
use_many_counters(Input ?, NewList).

send ([(Name, [Message I Y])1 List], Name, Message, E(Name, Y)I List]).
send ([C I List], Name, Message, [C I L 11) :-- send(List, Name, Message, L 1).

The object use_manycoun te r s has two arguments. One is an input stream from

the terminal, and the other is a list o f (Name, Channe l)where N a m e is an
identifier o f the object counter given by the create c o m m a n d and Channel is the

communica t ion channel to that object. The object send takes four arguments.
The first argument is the same as the second argument o f use m a n y c o u n t e r s .
The second and the third arguments are an identifier o f the object counter and

use_many_cqunters(ln ?, I])
l ln=[create(cl) I lnl]

use_many_eounters(lnl ?, [(CI, X1)]), counter(Xl?, O)
l lnl= [create] (e2) In2]

use_many_counters(In2 ?,[(e2, X2), (el, X1)]), counter(X2 ?, O)
l In2= Iereate(c3)] ln3]

use_many_counters(In3 ?,~(c3, X3), (e2, X2), (el, X1)]), counter(X3 ?, O)

Fig. 1 Multiple object-instantiation

Object Oriented Programming in Concurrent Prolog 33

a message to be sent, respectively. The fourth argument is the updated list of
counters. Figure 1 shows a situation in which three create commands were
processed. Note that since there are no global variables in Concurrent Prolog,
an object must keep channel variables associated with other objects in order to
send messages to them.

The mult i-window system described in Section 4 uses a similar technique
to create processes and to associate with them windows and communicat ion
channels.

3 . 5 Default Programming, Filters, and Object Hierarchies
Some object-oriented languages, such as Smalltalk, 3) associate a

hierarchy with objects. This hierarchy supports a very convenient form of
default programming. Methods for responding to a message can be associated
with an object high in the hierarchy, and an object-instance, receiving a message
which it does not know how to respond to, can default to an object higher in
the hierarchy to respond to the message. In addit ion to increasing the brevity of
programs, such a mechanism also increases their modularity, since a code
associated with a class of objects may occur only in the definition of the class,
rather than with the definitions of its subclasses. This mechanism also encourag-
es the programmer to identify useful abstractions, so it can be used.

Concurrent Prolog does not have special hard-wired mechanisms to
support object hierarchies. However, a certain programming technique, called
filters, together with a new Concurrent Prolog construct, otherwise, achieves a
very similar effect. The resulting programs exhibit a behavior of an Actor-like
cooperative group of objects.

Consider the following hierarchy of objects: a rectangular-area;
a window-frame, which is a rectangular-area with four border-lines ; a window-
with-label, which is a window-frame with a label at the bottom of the window.
These can be defined by a class-superclass hierarchy (see Fig. 2).

In a language that supports such hierarchies directly, the functionality of
a rectangular-area is inherited by the window-frame, and the functionality of a
window-frame is inherited by a window with a label. Operationally, an object

rectangular-area

l + four border lines

window-frame

+ label

window-with-label

Fig. 2 Class-superclass hierarchy

34 E. Shapiro, and A. Takeuchi

that receives a message checks whether it knows how to respond to it. If it does
not, then it defaults to its parent in the hierarchy to respond to it. In this sense
every object in the hierarchy functions like a filter on a stream of message, and
this is precisely how object hierarchies are implemented in Concurrent Prolog.

Every object in a hierarchy must have at least one designated input stream
and one designated output stream, except the topmost object, which may have
an input stream only. The hierarchical structure of the objects is reflected by the
structure of the communicat ion network that they form. An object A lower in
the hierarchy has its output stream connected to the input stream of an object B
next up in the hierarchy. If A receives a message that it cannot respond to, it
s imply defaults to B by passing to it the message.

The following Concurrent Prolog implementat ion of the window hier-
archy demonstrates this technique. First a rectangular-area is defined.

rectangular_area([clear I M], Parameters) : -
clear_primitive(Parameters) l
rectangular area(M ?, Parameters).

rectangular area(E ask (Parameters) l M] , Parameters):-
rectangular area(M ?, Parameters).

Parameters is a data structure consisting of four parameters (Xpos Ypos, Width,
Height), where Xpos and Ypos are the coordinates of the upper-left corner of
the area, and Width and Height are the size of the area. clear primitive is a
system defined primitive predicate which clears the screen area specified in its
arguments.

From this rectangular area object, a window-frame can be defined. The
frame object can be viewed as a filter on the input stream of a rectangular area.
It filters two types of message, on which it knows how to respond : draw and
refresh.

create_frame(M, Parameters) '-
rectangular .area(M ?, Parameters),
frame(M?, M1).

frame([drawlM], Eask(Parameters) I MI]) : -
draw lines(Parameters) I
frame(M ?, M1).

frame([refresh l Ml, [clear l M l ~) : -
frame(Edraw l M~, M1).

frame(EXlM], EXIM1]):--
di f(X, draw), di f(X, refresh) l
frame(M ?, M1).

The first clause specifies the initialization procedure, which creates a rectangular
area object by passing the parameters and an original frame object with the
communicat ion channel to the rectangular area. The rest of the clauses specify
the method for interpreting each message. On receiving a draw message, it asks
the rectangular_area about the dimensional parameters and then draws four

Object Oriented Programming in Concurrent Prolog 35

border lines. On receiving a reflesh message, it sends two messages, clear and
draw, to the rectangular area and self respectively. On receiving other messages,

it only passes them to the rectangular area.
To support default programming, a new construct is introduced to Concur-

rent Prolog, called otherwise. An otherwise goal that occurs in a guard succeeds

if and when all other parallel-Or guards fail. Given the other clauses for frame,
the last clause is equivalent to :

f r a m e (I X [M] , [X[M1]) : -
otherwise[f rame(M ?, M1).

It is not difficult to see that if all clauses for an object have empty guards, then
otherwise can be implemented via a preprocessor that expands it to an appropri-

ate sequence of calls to dif(, _). If the guards are not empty, then otherwise
can be implemented via a negation-as-failure primitive, in this sense otherwise
does not increase the expressive power of Concurrent Prolog more than the
addition of negation as failure does. However, an efficient implementation of
otherwise requires a modification to the Concurrent Prolog interpreter.

Now, a window frame with a label is defined.
create_ window with label (M, Label, Parameters) : -

create_frame(M I ?, Parameters),
window with_label(M ?, Label, Ml).

window_with_label([change(Label) [M], OldLabel, MI) : -
windowwith label(M ?, Label, Ml).

window_with_label([show[M] , Label, [ask(Parameters)[MI]):--
sho w_label_primitive(Label, Parameters) I
window with_label(M ?, Label, Ml).

window with label([refreshIM], Label, [refresh[M1]):-
window_with_label([show I M], Label, M1).
window_with label(IX[M], Label, [X[M /]) : -

otherwise[
window_with label(M ?, Label, Ml).

The first clause defines the initialization procedure which creates the object
frame with the parameters and a window with_label with the communication

channel to the object frame. The rest of the clauses define the methods to
interpret messages. On receiving a change message, it changes the label. On
receiving a show message, it asks the object frame about its parameters and
displays the label in the appropriate position in the window, using the predefin-

ed predicate show_label_ primitive. On receiving a refresh message, it sends two
messages, refresh and show, to the frame and self respectively. On receiving other

messages, it only passes them to the frame.
In the class-superclass hierarchy, a message which can not be processed by

an object is passed to its superclass. In Concurrent Prolog such a hierarchy is
simulated by a network of objects connected via communication channels,
through which unprocessable messages are sent. A system like Flavor]~ and

36 E. Shapiro, and A. Yakeuchi

Smalltalk-803) can permit objects to access instance variables o f their superclass.

However, in Concurrent Prolog, since a superclass o f an object is also an object,
such direct access to states o f other objects is not possible. Instead o f this, an
object has to send a message asking about states to the object that plays the role

o f its superclass.
Table I shows the relation between objects and acceptable messages.

Table 1 Objects and acceptable messages

Objects I i Messages Process

rectangular_area

frame

window_ with_label

i

I ' clear
2 I ask(X)

3 i draw
i

4 I refresh
:c lear
i

l ask(X)
i

51 change(Label)
i

61 show
7 i refresh

: draw
i

', clear
' , a s k (X)
i

clear the area
instantiate X to parameters

draw four lines
=1+3
send to rectangular_area
send to rectangular_area

change the label
display the label
send to frame
send to frame
send to frame
send to frame

In the case o f an object window_with_label , there are two kinds o f

methods. One is an own method, and the other is a so-called generic method.
Gener ic methods are invoked by sending messages to objects which play the role

o f a superclass.
In this coopera t ing objects approach, there is no difference between the

class-superclass hierarchy and the part-whole relation. In other words, the role

o f an object in a group o f coopera t ing objects is not determined from a structural
descript ion (such as superclass declarat ion and part declarat ion) but f rom a
behavioral description in the form of a communica t ion network. F rom this
point o f view, a rectangular area can be seen both as a superclass of a f r a m e and

as a part o f a f rame . The essential point, however, is the behavioral role o f the
rectangular area against the f rame , and in this sense this approach is close to the

Actor formalism.
More explanat ion is needed about the modula r i ty o f this approach. First,

the internal states o f an object can never be operated upon directly f rom a user
o f the object. All a user can do is to send a message that specifies the opera t ion

to be performed. Thus, the encapsulat ion o f internal states is established.
Second, there is no way to access directly c o m p o n e n t objects o f an object from
the outside, except by using incomplete messages, as explained in Section 5.1.
Thus, the encapsula t ion o f componen t objects is also established. By these
properties o f objects, it is possible to construct compl ica ted objects f rom simpler

Object Oriented Programming in Concurrent Prolog

objects in a modular way.

37

w 4 Multi-window System
The following is a powerful and expressive example of a Concurrent

Prolog implementat ion of a multi-windows system. The system is architectured
after the MUF (Multi User Forks) program and the SM (Session Manager)
program of the Yale Tools programming environment? l) TheTools environment
supports only multi-tasking but not multi-windows. Consequently, it does not
support concurrent processes output to the screen, whereas this program does. On
the other hand, Tools is a real, usable system, while this is still a toy.

The system can create processes dynamically, make them run concurrently
and associate each process with a window that can display input and output of
the process in the specified position on the screen. Terminal input is managed
by the window manager, which can switch the connection between the terminal
and a specified process. A user of this system can create several processes
dynamically, make them run concurrently, and see concurrently the input-output
behavior of each process in the window associated with it.

A window consists of a rectangular area, four border lines and a label
field like the windowwith label defined above (see Fig. 3). It also has a text
string as its internal states. A window has two modes. In normal mode it can fill
the region with its text string, append a new string and display it by scrolling up
if the window is full. In the other mode, called session manager, or sm mode,
all the history of the input and the output since the window was created is
displayed according to the commands the window receives, by scrolling up and
down. In both modes, a window can also move to somewhere else on the screen,
change its size, and so on. First the window object will be shown. General form

of the window: :
window((Input, PI, PO), State, normal) in normal mode
window((Input, PI, PO), State, sm) in sm mode

The first argument of window is three communicat ion channels : Input is input
from the window manager, and PI and PO are output to the associated process
and input from the process, respectively (see Fig. 4). The second argument, State,
must be a data structure which represents the window's internal state:
geographical parameters, contents (text string), and label. In the current
implementation, it is represented as ((XO, YO, W, H), Y, Contents, Label)
where XO and YO are the coordinate of the upper-left corner of the window, W
and H are width and height of the window respectively and Y points the current

cursor position. The form of Contents is (Tof, Top, Tail, Last), where Tof,
Top and Tail point the top of file (all the string), the head of the text currently
displayed in the screen and end of text respectively. Last is used when entering
the sm mode to save the current Top, which will be restored upon exit from
sm mode. Text stings are represented as a bi-directionally linked list of lines,
which can be constructed easily by unification with no occur-check. The varia-

3 8 E. Shapiro, and A. Takeuchi

process1

window process3

I window

process2 t
window

process4

window

command window

Terminal Screen

(a) A sample screen of muhi-window system

~ ! ~ f~ ~i:----~ window ~ process1]

- -_-5--~------ window ~process2]

keyboard ~ window process 3

window ~

(b) Total view of muki-window system
Fig. 3 Multi-window system

Input
PI

window
PO

process

Fig. 4 A window object

Object Oriented Programming in Concurrent Prolog 39

ble Label is the label o f the window. The four th argument of window indicates

the current mode of the window and must be sm or normal.
The window in both m o d e s :

window(([erase] In], PI, PO), State, Mode):--
erase_ window(State) I
window((In ?, PI, PO), State, Mode).

window((]move(X, Y) I In], PI, PO), State, Mode):-
erase_ window(State), set_parameters~(xy, (X, Y), State, State l) I
window((]show I In], PI PO), Statel, Mode).

window(([grow(W, n)] ln], PI, PO), State, Mode):-
erase,- window(State), set_parameters~(wh, (W, H), Stfoe, State1) [
window(([showl In], PI, eo), State, Mode).

window(([show l In], PI, PO), State, Mode):-
show(State)]
window((In ?, PI, PO), State, Mode).

On receiving an erase message, the window erases the area specified in the State
parameter, including border lines and label field. On receiving a move(X, Y)
message, it erases the current area and appears in the new posit ion, the xy-
coord ina te o f the upper-left corner, which is specified by X and Y. set_
parameters(xy, (X , Y), State, Statel) is a primitive method which changes

the xy parameter (xy-coordinates o f a window) of State to X and Y and
returns new window parameters Statel. On receiving a grow(W, H), it erases

the current area and appears again in the same posit ion with a new size specified
by the new width W and the new height H . It can become wider, narrower,
longer or smaller according to W and H . On receiving a show message, it

only redisplays itself in the same posit ion with the same size.
The code o f w indow specific to normal mode : :

window(([s m l In], PI, PO), State, n o r m a l) : -
enter sm(State) l

window((In ?, PI, PO), State, sm).
window((I X I In], [X I PI], PO), State, n o r m a l) : -

fill input (X , State, S tate l) l
window((In ?, PI, PO), Statel, normal).

window((In, PI, [X I PO]), State, n o r m a l) : -
f i l l_output(X, State, State l) I

window((ln, PI, PO ?), Statel, normal).
On receiving an sm message, the window enters the sm mode. On receiving other
messages, which must be messages to the associated process, it appends the
messages to the current contents, displays it and passes it to the associated pro-
cess. On receiving messages from the associated process, it also appends the mes-
sages to the current contents and displays it.

The code the window executes only in sm mode is :
window(([up I In], PI, PO), State, sm) : -

40 E. Shapiro, and A. Takeuchi

show_up(State, Statel)] window((In?, PI, PO), Statel, sin).
window((Edown I In], P1, PO), State, sm) : -

show_down(State, Statel) l window((In ?, PI, PO), Statel, sm).
window((~exR] In], PI, PO), State, sm) : -

exit_sm(State, Statel) [
window(([show l In], PI, PO), Statel, normal).

window((EX I In], PI, PO), State, sm) :
window((In ?, PI, PO), State, sm).

On receiving up and down messages, the window scrolls up and down the
screen respectively. On receiving an exit message, it exits from the sm mode
and returns to the normal mode.

The window manager, wm for short, has two arguments.
wm(Input, Lis tOfChannels)

The first argument is the input command stream to the window manager, and
the second argument is a list of pairs of a window label and an output channel
to the associated process.

The window manager can accept three kinds of messages.
wm([create(Label, Process, (PI, PO),(XO, YO, W, H))1 lnputl, Processes):-

window((~showl ln~, P1, PO ?),

((XO, YO, W, H), YO, (C, C, C, C), Label), normal),
Process,
wm(Input ?, ~(Label, ln) l Processes]).

wm (~ resume(Label) I Input], Processes) : -
find_process(Label, Processes, P1, Processesl)l
distribute(Eshow l lnputl, PI, Input, PI1),
wm(Input ?, ~(Label, Pll I Processesl~).

wm(Eclose l Input], ~(Label, E])1 ProcessesJ) : -
wm(lnput ?, ~(Label,_) I Processesl]).

wm(~] , Processes) : - close input(Processes).

On receiving crea te (Labe l , Process, (PI , PO), (XO, YO, W, H)) message, it

creates a process Process and a window with label Label monitoring the process's

input and output and sends a show message to the window. PI and P O are
variables representing the primary input and primary output channels of the
process respectively, and may appear in the goal Process. XO, YO, W and H are

window parameters. On receiving the resume(Label) message, it finds the input
channel to the process with a name Label from the list of processes Processes and
connects the input stream of the window manager and the input channel of the
process by creating the object distribute. At the same time, it picks up the

process and places it in the top of the list of the processes. On receiving a close
message, it closes the input channel of the process currently resumed. On
reaching the end of the input stream, the window manager closes all the input
channels of the processes and terminates.

The object distribute has four arguments. The first argument is an input

Object Oriented Programming in Concurrent Prolog 41

channel from the terminal. The second and the third arguments are output
channels to the window associated with the process currently resumed and to the
window manager respectively. The fourth argument returns the updated input
channel of the window when the connection is cut. The distribute object peeks
ahead into the input, and if the input is a window manager command, then it
returns the input stream and the window's input channel to the window manager
and terminates. Otherwise it passes the input to the window process (Fig. 5).

distribute(iX I Input], PI, IX [Input], PI) : -
member(X, [resume(), close, create(, ,

distribute(IX [Input], IX [PI], lnputl, P I I) : -
otherwise[distribute(Input?, PI, lnputl, PII).

distribute([], PI, [], e l) .

)3) I true.

find-process and close-input are written in the following way.

find process(Label, [Label, PI) [Processes], PI, Processes).
findprocess(Label, [PD[Processes], PI, EPDI Processesl])'-

f ind process(Label, Processes, PI, Processesl).

close input(El).
close jnput ([(, []) [Processes])" -- closejnput(Processes).

w m

3rd arg.

Input

1st arg.
distribute

P I

2nd arg.

Fig. 5 A distribute object

window

w 5 New Object-Oriented Programming Techniques in Concurrent
Prolog
Concurrent Prolog supports several powerful object-oriented program-

ming techniques not available easily in the Actor system and other object-
oriented languages. These techniques heavily depend on properties of
unification.

In object-oriented languages, a message is sent by specifying the name of

42 E. S h a p i r o , a n d A . T a k e u c h i

the target objects. However, in Concurrent Prolog, objects are connected by
shared variables, and a message is sent by instantiating a shared variable to it.
Therefore, the name of the target object does not necessarily appear in the
message passing phase. Furthermore, broadcasting becomes quite simple,

because a message is sent to all the objects that share the variable at once.
Generally, shared variables are made at the moment when a process creates a
new system of processes, as in the following clause :

p (X) : - - q (X , Y), r(Y7).
In the example above, Y is created and used as a communication channel from
q to r. Shared variables can also be made dynamically by sending a variable as

a part of a message. This means that a communication channel can be made
dynamically and it can be sent to other objects as well. A message that contains
variables is called an incomplete message. Section 5.1. explains this concept.

As described before, information can be sent implicitly to any number of

objects without knowing who the receivers are by simply instantiating a shared
variable to it. This can be seen also as if a sender and receivers of a message do
not know each other beyond knowing that the variable is shared with some

objects. All that the sender has to do is to instantiate a variable as soon as
possible, and all that the receivers have to do is to wait until the variable
becomes instantiated. This kind of implicit communication is useful for con-
structing a dependency network like Constraints, 7"s'9) as explained in Section 5.2.

5 . 1 Incomplete Messages
The concept of incomplete messages* is a new, encompassing program-

ming paradigm, which includes the basic communication mechanism between

objects, pipelined processing on stream data, and yields new object-oriented
programming techniques. As in the Actor system, Concurrent Prolog is a model
of parallel computation, and provides communication methods based on

message passing through shared variables. A message is sent by instantiating a

shared variable. A message that contains a variable is called an incomplete
message. It makes a new variable shared between the sender and the receiver of

the message, that is, it creates a new communication channel. Since once a variable
is instantiated it will never be rewritten, it can carry only one message. In order
to enable subsequent communication, generally a shared variable is instantiated
to a pair of a message and a variable which will be used in a next communi-
cation, which gives the effects of a stream. Although pipelined processing on

stream data usually requires adding new constructs to a language, it is subsumed
naturally by the paradigm of the incomplete message.

A prime generator based on a Eratosthenes' sieve algorithm is a typical
example of pipeline processing on partially obtained data.

primes :-- integers(Z, 1), sift(I?, J), outstream(J?).

* In T R - 0 0 3 ~ they are cal led partially_deteemined~nessages.

Object Oriented Programming in Concurrent Prolog 43

integers(N, I N I 1]) : - - N! is N-F l l integers(N1, I).
sift(EPI I], EPI R 1]) : - filter(l?, P, R), sift(R?, gl) .
filter(IN I I], P, R) : - 0 is N mod P l filter(l?, P, R).
filter(E g l I I , P, ENI R]) : - M is N mod P, M > O I filter(l ?, P, R).
outstream([X I S]) : - write(X) l outstream(S?).

The predicate primes is the top level goal which is invoked by a user first.
It creates three objects :integers, which generates an infinite sequence of
integers, sift, which sifts the integer sequence by the prime numbers obtained so
far and outstream, which prints out the sequence of prime numbers one by one.
All the communicat ion among objects is carried by streams. For example, every
time a new integer is obtained, the object integers sends it with a new variable
which corresponds to a stream (not obtained yet) of integers larger than it.
Another logic program implementation of this algorithm, which seems to
require a more elaborate control mechanism, appears i n . 12)

As in the case of a show(X) message to a counter object presented in
Section 3.2, when a message requires a response, it is sent with a variable which
will be instantiated by the receiver to the response, This is also an example of
an incomplete message. However, this use of incomplete messages is different
from streams, because the object that instantiates the variable in the message is
the receiver of the message, not the sender. Once a message is sent to an object,
the sender and the receiver run independently as long as they can. I f the response
variable is not instantiated yet by the receiver when the sender refers to it, then
the sender suspends.

This programming technique is extremely useful when implementing
managers of shared resources. The following implementation of a queue
manager demonstrates this. The queue manager handles the messages
enqueue(X) and dequeue(X), which represent requests to append X at the end
of the queue and to return an element positioned at the head of the queue
respectively. The predicate qm takes three arguments. The first argument is an
input channel of requests from users, and the second and the third arguments

are pointers to the head of the queue and the tail of the queue respectively. To
ensure that the qm is invoked with an empty queue, these two pointers must be
the same variable in the first invocation. For example, the situation where there
are two user processes accessing the queue manager is described as follows.

userl(X), user2(Y), merge(X?, Y?, Z), qm(Z?, Q, Q)
userl and user2 are user processes sending requests to the queue. Those two
request streams are merged into one stream by the object merge and the resulting
stream is sent to the queue manager. The merge program is :

merge(EA] Xs], Ys, EA I zs] : - merge(Xs?, Ys, Zs).
merge(Xs, EA] Ys3, EAI Zsl):-- merge(Xs, Ys?, Zs).

The queue manager program is :
qm(Edequeue(X)] Sl , ~X I Head~, Tail):-- qm(S?, Head, Tail).
qm(Uenqueue(X) l S], Head, IX I Tail]) :-- qm(S?, Head, Tail).

44 E. Shapiro, and A. Takeuchi

On receiving a dequeue(X) message, it instantiates X to the top element

of the queue. On receiving enqueue(X) message, it inserts X at the end of the
queue. The behavior ot qm is quite interesting when the queue is empty and the
queue manager receives a dequeue(X) message. It never returns a negative
response to the sender of the message. It only unifies the variable X with a
variable which is located at the top of the queue. This variable will be

instantiated to a queue element sometime in the future, when the qm will receive
an enqueue message. After the unification, qm becomes free from the dequede

request and tries to serve the next request from the input stream. The point is
that the interaction between the qm and the sender of a dequeue message is
completed at the moment of the unification. The sender will not need to send
another message to qm whether X is instantiated or not, and qm will never send

any additional message to the sender. The response will be conveyed indirectly
byinstant iat ingX to an enqueued element when qm will receive an enqueue

message.
The behavior of the qm is also interesting when it receives the message

enqueue(X) with X uninstantiated. As in the case above, it unifies the variable
X with the tail element of the queue and finishes the processing of the request.
The object which will send a dequeue message in the future will receive the

variable X if the object sending enqueue(X)will not have instantiated X at that
time as in the case above. From the point of view of the sender of a dequeue
message, the situation is the same as in the above example, and it will have to
wait for the value of X when it will need to refer to it. The situation can be seen
as the object sending enqueue(X) reserves the place to which it will really

enqueue something only later (Fig.6).
From these observations, it is clear that the behavior of the object qm is

only to connect logically the arguments of dequeue and enqueue messages, in
their arrival order, and real information is sent from the enqueueing object to
the dequeueing object directly. However the important point here is that this

logical connection cannot be seen by the users of qm.All they can see is the qm

userl ~ X)

user2 | dequeue(Y)

X=Y

Fig. 6 The queue manager

Object Oriented Programming in Concurrent Prolog 45

object. This highly reduces the overhead on the resource manager because the
manager will never be locked and request will never be refused. Using
incomplete messages, we can create dynamical ly a new information path, which
is hidden from the objects taking part in the message passing. This cannot be
expressed in other object-oriented languages as simply as in Concurrent Prolog.
This use of incomplete messages reduces message exchanging overhead and gives
great expressive power to Concurrent Prolog.

5 . 2 Constraints
A constraint specifies a dependency relation among properties of objects.

It is associated with procedures for satisfying it and can determine properties of
objects if enough information about other properties of the objects are deter-
mined. There is no static input and output relation among the properties of
objects ;rather, which property is input and which is output is determined
dynamically, in an indeterminate way.

For example, the constraint plus(X, Y , Z) specifies the relation,
X + Y ~ Z

where X, Y and Z are properties of some objects. Because the degree of freedom
of this relation is two, it can find the value of an unknown property when two
of the arguments are determined.

plus(2, 3, Z) ,instantiate Z to 5.
plus(2, Y, 5) ~ i n s t a n t i a t e Y to 3.
plus(X, 3, 5) , instantiate X to 2.

A constraint becomes active only when a sufficient number of its argu-
ments are determined. Otherwise, it is suspended.

plus(X, 3, Z) ,suspended
plus(X, 3, 5) ,active and instantiates X to 2.

Constraints can form a dependency network over properties of objects. In the

case of the plus constraints, it can represent simple equation systems, like :

plus(X ,A ,5) X + A = 5
&

plus(Y, I , X) =~ Y + 1 = X
&

p l u s (Y , 5 , Z) Y + 5= Z
In this network, each plus node plays the role of propagating values of
properties of objects. For example, if the network receives 1 for A, it instantiates
X, Y , Z to 4,3,8 respectively, and if it receives 4 for X, it instantiates A, Y , Z to

1,3,8 respectively, and so on.
Generally the representation of a constraint consists of methods to satisfy

the relation. The constraint plus is defined in Concurrent Prolog simply as

follows.
plus(X, Y , Z) : - -wa i t (X) , wait(Y)] Z is X + Y.
plus(X, Y , Z) : -- wai t (Y) , wai t (Z) I X is Z - Y.

46 E. Shapiro, and A. Takeuchi

plus(X, Y , Z) : -- wait(Z), wai t (X) I r is Z - X .

where "X is Y"is a system predicate that evaluates an arithmetic expression Y
and unifies the result with X. This definition shows that indeterminate
computation is realized by Or-parallelism, and that the activation of a constraint
is specified by wait predicates in guards. A dependency network of constraints
can be formed by parallel-And and shared variables. For example, the equation
system above is represented as follows.

plus(X ,A,5) , p l u s (Y , I , X) , p l u s (Y , 5 , Z)
The behavior of this network is :: (Fig. 7)

Initially: All constraints are suspended
A is instantiated to 1 externally
then plus(X , A , 5) is now active and instantiates X to 4
then p l u s (Y , 1 , X) becomes active and instantiates Y to 3
then p l u s (Y , 5 , Z) becomes active and instantiates Z to 8

plus(X, Y,Z)

Fig. 7 The constraint network

The current implementation of constraints does not treat the methods
for updating values of properties because logical variables are single assignment
and can never be rewritten, and the dependency network cannot find the so-
lution, even if there exists a unique solution, when the network contains some
circular dependency, for example plus(X, Y ,5) , _ p lu s (X , l , Y). However, this
presents another example of the expressive power of Concurrent Prolog.

w 6 Conclusion
The name of the game in designing a logic programming language is to

find a control regime over logic programs that achieves a desired behavior.
One is constrained by the requirements that any result of the computat ion
must be a logical consequence of the axioms in the program, and that the con-

Object Oriented Programming in Concurrent Prolog 47

trol regime be both expressive and simple, to make the efficient implemen-
tation of algorithms possible without inducing too much runtime over-
head. Sequential Prolog (side-effects excluded) is an example of such a log-
ic programming language, designed to run efficiently on a yon Neumann ma-
chine. Concurrent Prolog is another example.

Given these constraints, there was little freedom in choosing the target
programming style when designing Concurrent Prolog. Hence it was an experi-
mental finding, almost a surprise, that Concurrent Prolog lends itself most
naturally to a very specific concurrent programming style, namely object-orient-
ed programming. This paper has attempted to convey this finding via program-
ming examples.

These examples have shown that the basic operations of object-oriented
programming languages--creating an object, sending and receiving messages
among objects, modifying an object's state, and forming class-superclass hier-
a r ch i e s - all correspond naturally to Concurrent Prolog programming
techniques rather than to specialized programming language constructs. It is felt
that showing that a programming technique in one language subsumes spe-
cialized constructs in another language is among the strongest evidence of the
expressive power of a programming language.

In addition, a new object-oriented programming paradigm unique to
Concurrent Prolog, called incomplete messages, has been presented. This
technique subsumes stream communication and greatly simplifies the complexity
of communication networks and the communication overhead usually associated
with managing shared resources.

This paper provides only a glimpse of the potential of Concurrent Pro-
log to implementing constraint systems. The ability to determine dynamically
the inputs and outputs of an object seems to be an invaluable asset for this task.
A subsequent paper will explore further the application of Concurrent Prolog
to this task.

Acknowledgements
The authors would like to thank Dan lngalts for suggesting the problem

of implementing a multi-window system as a generic object-oriented program-
ming problem. We would also especially like to thank Kazuhiro Fuchi, Director
of the ICOT Research Center, Kouichi Furukawa, Chief of the second research
laboratory of the 1COT Research Center, and the other members of the ICOT
staff, both for help with this research and for providing a stimulating place in
which to work.

References
I) Shapiro, E. Y. : A Subset of Concurrent Prolog and Its Interpreter, ICOT Technical

48 E. Shapiro, and A. Takeuchi

Report, TR-O03 (1983).
2) Hewitt, C. : Viewing Control Structures as Patterns of Passing Messages, Artificial

Intelligence, 8 (1977) .
3) The XEROX Learning Research Group: The Smallta[k-80 System, BYTE (Aug,

1981) .
4) Kowalski, R. : Predicate Logic as Programming Language, Proc. of IFIP 74 (1974).
5) Clark, K. L. and Gregory, S. :A Relational Language for Parallel Programming,

Proc. of the ACM Conf. on Functional Programming Languages and Computer
Architecture (1981).

6) van Emden, M. H. and de Lucena, G. J. : Predicate logic as a programming language
for parallel programming, Logic Programming, (K. L.Clark and S. A. Tfirnlund eds.)
(Academic Press, 1982).

7) Steele, G. L. : The Definition and Implementation of a Computer Programming
Language based on Constraints, MIT AI-TR-595 (1980).

8) Borning, A. : The Programming Language Aspects of ThingLab, a Constraint-Ori-
ented Simulation Laboratory, ACM Trans.on Programming Languages and Systems,
3, No.4 (1981).

9) Sussman, G. J. and Steele, G. L. : Constraints - A Language for Expressing Almost-
Hierarchical Descriptions, Artificial Intelligence, 14 (1980).

10) Weinreb, D. and Moon, D. : Flavors : Message Passing in the Lisp Machine, MIT AI
memo no. 602 (1980).

I I) Ellis, J.R., Mishkin, N., van Leunen, M. and Wood, S. R. : Tools : An Environment
for Timeshared Computing and Programming, Research Report, 232 (Department
of Computer Science, Yale University, 1982).

12) Pereira, L. M. : Logic Control with Logic, Proc. of the]st Ira. Logic Programming
Conf. (1982).

