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We prove that a compactly supported spline function ~b of degree k satisfies the scaling 
equation ~b(x)= ~~=oc(n)q~(mx-n) for some integer m > 2, if and only if if(x)= 
~np(n)Bk(X -- n) where p(n) are the coefficients of a polynomial P(z) such that the roots 
of P(z)(z - 1) T M  are mapped into themselves by the mapping z ~ z ~, and Bk is the uniform 
B-spline of degree k. Furthermore, the shifts of ~b form a Riesz basis if and only if P is a 
monomial. 
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1. I n t r o d u c t i o n  

Splines, as well as refinable funct ions,  have been  widely used in the areas  o f  
numerica l  so lu t ion  o f  differential equat ions ,  compu te r  a ided geometr ic  design 
and  wavelet  theory.  In  this note  we give a comple te  character iza t ion o f  compac t ly  
suppor t ed  refinable splines. 

Definition 1.1 
A non-zero  compac t ly  suppor t ed  funct ion  ~b : 11~ --, C is a spline if  there exists an 
integer L _> 2 and  poin ts  x0 < Xl < .-- < x t  such that  ~b is suppor t ed  on  [x0, xL] 
and  for  each 1 < j < L and  x E [xj_ l, xj ), 

~b(x) = Pj(x), (1.1) 

where  Pj is a po lynomia l  o f  degree kj. 
The points  xj, j = 0 , . . . ,  L, are called knots of  ~b and  the degree o f  q~ is 

k = m a x { k l , . . .  ,ke}.  A kno t  xj is called an active knot o f  ~b if  its derivat ive q~(t) 
is d i scont inuous  at xj for  some l. We  shall assume that  all the kno ts  are active 
knots .  
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A special class of splines are the uniform B-splines which are defined inductively 
by 

1 x E [0, 11, (1.2) 
B ° ( x )  ; =  )([°'l) (X) "=  0 otherwise, 

and for k > 1 

Bk:=Bk_l * Bo, (1.3) 

where • denotes the operation of convolution. Then for any integers k > O, Bk has 
k - 1 continuous derivatives with active knots at 0 , . . . ,  k + 1 and it is a polynomial 
of degree k between the knots. 

The Fourier transform of an integrable function ~b will be denoted by 4~ and is 
defined by 

6(u):= f [  6(x)e2"XUdx. 

Definition 1.2 
Let m > 2 be an integer. A function f is m-refinable if there exist positive integers 
Nl < N2 and a finite sequence of complex number a(n), n---N1, . . . ,  N2, called 
the scaling sequence, such a(N1) ~ O, a(N2) ¢ 0 a n d f  satisfies the following scaling 
(or refinement) equation 

N2 
f ( x ) =  Z a ( n ) f ( m x - n ) .  (1.4) 

n = N  1 

Note that every m-refinable function may be reduced to standard form by letting 
dp(x) = f ( x  + (Nl/m - 1)). Then (1.4) becomes 

N 

¢(x) = Z c(n)(o(mx - n), (1.5) 
n=0 

where c(n):= a(n + N1) and N : =  N 2 -  N1. We shall assume that all m-refinable 
functions have been reduced to standard form unless otherwise stated. We shall 
also call (1.5) a scaling equation of  length N. The polynomial C(z):= 
c(0) + e(1)z + . . .  + c(N)z u is called the scaling polynomial of ~b. 

By taking Fourier transforms of the functions in (1.5), we have 

1 ,.,, 27riu/mx?['U "~ 
6(u) = mt~te )q~lkm, ) . (1.6) 

The uniform B-spline Bk is an m-refinable compactly supported spline for any 
m > 2. Indeed, Bk satisfies the scaling equation 

N 

Bk(X) = Z bk,m(n)Bk(mx -- n), (1.7) 
n=0 
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where N := (k + 1)(m - 1), and the scaling coefficients bk, m (n) are given recursively 
by 

1 n = O , . . . , m  - 1,  

bo,m(n) := 0 otherwise, (1.8) 

and for k =  1,2 , . . . ,  

1,.-1 
bkm:=bk_,,,. * bo , . :=- -Zbk_ , , , . ( n - j ) .  (1.9) 

, , m j=  0 

The scaling sequences (bk,,.(n)),,~z are the discrete uniform B-splines. The scaling 
relation (1.7) with the scaling coefficients given in (1.8) and (1.9) is established by 
induction on k using (1.3). If we denote the scaling polynomial of Bk by 

N 

Bk,,.(z):= Zbk,,.(n)zn, z E C ,  (1.10) 
n=0 

then the above recursive definition of bk,,. (n) is equivalent to 

1 (l + z +  "-" +zm-1)k+l. (1.11) B k , , . ( z )  = 

This can also be established directly by taking the Fourier transforms of the 
functions in the scaling equation (1.7). 

Refinable functions are studied in computer aided geometric design via subdivi- 
sion methods [2] and also in wavelet theory [3]. The refinability makes it possible to 
iterate a fixed numerical scheme to generate a curve or surface by computers, and 
provides a simple numerical decomposition and reconstruction algorithm for image 
compression. Refinable functions with compact supports give efficient numerical 
schemes and better time localization in image compression. 

The interpolatory subdivision scheme, an iterative interpolation process, is a 
special subdivision scheme. The corresponding refinable function obtained from 
such a scheme is a fundamental function. A function q~ is called a fundamental 
function if there is an integer i, so that 

dp(j) = 6id, for a l l j  E Z. 

Deslauriers and Dubuc [4] considered such a scheme which led them to the con- 
struction of 2-refinable compactly supported fundamental functions. These func- 
tions are usually not splines. It is well known that refinable fundamental 
functions can be constructed from the uniform B-splines (see [6]), but they usually 
have infinite supports. 

In [2], Cavaretta et al. made an extensive study of the theory and the applications 
of stationary subdivision. Among other things, they gave a characterization of 
compactly supported refinable cardinal splines (a cardinal spline is a linear combi- 
nations of shifts, i.e. integer translates, of a fixed uniform B-spline). It would be of 
interest to give a complete characterization of all compactly supported refinable 
splines. The main result of this paper gives such a characterization. 
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It is of particular interest in wavelet theory to construct compactly supported 
refinable functions with orthonormal shifts. In [3], Daubechies gave a general 
construction of a class of 2-refinable compactly supported functions with ortho- 
normal shifts by constructing scaling sequences with certain properties. The 
corresponding refinable functions, which are defined via their Fourier trans- 
forms, usually do not have analytic forms. On the other hand, refinable functions 
with orthonormal shifts constructed by Battle and Lemari6 [1,5] from uniform 
B-splines are piecewise polynomials. However, they usually have infinite sup- 
ports. 

Splines are widely used in computer aided geometric design and in the numer- 
ical solution of differential and integral equations. Recently more general ideas on 
refinability, nested spaces and decomposition of spaces have also been used in 
these areas. Therefore it would be useful to have compactly supported refinable 
splines which have orthonormal shifts, or which are fundamental functions. 
This partially motivates our study here and an immediate corollary of the main 
results of this paper confirms that, except the trivial cases, there are no such 
splines. 

In section 2 we introduce some preliminaries and state the main theorem whose 
proof is given in section 3. 

2. Preliminaries and statement o f  results 

We introduce necessary concepts, derive preliminary results and state the 
characterization theorem for m-refinable splines. 

Lemma 2.1 
If ~b is an m-refinable compactly supported function satisfying a scaling equation of 
length N, then the smallest interval containing its support is [0, N / ( m  - 1)]. 

Proof 
If ~b has compact support let [a, b] be the smallest interval containing the support of 
~b. The scaling equation (1.5) implies 

 [n+an b] 
[a,b] c Y ' - -  " 

n=O m 

Therefore a > 0 and b < N / ( m  - 1). [] 

Lemma 2.2 
If ~b is an m-refinable compactly supported spline function for any rn > 2, then the 
knots of ~b are integers. 
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Proof 
Lemma 2.1 implies that x~ > 0 for each i. Suppose that there exists a non-integer 
knot  and let 0 < xi be the smallest non-integer knot. Then (1.5) implies 

( N 

~) Xt -~- c(O)~)(Xi) + ~ c(n)c~(x~ - n). 
\m  n= 1 

The points xi - n are not knots since they are non-integers and they are smaller 
than xi and x; was assumed to be the smallest non-integer knot. Since xi is a 
knot  and x i -  n are not  knots x~/m is a knot  and is smaller than xi. Further- 
more, xdm is a non-integer knot, since xi is a non-integer, and is smaller than x~. 
This contradicts the assumption that Xg is the smallest non-integer knot and 
completes the proof. [] 

Definition 2.1 
Let m > 2 be an integer. A polynomial P(z) is m-closed if its roots are mapped into 
themselves (counting multiplicity) by the mapping z ---, z m. 

Lenuna 2.3 
A polynomial P(z) is m-closed if and only if P(z) divides P(zm). 

Proof 
Suppose that P(z) divides P(zm). Then P(z m) = Q(z)P(z) for some polynomial 
Q(z). Therefore, if A is a root of P(z) of multiplicity # then ,~m is also a root of 
P(z) of multiplicity at least #. Hence P(z) is m-closed. 

Conversely, suppose that P(z) is m-closed. Now the rational function P(z m)/P(z) 
has at most isolated poles at the roots ofP(z).  If A is a root of  P(z) of  multiplicity #, 
then A m is a root of P(z) of multiplicity at least #. Hence (z ~ - A m )  ~ is a factor of 
P(zm). Since ( z -  A) ~' divides (z m -Am) u, P(z m) has a factor ( z -  A) ~'. Hence 
P(zm)/P(z) is a polynomial. [] 

Definition 2.2 
The linear combination of shifts of  a function f 
p(0) +p(1)z  + . . -  +p(d)z  a is the function 

d 

g(x) = ~-~p(n)f(x - n). 
n=0  

by a polynomial P(z)= 

(2.1) 

Clearly g is a linear combination of  shifts of  ~b by P(z) if and only if 

~,(U) : P(e2~riu)~(u). 

We now state the main theorem. 
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Theorem 2.1 
Suppose that ~b is a compactly supported spline function of degree k and m > 2 is an 
integer. Then ~b is an m-refinable function satisfying the scaling equation (1.5) if and 
only if there exists a polynomial P(z) such that P(z)(z - 1) k+l is m-closed and q~ is 
the linear combination of shifts of Bk by P(z). Further, the shifts of ~ form a Riesz 
basis if and only if P(z) is a monomial. 

I f f  is an m-refinable compactly supported spline function satisfying the scaling 
equation (1.4), then its shift f ( .  + N1/(m - 1)) satisfies a scaling equation of the 
form (1.5). Therefore the following are direct consequences of theorem 2.1. 

Corollary 2.1 
A compactly supported spline function ~b of degree k satisfies the scaling equa- 
tion (1.4) if and only if there exists a polynomial P(z) such that P ( z ) ( z -  1) k+l is 
m-closed and ~b is the linear combination of shifts of Bk(" - - N l / ( m -  1)) by 
e(z). 

Corollary 2.2 
The shifts of a compactly supported m-refinable spline function of degree k form a 
Riesz basis if and only if it is of the form Bk(" - - j / (m -- 1)) fo r j  E Z. 

Corollary 2.3 
Let q~ be a compactly supported m-refinable spline function. Then 4~ and its shifts 
form an orthonormal set if and only if ~b(x) = Bo(x - j / ( m  - 1)) for somej  E Z; 
and ~b is a fundamental function if and only if ~b(x) = Bo(x - j / ( m  - 1)) for 
somej  E Z or q~(x) = Bl(X - j / ( m  - 1)) for somej  E Z. 

The proof of theorem 2.1 based on properties of the Fourier transform of 4~ and 
its relationship to the scaling polynomial C(z) of q~ is given in the next section. 

3. Proof  of  the main theorem 

We first establish some auxiliary results. 

Lemma 3.1 
For a compactly supported spline function q~ of degree k, 4~(u) ~ 0 for almost all u, 
and 

k 

~(U) : ~-~ u J - k - l  Tj(u), (3.1) 
j=0 
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where each Tj(y), j = 0 , . . . ,  k, is a polynomial of the form 

L 
Tj(u) = ~ t e 2~rixlu 

l,j 
l=0 

and xt, l = 0 , . . . ,  L, are the active knots of ~b. 

(3.2) 

Proof 
Suppose that ~b is given by (1.1). Then 

d(u) = P/(x)e2~iX"dx. 
j = l  dxJ -1 

The result then follows by integration by parts. [] 

Lemma 3.2 
Let ~b be an m-refinable compactly supported spline function of degree k with 
scaling polynomial C(z) and Fourier transform given in (3.1). Then each Tj is a 
trigonometric polynomial satisfying the equation 

Tj(u)  =mk-JC(e2~riu/m)Tj(U). (3.3)  

hoof 
By lemmas 2.1 and 2.2, the knots of ~b, 0 = x0,. . .  ,XL = N / ( m -  1) are integers. 
Hence each Tj is a trigonometric polynomial. Substituting the expression for 
0(u) in (3.1) into (1.6) we obtain 

T u ~ - ~ u J - k - l T j ( u )  = ~-~mk-JC(e2~iu/m)uJ-k-'  J m " 
j=0  j=0  

The relation (3.3) then follows by equating the coefficients of powers of u since C 
and Tj are periodic of period 1 and have only finitely many zeros in the interval 
[0, 1]. [] 

We are now in the position to prove the main result. 

Proof of theorem 2.1 
Suppose that ~b is an m-refinable compactly supported spline function of degree k 
satisfying the scaling equation (1.5). Then the Fourier transform 0 is given in 
(3.1). First we show that all but one of the T/s are identically zero. For any 
0 < j  < k, (1.6) and (3.3) show that Tj(u) satisfies 

Tj(u)=m(k_j+l) p O(U) ( U ) ~(u/mP) Tj ~-7 ' P = 0, 1, . . . .  (3.4) 
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Choose l such that Tt is not identically zero. Suppose the Taylor series expansions 
of  4; and Tt about u = 0 are 

~(U) = aU u q- O(U u+l) 

and 

Tl(U ) = al  uut q- O(uVl+l),  

respectively. Then for u ¢ 0 such that 4~(u) ¢ 0, 

Tt(u ) = lim aIm(k-t+l+~-~)Pu~-~d?(u). 
p--* oe a 

It follows that 

and 

Hence 

u l = k - l + l + u  

V,(u) = a' uk-'+16(u). 
a 

k 
£d-k- lT, (u)  = ~_, ~-k-'rj(u). 
a t  j=0 

Therefore, Tjis identically zero for a l l j : f i l  and it fo l lowsfrom(3.1)  that 

T,(u) 
6(u) = u ~ _ , + , .  

By defining 

we obtain 

(3.5) 

6(u) = r(e2~i~) 
uk_l+l  , (3.7) 

for some l, 0 < ! < k. 
Since q~(u) is bounded,  (3.7) shows that T(z) must have a root or order at least 

k - l + 1 at z = 1. Furthermore,  (3.3) implies 

T(z m) = mk-tC(z)T(z), z E C, (3.8) 

where C(z) is the scaling polynomial of  q~. Hence, T(z) is m-closed. 
We define the polynomial P(z) by 

t , (z)  - r ( z )  
( z -  1) k-t+1 " (3.9) 

L 
T(z) := ' ~  tj,t zxj, z ~ C, (3.6) 

j=0 
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Then P(z) (z - 1)k-t+ 1 is m-closed. Further,  

~p(U) = P ( e  27riu) (e27riu- 1)k-/+l  
d,_,+ ~ - e(e2~iu)i~_,(u), 

showing that ~b is the linear combination of shifts of the B-spline Bk_ t by P(z). Since 
~b is of degree k, it follows that l = 0. 

Conversely, suppose that 4~ is the linear combination of shifts of  B k for some 
integer k > 0 by a polynomial P(z) for which P(z)(z - 1) k+l is m-closed. Then 

c~(u) = e(e2~iU)Bk(U ) (3.10) 

and 

c~(mu)_ 1 P(e2'~U)(e 2~imu- 1) k+' 

c~(u) m k+l e(eE'iu)(e 2~i~- 1) k+l 

is a polynomial. Hence ~b is m-refinable. 
Finally, if q~ is the linear combination of  shifts of Bk by P(z), then (3.10) gives 

y ~  I¢(u + n)l 2 = Ie(e2~eu)12 Y ~  IBk(U + n)l 2, u E R. 
nEZ nEZ 

Hence 

A < ~ l ~ ( u + n ) l  E ~ B ,  uEIR,  
nEZ 

for some positive constants A and B, if and only if P(z) has no root on the unit 
circle. Since P(z)(z - 1) k+l is m-closed, all the roots of P(z) are either zero or lie 
on the unit circle. Hence P(z) has no roots on the unit circle if and only if P(z) 
is a monomial.  [] 
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