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A b s t r a c t  It is shown that the basic operations of object-oriented 
programming languages - -  creating an object, sending and receiving 
messages, modifying an object's state, and forming class-superclass hierar- 
c h i e s -  can be implemented naturally in Concurrent Prolog. in addition, a 
new object-oriented programming paradigm, called incomplete messages, is 
presented. This paradigm subsumes stream communication, and greatly 
simplifies the complexity of programs definihg communication networks and 
protocols for managing shared resources. Several interesting programs are 
presented, including a multiple-window manager. All programs have been 
developed and tested using the Concurrent Prolog interpreter described in. ~) 

w 1 Introduction 
Concurrent  Pro log  I) introduces an operat ional  semantics o f  parallel 

execution to logic programs,  thus a l lowing them to express concurrent  computa-  

tions. Concurrent  Pro log  can specify process creation, terminat ion,  communica -  
tion, synchronizat ion,  and indeterminacy.  This paper focuses on the object- 
oriented aspects o f  Concur ren t  Prolog. It is shown that the language lends itself 

natural ly to the p rog ramming  idioms and techniques o f  Actors 2) and Small- 

talk))  
The paper is structured as follows. Section 2 reviews Concur ren t  Prolog. 

Part of this research was carried out while Ehud Shapiro was visiting ICOT, the Institute for 
New Generation Computer Technology. Ehud Shapiro is a recipient of the Sir Charles Clore 
Fellowship. 
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Section 3 surveys the elements of  object-oriented logic programming. Section 4 
studies in detail a non-trivial Concurrent Prolog program : a mult iple-window 

system. The system is operat ional  on the DECSYSTEM-20  and V A X - I I  for a 
VT 100 terminal. Section 5 compares traditional object-oriented programming to 
object-oriented logic programming,  and identifies two important programming 
techniques not easily available in the former:  incomplete messages, and con- 
straint propagation. 

w 2 Concurrent Prolog 
An examination of  the abstract computat ion model of  logic programs 

suggests that they are readily amenable to parallel execution. A computat ion of  
a logic program amounts to the construction of a proof  to a goal statement from 
the axioms in the program. The search space for a proof  can be described by an 
And-Or tree, where an And-node corresponds to a conjunctive goal, and an Or- 
node corresponds to the different way to reduce a unit goal, using axioms in the 

program. 
An abstract logic program interpreter searching an And-Or tree is assum- 

ed to make the c o r r e c t  non-deterministic choices at the Or-nodes and can 
traverse the And-nodes in an arbitrary order. The sequential Prolog interpreter, 
on the other hand, traverses And-Or trees in depth-first, left-to-right order:  
conjunctive goals are reduced from left to right, and if there are several alterna- 
tive ways to reduce a unit goal, they are tried one by one, using backtracking. 

One may attempt to search the And-Or tree in parallel, and two forms of 
parallelism are possible:  Or-parallelism and And-parallelism. In Or-parallel 
execution several alternatives to reduce a unit goal are tried in parallel. In And- 
parallel execution the goals in a conjunction are reduced in parallel. Since goals 
in a conjunction may have logical variables in common,  the processes attempt- 
ing to prove each of the conjuncts are not independent and may interfere with 
each other by instantiating shared variables to incompatible (non-unifiable) 
solutions. Because of this dependency, one needs some means to coordinate the 
computat ions of  And-parallel  processes. 

However, concurrent programming is more than attempting to parallelize 
the execution of code that can run sequentially : it must have the ability to 
respond in real-time to multiple events that occur concurrently. The emphasis  on 
the declarative reading of  logic programs in the past might have suggested that 
this formalism will be of  no use to ~a l - t ime application, such as the imple- 
mentat ion of  an operating system. Nevertheless, the contrary is suggested in the 
following. 

Logic programming was founded on the dual reading of definite clauses. 
A definite clause 

A : - -B1 ,  B2 . . . . .  Bn. n >~ O. 

reads declaratively : A is true if B1 and B2 a n d . . ,  and Bn are true. Kowalski ' s  
seminal paper n) suggested a second reading to definite clauses, the procedural,  
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or problem reduction reading:  to execute the procedure call A, perform the 
procedure calls BI and B2 and . . .  and Bn, or : to solve problem A, solve the 
subproblems BI and B2 and . . .  and Bn. In the procedural reading, a unit goal 
is analogous to a procedure call, both in the way it is used and in the way it is 

implemented. 
Concurrent Prolog ~ and its predecessors, the Relational Language of 

Clark and Gregory 5) and the language of  van Emden and de Lucena, 6) employ 
a third reading of logic programs : the behavioral reading. 

In the behavioral  reading, a unit goal is analogous to a process, a 
conjunctive goat is analogous to a system of  processes, and variables shared 
between goals function similarly to communicat ion channels. A definite clause 
is read behaviorally : a process A can replace itself by the system of processes 
that contain B1 and B2 a n d . . ,  and Bn. A prccess terminates by replacing itself 

with the empty system. 
In the procedural reading, unification provides a mechanism for param- 

eter passing, variable assignment, and data access and construction. In the 
behavioral reading it also provides a mechanism for message sending and 
receiving and an easy way of specifying the different actions to be taken upon 
the receipt of  different messages. 

In the behavioral  reading, the actions a process can take are specified by 
the definite clauses in the program : all a process can do is to reduce itself to 
other processes. In the course of  this reduction, variables shared with other 
processes may get instantiated via the unification of the process with the head 
of  the reducing clause, thus achieving the effect of  process communicat ion.  

To support process synchronization, Concurrent  Prolog introduces a new 
syntactic construct, called read-only variables. Variables in a process can be 
annotated as read-only. A process suspends if every reduction of  it requires the 
instantiation of a read-only variable. 

Another construct in Concurrent Prolog borrowed from the Relational 
Language, the guarded-clause, is similar to Dijkstra 's guarded-command in its 
effect. Together with the read-only annotations,  guarded-clauses can specify a 
wide-range of indeterminate process behaviors. 

The subset o f  Concurrent Prolog described and used in this paper was 
implemented in Prolog-10 on DECSYSTEM-20  and is described in ~ that paper 
also includes a full listing of  the interpreter. With minor modifications, that 
interpreter can run in Pereira's CProlog on the VAX, under Unix and VMS. A 
listing of  a Concurrent Prolog interpreter written in Waterloo Prolog for IBM / 
VM computers is available from the first author  upon request. 

The rest of  this section provides a more detailed description of  this subset 
of  Concurrent Prolog. 

2.  1 Syntax 
A Concurrent Prolog program is a finite set of  guarded-clauses. A 
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guarded-clause is a universally quantified logical axiom of the form 
A : -  G1, G2 . . . . .  Gm t B1, B2 . . . .  Bn.  rn,n>~ O. 

where the G's  and theB ' s  are atomic formulas, also called unit goals. A is called 
the clause's head, the G 's  are called its guard, and the B 's  its body. When the 
guard is empty the commit  operator " I " may be omitted. Clauses may contain 
variables marked read-only, such as X?. The Prolog-10 syntactic conventions are 
followed : constants begin with a lower-case letter, and variables with an upper- 
case letter. The special binary term i X  I Y] is used to denote the list whose hexad 
(car) is X and tail (cdr) is Y. The constant [ ] denotes an empty list. 

2 . 2  Semantics 
Concerning the declarative semantics of  a guarded clause, the commit  

operator  reads like a conjunction : A is implied by the G's  and the B's. The 

read-only annotations can be ignored in the declarative reading. 
Procedurally, a guarded-clause functions similarly to an alternative in a 

guarded-command. To reduce a process A using a clause A1 : - G  I B, unify 
,4 with A1, and, if successful, recursively reduce G to the empty system, and, if 
successful, commit to that clause, and, if successful, reduce A to B. 

The reduction of  a process may suspend or fail during almost any of  these 
steps. The unification of  the process against the head of the clause suspends if 
it requires the instantiation of variables occurring as read-only in A. It fails if 
A and A I  are not unifiable. The computat ion of  the guard system G suspends 
if any of the processes in it suspends, and fails if any of  them fails. 

The commitment  operation is the most delicate, and grasping it fully is 
not required for the understanding of  the example programs in this paper. It 
suffices to say that partial results computed by the first two steps of  the reduction 
- -  unifying the process against the head of the clause and solving the guard - -  
are not accessible to other processes in A's system prior to the commitment ,  and 
that after commitment  all the Or-parallel attempts to reduce ,4 using other 
clauses are abandoned.  

The reduction of  all processes in a system can be attempted in parallel, 
as can the search for a clause to reduce a process. Two restrictions prevent an all- 
out parallelism. Regarding Or-parallelism, only the guards are executed in 
parallel. Once a guard system terminates, the computat ions  of  other Or-parallel 
guards are aborted. Regarding And-parallelism, read-only annotat ions can 
enforce rather severe constraints on the order and pace in which processes can 
be reduced, as the example programs below show. 

This completes the description of the subset of  Concurrent Prolog used in 
this paper. One addit ional  construct - -  otherwise - -  is introduced in Section 3. 
Our Concurrent Prolog implementation supports also the use of  the system 
predicates of  the underlying sequential Prolog, including arithmetic and exter- 
nal I / O. 

It is worth mentioning that our Concurrent  Prolog interpreter is more of  
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a toy than a real implementation, since it is about 100 to 200 times slower than 
the underlying sequential Prolog implementation. It runs at approximately the 
same speed, 130 reductions per CPU second (LIPS), on a DECSYSTEM 2060 
running Prolog-10 and on an IBM 4341 running Waterloo Prolog. 

w 3 Object  Oriented  Programming in Concurrent  P r o l o g  
Concurrent Prolog is capable of  expressing modern programming con- 

cepts, including object-oriented programming. The concept of objects in Con- 
current Prolog has close resemblance to that of Actor systems, 2) in that a 
computation is performed via the cooperation of distributed objects. First a 
general scheme for object-oriented programming in Concurrent Prolog is 
presented. It is then explained how objects can be created, and how they can 
cooperate in computation. A Concurrent Prolog programming technique, 
called filters, is then introduced, which achieves the effect of  hierarchical 
definition of objects and property inheritance, a useful tool in other object- 
oriented programming languages. In addition to the usual object oriented 
features, Concurrent Prolog can provide new features that originate from the 
logical power of  unification. One of them is computation by incomplete 
messages, and the other is implicit activation of  objects, which is similar to a 
constraint network. 7,8,9) 

3 �9 1 Objects 
Our view of  objects is based on Hewitt's Actor model of  parallel 

computation. 
An object can be thought of  as an active process that receives messages 

and performs action on its internal state according to the received message. 
During the computation, an object can send messages to other objects. 

The general properties of objects are as follows : 
(1) An object is a process that can have internal states. It becomes active 

when it receives a message. 
(2) The internal state of an object can be operated upon from the outside 

only by sending it a message, which specifies the operation to be 
performed. 

(3) An object can exchange messages with other objects during its computa- 
tion. 

(4) Any number of  object-instances can be generated from a definition of  an 
object. 

3 . 2 Realization of Objects 
The following shows how Concurrent Prolog realizes objects. 

[lJ A (perpetual) object is a process that calls itself reeursively and holds 
its internal state in unshared arguments 

The state of  an object corresponds to the arguments of  a process. Its 
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internal state corresponds to arguments not shared by other processes. An object 
acts by reducing itself to other objects. A perpetual object survives by reducing 
itself to itself. A perpetual object changes its state by calling itself recursively 
with different arguments. 
I2] Objects communicate with each other by instantiating shared variables 
Since parallel processes are realized by And-parallelism, they can be linked by 
shared variables. These variables are used as communicat ion channels among 
objects. Message passing is performed by instantiating a shared variable to a 
message. Because a shared variable can be referred to by multiple processes, a 
message can be sent to multiple objects at once. Successive communicat ion is 
possible by the stream communicat ion technique, that is, by instantiating a 
channel variable to the binary term (message). X(Prolog ' s  counterpart  o f  Lisp's 
dotted pair, usually written as I(message) I where (message) is a message 
to be sent and X is a new variable to be used in the next communicat ion.  

I31 An object becomes active when it receives a message; otherwise it is 
suspended. 

The synchronization mechanism forces a process to suspend when it tries 
to instantiate read-only variables to non-variable terms. Since objects peek into 
their input stream in read-only mode, they are suspended if the next message is 
not available yet. 

I41 An object-instance is created by process reduction 
An object instance B is created when an object A is reduced via a clause 

A : - - . . . B . . .  
I51 Response to a message 

When an object sends a message which requires a response, the response 
can not be sent through the same shared variable, since logical variables are 
single-assignment. There are two techniques for sending a response to a message. 
One is to prepare another  shared stream variable, in which the communicat ion 
flows in the opposite direction. The other uses a technique called incomplete 
messages, which is explained more fully in Section 5.1. in this technique the 
sender sends a message that contains an uninstantiated variable and then 
examines that variable in a read-only mode, which causes it to suspend until this 
variable gets instantiated to the response by the recipient of  the message. For 
example, a message show which asks a target object about its internal state is 
replaced by the message show(State), where the variable State is used as a 
communicat ion channel that carries the response from the target object back to 
the sender. The sender will get the response in this variable sometime in the 
future, when the message is received and processed. So the sender must wait until 
the response variable is instantiated if it needs to refer to the response. 

3 . 3  The c o u n t e r  Example 
A simple example of  how to describe an object is shown below. 

counter(~clear ] S~, State):-  
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counter( S ?, 0). 
counter([ up [ S], State) : - 

plus(State, 1, NewState), counter(S ?, NewState). 
counter([down ] S], S ta te ) : -  

plus(NewState, 1, State), counter(S ?, NewState). 
counter([show (State)] S], S ta t e ) : -  

counter(S ?, State). 
counter([ ], State). % for temination. 

The object counter has two arguments. One is an input stream, and the other is 
its internal state. When receiving a clear message, it resets the state to 0. When 
receiving up and down messages, it increments or decrements its state by 1, 
respectively. The process plus(X, Y, Z) suspends until at least two of  its 
arguments are instantiated, then instantiates the third so that they satisfy the 
constraint X +  Y = Z .  If this constraint cannot  be satisfied, plus fails. The 
implementation of  plus is described in Section 5.2. 

When receiving a show(X) message, counter unifies the variable X with 
the internal state State. The last clause terminates counter process, upon en- 
countering the end of  the input stream. Note that the stream variable is used 
recursively. In every reduction it is instantiated to a pair : the message and a new 
variable, to be used in the next communicat ion.  

3 . 4 O b j e c t - i n s t a n c e  C r e a t i o n  
Object-instance creation is accomplished by parallel-And. A new instance 

of  an object counter may be created by executing the following code : 
terminal(X), use_counter(X ?, C1), counter(C1 7, O) 

where terminal is an object that generates the stream of  commands  produced by 
a user at a terminal, use counter is an object receiving commands  from the 
terminal and passing the commands to the object counter, except for the show 
command,  which, in addition to passing it to counter, causes the object use- 
counter to wait for the response from the object counter and then to output it 
to the screen. Note that the first argument of  use counter and the second 
argument of  the object counter are treated as read only variables, because they 
are used only as input. 

us~counter([show( Val) I Input], [show(Val) I Command]) : -  
us~counter( Input ?, Command), waiL write( Val). 

use_counter([X ] Input], I X  I C o m m a n d ] ) : -  
d i f  (X,  show( Y))[  use counter(Input ?, Command). 

wait write(X) : -  wait(X) ] write(X). 
wait(X) is a Concurrent  Prolog system predicate which is suspended if X is not 
instantiated, and succeeds otherwise, di f (X,Y)  is a system predicate that succeeds 
if and when it can determine that X and Y are different (i. e. not unifiable). Note 
that the stream variable is used as an object-instance name. Message passing is 
performed against the stream variable and not against the target object itself, 
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because there are no global  names in Concurrent  Prolog, and the only  informa- 
t ion  about  an object that  is accessible from outside are the communica t ion  
channels  to it. 

As described before, a new object- instance is created using a defini t ion in 
the program. However,  object-instances created from the same def ini t ion are 
different and can be dist inguished by the names o f  their communica t ion  
channels.  The example below demonstrates this. The object  use_many_counters 
is similar to use_counter. It receives a c o m m a n d  stream from the terminal.  When 

it receives a create(Name) message, it creates a new object counter and saves its 
name and a c o m m u n i c a t i o n  channel  to it in its internal state. Other  messages 

must  be the form (Name,  Command) ,  where Name specifies the name of  an 
object  counter to which the message C ommand  should be sent. 

use_many_counters( E create( Name ) l lnput ~ , List_of_counters):-- 
couner( Com ?, 0), 
use_many_counters(Input ?, I(Name, Com) ] List_of counters] ). 

use_many_counters(E(Name, show( Val)) l Input], List_of_counters) : -  
send(List_of_counters, Name, show(Val), NewList ) l 
use_many_counters(Input ?, NewList ), wait_write(Val). 

use_many_counters(IX ] Input], List_of_counters) : -- 
dif(X, create(Y)), dif(X, show(Y)), 
send(List.of_counters, Name, X, NewList) ] 
use_many_counters(Input ?, NewList ). 

send ([(Name, [Message I Y] )1 List], Name, Message, E(Name, Y)I List] ). 
send ( [ C I List], Name, Message, [ C I L 11 ) :-- send( List, Name, Message, L 1). 

The object use_manycoun te r s  has two arguments.  One is an input stream from 

the terminal,  and the other  is a list o f  (Name,  Channe l )where  N a m e  is an 
identifier o f  the object  counter given by the create c o m m a n d  and Channel  is the 

communica t ion  channel  to that object. The object  send takes four arguments.  
The first argument  is the same as the second argument  o f  use m a n y c o u n t e r s .  
The  second and the third  arguments  are an identifier o f  the object counter and 

use_many_cqunters(ln ?, I ]) 
l ln=[create(cl) I lnl] 

use_many_eounters(lnl ?, [(CI, X1)]), counter(Xl?, O) 
l lnl= [create ] (e2) In2] 

use_many_counters(In2 ?,[(e2, X2), (el, X1)]), counter(X2 ?, O) 
l In2= Iereate(c3) ] ln3] 

use_many_counters(In3 ?,~(c3, X3), (e2, X2), (el, X1)]), counter(X3 ?, O) 

Fig. 1 Multiple object-instantiation 
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a message to be sent, respectively. The fourth argument is the updated list of  
counters. Figure 1 shows a situation in which three create commands  were 
processed. Note that since there are no global variables in Concurrent  Prolog, 
an object must keep channel variables associated with other objects in order to 
send messages to them. 

The mult i-window system described in Section 4 uses a similar technique 
to create processes and to associate with them windows and communicat ion 
channels. 

3 . 5 Default Programming, Filters, and Object Hierarchies 
Some object-oriented languages, such as Smalltalk, 3) associate a 

hierarchy with objects. This hierarchy supports a very convenient form of 
default programming. Methods for responding to a message can be associated 
with an object high in the hierarchy, and an object-instance, receiving a message 
which it does not know how to respond to, can default to an object higher in 
the hierarchy to respond to the message. In addit ion to increasing the brevity of  
programs, such a mechanism also increases their modularity,  since a code 
associated with a class of  objects may occur only in the definition of the class, 
rather than with the definitions of  its subclasses. This mechanism also encourag- 
es the programmer to identify useful abstractions, so it can be used. 

Concurrent Prolog does not have special hard-wired mechanisms to 
support  object hierarchies. However, a certain programming technique, called 
filters, together with a new Concurrent Prolog construct, otherwise, achieves a 
very similar effect. The resulting programs exhibit a behavior of  an Actor-like 
cooperative group of  objects. 

Consider the following hierarchy of  objects:  a rectangular-area;  
a window-frame, which is a rectangular-area with four border-lines ; a window- 
with-label, which is a window-frame with a label at the bottom of  the window. 
These can be defined by a class-superclass hierarchy (see Fig. 2). 

In a language that supports such hierarchies directly, the functionality of  
a rectangular-area is inherited by the window-frame, and the functionality of  a 
window-frame is inherited by a window with a label. Operationally,  an object 

rectangular-area 

l + four border lines 

window-frame 

+ label 

window-with-label 

Fig. 2 Class-superclass hierarchy 
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that receives a message checks whether it knows how to respond to it. If  it does 
not, then it defaults to its parent in the hierarchy to respond to it. In this sense 
every object in the hierarchy functions like a filter on a stream of message, and 
this is precisely how object hierarchies are implemented in Concurrent Prolog. 

Every object in a hierarchy must have at least one designated input stream 
and one designated output  stream, except the topmost  object, which may have 
an input stream only. The hierarchical structure of  the objects is reflected by the 
structure of  the communicat ion network that they form. An object A lower in 
the hierarchy has its output  stream connected to the input stream of an object B 
next up in the hierarchy. If  A receives a message that it cannot respond to, it 
s imply defaults to B by passing to it the message. 

The following Concurrent  Prolog implementat ion of  the window hier- 
archy demonstrates this technique. First a rectangular-area is defined. 

rectangular_area([clear I M], Parameters) : -  
clear_primitive( Parameters ) l 
rectangular area( M ?, Parameters). 

rectangular area( E ask ( Parameters ) l M ] , Parameters):- 
rectangular area( M ?, Parameters). 

Parameters is a data structure consisting of four parameters (Xpos Ypos, Width, 
Height), where Xpos and Ypos are the coordinates of  the upper-left corner of  
the area, and Width and Height are the size of  the area. clear primitive is a 
system defined primitive predicate which clears the screen area specified in its 
arguments. 

From this rectangular area object, a window-frame can be defined. The 
frame object can be viewed as a filter on the input stream of a rectangular area. 
It filters two types of  message, on which it knows how to respond : draw and 
refresh. 

create_frame(M, Parameters) '-  
rectangular .area( M ?, Parameters), 
frame(M?, M1). 

frame([drawlM], Eask(Parameters) I MI]) : - 
draw lines(Parameters) I 
frame(M ?, M1). 

frame([refresh l Ml,  [clear l M l ~ ) : -  
frame(Edraw l M~, M1). 

frame(EXlM], EXIM1]):-- 
di f(X,  draw), di f(X,  refresh) l 
frame(M ?, M1). 

The first clause specifies the initialization procedure, which creates a rectangular 
area object by passing the parameters and an original frame object with the 
communicat ion channel to the rectangular area. The rest of  the clauses specify 
the method for interpreting each message. On receiving a draw message, it asks 
the rectangular_area about  the dimensional parameters and then draws four 
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border lines. On receiving a reflesh message, it sends two messages, clear and 
draw, to the rectangular area and self respectively. On receiving other messages, 

it only passes them to the rectangular area. 
To support default programming, a new construct is introduced to Concur- 

rent Prolog, called otherwise. An otherwise goal that occurs in a guard succeeds 

if and when all other parallel-Or guards fail. Given the other clauses for frame, 
the last clause is equivalent to : 

f r a m e ( I X  [ M] ,  [X[M1] )  : -  
otherwise[ f rame(M ?, M1). 

It is not difficult to see that if all clauses for an object have empty guards, then 
otherwise can be implemented via a preprocessor that expands it to an appropri- 

ate sequence of calls to dif( , _). If the guards are not empty, then otherwise 
can be implemented via a negation-as-failure primitive, in this sense otherwise 
does not increase the expressive power of  Concurrent Prolog more than the 
addition of  negation as failure does. However, an efficient implementation of 
otherwise requires a modification to the Concurrent Prolog interpreter. 

Now, a window frame with a label is defined. 
create_ window with label ( M, Label, Parameters) : - 

create_frame( M I ?, Parameters), 
window with_label(M ?, Label, Ml). 

window_with_label([change(Label) [ M], OldLabel, MI) : -  
windowwith label(M ?, Label, Ml). 

window_with_label([show[ M ] , Label, [ask(Parameters)[ MI]):--  
sho w_label_primitive( Label, Parameters ) I 
window with_label(M ?, Label, Ml). 

window with label([refreshIM], Label, [refresh[ M1]):-  
window_with_label([show I M], Label, M1). 
window_with label(IX[ M], Label, [X[ M / ] ) : -  

otherwise[ 
window_with label( M ?, Label, Ml). 

The first clause defines the initialization procedure which creates the object 
frame with the parameters and a window with_label with the communication 

channel to the object frame. The rest of the clauses define the methods to 
interpret messages. On receiving a change message, it changes the label. On 
receiving a show message, it asks the object frame about its parameters and 
displays the label in the appropriate position in the window, using the predefin- 

ed predicate show_label_ primitive. On receiving a refresh message, it sends two 
messages, refresh and show, to the frame and self respectively. On receiving other 

messages, it only passes them to the frame. 
In the class-superclass hierarchy, a message which can not be processed by 

an object is passed to its superclass. In Concurrent Prolog such a hierarchy is 
simulated by a network of objects connected via communication channels, 
through which unprocessable messages are sent. A system like Flavor ]~ and 
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Smalltalk-803) can permit objects to access instance variables o f  their superclass. 

However,  in Concurrent  Prolog,  since a superclass o f  an object is also an object, 
such direct access to states o f  other  objects is not  possible. Instead o f  this, an 
object  has to send a message asking about  states to the object that plays the role 

o f  its superclass. 
Table  I shows the relation between objects and acceptable messages. 

Table 1 Objects and acceptable messages 

Objects I i Messages Process 

rectangular_area 

frame 

window_ with_label 

i 

I '  clear 
2 I ask(X) 

3 i draw 
i 

4 I refresh 
:c lear  
i 

l ask(X) 
i 

51 change(Label) 
i 

61 show 
7 i refresh 

: draw 
i 

', clear 
' , a s k (X )  
i 

clear the area 
instantiate X to parameters 

draw four lines 
=1+3 
send to rectangular_area 
send to rectangular_area 

change the label 
display the label 
send to frame 
send to frame 
send to frame 
send to frame 

In the case o f  an object window_with_label ,  there are two kinds o f  

methods.  One is an own  method,  and the other  is a so-called generic method.  
Gener ic  methods are invoked  by sending messages to objects which play the role 

o f  a superclass. 
In this coopera t ing  objects approach,  there is no difference between the 

class-superclass hierarchy and the part-whole relation. In other words, the role 

o f  an object in a group o f  coopera t ing  objects is not  determined from a structural 
descript ion (such as superclass declarat ion and part declarat ion) but f rom a 
behavioral  description in the form of  a communica t ion  network. F rom this 
point  o f  view, a rectangular  area can be seen both as a superclass of  a f r a m e  and 

as a part o f  a f rame .  The  essential point,  however,  is the behavioral  role o f  the 
rectangular area against the f rame ,  and in this sense this approach  is close to the 

Actor  formalism. 
More explanat ion is needed about  the modula r i ty  o f  this approach.  First, 

the internal states o f  an object  can never be operated upon directly f rom a user 
o f  the object. All a user can do is to send a message that specifies the opera t ion  

to be performed. Thus,  the encapsulat ion o f  internal states is established. 
Second,  there is no way to access directly c o m p o n e n t  objects o f  an object  from 
the outside, except by using incomplete  messages, as explained in Section 5.1. 
Thus,  the encapsula t ion o f  componen t  objects is also established. By these 
properties o f  objects, it is possible to construct  compl ica ted  objects f rom simpler 
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objects in a modular  way. 

37 

w 4 Multi-window System 
The following is a powerful and expressive example of  a Concurrent 

Prolog implementat ion of  a multi-windows system. The system is architectured 
after the MUF (Multi User Forks) program and the SM (Session Manager) 
program of  the Yale Tools  programming environment? l) TheTools  environment 
supports only multi-tasking but not multi-windows. Consequently,  it does not 
support concurrent processes output to the screen, whereas this program does. On 
the other hand, Tools  is a real, usable system, while this is still a toy. 

The system can create processes dynamically,  make them run concurrently 
and associate each process with a window that can display input and output of  
the process in the specified position on the screen. Terminal input is managed 
by the window manager, which can switch the connection between the terminal 
and a specified process. A user of  this system can create several processes 
dynamically, make them run concurrently, and see concurrently the input-output  
behavior of  each process in the window associated with it. 

A window consists of  a rectangular area, four border lines and a label 
field like the windowwith label defined above (see Fig. 3). It also has a text 
string as its internal states. A window has two modes. In normal mode it can fill 
the region with its text string, append a new string and display it by scrolling up 
if the window is full. In the other mode, called session manager, or sm mode, 
all the history of the input and the output since the window was created is 
displayed according to the commands  the window receives, by scrolling up and 
down. In both modes, a window can also move to somewhere else on the screen, 
change its size, and so on. First the window object will be shown. General form 

of  the window:  : 
window( (Input, PI, PO), State, normal) in normal mode 
window( (Input, PI, PO), State, sm) in sm mode 

The first argument of  window is three communicat ion channels : Input is input 
from the window manager, and PI and PO are output to the associated process 
and input from the process, respectively (see Fig. 4). The second argument,  State, 
must be a data structure which represents the window's internal state: 
geographical parameters, contents (text string), and label. In the current 
implementation, it is represented as ( (XO, YO, W, H), Y, Contents, Label) 
where XO and YO are the coordinate of  the upper-left corner of  the window, W 
and H are width and height of  the window respectively and Y points the current 

cursor position. The form of  Contents is (Tof,  Top, Tail, Last), where Tof, 
Top and Tail point the top of  file (all the string), the head of the text currently 
displayed in the screen and end of text respectively. Last is used when entering 
the sm mode to save the current Top, which will be restored upon exit from 
sm mode. Text stings are represented as a bi-directionally linked list of  lines, 
which can be constructed easily by unification with no occur-check. The varia- 
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Fig. 4 A window object 
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ble Label is the label o f  the window.  The four th  argument of  window indicates 

the current mode of  the window and must be sm or normal.  
The window in both  m o d e s :  

window( ([erase] In], PI, PO), State, Mode):-- 
erase_ window(State) I 
window( (In ?, PI, PO ), State, Mode). 

window( (]move(X, Y) I In], PI, PO), State, Mode):- 
erase_ window(State), set_parameters~( xy, ( X, Y ), State, State l ) I 
window( (]show I In], PI PO), Statel, Mode). 

window( ([grow( W, n ) ]  ln], PI, PO), State, Mode):- 
erase,- window(State), set_parameters~( wh, ( W, H ), Stfoe, State1 ) [ 
window( ([showl In], PI, eo), State, Mode). 

window( ([show l In ], PI, PO), State, Mode):- 
show(State)] 
window( (In ?, PI, PO), State, Mode). 

On receiving an erase message, the window erases the area specified in the State 
parameter,  including border  lines and label field. On receiving a move(X,  Y) 
message, it erases the current area and appears  in the new posit ion,  the xy- 
coord ina te  o f  the upper-left corner,  which is specified by X and Y. set_ 
parameters(xy, (X ,  Y), State, Statel)  is a primitive method which changes 

the xy parameter (xy-coordinates  o f  a window)  of State to X and Y and 
returns new window parameters Statel.  On receiving a grow(W,  H),  it erases 

the current area and appears again in the same posit ion with a new size specified 
by the new width W and the new height H .  It can become wider, narrower,  
longer or smaller according  to W and H .  On receiving a show message, it 

only redisplays itself in the same posit ion with the same size. 
The code o f  w indow specific to normal  mode : : 

window( ( [ s m l  In], PI, PO), State, n o r m a l ) : -  
enter sm(State)  l 

window( (In ?, PI, PO), State, sm). 
window( ( I X  I In], [X I PI], PO), State, n o r m a l ) : -  

fill input (X ,  State, S tate l )  l 
window( (In ?, PI, PO), Statel,  normal). 

window( (In, PI, [X I PO]), State, n o r m a l ) : -  
f i l l_output(X,  State, State l ) I 

window((ln,  PI, PO ?), Statel,  normal). 
On receiving an sm message, the window enters the sm mode. On receiving other 
messages, which must be messages to the associated process, it appends  the 
messages to the current contents,  displays it and passes it to the associated pro- 
cess. On receiving messages from the associated process, it also appends  the mes- 
sages to the current contents  and displays it. 

The code the window executes only in sm mode  is : 
window( ([up I In], PI, PO), State, sm) : -  
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show_up(State, Statel) ] window( (In?, PI, PO), Statel, sin). 
window( (Edown I In], P1, PO), State, sm) : -  

show_down(State, Statel) l window( (In ?, PI, PO), Statel, sm). 
window( (~exR ] In], PI, PO), State, sm) : - 

exit_sm( State, Statel) [ 
window( ([show l In], PI, PO), Statel, normal). 

window( (EX I In], PI, PO), State, sm) : 
window( (In ?, PI, PO), State, sm). 

On receiving up and down messages, the window scrolls up and down the 
screen respectively. On receiving an exit message, it exits from the sm mode 
and returns to the normal mode. 

The window manager, wm for short, has two arguments. 
wm( Input,  Lis tOfChannels  ) 

The first argument is the input command stream to the window manager, and 
the second argument is a list of pairs of  a window label and an output channel 
to the associated process. 

The window manager can accept three kinds of messages. 
wm([create(Label, Process, (PI, PO),(XO, YO, W, H) )1 lnputl, Processes):- 

window( (~showl ln~, P1, PO ?), 

( (XO, YO, W, H), YO, (C, C, C, C ), Label), normal), 
Process, 
wm(Input ?, ~(Label, ln) l Processes]). 

wm ( ~ resume(Label) I Input], Processes) : - 
find_process(Label, Processes, P1, Processesl)l 
distribute(Eshow l lnputl, PI, Input, PI1), 
wm(Input ?, ~(Label, Pll I Processesl~ ). 

wm(Eclose l Input], ~(Label, E] )1 ProcessesJ) : -  
wm(lnput ?, ~(Label,_) I Processesl] ). 

wm( ~] , Processes) : - close input(Processes). 

On receiving crea te (Labe l ,  Process, (PI ,  PO),  (XO, YO, W,  H))  message, it 

creates a process Process and a window with label Label  monitoring the process's 

input and output and sends a show message to the window. PI and P O are 
variables representing the primary input and primary output channels of  the 
process respectively, and may appear in the goal Process. XO, YO, W and H are 

window parameters. On receiving the resume(Label )  message, it finds the input 
channel to the process with a name Label  from the list of processes Processes and 
connects the input stream of the window manager and the input channel of  the 
process by creating the object distribute. At the same time, it picks up the 

process and places it in the top of  the list of the processes. On receiving a close 
message, it closes the input channel of the process currently resumed. On 
reaching the end of the input stream, the window manager closes all the input 
channels of the processes and terminates. 

The object distribute has four arguments. The first argument is an input 
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channel from the terminal. The second and the third arguments are output 
channels to the window associated with the process currently resumed and to the 
window manager respectively. The fourth argument returns the updated input 
channel of the window when the connection is cut. The distribute object peeks 
ahead into the input, and if the input is a window manager command, then it 
returns the input stream and the window's input channel to the window manager 
and terminates. Otherwise it passes the input to the window process (Fig. 5). 

distribute(iX I Input], PI, IX [ Input], PI ) : -  
member(X, [resume(), close, create( , , 

distribute(IX [ Input], IX [ PI], lnputl, P I I ) : -  
otherwise[ distribute(Input?, PI, lnputl, PII). 

distribute( [], PI, [], e l ) .  

)3) I true. 

find-process and close-input are written in the following way. 

find process(Label, [ Label, PI ) [ Processes], PI, Processes). 
findprocess(Label, [PD[ Processes], PI, EPDI Processesl])'- 

f ind process(Label, Processes, PI, Processesl). 

close input(El). 
close jnput ( [ ( , [] ) [ Processes])" -- closejnput( Processes ). 

w m  

3rd arg. 

Input 

1st arg. 
distribute 

P I  

2nd arg. 

Fig. 5 A distribute object 

window 

w 5 New Object-Oriented Programming Techniques in Concurrent 
Prolog 
Concurrent Prolog supports several powerful object-oriented program- 

ming techniques not available easily in the Actor system and other object- 
oriented languages. These techniques heavily depend on properties of 
unification. 

In object-oriented languages, a message is sent by specifying the name of 
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the target objects. However, in Concurrent Prolog, objects are connected by 
shared variables, and a message is sent by instantiating a shared variable to it. 
Therefore, the name of  the target object does not necessarily appear in the 
message passing phase. Furthermore, broadcasting becomes quite simple, 

because a message is sent to all the objects that share the variable at once. 
Generally, shared variables are made at the moment when a process creates a 
new system of processes, as in the following clause : 

p ( X ) : - - q ( X ,  Y), r(Y7). 
In the example above, Y is created and used as a communication channel from 
q to r. Shared variables can also be made dynamically by sending a variable as 

a part of  a message. This means that a communication channel can be made 
dynamically and it can be sent to other objects as well. A message that contains 
variables is called an incomplete message. Section 5.1. explains this concept. 

As described before, information can be sent implicitly to any number of  

objects without knowing who the receivers are by simply instantiating a shared 
variable to it. This can be seen also as if a sender and receivers of a message do 
not know each other beyond knowing that the variable is shared with some 

objects. All that the sender has to do is to instantiate a variable as soon as 
possible, and all that the receivers have to do is to wait until the variable 
becomes instantiated. This kind of  implicit communication is useful for con- 
structing a dependency network like Constraints, 7"s'9) as explained in Section 5.2. 

5 . 1  Incomplete Messages 
The concept of  incomplete messages* is a new, encompassing program- 

ming paradigm, which includes the basic communication mechanism between 

objects, pipelined processing on stream data, and yields new object-oriented 
programming techniques. As in the Actor system, Concurrent Prolog is a model 
of  parallel computation, and provides communication methods based on 

message passing through shared variables. A message is sent by instantiating a 

shared variable. A message that contains a variable is called an incomplete 
message. It makes a new variable shared between the sender and the receiver of 

the message, that is, it creates a new communication channel. Since once a variable 
is instantiated it will never be rewritten, it can carry only one message. In order 
to enable subsequent communication, generally a shared variable is instantiated 
to a pair of  a message and a variable which will be used in a next communi- 
cation, which gives the effects of  a stream. Although pipelined processing on 

stream data usually requires adding new constructs to a language, it is subsumed 
naturally by the paradigm of the incomplete message. 

A prime generator based on a Eratosthenes' sieve algorithm is a typical 
example of  pipeline processing on partially obtained data. 

primes :-- integers(Z, 1), sift(I?, J), outstream(J?). 

* In T R - 0 0 3  ~ they are cal led partially_deteemined~nessages. 
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integers(N, I N  I 1 ] ) : - -  N! is N-F l l integers(N1, I). 
sift(EPI I], EPI R 1 ] ) : -  filter(l?, P, R), sift(R?, gl) .  
filter( IN I I], P, R ) : -  0 is N mod P l filter(l?, P, R). 
filter( E g l I I , P, ENI R ] ) : -  M is N mod P, M > O I filter( l ?, P, R ). 
outstream([ X I S]) : -  write(X) l outstream(S?). 

The predicate primes is the top level goal which is invoked by a user first. 
It creates three objects :integers, which generates an infinite sequence of  
integers, sift, which sifts the integer sequence by the prime numbers obtained so 
far and outstream, which prints out the sequence of prime numbers one by one. 
All the communicat ion among objects is carried by streams. For example, every 
time a new integer is obtained, the object integers sends it with a new variable 
which corresponds to a stream (not obtained yet) of  integers larger than it. 
Another  logic program implementation of  this algorithm, which seems to 
require a more elaborate control mechanism, appears i n .  12) 

As in the case of  a show(X) message to a counter object presented in 
Section 3.2, when a message requires a response, it is sent with a variable which 
will be instantiated by the receiver to the response, This is also an example of  
an incomplete message. However, this use of  incomplete messages is different 
from streams, because the object that instantiates the variable in the message is 
the receiver of  the message, not the sender. Once a message is sent to an object, 
the sender and the receiver run independently as long as they can. I f  the response 
variable is not instantiated yet by the receiver when the sender refers to it, then 
the sender suspends. 

This programming technique is extremely useful when implementing 
managers of  shared resources. The following implementation of  a queue 
manager demonstrates this. The queue manager handles the messages 
enqueue(X) and dequeue(X), which represent requests to append X at the end 
of  the queue and to return an element positioned at the head of  the queue 
respectively. The predicate qm takes three arguments. The first argument is an 
input channel of  requests from users, and the second and the third arguments 

are pointers to the head of the queue and the tail of  the queue respectively. To 
ensure that the qm is invoked with an empty queue, these two pointers must be 
the same variable in the first invocation. For example, the situation where there 
are two user processes accessing the queue manager is described as follows. 

userl(X), user2(Y), merge(X?, Y?, Z), qm(Z?, Q, Q) 
userl and user2 are user processes sending requests to the queue. Those two 
request streams are merged into one stream by the object merge and the resulting 
stream is sent to the queue manager. The merge program is : 

merge(EA ] Xs], Ys, EA I zs] : -  merge(Xs?, Ys, Zs). 
merge(Xs, EA] Ys3, EAI Zsl):--  merge(Xs, Ys?, Zs). 

The queue manager program is : 
qm(Edequeue(X)] Sl ,  ~X I Head~, Tail):-- qm(S?, Head, Tail). 
qm(Uenqueue(X) l S], Head, IX I Tail]) :-- qm(S?, Head, Tail). 
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On receiving a dequeue(X) message, it instantiates X to the top element 

of  the queue. On receiving enqueue(X) message, it inserts X at the end of  the 
queue. The behavior ot qm is quite interesting when the queue is empty and the 
queue manager receives a dequeue(X) message. It never returns a negative 
response to the sender of  the message. It only unifies the variable X with a 
variable which is located at the top of the queue. This variable will be 

instantiated to a queue element sometime in the future, when the qm will receive 
an enqueue message. After the unification, qm becomes free from the dequede 

request and tries to serve the next request from the input stream. The point is 
that the interaction between the qm and the sender of a dequeue message is 
completed at the moment of  the unification. The sender will not need to send 
another message to qm whether X is instantiated or not, and qm will never send 

any additional message to the sender. The response will be conveyed indirectly 
byinstant iat ingX to an enqueued element when qm will receive an enqueue 

message. 
The behavior of  the qm is also interesting when it receives the message 

enqueue(X) with X uninstantiated. As in the case above, it unifies the variable 
X with the tail element of  the queue and finishes the processing of the request. 
The object which will send a dequeue message in the future will receive the 

variable X if the object sending enqueue(X)will not have instantiated X at that 
time as in the case above. From the point of view of the sender of a dequeue 
message, the situation is the same as in the above example, and it will have to 
wait for the value of X when it will need to refer to it. The situation can be seen 
as the object sending enqueue(X) reserves the place to which it will really 

enqueue something only later (Fig.6). 
From these observations, it is clear that the behavior of  the object qm is 

only to connect logically the arguments of dequeue and enqueue messages, in 
their arrival order, and real information is sent from the enqueueing object to 
the dequeueing object directly. However the important point here is that this 

logical connection cannot be seen by the users of  qm.All they can see is the qm 

userl ~ X  ) 

user2 | dequeue(Y) 

X=Y 

Fig. 6 The queue manager 
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object. This highly reduces the overhead on the resource manager because the 
manager will never be locked and request will never be refused. Using 
incomplete messages, we can create dynamical ly a new information path, which 
is hidden from the objects taking part in the message passing. This cannot be 
expressed in other object-oriented languages as simply as in Concurrent Prolog. 
This use of  incomplete messages reduces message exchanging overhead and gives 
great expressive power to Concurrent Prolog. 

5 . 2  Constraints 
A constraint specifies a dependency relation among properties of  objects. 

It is associated with procedures for satisfying it and can determine properties of  
objects if enough information about other properties of  the objects are deter- 
mined. There is no static input and output relation among the properties of  
objects ;rather, which property is input and which is output is determined 
dynamically, in an indeterminate way. 

For example, the constraint plus(X, Y , Z )  specifies the relation, 
X +  Y ~ Z  

where X, Y and Z are properties of  some objects. Because the degree of  freedom 
of  this relation is two, it can find the value of  an unknown property when two 
of  the arguments are determined. 

plus(2, 3, Z)  ,instantiate Z to 5. 
plus(2, Y, 5) ~ i n s t a n t i a t e  Y to 3. 
plus(X, 3, 5) , instantiate X to 2. 

A constraint becomes active only when a sufficient number of  its argu- 
ments are determined. Otherwise, it is suspended. 

plus(X, 3, Z)  ,suspended 
plus(X, 3, 5) ,active and instantiates X to 2. 

Constraints can form a dependency network over properties of  objects. In the 

case of  the plus constraints, it can represent simple equation systems, like : 

plus( X ,A ,5 )  X + A = 5 
& 

plus( Y, I , X )  =~ Y + 1 = X 
& 

p l u s ( Y , 5 , Z )  Y + 5=  Z 
In this network, each plus node plays the role of  propagating values of  
properties of  objects. For example, if the network receives 1 for A, it instantiates 
X,  Y , Z  to 4,3,8 respectively, and if it receives 4 for X,  it instantiates A, Y , Z  to 

1,3,8 respectively, and so on. 
Generally the representation of  a constraint consists of  methods to satisfy 

the relation. The constraint plus is defined in Concurrent Prolog simply as 

follows. 
plus(X,  Y , Z )  : - -wa i t (X ) ,  wait( Y)] Z is X +  Y. 
plus(X,  Y , Z )  : -- wai t (Y) ,  wai t (Z)  I X is Z - Y. 
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plus(X,  Y , Z )  : -- wait(Z),  wai t (X)  I r is Z - X .  

where "X  is Y"is a system predicate that evaluates an arithmetic expression Y 
and unifies the result with X. This definition shows that indeterminate 
computation is realized by Or-parallelism, and that the activation of a constraint 
is specified by wait predicates in guards. A dependency network of constraints 
can be formed by parallel-And and shared variables. For example, the equation 
system above is represented as follows. 

plus( X ,A,5) ,  p l u s ( Y , I , X ) ,  p l u s ( Y , 5 , Z )  
The behavior of  this network is :: (Fig. 7) 

Initially: All  constraints are suspended 
A is instantiated to 1 externally 
then plus( X , A , 5 )  is now active and instantiates X to 4 
then p l u s ( Y , 1 , X )  becomes active and  instantiates Y to 3 
then p l u s ( Y , 5 , Z )  becomes active and  instantiates Z to 8 

plus(X, Y,Z) 

Fig.  7 The constraint network 

The current implementation of constraints does not treat the methods 
for updating values of  properties because logical variables are single assignment 
and can never be rewritten, and the dependency network cannot find the so- 
lution, even if there exists a unique solution, when the network contains some 
circular dependency, for example plus(X, Y ,5 ) , _ p lu s (X , l ,  Y). However, this 
presents another example of  the expressive power of  Concurrent Prolog. 

w 6 Conclusion 
The name of the game in designing a logic programming language is to 

find a control regime over logic programs that achieves a desired behavior. 
One is constrained by the requirements that any result of  the computat ion 
must be a logical consequence of the axioms in the program, and that the con- 
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trol regime be both expressive and simple, to make the efficient implemen- 
tation of algorithms possible without inducing too much runtime over- 
head. Sequential Prolog (side-effects excluded) is an example of such a log- 
ic programming language, designed to run efficiently on a yon Neumann ma- 
chine. Concurrent Prolog is another example. 

Given these constraints, there was little freedom in choosing the target 
programming style when designing Concurrent Prolog. Hence it was an experi- 
mental finding, almost a surprise, that Concurrent Prolog lends itself most 
naturally to a very specific concurrent programming style, namely object-orient- 
ed programming. This paper has attempted to convey this finding via program- 
ming examples. 

These examples have shown that the basic operations of object-oriented 
programming languages--creating an object, sending and receiving messages 
among objects, modifying an object's state, and forming class-superclass hier- 
a r ch i e s -  all correspond naturally to Concurrent Prolog programming 
techniques rather than to specialized programming language constructs. It is felt 
that showing that a programming technique in one language subsumes spe- 
cialized constructs in another language is among the strongest evidence of the 
expressive power of a programming language. 

In addition, a new object-oriented programming paradigm unique to 
Concurrent Prolog, called incomplete messages, has been presented. This 
technique subsumes stream communication and greatly simplifies the complexity 
of communication networks and the communication overhead usually associated 
with managing shared resources. 

This paper provides only a glimpse of the potential of Concurrent Pro- 
log to implementing constraint systems. The ability to determine dynamically 
the inputs and outputs of an object seems to be an invaluable asset for this task. 
A subsequent paper will explore further the application of Concurrent Prolog 
to this task. 
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