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Gradient descent approach for minimizing dissimilarity meas- 
ure in Iog-polarimagery 
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Log-polar mapping has been proposed as a very appropriate space-variant imaging model in active vi- 
sion applications. There is no doubt about the importance of translation estimation in active visual 
tracking. In this paper an approach is presented,and its performances are evaluated. The approach u- 
ses a gradient descent for minimizing a dissimilarity measure. The experimental results reveal that this 
method is efficient for approaching active image translations. 
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The information received by the visual cortex is the 
result of a log-polar conformal mapping of the retinal 
stimulus ElI. Indeed, the log-polar transformation has 
been adopted in numerous applications and is the subject 
of current research interest [2] . Log-polar images offer a 
good method with reasonably high resolution, and sig- 
nificant date reduction in large visual field. Moreover, it 
is scale-and-rotation invariant in pattern recognition, 
which is a useful feature. However the log-polar map- 
ping is a nonlinear discrete transform. 

To keep the advantages of the log-polar transforma- 
tion and still be able to estimate linear features, transla- 
tion estimation to log-polar images is necessary ~38]. 

Oshiro et al Lg~ used log-polar images for binocular 
tracking. In the works,the target is segmented from the 
background by means of a zero disparity filter, and the 
centroid of the resulting target region is used as the 
tracking error signal. In contrast, we focus our work on 
monocular log-polar images, make no use of optical 
flow, assume no model of the target, and restrict to a 
translational motion model. Additionally, the methods 
presented here are conceptually simple, and one of them 
has the important advantage of being computationally 
very efficient and able to estimate considerably large tar- 
get translations. This makes the approach very suitable 
for real-time applications, for example, traffic scenarios, 
video-conference, etc. 

A log-polar mapping commonly used in literature de- 
fines the log-polar coordinates 

(g,rj) = (loga(~0),q �9 O) (1) 

where (p,O) are the polar coordinates defined from the 
cartesian coordinates ( x , y )  as usual , i.e. (p ,O)= 

* Supported by National Natural Science Foundation of China 

(Grant No. 60575013). 

* * E-maihjianggangan@nwpu. edu. cn 

( V ~  q- y2, arctan ( y / x ) ) .  Because of the discretization, 
the continuous coordinates (~, r]) become the discrete 
ones (u ,v)  = (l~l, 101) ,O~u<R,O~v<S,wi th  R and 
S being the number of rings and sectors of the discrete 
log-polar image, respectively, and q :  S/27r sectors/radi- 
an being the angular resolution. Having chosen R,p0 (the 
radius of the innermost ring), and p~x (the radius of the 
visual field), the transformation parameter a is computed 
as a = exp(ln(p~x/p0 )/R). 

Given the parameters of the cartesian and log-polar 
geometries,the log-polar transformation builds the map 
A,where A(i,j) is the set of log-polar pixels (u,v) in- 
tersecting the cartesian pixel (i,j).  If the original carte- 

1 
sian image is sized M X  N,pm.x is defined as Pmax = y m i n  

(M, N)  and the log-polar transform is centered at the 
foveate point: (xc ,y~)= (M/2, N/2). An example of a 
log-polar transformation is shown in Fig. 1. 

(a) (b) (c) (d) 

Fig. 1 An example of a log-polar transformation: (a) original 

cartesian image (256 �9 256) ~ (b) log-polar grid (10 �9 16) ,with 

receptive fields shown; (c) cortical image (32 �9 64) computed 

from (a) ; (d)  cartesian image (256 �9 256) reconstructed from 

(c) by the inverse log-polar mapping 

A translation in the x and y coordinate axis, (Xo, yo ) ,  
can be expressed in the cartesian plane as simply as the 
linear equation. 
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(;:): (;)+ (;:) <,> 
In the complex logarithmic plane, however, this simplici- 
ty disappears, and the motion model would read as fol- 
lows: 

log• 
~ ~(p~ aCsin(+P/q) + Y~ 
. /poa~sinf~]/q) +Yo 

qarctan ~ ;  ~ - ~  ~ z  0 J 

(3) 

Eq. (3) is obtained by expressing the cartesian coordi- 
nates (x = x ( ~, r]), y = y ( ~, r/)) corresponding to the 
log-polar coordinates (~', r/), then adding the motion dis- 
placement (x0 ,y0 ) ,  and finally converting the result (x 
q-Xo ,y+yo) back to log-polar coordinates. 

The correlation index A for the vergence angle ~ in a 
certain range, gives rise to a one-dimensional (1D) func- 
tion,A(gO [37. Our approach extends this idea to a 2D 
function (the correlation surface), which is dependent of 
the translational components in x and y direction with 
x0 and y0 expressed by A (x0, y0 ). We can compute the 
value between one image and version shifted by (xo ,y0 ) 
with the correlation measure A. Fig. 2 is the illustration 
of the cortical image deformation under cartesian trans- 
lation Log polar images. Fig. 3 shows an example of the 
resulting surface A(Xo ,y0) computed in cartesian (Fig. 4 
(a)) and log-polar (Fig. 4 (b))  domains for the same 
images. Algorithm. Gradient-descent-based translation 
estimation in log-polar images. 

Input: Two log-polar images, 11 and/2 
Output: The estimated translation vector (xo ,y0 ) 
1. (x~ ,yo ~ ,0) {initial guess} 
2 .k~-0 {iteration number} 
3 �9 3~-1 ( step length} 
4: while (8~8~i~) A(k%k~,~) do 
5:k*--k+1 
6 :  (3:o ~ ,y0k)'*---(X0 ~-1 ,y0 ~ X ) - - g ( X ~ J . )  {estimation up- 

date rule} 
7:if minimum surpassed then 
8 : & - 8 / 2  

9 : end if 
10 : end while 
11:(x0 ,y0)+-(x0 ~ ,y0 ~) 
As we have shown, that the minimum of the correla- 

tion surface computed on log-polar images occurs (ap- 
proximately) at the correct displacement of the target. 
To estimate the translation parameters (x0, y0 ) ,  our ap- 
proach consists of finding the location of the minimum 
of the correlation measure ;t (Zo, yo ). The shape of the 
correlation surfaces suggests that a gradient-based 
search could be an adequate search algorithm. The esti- 
mation at iteration k, (x~, y~o ), is updated from the esti- 
mation at the previous iteration (X0 k-1 , yo ~-1 ) , by using 

the gradient, ~'A, of the correlation measure, as the most 
promising direction to move, i. e. 

(x0 ~ ,y0 ~) = (x0 ~-~ , y ~ )  - g ( v ~ )  (4) 

A common definition is g ( v A ) =  3 �9 VA/z.  sfnc, which 
the movement of the unit vector gradient v?,[ in the op- 
posite direction with a certain amount 8 is considered. 
The issue of choosing the value for 3 usually involves a 
trade-off. Then, an adaptive, rather than a fixed step, is 
called for. One possibility consists of moving ' large' 
steps when it is far from the minimum, and ' smal l '  
steps when it is in the contrary. This is our idea:initially 
8=  1 and whenever the minimum is surpassed the value 
of 3 is halved. The search may be stopped using some 
criteria such as that 8 is smaller than a given threshold 
8 ~  ,or that the search has reached a maximum number 
of iterations k~x. 

To evaluate Eq. (4) we need a way to compute the 
gradient VA. Let I1 and/2 be two log-polar images. 

Fig. 2 illustration of the cortical image deformation under car- 

tesian translation Log polar images in the first row, cartesian 

images are in the second row (shown much more smaller than  

they are). Columns 2-8 are versions of the original image (in 

first column) shifted by (x0 = s ,  Yo = - - $ )  ,with S equal to 1, 

3 , 5 , 1 0 , 2 0 , 3 0 ,  and 40 ,  respectively 
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Fig. 3 Translation vectors in the ( a )  retinal and ( b )  cortical 

planes 

In the case of the well-known SSD (sum of squared 
differences) correlation measure: 

 (xo,yo) = 
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the gradient V2----(2x ~ 'Ayo ) becomes: 

- : 

(Lr/) Ea (5) 
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Fig. 4 Example of correlation surface in the (a) cartesian and 

(b) log-polar spaces 

with 2 being a certain set of image pixels (usually, the 
entire image), and where I2 x o = Iz =o ( ~ '  7]') and Iz y0 = 
Iz~o ( ~ , ( )  are= 

, ( 12 / 
The common notation for partial derivatives, f~ = O f/8 
z, is  used. On the other hand, (~' ,  ~]') depends on the 
space-variant way of the translational displacement (x0, 
y0). For the sake of simplicity,we use the following ap- 

proximation, rather than the exact expression in Eq. 
( 3 ) :  

Deriving [' and r]' ,as defined in Eq. (7) ,with  respect to 
! ! 

xo and y0 yields: (x ~ = ~'~, ~'yo = ~y' r] ~0 ---- r]=, r] Y0 = ~]Y 
which are then used in Eq. (6). 

Finally, by taking the partial derivatives of ~ and 7],as 
defined in Eq. (1) ,  with respect to z and y,  we get ~x, 
~y, fix and % as follows= 

a~ a~ 

3x 3y 

s/n0 
-21 [lnm--~sO a lna 
~" L- ~inO cosO 

(8) 

A brief presentation of the log-polar mapping has 
been given. Then, the importance of translation estima- 
tion and its difficulty in cortical images has been shown. 
Next, an approach (GDS) that effectively deals with 
translation estimation in the complex logarithmic domain 
has been introduced. 

This strategy has been proven to be efficient. On the 
other hand, carrying out some off-line computations has 
been shown to be crucial in order to run these algo- 
rithms in real time. It makes sense in active visual track- 
ing applications. 
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