(βZr) and (αZr) Terminal Solid Solutions

The melting point of β Zr and the β Zr $\Leftrightarrow \alpha$ Zr allotropic transformation temperature are 1855 and 863 °C, respectively [Massalski]. The maximum solubility of Bi in (β Zr) is about 15 at.% [64Ham]. The peritectoid transformation temperature of (β Zr) to (α Zr) is about 900 °C [63Bad, 64Ham]. It is shown at 901 °C in Fig. 1 as in [Metals], because the β Zr $\Leftrightarrow \alpha$ Zr transition temperature in [64Ham] was assumed to be 862 °C. The solubility of Bi in (α Zr) at the peritectoid temperature is about 4 at.% [63Bad, 64Ham].

Crystal Structures and Lattice Parameters

Crystal structure and lattice parameter data for Bi-Zr phases are given in Tables 2 and 3, respectively.

Thermodynamics

According to emf measurements, the activity coefficient of infinitely dilute Zr solution can be expressed as: $\ln \gamma_{Zr} = 5.190 - 7631/T$ for T = 750 to 1000 K [79Leb].

Cited References

- 55Wee: J.R. Weeks, C.J. Klamut, M. Silberberg, W.E. Miller, and D.H. Gurinsky, "Corrosion Problems with Bismuth Uranium Fuels," Proc. U.N. Int. Conf. Peaceful Uses At. Energy, Geneva, Vol. 9, 341-355 (1955). (Equi Diagram; Experimental; #)
- 58Bar: P.J. Barton and G.W. Greenwood, "The Shape, Size, and Growth of Some Intermetallic Compunds in Liquid Bismuth," J. Inst. Met., 86, 504-509 (1957-1958); J. Br. Nucl. Energy Cnf., 4, 21-26 (1959). (Equi Diagram; Experimental)
- 59Byk: V.N. Bykov and V.V. Kazarnikov, "On the Structure of an Intermetallic Compound of Zr," *Kristallografiya*, 4, 924-925 (1959) in Russian; TR: Sov. Phys. Crystallogr., 4,

880-881 (1959). (Equi Diagram, Crys Structure; Experimental)

- 61 Sch: D.G. Schweitzer and J.R. Weeks, "Liquid-Metal Fuel Constitutions — III; Liquidus Curves of the Bismuth Fission-Product System," *Trans. ASM*, 54, 185-200 (1961). (EquiDiagram; Experimental; #)
- 61Wil: H.A. Wilhelm and C.B. Hamilton, "Bismuth-Zirconium Alloy Studies," U.S. At. Energy Comm., IS-351, 36-37 (1961). (Equi Diagram; Experimental)
- 63Bad: T.A. Badaeva and L.I. Rybakova, "The Structure of Binary Alloys of Zirconium and Lead in the Solid State," Structures and Properties of Uranium, Thorium, and Zirconium Alloys, O.S. Ivanov, Ed., Gosatomizdat, Moscow, 303-308 (1963) in Russian; TR: U.S. At. Energy Comm., AEC-tr-6367(1964). (Equi Diagram; Experimental; #)
- *64Ham: C.B. Hamilton and H.A. Wilhelm, "The Bismuth-Zirconium Alloy System," U.S. At. Energy Comm., IS-1269 (1964). (Equi Diagram; Experimental; #)
- 64Wil: H.A. Wilhelm and C.B. Hamilton, "Bismuth-Zirconium Alloy Studies," U.S. At. Energy Comm., IS-900, M35-M36 (1964). (Equi Diagram; Experimental; #)
- 66Mat: B.T. Matthias, A. Jayaraman, T.H. Geballe, K. Andres, and E. Corenzwit, "Many More Superconducting Bismuth Phases," *Phys. Rev. Lett.*, 17(12), 640-643 (1966). (Equi Diagram; Experimental)
- *68Ebe: D. Eberle and K. Schubert, "Structural Investigations in the Zr-Bi System and Several Quasi-Homologous Alloys," Z. Metallkd., 59(4), 306-308 (1968) in German. (Equi Diagram, Crys Structure; Experimental)
- 79Leb: V.A. Lebedev, F.F. Faizrakhmonov, and I.V. Fominykh, "Thermodynamic Characteristics of Zirconium-Bismuth and Zirconium-Antimony Molten Alloys," Termodin. Svoistva Met. Rasplavov, Mater. Vses. Soveshch. Termodin. Met. Solavov (Rasplavy), 4th, L.F. Kozin, Ed., Izd. Nauka Kazakhskoi SSR, Alma-Ata, USSR, Vol. 2, 97-100(1979) in Russian. (Thermo; Experimental)
- * Indicates key paper.

Indicates presence of a phase diagram.

Bi-Zr evaluation contributed by **H. Okamoto**, ASM INTERNATIONAL, Materials Park, OH 44073. This work was supported by ASM INTER-NATIONAL. Literature searched through early 1987. Dr. Okamoto is the ASM/NIST Data Program Category Editor for miscellaneous binary alloys.

The Br-In (Bromine-Indium) System

By H. Okamoto ASM INTERNATIONAL

Equilibrium Diagram

In-Br phase diagrams were proposed by [61Wal] and [62Mor] for the composition range between 50 and 75 at.% Br. Although the assessed In-Br phase diagram (Fig. 1) is based on the data of [62Mor] because of the larger number of data points used to determine the diagram, the disagreement between [61Wal] and [62Mor] is minor. Five intermediate phases exist in the In-Br system— InBr, In₅Br₇, In₄Br₇, InBr₂, and InBr₃. Special points of the assessed diagram are given in Table 1. The existence of InBr, $InBr_2$, and $InBr_3$ was known early in this century [04Thi].

(In) Terminal Solid Solution

The melting point of In is 156.634 °C [Melt]. In(L) and InBr(L) are immiscible [62Mor].

InBr

The melting point is 280 [61Wal] or 285.2 $^{\circ}$ C [62Mor]. The latter value is accepted in this assessment.

In₅Br₇

The congruent melting point of In_5Br_7 is 234.6 °C [62Mor]. [65Bra] confirmed the existence of this compound by determining the crystal structure, and the "In₂Br₃" in [61Wal] corresponds to this phase.

In₄Br₇

The peritectic melting temperature of In_4Br_7 is 199.2 °C [62Mor]. The composition is displaced to 63.4 at.% Br

from the ideal position of 63.6 at.% Br, apparently due to vacancies at the In lattice sites. [61Wal] considered In_4Br_7 to melt congruently at 201 °C.

L ↔ In4Br7 + InBr2 Eutectic Reaction

The eutectic point was reported at 65.3 at.% Br and 180 °C [61Wal] or 65.4 at.% Br and 185.7 °C [62Mor]. The disagreement of 5.7 °C in the eutectic temperature is exceptionally large, comparing the data sets of [61Wal] and

Table 1 Special Points of the Assessed In-Br Phase Diagram

Reaction	Compositions of the respective phases, at.% Br			Temperature, °C	Reaction type
L⇔In	•	0		156.634	Melting point
$L \Leftrightarrow (In) + InBr$. ~0	0	50	~156	Eutectic?
L ↔ InBr		50		285.2	Congruent
L⇔InBr + In₅Br ₇	. 58.2	50	58.3	234.3	Eutectic
$L \Leftrightarrow In_5 Br_7$		58.3		234.6	Congruent
$L + In_5Br_7 \Leftrightarrow In_4Br_7$. 63.7	58.3	63.4	199.2	Peritectic
$L \Leftrightarrow In_4 Br_7 + In Br_2$. 65.4	63.4	66.7	185.7	Eutectic
$L \Leftrightarrow InBr_2$	•	66.7		197.1	Congruent
$L \Leftrightarrow InBr_2^- + InBr_3$. 66.8	66.7	75	196.0	Eutectic
$L \Leftrightarrow InBr_3$		75		419.7	Congruent
$\operatorname{Br}_2(g) \Leftrightarrow \widetilde{L}$		100		59.10	Boiling point
L 🕶 Br		100		-7.25	Triple point

Table 2 In-Br Crystal Structure Data

Phase	Composition, at.% Br	Pearson symbol	Space group	Strukturbericht designation	Prototype	Reference
(In)		tI2	I4/mmm	A6	In	[King1]
InBr		oC8	Cmcm	B33	TII	[50Ste]
In5Br7		tP192	$P4_{2}2_{1}2$		•••	[65Bra]
In4Br7	63.4	•••				[61Wal]
InBr2	66.7	•••	•••			[04Thi]
InBr3		•••	•••		•••	[04Thi]
(Br)	100	oC8	Cmca		Cl	[Massalski]

Table 3 In-Br Lattice Parameter Data

	Composition,	Lat	tice parameters,	nm	Comment	Reference
Phase	at.% Br	a	Ъ	С		
(In)	0	0.32512		0.49467	•••	[Pearson3]
InBr	50	0.446	1.239	0.473		[50Ste]
In ₅ Br ₇	58.3	1.322		3.727		[65Bra]
In ₄ Br ₇		•••	•••	•••		
InBr ₂						
InBr ₃			•••		•••	
(Br)	100	0.668	0.449	0.874	At -150 °C	[King1]

[62Mor]. The result of [62Mor] is accepted in Fig. 1, because it is based on 18 well-defined data points (for clarity, not all points are shown in Fig. 1).

InBr₂

The congruent melting point of $InBr_2$ is 197.1 °C [62Mor]. Due to limited data, the type of melting is not clear in the diagram of [61Wal].

InBr₃

The melting point of $InBr_3$ is 436 [26Kle] or 419.7 °C [62Mor]. The latter value is accepted.

(Br) Terminal Phase

The triple point and boiling point temperatures of Br_2 are -7.25 and 59.1 °C, respectively [Massalski].

Crystal Structures and Lattice Parameters

In-Br crystal structure and lattice parameter data are summarized in Tables 2 and 3, respectively. The structures of InBr and In_5Br_7 are known. [40Bro] attempted to determine the Br-Br interatomic distance in $InBr_3$, but because the crystal structure is uncertain, a few different values were reported to be possible.

Cited References

- 04Thi: A. Thiel, "Studies on Indium. I," Z. Anorg. Chem., 40(2), 280-336 (1904) in German. (Equi Diagram, Crys Structure; Experimental)
- *26Kle: W. Klemm, "Measurements of Indium Halogenides. I," Z. Anorg. Chem., 152, 252-266 (1926) in German. (Equi Diagram; Experimental)
- 40Bro: H. Brode, "Determination of Atomic Distance and Molecular Structures of In and Ga Halogenides by Means of Electron Diffraction," Ann. Phys., 37, 344-364 (1940) in German. (Crys Structure; Experimental)
- *50Ste: N.C. Stephenson and D.P. Mellor, "The Crystal Structure of Indium Monobromide," Aust. J. Sci. Res. A, 3, 581-586 (1950). (Crys Structure; Experimental)
- *61Wal: P.H.L. Walter, J. Kleinberg, and E. Griswold, "The Indium(I) Bromide-Indium(III) Bromide System," J. Inorg.

Nucl. Chem., 19(3-4), 223-228 (1961). (Equi Diagram, Crys Structure; Experimental)

- *62Mor: W. Morawietz, H. Morawietz, and G. Brauer, "Phase Diagram of Indium-Bromine," Z. Anorg. Chem., 316(3-4), 220-230 (1962) in German. (Equi Diagram; Experimental; #)
- *65Bra: G. Brauer and H. Morawietz, "Lower Indium Halides," Z. Anorg. Chem., 340, 133-138 (1965) in German. (Equi Diagram, Crys Structure; Experimental)
- * Indicates key paper.
- # Indicates presence of a phase diagram.

Br-In evaluation contributed by **H. Okamoto**, ASM INTERNATIONAL, Materials Park, OH 44073. This work was supported by ASM INTERNA-TIONAL. Literature searched through 1987. Dr. Okamoto is the ASM/NIST Data Program Category Editor for miscellaneous binary alloys.

The CI-In (Chlorine-Indium) System

By H. Okamoto ASM INTERNATIONAL

Equilibrium Diagram

The assessed In-Cl phase diagram (Fig. 1) is based primarily on the works of [63Pal], [68Fed], and [87Dmi]. The data of [58Cla], [66Cha], and [77Saf] are in reasonable agreement (Fig. 1). The intermediate phases existing in the assessed diagram are (1) β InCl and α InCl; (2) In₃Cl₄; (3) β In₂Cl₃ and α In₂Cl₃; (4) In₅Cl₉ with a possible polymorphic transition; (5) β InCl₂ and α InCl₂; and (6) InCl₃. Special points of the assessed diagram are given in Table 1.

(In) Terminal Solid Solution

The melting point of In is 156.634 °C [Melt]. In(L) and InCl(L) are immiscible [63Pal]. The monotectic temperature is 216 °C [63Pal].

β InCI(red) and α InCI(yellow)

Two modifications exist in solid InCl, with a transition temperature of 120 °C [66Ber]. Syntectic melting point of InCl is 212 °C [87Dmi]. [64Fed] and [68Fed] proposed diagrams with a congruent melting point at about 225 °C. Because a critical data point in a diagram of [68Fed] does not agree with the tabulated value, the result of [87Dmi] is accepted.

On the Cl-rich side of InCl, [63Pal] observed a monotectic reaction at about 254 °C (see data points in Fig. 1). However, [58Cla] and [68Fed] observed the $L/(L + In_3Cl_4)$ liquidus in the same composition range. The latter relationship is shown in Fig. 1. The L $\Leftrightarrow \beta InCl + In_3Cl_4$ eutectic point is 50.5 at.% Cl and 210 °C [87Dmi].

In₃Cl₄

The peritectic melting point of In_3Cl_4 is shown at 265 °C in Fig. 1, based on thermal arrest data given by [63Pal] and [68Fed]. However, [63Pal] considered this temperature to correspond to a polymorphic transformation of an unknown compound (In_xCl_y) .

Reaction	Co respe	mpositions of tl ctive phases, at	ne .% Cl	Temperature, °C	Reaction type
L⇔In		. 0		156.634	Melting point
$L \Leftrightarrow (In) + \beta InCl$	~0	0	50	156	Eutectic
$L_1 + L_2 \Leftrightarrow \beta InCl$?	50.24	50	212	Syntectic
$\beta \text{InCl} \Leftrightarrow \alpha \text{InCl}$	•••••	50		120	Polymorphic
$L \Leftrightarrow \beta InCl + In_3Cl_4$	50.5	50	57.1	210	Eutectic
$L + \alpha In_2 Cl_3 \Leftrightarrow In_3 Cl_4$	55	60	57.1	265	Peritectic
$L \Leftrightarrow \beta In_2 Cl_3$	•••••	60		325	Congruent
$L + \beta In_2 Cl_3 \Leftrightarrow \alpha In_2 Cl_3 \dots$	57	60	60	302	Peritectic?
$\beta In_2 Cl_3 \Leftrightarrow L + \alpha In_2 Cl_3 \dots$?	63	60	284	Catatectic
$L + \alpha In_2 Cl_3 \Leftrightarrow \beta In_5 Cl_9 \dots$	64.5	60	64.3	258	Peritectic
$\beta In_5 Cl_9 \Leftrightarrow \alpha In_5 Cl_9$	•••••	64.3		224	Polymorphic
$L \Leftrightarrow \beta In_5 Cl_9 + \beta In Cl_2$	65.8	64.3	66.7	236	Eutectic
$L + InCl_3 \Leftrightarrow \beta InCl_2$	66	75	66.7	239	Peritectic
$\beta \text{InCl}_2 \Leftrightarrow \alpha \text{InCl}_2$	•••••	66.7		186	Polymorphic
$L \Leftrightarrow InCl_3$	•••••	75		580	Congruent
$Cl_2(g) \Leftrightarrow Cl_2(L)$		100		-100.97	Boiling point
L ↔ Cl		100		-34.05	Triple point