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The Four Schools 

Having been under the impression that most mathemati- 
cians do not care about the foundations of their subject, I 
was amazed by the heat generated by this topic in recent 
issues of the Mathematical Intelligencer, particularly in the 
letters to the editor (see, e.g., Paris [25]). The purpose of 
this article is to marshal a number of facts that support 
a certain philosophical thesis, which I hope to persuade 
at least some readers to share. 

I would like to argue that, contrary to widely held 
opinion, the traditional philosophies, logicism, formal- 
ism, Platonism, and intuitionism, if stated with sufficient 
moderation, do not really contradict each other, although 
I still have some reservations about logicism. This idea 
was first proposed in our book [17] by Phil Scott and 
me and elaborated for a philosophical audience in col- 
laboration with Jocelyne Couture [5]. The present dis- 
cussion owes a considerable debt to both co-authors. 
For background material on the traditional mathemati- 
cal philosophies, the reader is referred to the standard 
references Benacerraf and Putnam [1], Hintikka [10], and 
van Heijenoort [30]. 

There are a number of problems a philosophy of math- 
ematics should address. Perhaps the most important of 
these are: How is mathematical knowledge obtained 
(epistemology), and why can it be applied to nature? 
However, we shall here confine attention to another 
problem: What is the nature of mathematical entities (on- 
tology) and of mathematical truth? 

The best-known mathematical philosophies have 
given different answers to this ontological question (see 
[5]), which we shall summarize here in rather abbrevi- 
ated form. 
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Logicists claim that mathematical entities can be de- 
fined in the language of symbolic logic. 

Formalists claim that mathematical entities, if they ex- 
ist at all, are nothing but terms of a formal language (of 
course, modulo the equivalence relation of provable equal- 
ity, two terms being equivalent, or denoting the same en- 
tity, if the formula obtained by putting an equality sign 
between them is provable in the language). 

Platonists claim that mathematical entities exist inde- 
pendently of our way of viewing them. 

Intuitionists claim that mathematical entities are men- 
tal constructs. 



The different schools also have varied conceptions 
of what is mathematical truth. Logicists and formalists 
would claim that mathematical statements are true only 
when they are provable. Platonists claim that mathemat- 
ical truths are there to be discovered and intuitionists 
claim that mathematical statements are true only if they 
can be known to be true. 

These are the more moderate views expressed by these 
schools. Some adherents of these schools may have more 
extreme opinions, which we shall mention only briefl3a 
Thus, an extreme logicist might claim that set theory is 
not part of logic. An extreme formalist might claim that 
mathematics is a meaningless game and that there is no 
such thing as a number, that only numerals exist. An 
extreme Platonist might believe that mathematical en- 
tities are ideas in the mind of a supernatural being; I 
am told that this view was proposed by Nichomachus 
of Gerasa about 100 A.D. and entertained by many re- 
ligious thinkers since. Finally, an extreme intuitionist 
might believe that only those statements are true which 
are known to be true today; this was, in fact, occasionally 
asserted by the founder of the school. 

It goes without saying that these extremist views can- 
not be reconciled with one another. Alas, it has become 
cleat from various comments I have received that the 
more moderate reformulations, proposed in the interest 
of eclectic conciliation, are rejected by some adherents as 
well as by some opponents of these positions. However, 
I believe that, if hard pressed, I could find adherents who 
will accept the moderate presentations advocated here. 

G6de l ' s  Impact 

There seems to be a general consensus among logicians 
that the rather vague concept of "truth" should be re- 
placed by the more precise notion of "truth in a model," 
and we shall adopt this point of view here. Hilbert's for- 
malist program implicitly contains the proposal that the 
semantical notion of truth can be captured by the syn- 
tactic notion of provability. In a sense, this proposal was 
carried out by GSdel [1930] in his completeness theorem: 

a statement in a formal language is provable if and only if it is true 
in every model of that language. 

This result holds not only for first-order logic, but also 
for higher-order logic, that is, type theory, as was shown 
by Henkin [8], and even for intuitionistic type theory 
[17]. Type theory for us is the language of mathematics. 

Presumably, this solution is not acceptable to a Plato- 
nist, who feels uneasy with the plurality of models and 
wishes to single out a distinguished model, let us call it 
the real world of mathematics, in the hope that truth in this 
model alone should suffice. 

G6del was a Platonist and believed in a real world 
of mathematics. In the semantic version of his famous 
incompleteness theorem [7], he apparently showed that 
the Platonists' hope is incompatible with Hilbert's pro- 
posal: There are mathematical statements true in what 
he thought was the real world, yet not provable in a 
language adequate for arithmetic, it being assumed that 
the set of proofs in that language is recursive. But wait 
a minute, let us look at GSdel's argument more closely. 
(See also [4].) 

G6del constructed a formula G of the form Vy6NgP(y ) 
such that G is not provable, yet true in every w-complete 
model. By this, we shall mean that Vu~Nqo(y ) is true in the 
model whenever qa(0), qa(S0), ~(S(S0)), etc. are all true. 
(For some details in this argument, the reader is invited 
to consult Appendix II.) It follows that the following two 
statements are incompatible: 

(a) the real world of mathematics is w-complete; 
(b) truth in the real world implies provability. 

Classical Platonists may assert (a), whereas Hilbert pre- 
sumably hoped for (b). So who is right? 

Brouwer to the Rescue 

Curiously, it would seem in retrospect that the intu- 
itionist Brouwer comes to Hilbert's rescue here, even 
though both Hilbert and Brouwer had perceived a con- 
flict between their respective positions, formalism and 
intuitionism, prior to the publication of G6del's epoch- 
making paper (see [29]). Moreover, to allow himself to 
be rescued, Hilbert would have to sacrifice the principle 
of the excluded third, which is not essential to a formalist 
position. 

Brouwer would certainly deny (a) and, although he 
cannot be accused of favouring Platonism, I shall ar- 
gue that his position can be interpreted as defending 
(b), thus removing the apparent contradiction between 
formalism and Platonism. On the one hand, he would 
allow us to assert the truth of~/ueNqa(y ) only if the truths 
of ~(0), ~(SO), ~(S(SO)), etc., can be established in a uni- 
form way. This would fail to be the case, for example, if 
the lengths of the proofs of ~(sno) were unbounded as n 
varies over the natural numbers. On the other hand, he 
would insist that a mathematical statement is true only 
when it can be known, which we will take the liberty of 
interpreting to mean that it can be proved. 

It would appear that Brouwer himself later softened 
his stand against formalism and that his present-day fol- 
lowers, on the whole, have adopted formal proof theory 
as a tool to investigate his principles. On the other hand, 
intuitionism has been accepted into the mathematical 
mainstream, even if not always as an exclusive position, 
by constructivists, logicians, categorists, and, for some 
purposes, by computer scientists. (See, e.g., Troelstra and 
van Dalen [28].) 
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What Distinguished Model? Constructive Formalism 

There remains the question whether there is a dis- 
tinguished model which suffices for the discussion of 
mathematical truth. We shall not follow Tait [27], who 
believes that Platonism can survive even without this 
"Model-in-the-sky," as he calls it. Having accepted the 
intuitionistic viewpoint, we must insist that this model 
should not only exist in the classical sense, but that it 
should actually be constructible. 

Different answers have been given to this question. 
Plato himself would have said that the real world is in- 
habited by ideal objects, of which we can only observe the 
shadows. Leibniz would have said that the real world, 
namely, this world, is the best of all possible worlds. A mod- 
em logician would be tempted to construct the distin- 
guished model as the term model of pure intuitionistic 
type theory: The entities in it are closed terms modulo 
provable equality. In particular, a statement is true if and 
only if it is provably equal to T, that is, if and only if it is 
provable. A categorist might attempt to bring Leibniz up 
to date, albeit in a watered-down version, but one that is 
immune against Voltaire's criticism, by suggesting that 
the distinguished model is an initial object in the category 
of all models. 

It turns out that the term model when suitably pre- 
sented as a category, which might reasonably be called 
the Lindenbaum-Tarski category, is an initial object in the 
category of all models, even in the category of all toposes 
(with logical morphisms) and has been called the free 
topos. (See Appendix III for a discussion of toposes.) It so 
happens that the intuitionistic version of model, gener- 
alizing Henkin's classical nonstandard model, is a special 
kind of topos. It is true, though not at all obvious, that 
the term model is a model in this sense. 

A topos T is called a model if it shares the following 
properties with the usual category of sets: 

1. _1_ is not true in T; 
2. if p V q is true in T, then p is true or q is true; 
3. if 3~eA~(X) is true in T, then ~a(a) is true for some 

arrow a : 1 --* A i n T .  

These properties have an algebraic translation, first 
pointed out by Peter Freyd, concerning the terminal ob- 
ject I of T: 

1. I is not an initial object; 
2. I is indecomposable; 
3. I is projective. 

Here "projective" has exactly the same meaning as in 
module theory. Moreover, model toposes are the ana- 
logues of local rings, and the completeness theorem can 
be sharpened to yield an analogue of the representation 
of commutative rings by continuous sections of sheaves 
of local rings [13]. 

What we are suggesting here is that the free topos is 
a suitable candidate for the real (meaning ideal) world 
of mathematics. It should satisfy a moderate formalist 
because it has been constructed from terms of a lan- 
guage and because it exhibits the correspondence be- 
tween truth and provability. It should satisfy a moder- 
ate Platonist because it is distinguished by being initial 
among all models and because truth in this model suf- 
fices to ensure provability. It should satisfy a moderate 
intuitionist, who insists that "true" means "knowable," 
not only because it has been constructed from pure in- 
tuitionistic type theor~ but also because it illustrates 
all kinds of intuitionistic principles [17]. The free topos 
would also satisfy a logicist who accepts pure intuition- 
istic type theory as an updated version of symbolic logic 
and is willing to overlook the objection that the natural 
numbers have been postulated rather than defined. 

It is by no means a trivial matter to show that the 
Lindenbaum-Tarski category is a model in our sense. 
Some fancy metamathematics or category theory has to 
be used to prove this (see, e.g., [17] ). The three properties 
of truth in a model are certainly principles that Brouwer 
would have insisted on. [The arrow a : 1 --* A of prop- 
erty (3) is just a term in the internal language of T; see 
Appendix II.] He might also be happy that truth in the 
free topos coincides with provability, even if the latter is 
only a formalist's attempt to interpret "knowability." 

It also turns out that in the free topos every natural 
number is standard, namely, equal to one of O, SO, S(SO), 
etc. In view of property (3) in the definition of "model," 
it then follows that the free topos is w*-complete in the 
following sense: if 3u~Nr is true in the topos, then 
one of r r r etc., is true. This property 
is equivalent to w-completeness classically, but not intu- 
itionistically. We may, therefore, subscribe to the follow- 
ing revised form of (a): 

(a*) the real world of mathematics is w*-complete. 

In this connection it should be pointed out that the free 
Boolean topos, namely, the Lindenbaum-Tarski category 
for pure classical type theory, is not a model because for 
G6del's sentence G, G v --G is true, but neither G nor 
-~G is, thus violating property (2). One may, of course, 
obtain a model of pure classical type theory from the 
free Boolean topos, as a first step with the help of an 
ultrafilter of arrows 1 --* f~, by declaring all these to be 
equal to T; but I doubt whether any such ultrafilter can 
be described constructivel~ 

If we look at G6del's incompleteness theorem for pure 
classical type theory, we thus obtain a classical (Boolean) 
model which is not w-complete. It follows from G6del's 
argument (see Appendix II) that there is a formula ~(y), 
y a variable of type N, such that ~a(0), ~a(S0), ~a(S(S0)), 
etc., are all true, but also 3y~g-,~(y) is true. This al- 
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lows us to construct a nonstandard natural number n = 
#y~N-~(y) in this classical mode l  which is afortiori a 
model of pure intuitionistic type theory. The existence of 
nonstandard natural numbers in a model is what both- 
ered Nyikos [24]. Would he be satisfied with the dis- 
tinguished model discussed above in which all natural 
numbers are standard? 

To sum up, we suggest that to a moderate intuitionist 
there should be no contradiction between formalism and 
Platonism. Moreover, he ought to be willing to accept 
the free topos as one candidate for the real world of 
mathematics, at least of elementary mathematics. It is 
not necessary for our argument that the free topos is all 
there is, only that its existence shows the compatibility of 
apparently conflicting views. 

There are competing candidates for the "real world 
of mathematics," for instance, G6del's universe of con- 
structible sets and Martin Hyland's realizability topos; but 
I have not investigated to what extent either of these no- 
tions would support the attempt of eclectic conciliation. 

The proposal to accept as the real world of mathe- 
matics the term model of pure intuitionistic type theory, 
or perhaps of some more powerful language, has been 
called constructive nominalism in [5]. It is my belief that 
this Jproposal can be extended to natural languages to 
construct the everyday world of "shoes and ships and 
sealing wax, of cabbages and kings" [2]. There may even 
be different such worlds for different linguistic cultures. 
I suspect that similar views are held by a number of 
philosophers, linguists, and anthropologists. 

The real world of mathematics should not be confused 
with the real world of physics. Not being ultrafinitists, 

who believe that numbers greater than 10 l~176 (say) do 
not exist, we take the world of mathematics to be infi- 
nite. According to the present state of physics, there is 
no conclusive evidence that the material universe is in- 
finite in the large, although ever since Zeno, it is gener- 
ally believed that every interval contains infinitely many 
points, but even this has been doubted, for example, by 
Coish [1959]. 

What About Logicism? 

The problem with logicism is not its compatibility with 
the other positions, but whether it is defensible in the 
first place. The usual mathematical entities are natural 
numbers, pairs of such, sets of such, sets of sets of such, 
and so on. If we want to reduce mathematics to logic, as 
chemistry has been reduced to physics, we must surely 
include the machinery of set theory into what we call 
logic, thus allowing for the notions of equality and mem- 
bership and some form of the comprehension scheme. 

This much seems to be taken for granted by all logi- 
cists. The difficulty arises when we want to construct the 
natural numbers as sets. For this, we need an axiom of 
infinity, which asserts the existence of an infinite set. But 

then we may as well adopt Peano's axioms in the first 
place. This entails, in particular, that we include symbols 
for zero and successor in our language. There seems to 
be a general feeling that this is contrary to the logicist 
program, hence that logicism has failed. 

There is, however, a glimmer of hope that logicism 
may be resurrected, in view of recent developments in 
categorical computer science (e.g., [15], [16]). Following 
the lead of Church, one can construct the natural num- 
bers object in a category as the retract of the formal prod- 
uct IIx (xX)  (xx) or H x X  (xx+'), where X is an indeter- 
minate object and where the retract is constructed with 
the help of equalizers. Unfortunately, such formal prod- 
ucts exist neither in the usual category of sets nor in the 
free topos, so some difficulties still have to be ironed out. 
Anyway, if logicism is to be salvaged, this may have to 
be with the help of categorical logic. See the discussion 
below. 

Some Objections 

It is not likely that the proposed compromise among 
three, or perhaps four, major philosophical schools will 
put the controversy about the foundations of mathe- 
matics to rest. One reason for this is that some people's 
favourite positions have been ignored in this discussion, 
for example, predicative mathematics, ultrafinitism, and 
quasiempiricism. Others believe that formalism and Pla- 
tonism are both wrong. This is the opinion of Saunders 
Mac Lane (expressed privately, but see also his lecture 
[20] and his book [21, Chapter XII]). Finall~ I may as well 
admit that, in presenting the traditional philosophies in 
moderate form, I have distorted each of them a little. It 
is debatable whether Plato, Frege, Hilbert, and Brouwer 
would acknowledge my version of Platonism, logicism, 
formalism, or intuitionism, respectively. 

Mac Lane has also criticized the prominence given to 
the free topos, or, what amounts to the same thing, to 
pure intuitionist type theory. Of course, other models 
(equivalently, applied type theories) should be studied 
too, and one may even look at them simultaneously, for 
instance bundled up in a sheaf [13]. The question then 
arises: Where do these models live? Well, in the category 
of sets, of course. But what is the category of sets? Ac- 
cording to a constructive nominalist, it is the free topos. 
Yet there are other candidates for the category of sets and 
these are models of pure intuitionistic type theory, so we 
are back where we started. 

Let me anticipate another criticism, which shows that 
constructive nominalism, the position defended here, is 
guilty of the same circularity. In constructing the free 
topos linguistically, we have taken the number 2 to be the 
class of all closed terms of our formal language which are 
provably equal to S(SO). Now the terms of this language 
are elements of the free monoid generated by a finite set 
of symbols. However, the exact nature of these symbols 
is of no importance; it does not matter whether they con- 
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sist of chalk marks or of sound waves, or whether they 
are written in blue or red ink. What matters is that the 
elements of the free monoid can be put in one-to-one 
correspondence with the natural numbers, as in G6del's 
well-known arithmetization. If we pick one such coding 
of terms by numbers, we end up with the conclusion that 
2 is a set of natural numbers! This is hardly an illuminat- 
ing conclusion. 

Pursuing this line of reasoning even further, we find 
that the free topos is an object in the category of sets, for 
that matter, in any model of our language, even in the free 
topos. Evidentl}; we have again gone in a circle. It is like 
lifting oneself up by one's shoelaces. However, I believe 
that this kind of circularity is inherent in any attempt to 
come to grips with basic ontological questions. 

Many people share G6del's belief (a) that the real 
world of mathematics is w-complete and that, therefore, 
his statement G is true but not provable. Because appar- 
ently we can see that G is true, Penrose [26], following 
Lucas [19], draws the further conclusion "that our con- 
sciousness is a crucial ingredient in our comprehension 
of mathematical truth" and that it is "not something that 
we can ascertain merely by use of an algorithm." For all 
I know, this conclusion, asserting the superiority of the 
human mind over the computer, is correct, but I must 
reject the argument, as I do not believe (a). 

G6del himself drew an important corollary from his 
incompleteness theorem: To prove the consistency of any 
language adequate for arithmetic one has to go outside that 
language. This shows that Hilbert's proposal to restrict 
metamathematics to finitary methods cannot succeed. 
Indeed, metamathematicians no longer feel bound by 
Hilbert's proposed restriction. For example, the simplest 
proof of the consistency of pure intuitionistic type theory 
consists of pointing to property (1) of some model, say 
the free topos. Whereas the free topos can be constructed 
in pure intuitionistic type theo~, the proof that it is a 
model requires more powerful methods. 

Our version of type theory, sometimes called the the- 
ory of finite types, is adequate for elementary mathemat- 
ics, namely, arithmetic and analysis. Even if we want to 
treat these subjects classically, we can do so within in- 
tuitionistic type theory by looking at statements of the 
form Vx~(x V ~x) =~ p. Metamathematics and category 
theory require more than the theory of finite types. One 
may have to admit not only the axiom of choice, but 
also much higher types, corresponding to Grothendieck 
universes in G6del-Bernays set theory or to inaccessible 
cardinals in Zermelo-Fraenkel set theory. For some pur- 
poses, even quantification over types may be required. 

Categorical Logicism 

It has been argued by Henle [9] and Marquis [22] that 
logicism should be revived as categorism or categorical 
Iogicism. Without necessarily following these two au- 
thors, I see categorical logicism as abandoning the at- 
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tempt to reduce arithmetic to logic, but realizing instead 
that, at a very basic level, arithmetic and logic are the 
same. To say this, however, one has to enlarge one's con- 
ception of logic to incorporate proofs in place of mere 
provability. 

Consider, for example, the arithmetical identities 

( a b )  c = a (c •  a b+c  = a b x a ~, 

and compare them with the intuitionistically valid logi- 
cal equivalences 

c=v (b=~ a) ~-* (cAb)  =~ a, 

(b V c) ==> a ~ (b =:~ a) A (c :=~ a). 

The obvious analogy extends to the usual laws of arith- 
metic: commutative, associative, and distributive laws, 
and the laws of indices. 

What lies behind this analogy is Lawvere's [18] con- 
cept of cartesian closed category. However, one can also 
understand the analogy by looking at sets: Replace the 
natural number a by a typical set of a elements and re- 
place the proposition a by the set of all reasons for a. Here 
"reason" cannot be taken to mean proof, else all unprov- 
able propositions would be replaced by the empty set; 
but it may be taken to be any deduction c -* a, where c 
is any proposition whatsoever (see [15]). 

In this analogy, we have compared arithmetical oper- 
ations with logical connectives. One can also compare 
arithmetical operations with logical deductions in the 
form of Gentzen sequents, because both are special cases 
of algebraic operations (see [14]). A primitive recursive 
function N n ~ N may be viewed as realizing an op- 
eration N n --+ N in a certain algebraic theory, and a 
Gentzen style deduction A1 . . .  An --* B may be viewed 
as an operation in a multisorted algebraic theory. 

The categorical viewpoint allows us to go beyond mere 
ontology and ask: Which mathematical entities are in- 
teresting, relevant, or important? With Bill Lawvere and 
other categorists, I share the view that interesting math- 
ematical entities tend to be categories or functors and 
that the growth of mathematics is often guided by look- 
ing for functors adjoint to previously known functors. 
However, I admit that it may be difficult to convince a 
number-theorist of this. 

Appendix I. A Modem Version of  Type  T h e o r y  

G6del's incompleteness theorem applies to any formal 
system, classical or intuitionistic, as long as it is adequate 
for arithmetic and as long as the set of all proofs is recur- 
sive. In fact, the title of his paper [7] referred to classical 
type theory as formulated by Russell and Whitehead in 
their Principia Mathematica. Personally, I prefer a more 
modern version of type theory as presented in [17]. We 
admit the following types and terms, the latter written 
under their respective types: 



1 f~ N A x B  PA  

, a=a'ae,, snO (a,b) { x � 9  

where it is assumed that A and B are previously given 
types, that a and a' are terms of type A, x is a variable of 
type A, ~ a term of type PA, n a term of type N, b a term 
of type B, and ~(x) a term of type fL We also presuppose 
a supply of countably many variables of each type. 

The usual logical connectives may be defined by writ- 
ing 

T for * = *; 
p A q for (p, q) = (T, T), p and q being of type f~; 

p :=~ q for p A q = p; 
VxeA~(X) for {x �9 A}9~(x)} = {x �9 A]T}. 

Other connectives 3-, -~, and v and the quantifier 3 are 
defined in familiar fashion, for example, by writing 

p V q  for Vxen(((p ~ x) A (q ~ z)) ~ x). 

For a complete list of axioms and rules of inference, the 
reader is referred to [17]; there are no surprises. No- 
tably absent is the axiom V~ea(x V ~x) or, equivalently, 
V~en ( ~ x  =} x); if it is added, one obtains classical type 
theory. We speak of pure type theory, intuitionistic or classi- 
cal, if there are no types, terms, axioms, or rules other 
than those that have to be there; in applied type theory, 
there may be others. 

It is often useful to incorporate into the language of 
type theory a Russellian description operator. It so hap- 
pens that this is not needed in pure intuitionistic type 
theory as formulated here, nor is it needed in the internal 
logic of a topos to be discussed in Appendix III (see [17]). 

Appendix II. GSdel's Argument 

G6del's basic argument may be presented as follows. 
Let c~0, ~1, a2,. . ,  be a given effective enumeration of all 
closed terms of type P N ,  and let P0, P1, P2, .- �9 be an ef- 
fective enumeration of all proofs, regarded as strings of 
terms of type fL Consider the metamathematical state- 
ment R(m, n): 

Pn is a proof  o f  SmO �9 C~m. 

G6del realized that this is a recursive binary predicate, 
having practically invented the theory of recursive func- 
tions to do so. He succeeded in proving that there is a 
formula (term of type fD ~(x, y) with free variables of 
type N such that 

(i) if R(m, n), then r S'~0) is provable; 
(ii) if not R(m, n), then ~@(sm0, Sn0) is provable. 

Now consider the closed term 

% - {x �9 NIV~cN-~P(z, y)}. 

If we assume that G - SgO �9 ag is provable, say 
with proof Pn, then we can prove k~(Sg0, Sn0); hence 
3yeNk~(SgO, y), and therefore -~G. If we assume that our 

formal language is consistent, we may infer that G is not 
provable and so not R(g, n) for any n; thus -~r SnO) 
is provable for all n. Taking ~a(y) = -~r y) in the def- 
inition of w-completeness, we infer that VucN-~d(Sa0, y) 
is true in any w-complete model, which implies that 
G ~ Sg0 �9 ag is true in such a model. 

In the syntactic version of his incompleteness theorem, 
GSdel assumed that the language is w-consistent and de- 
duced that -~G is not provable either. Rosser later showed 
that w-consistency here can be replaced by consistency 
(see [12] or [11]). 

Appendix III. On the Notion of Topos 

The notion of a topos, actually of an elementary topos, was 
introduced by Lawvere in collaboration with Tierney, 
following a lead by Grothendieck. It is a category which 
resembles the familiar category of sets in having finite 
products, exponentiation, like the object B A of all func- 
tions from A to B, and a subject classifier f~, resembling the 
set {T, 3_} in classical set theory, inasmuch as it allows 
one to characterize subsets of A by their characteristic 
functions from A to f~. For our purposes, to the regret 
of all logicists, we must also stipulate a natural numbers 
object N,  resembling the usual set of natural numbers. 

This is not the place to describe in detail the internal 
language of a topos T. Suffice it to say that its closed 
terms of type A are arrows a : 1 --* A in 7", where 1 is 
the terminal object (empty product) and A is any object. 
In particular, closed formulas are arrows p : 1 --* fL In 
general, the internal language of a topos is intuitionistic 
and there may be more than the two arrows T, 3_ : 1 ~ fL 
To say that p is true in T means that the arrows p and T 
from I to f~ coincide. 

Conversely, from every language, that is, type theor~ 
one can form the topos generated by it, alias its Linden- 
baum-Tarski category. Its objects are closed terms a of 
type PA, A being any type, and its morphisms c~ --* fl, 
fl of type PB,  are closed terms of type P(B x A) about 
which it can be proved in the language that they denote 
functions from the set denoted by c~ to the set denoted 
byfl.  

When we say that a model topos T is a model of a lan- 
guage s we are implicitly referring to an interpretation 
of s in T. (It so happens that, when s is pure intuitionis- 
tic type theor~ there is exactly one such interpretation.) 
An interpretation of s in T may be viewed either as a 
morphism (translation) in the category of type theories 
from s to the internal language of T or, equivalently, as 
a morphism (logical functor) in the category of toposes to 
T from the topos generated by s (The equivalence fol- 
lows from the fact that the processes "topos generated" 
and "internal language" are adjoint functors, see [17].) 

A dosed formula p of s is true in the topos 7", under the 
given interpretation, if the translation sends it onto the 
arrow 3_: 1 ~ f~ in T. Before G6del proved the incom- 
pleteness theorem, people had need of a special term for 
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"true in every model";  for example, "semantically true," 
and I seem to recall that Carnap used "analytic." 

As we already hinted in the section entitled "What  
Distinguished Model?", a model of pure classical type 
theory is precisely a nonstandard model  in the sense of 
Henkin, showing that this concept is not at all contrived, 
as some people seem to think. 

It may  be wor th  pointing out in support  of nominalism 
that every topos is equivalent to the topos generated by 
its internal language. On the other hand,  the internal 
language of the topos generated by a language is merely 
a conservative extension of the latter. Al though it must  
be conceded to extreme formalists that, at first sight, 
pure intuitionistic type theory is not about anything, it 
has a conservative extension, the internal language of its 
free topos, which is about the free topos, the proposed 
candidate for the real world of mathematics.  

Appendix  IV. Some Recollections of  Brouwer 

I wish to take this opportuni ty  to share some personal 
recollections of L.E.J. Brouwer. When he visited Canada, 
quite a few years ago, to address the Canadian Math- 
ematical Congress (now called "Society") on his ideas, 
he defended his notion of " twoity" against H.S.M. Cox- 
eter 's criticism that it should be called either "twoness" 
or "binity." He also came to my  house and became quite 
interested when  I told him that he had influenced two 
people in rejecting Aristotelian logic, the founder  of Gen- 
eral Semantics, Korzybski, and the science-fiction writer 
Van Vogt. Somehow the conversation turned to Wittgen- 
stein, and Brouwer doubted whether  the latter had made 
any contributions to logic. I mentioned that Wittgenstein 
had invented t ruth tables, al though I now know that they 
go back to Philo of Megara, about 300 B.C. Brouwer then 
asked: "What  are truth tables?" I was naive enough to 
at tempt to explain them to him. 
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