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Drawing Wit

omplex Numbers

. t is not commonly realized that the algebra of complex numbers can be used in an

elegant way to represent the images of ordinary 3-dimensional figures, orthograph-

ically projected to the plane. We describe these ideas here, both using simple geome-

try and setting them in a broader context.

Consider orthogonal projection in Euclidean n-space
onto an m-dimensional subspace. We may as well choose
coordinates so that this is the standard projection P: R* —
R™ onto the first m variables. Fix a nondegenerate simplex
> in R™ Two such simplices are said to be similar if one
can be obtained from the other by a Euclidean motion to-
gether with an overall scaling. This article answers the fol-
lowing question. Given n + 1 points in R™, when can these
points be obtained as the images under P of the vertices
of a simplex similar to >.?

When n = 3 and m = 2, then P is the standard ortho-
graphic projection (as often used in engineering drawing),
and we are concerned with how to draw a given tetrahe-
dron. We shall show, for example, that four points «, 8, v,
4 in the plane are the orthographic projections of the ver-
tices of a regular tetrahedron if and only if

(a+B+y+ 82 =42+ B+ ¥+ & ¢))

where a, B, v, 8 are regarded as complex numbers! Similarly,
suppose a cube is orthographically projected and normalised
so that a particular vertex is mapped to the origin. If o, 3, v
are the images of the three neighbouring vertices, then

2+ F+¥=0 2)

again as a complex equation. Conversely, if this equation is
satisfied, then one can find a cube whose orthographic image
is given in this way. Since parallel lines are seen as parallel in
the drawing, equation (2) allows one to draw the general cube:

In this example, @ = 2 — 267
B=-23+2i
y=14+T7

The result for a cube is known as Gauss’s fundamental
theorem of axonometry—see [3, p. 309] where it is stated
without proof. In engineering drawing, one usually fixes
three principal axes in Euclidean three-space, and then an
orthographic projection onto a plane transverse to these
axes is known as an axonometric projection (see, for ex-
ample, [8, Chapter 17]). Gauss’s theorem may be regarded
as determining the degree of foreshortening along the prin-
cipal axes for a general axonometric projection. The pro-
jection corresponding to taking «, 83, v to be the three cube
roots of unity is called isometric projection because the
foreshortening is the same for the three principal axes.

In an axonometric drawing, it is conventional to take
the image axes at mutually obtuse angles:
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If |a| = a, |8 = b, |y = ¢, then equation (2) is equivalent to
the sine rule for the triangle with sides o2, 82, ¥, namely
a® b2 c?
sin24  sin 2B sin 2C°

In this form, the fundamental theorem of axonometry is
due to Weisbach, and was published in Tiibingen in 1844
in the Polytechnische Mitteilungen of Volz and Karmasch.
Equivalent statements can be found in modern engineer-
ing drawing texts (e.g., [7, p. 44]).

Equation (2) may be used to give a ruler-and-compass
construction of the general orthographic image of a cube.
If we suppose that the image of a vertex and two of its
neighbours are already specified, then (2) determines (up
to a two-fold ambiguity) the image of the third neighbour.
The construction is straightforward, except perhaps for the
construction of a complex square root, for which we ad-
vocate the following as quite efficient:

First, { is constructed by marking the real axis at a distance
|l|| from the origin. Then, a circle is constructed passing
through the three points ¢, 1, and z. Finally, the angle be-
tween 1 and z is bisected and Vz appears where this bi-
sector meets the circle.

In engineering drawing, it is more usual that the images
of the three principal axes are prescribed or chosen by the
designer and one needs to determine the relative degree
of foreshortening along these axes. There is a ruler-and-
compass construction given by T. Schmid in 1922 (see, for
example, [8, §17.17-17.19]):

In this diagram, the three principal axes and « are given. By
drawing a perpendicular from « to one of the principal axes
and marking its intersection with the remaining principal
axis, we obtain P. The point Q is obtained by drawing a semi-
circle as illustrated. The point R is on the resulting line and
equidistant with o from Q. Finally, 8 is obtained by drop-
ping a perpendicular as shown. It is easy to see that this con-
struction has the desired effect—in Euclidean three-space,
rotate the right-angled triangle with hypotenuse Pa about
this hypotenuse until the point @ lies directly above 0, in
which case R will lie directly above 8 and the third vertex
will lie somewhere over the line through 0 and Q. One may
verify the appropriate part of Weisbach’s condition

a? b

sin 24 sin 2B

3

by the following calculation. Without loss of generality we
may represent all these points by complex numbers nor-
malised so that @ = 1. Then it is straightforward to check that

ala+ ) +2(1-—a—-a)
a—&

ala+a)+2(1-a—-a) .

2—-a—a ¢

R=1+1i-iq, P=

H

B.—_

)

and therefore that

(a—1D(a~Da+a—-1)
(a+a—2)° '

That o2 + B2 is real is equivalent to (3).

To prove Gauss’s theorem more directly, consider three
vectors in R? as the columns of a 3 X 3 matrix. This ma-
trix is orthogonal if and only if the three vectors are or-
thonormal. It is equivalent to demand that the three rows
be orthonormal. However, any two orthonormal vectors in
R3 may be extended to an orthonormal basis. Thus, the
condition that three vectors

) ) G

Y1 Yz Ys

in R? be the images under P: R3 — R? of an orthonormal
basis of R3, is that

2+ =4

Y2 Ys)

be orthonormal in R3. Dropping the requirement that the
common norm be 1, we obtain

(1 22 23) and (y;

22+ 22 + x5 =y 2+ gl + yg? and
x1y1 + x2y2 + 23y3 = 0.

Writing & = 1 + dy1, B =22 + ¥2, ¥ = 23 + ys, these two
equations are the real and imaginary parts of (2). To de-
duce the case of a regular tetrahedron as described by
equation (1) from the case of a cube as described by equa-
tion (2), it suffices to note that equation (1) is translation-
invariant and that a regular tetrahedron may be inscribed
in a cube. Thus, we may take § = a + 8 + v and observe
that (1) and (2) are then equivalent.

It is easy to see that the possible images of a particular
tetrahedron > in R under an arbitrary Euclidean motion fol-
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lowed by the projection P form a 5-dimensional space—the
group of Euclidean motions is 6-dimensional, but translation
orthogonal to the plane leaves the image unaltered. It there-
fore has codimension 3 in the 8-dimensional space of all
tetrahedral images (2 degrees of freedom for each vertex).
Allowing’similar tetrahedra rather than just congruent ones
reduces the codimension to 2. Therefore, two real equations
are to be expected. Always, these two real equations com-
bine as a single complex equation such as (1) or (2). At first
sight, this is perhaps surprising; and even more so when the
same phenomenon occurs for P: R® — R? for arbitrary n.

For n = 3, there is a proof of Gauss’s theorem which
brings in complex numbers at the outset. Consider the
space H of Hermitian 2 X 2 matrices with zero trace, i.e.,
matrices of the form

u
X=( w u+w> for (v)ER3.
u—%w —w w

We may identify H with R3, and, in so doing, —det X be-
comes the square of the Euclidean length. The group G of
invertible 2 X 2 complex matrices of the form

i

acts linearly on H by X — AXA’. Moreover,
det(AXAY) = (la2 + [b)? det X,

so G acts by similarities. It is easy to check that all simi-
larities may be obtained in this way. (This trick is essen-
tially as used in Hamilton’s theory of quaternions and is
well known to physicists. In modern parlance it is equiva-
lent to the isomorphism of Lie groups Spin(3) = SU(2).)
Therefore, an arbitrary orthographic image of a cube may
be obtained by acting with A on the standard basis

(0 1) ( 0 z) (1 0 )
1 0/ -5 0/ 0 -1
and then picking out the top right-hand entries. We obtain

— * 2 _ p2
S

1 * *
0 i\x (* i@\ .,
A—i OA=* ¥ —ia®+b4)=pB
_ *
A((l) _(_)I)A‘=<* 2:b)n—>2ab:7

and therefore o2 + B2 + 2 = 0, as required. Conversely,
this is exactly the condition that «,8,y may be written in
this form. (Compare the half-angle formulae: if s2 + ¢2 = 1,
then s = 2t/(1 + t?) and ¢ = (1 — 2)/(1 + ?) for some t.)
That Gauss [3, p. 309] makes the same observation con-
cerning the form of «, 8,y suggests that perhaps he also had
this reasoning in mind.

In general, the following terminology concerning the stan-
dard projection P: R — R™ is useful. We shall say that vy, vo,

., Up € R™ are normalised eutactic if and only if there is
an orthonormal basis u,, uy, . . . , u, of R" with v; = Pu; for
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7=12,...,n We shall say that v, vy, . . . , v, € R™ are eu-
tactic if and only if uvy, uve, . . . , pv, are normalised eutac-
tic for some yu # 0. The proof of Gauss’s theorem using or-
thogonal matrices clearly extends to yield the following result.

Theorem The points 2y, 2, . . . , 2, € C = R? are eutac-

tic if and only if
22+ 2t + e+ 22=0
and not all z; are zero.

There is an alternative proof for n = 4 based on the iso-
morphism

Spin(4) = SU(2) X SU(2),

and, indeed, this is how we came across the theorem in the
first place.

However, a more direct route to complex numbers, and
one which applies in all dimensions, is based on the obser-
vation that Gr (R2), the Grassmannian of oriented two-planes
in R"® is naturally a complex manifold. When n = 3, this
Grassmannian is just the two-sphere and has a complex struc-
ture as the Riemann sphere. In general, consider the mapping

CPy_i \RP,_; & Gr3(RY)

induced by C" 2 z — i2/\2. In other words, a complex vec-
tor z = x + iy € C" is mapped to the two-dimensional ori-
ented subspace of R® spanned by x and y, the real and
imaginary parts of z. Let (,) denote the standard inner
product on R" extended to C" as a complex bilinear form.
Then, (2, 2) = 0 imposes two real equations

lef? = lyf*  and

on the real and imaginary parts. In other words, x, y is pro-
portional to an orthonormal basis for span{z, y}. Hence, if
2 and w satisfy (z, 2) = 0 = (w, w) and define the same ori-
ented two-plane, then w = Az for some A € C\{0}. The non-
singular complex quadric

K ={[z] € CP,—; s.t. (2, 2) = 0}

(@, y)=0

avoids RP,-; C CP,,_,, and we have shown that ﬂK is in-
jective. It is clearly surjective. The isomorphism

72 K =5 Gro+ (R?)

respects the natural action of SO(n) on K and Gra™(R"™).
The generalised Gauss theorem follows immediately, for,
rather than asking about the image of a general orthonor-
mal basis under the standard projection P: R* — R2, we
may, equivalently, ask about the image of the standard ba-
sis e}, €9, . . . , &, under a general orthogonal projection onto
an oriented two-plane IT C R™ Any such I1 is naturally com-
plex, the action of i being given by rotation by 90° in the
positive sense. If I1 is represented by [2y, 2, . . ., 2,] EK
as above and we use x, ¥ € II to identify IT with C, then
e;~> zy and

2+ttt 2l=(22) =0,

as required. Conversely, a solution of this complex equa-
tion determines an appropriate plane I1.



For the case of a general tetrahedron or simplex and for
general m and n, it is more convenient to start with Hadwiger’s
theorem [4] or [2, page 251] as follows. The proof is obtained
by extending our orthogonal matrix proof of Gauss’s theorem.

Theorem (Hadwiger) Assemble v, vs, . . ., v, € R™ ags
the columns of an m X n matrix V. These vectors are nor-
malised eutactic if and only if VV = 1 (the m X m iden-
tity matrix).

Proof If vy, vy, . . . , v, are normalised eutactic, then as-
sembling a corresponding orthonormal basis of R” as the
columns of an n X n matrix, we have V= PU and U*U = 1
(the n X n identity matrix). Therefore, UU’ = 1 and

VV' = PUU'P! = PP! = 1,

as required. Conversely, if VV* = 1, then the columns of
V¢ may be completed to an orthonormal basis of R?, i.e.,
Vt = U'P! for UU! = 1. Now, U'U =1 and V = PU, as re-
quired. O

The case of a general simplex is obtained essentially by
a change of basis as follows. Suppose ay, as, . . . , Gy, Gp+1
are the vertices of a non-degenerate simplex > in R” whose
centre of mass is at the origin. In other words, the n X
(n + 1) matrix A has rank n and Ae = 0 where ¢ is the
column vector all of whose n + 1 entries are 1. Form the
(n + 1) X (n + 1) symmetric matrix

Q = A'aAn 2 4,

noting that rank A = n implies that the moment matrix
AA! is invertible.

Theorem Given by, by, . . . , by, bys1 € R™ assembled as
the columns of an m X (n + 1) matrix B, these vectors
are the images under orthogonal projection P : R* — R™
of the vertices of a simplex congruent to 2. if and only if

B@B! = 1. @

Proof The vertices of a simplex congruent to > are the
columns of a matrix UA + ae for some orthogonal matrix
U and translation vector a € R". Also, note that Qe = 0.
Thus, if B = P(UA + ae"), then

BQB! = PUAQA'U'P*
= PUAAYAAY) 2AAUP
= PUU'P' = PP! =1,
as required.

Conversely, Qe = 0 implies that (4) is translation in-
variant. So, without loss of generality, we may suppose that
b1 +bg + - + by, + b1 = 0, thatis to say, Be = 0. Writing
out (4) in full gives

BAYAAYW(BAY(AAH) DY =1
so, by Hadwiger's theorem, there is an orthogonal matrix
U so that
BAY(AAH™L = PU.

Thus,

I
@

BAYAAH™1 A = PUA and Be

Certainly, B = PUA is a solution of these equations; but it
is the only solution, because A(AA*)~1 A has rank n and e
is not in the range of this linear transformation. [

Corollary (case m = 2) Points 2y, 23, . . . , 2, 2p+1 € C
are the images under orthogonal projection of the vertices
of a simplex similar to 2. if and only if

2Qz=0

where z is the column vector with components 21, 2, . . . ,
Rny Rn+1-

It is, of course, possible to compute @ explicitly for any
given example. If the simplex > has some degree of sym-
metry, however, we can often circumvent such computa-
tion. Consider, for example, the case of a regular simplex.
From the corollary above, we know that the image of such
a simplex in the plane is characterised by a complex ho-
mogeneous quadratic polynomial. The symmetries of the
regular simplex ensure that this polynomial must be in-
variant under ¥,,;,, the symmetric group on n + 1 letters.
Hence, it must be expressible in terms of the elementary
symmetric polynomials. Equivalently, it must be a linear
combination of

(Ri+t2t - +2,+2,41)° and
2+ 2R+ o+ 2R+ a2

Up to scale, there is only one such combination that is
translation-invariant, namely

(Ritze+ =+ 2+ 2)? —
m+DERE+22+  + 2,2+ 2,410, (B)

It follows that the vanishing of this polynomial is an equa-
tion that characterises the possible images of a regular sim-
plex under orthogonal projection into the plane. The spe-
cial case n = 2 characterises the equilateral triangles in the
plane [1, Problem 15 on page 79].

Equation (2) characterising the orthographic images of a
cube, may be deduced by similar symmetry considerations.
If a particular vertex is mapped to the origin and its neigh-
bours are mapped to «, 3, ¥, then, since each of these neigh-
bouring vertices is on an equal footing, the polynomial in
question must be a linear combination of (a + 8 + )2 and
o? + B? + 7. To find out which linear combination, we need
only consider a particular projection, for example:

=1

B=1

In this example, (@ + B+ y)> =2i and o + B2+ 2 = 0.
Up to scale, therefore, (2) is the correct equation.

The case of a regular dodecahedron is similar. Using the
fact that a cube may be inscribed in such a dodecahedron
[6], we may deduce a particular projection:

a=0
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e Y81 VB+1,
. 4 4
B=-110
vB~1_ V5+1, ~7
=Ty T

with (e¢+B+72=(7—-3V5)/2 and o®+ B+ ¥ =
@2- \/5)/2. In this particular case,

(@+B+y2+(VE-D(@+ B+ P =0

Therefore, this is the correct equation in the general case.
It may be used as the basis of a ruler-and-compass con-
struction of the genéral orthographic projection of a regu-
lar dodecahedron.

Itis interesting to note that if all the vertices of a Platonic
solid are orthographically projected to 2y, 2, . . ., 2vE C,
then necessarily

Ri+ze+ -+ 2n)?=NE2+ 22+ +28). (6)

Only for a tetrahedron, when (6) coincides with (1), is this
condition also sufficient. To verify (6) for the other Platonic
solids, first note that it is translation-invariant. Therefore,
it suffices to impose z; + 22 + --* + 2y = 0 and show that
212 + 292 + -+ + 252 = 0. The case of a cube now follows
immediately, as its vertices may be grouped as two regular
tetrahedra. The dodecahedral case may be dealt with by
grouping its vertices into five regular tetrahedra. The reg-
ular octahedron is amenable to a similar trick, but not the
icosahedron. Rather than resorting to direct computation,
a uniform proof may be given as follows.

As before, assemble the vertices of the given solid 2. as
the columns of a matrix A, now of size 3 X N, and consider
the moment matrix M = AA’. Observe that

1
a i oMl
0

The moment matrix is positive definite and symmetric. In
other words, it defines a metric on R2, manifestly invariant
under the symmetries of 2. If > is regular—or, more gen-
erally, enjoys the symmetries of a regular solid (e.g., a
cuboctahedron or rhombicosidodecahedron)—then its
symmetry group acts irreducibly on R3. Thus, M must be
proportional to the identity matrix and the result follows.
For a general solid >, the two complex numbers

Zzlz+222+"‘+2’1\]‘2.

i\/zlz + 222 + e+ zNz

are the foci of the ellipse

@ y)R(;>=1,

where R is the inverse of the quadratic form obtained by
restricting M to the plane of projection.

This reasoning also works in higher dimensions, where it
shows (as conjectured to us by H.S.M. Coxeter) that the or-
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thogonally projected images in the plane of the N vertices of
any non-degenerate regular polytope, real or complex, will
satisfy equation (6). This includes regular polygons in the
plane, where the projection is vacuous. As already remarked,
for polyhedra other than simplices, a quadratic equation such
as (6) is no longer sufficient to characterise the orthogonal
image up to scale. In general, there will also be some linear
relations. For a non-degenerate N-tope in R” there will be
N — n — 1 such relations. The simplest example is a square
in R2, which is characterised by the complex equations

(a+B+y+8P=42+p+¥+&) and
aty=p+34.

It is interesting to investigate further the relationship be-
tween a non-degenerate simplex > in R” and its quadratic
form Q = AY(AAY) 72 A. Recall that A isthe n X (n + 1) ma-
trix whose columns are the vertices of 2. There are sev-
eral other formulae for or characterisations of Q. Let S de-
note the (n + 1) X (n + 1) symmetric matrix

1-- |11 -1
ntll e s o

It is the matrix of orthogonal projection in R**! in the di-
rection of the vector e. We maintain that @ is characterised
by the equations

QRG=S and Qe =0,

where G = A’A. Certainly, if these equations hold, then they
are enough to determine @, because the matrix G has rank
n and e is not in its range. The second equation is evident,
and the first equation with @ replaced by A{(AAH)~2 A and
G by A'A reads

AN(AAY)7IA = 8.

To see that this holds it suffices to observe that it is clearly
true after postmultiplication by A’ or e. We may equally
well characterise @ by means of the equations

G =S and Qe=0

These equations relate G and @ geometrically: both ma-
trices annihilate e, whilst on the hyperplane orthogonal to
e they are mutually inverse. This is to say that G and @ are
generalised inverses [6] of each other. Thus we write

Q=G"= (AtA)’r = ATATt

where A" is the generalised inverse of A. In this case, AT =
AY(AAN~L This also shows how to compute @ more di-
rectly in certain cases. The matrix G has direct geometric
interpretation as the various inner products of the vectors
ai, az, . . ., Gy, Gy+1. In the case of a regular simplex,
for example, we know that [|a;|? is independent of 4, that
la; — @ is independent of ¢ # j, and that a; + az + ... +
a, + a,+1 = 0. We may deduce that, with a suitable over-
all scale, G = 8. Since St = §, it follows that @ = S. This is
a direct derivation of (5).

It is clear geometrically that G determines > up to con-
gruency. Therefore, so does Q. In other words, the possi-



ble quadratic forms @ that can arise give a natural para-
metrisation of the non-degenerate simplices up to congru-
ency. As to which @ do arise, certainly they enjoy the fol-
lowing properties:

* Qisareal (n + 1) X (n + 1) symmetric matrix.
* Qe = (0, and only multiples of e are in the kernel of Q.
¢ All other eigenvalues of @ are positive.

Conversely, these properties characterise the possible @
that can arise: given such a @, we may take A’ to have as
its columns a system of mutually orthogonal eigenvectors
for the non-zero eigenvalues of @, each being scaled to
have length equal to the square-root of the reciprocal
of the corresponding eigenvalue. It follows easily that
Q = A(AAH 2 A,

It is also possible to repeat this analysis in pseudo-
Euclidean spaces. The only difference is that the condition
that the non-zero eigenvalues of @ be positive is replaced
by a condition on sign precisely reflecting the original sig-
nature of the inner product.

Finally we should mention some possible applications.
There is much current interest in computer vision. In par-
ticular, there is the problem of recognising a wire-frame
object from its orthographic image. The results we have
described can be used as test on such an image, for ex-
ample to see whether a given image could be that of a cube,
or to keep track of a moving shape. It is clear that such

tests could be implemented quite efficiently. Another pos-
sibility is in the manipulation of CADD? data. Rather than
storing an image as an array of vectors in R3, it may some-
times be more efficient to store certain tetrahedra within
such an image by means of the corresponding quadratic
form. For orthographic imaging this may be preferable.

We would like to thank H.S.M. Coxeter for drawing our
attention to Hadwiger’s article, R. Michaels and J. Cofman
for pointing out Gauss’s and Weisbach’s work, E.J. Pitman
for many useful conversations, and the referee for sug-
gesting several improvements.
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