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c o m p a c t  r a n k  o n e  s y m m e t r i c  s p a c e  

Matthew B. Stenzel 

We construct a complete Ricci-flat K~hler metric on the complexification of a 
compact rank one symmetric space. Our method is to look for a K~ihler potential 
of the form r = f(u) ,  where u satisfies the homogeneous Monge-Amp~re equa- 
tion. We use the high degree of symmetry present to reduce the non-linear par- 
tial differential equation governing the Ricci curvature to a simple second-order 
ordinary differential equation for the function f .  To prove that  the resulting 
metric is complete requires some techniques from symplectic geometry. 

1. I n t r o d u c t i o n  

Let M be a compact K~hler manifold whose first Chern class is zero. By Yau's 
solution of the Calabi conjecture, there is a unique K~hler metric in the original 
K~ihler class whose Ricci curvature is zero. If M is not compact, the situation 
is completely different. There is at the moment no completely general existence 
theorem for complete Ricci-flat K~hler metrics on non-compact K~ihler mani- 
folds (such a metric need not be unique, even if we specifiy its K~hler class and 
volume form [LeB]). The most general existence theorems to date are due to 
Wian and Yau iT-Y1,2] and S. Bando and R. Kobayashi [B-K], [go]. Typical 
of their results is that  if M = M \ D ,  where M is a compact K~.hler mani- 
fold with cl(M----') > 0 and D is a smooth hypersurface with c l (M)  = a c l ( L n )  
for ~ > 1, then M has a complete Ricci-flat K~hler metric. Their results are 
non-constructive in nature and rely on sophisticated non-linear analysis. 

In this paper we consider the case where M is the "comptexification" of a 
compact rank one globally symmetric space. On these complex manifolds we give 
an explicit and fairly elementary construction of complete, Ricci-flat (but not 
flat) K~hler metrics. Our technique is to use the large symmetry group of these 
manifolds to reduce the problem to solving an ordinary differential equation. In 
fact, our results can be seen as an illustration of the classical principle that the 
group of motions of a space can sometimes be used to reduce partial differential 
equations to ordinary differential equations. 

Let us now describe our assumptions and results. Let G be a compact Lie 
group and let X = G/K .  Turn G / K  into a Riemannian manifold by giving it 
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the normal metric. Decompose the Lie algebra of G as g = tr + p where • is the 
Lie algebra of the isotropy group K and p is the orthogonal complement of It in 
g. We will make the following assumption: 

A s s u m p t i o n .  The linear isotropy group AdG(K) acts transitively on the unit 
sphere in p. 

The assumption we make is quite strong. An equivalent assumption is that  
X is a compact, rank one, globally symmetric space. These admit a well-known 
classification: they are the spheres, real, complex, and quaternionic projective 
spaces, and the Cayley plane. Under this assumption we will prove the following 
theorem. 

T h e o r e m  1. The cotangent and tangent bundles of X have a complete, Ricci- 
flat Kglhler metric. 

The cotangent and tangent bundles of X have complex structures canon- 
ically associated to the Riemannian symmetric metric on X (see [Ste], [G-S], 
[L-S] and [SzS]). These are the "complexifications" of X mentioned in the title. 
For explicit realizations of these as quasi-projective varieties, see [P-W]. Notice 
that  these are not complex vector bundles. It should be emphasized that in the 
case that X is a complex manifold, our complex structure is not the standard 
complex structure on T*X. In particular, in our complex structure the zero 
section is a totally real submanifold of T*X.  When X is the standard S 2, our 
metric is the Eguchi-Hanson metric (see section 7). 

Note added in proof. H. Azad and R. Kobayashi have recently proven the existence 
of complete, Ricci-flat K~.hler metrics on complexifications of higher rank compact 
symmetric spaces. 

Acknowledgement. We would like to thank H. Pedersen, Y. S. Poon, R. Sz5ke and B. 
Wong for some helpful conversations. 

2. T h e  c o t a n g e n t  b u n d l e  o f  G / K  is a S te in  m a n i f o l d  

Let G be a compact connected semisimple Lie group, K a closed subgroup of G. 
There is a natural way of realizing T*G/K as a Stein complex manifold, which 
we will briefly describe. For any compact connected Lie group G, there exists 
a unique complex connected Lie group Gc  whose Lie algebra is the complex- 
ification of the real Lie algebra of G, and such that  G is a maximal compact 
subgroup of Ge  [G]. If G is not connected, then G c  is no longer connected, 
but  each component of Gc  contains only one component of G. If K is a closed 
(possibly not connected) subgroup of G, then K c  is isomorphic to a closed com- 
plex subgroup of Go. If G is connected and semisimple, one can show that  the 
complex manifold Gc/Kr is real analytically diffeomorphic to T*G/K, equiv- 
ariantly so with respect to the G action and preserving the natural inclusion of 
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G/K in each [Ste]. The complex manifold Gc/Kc is Stein; this fact is due to 
Matsushima [Mat], or follows from the results of [Ste]. 

A compact Riemannian manifold X is a rank one, globally symmetric space 
if and only if the linear isotropy group at some point p acts transitively on the 
unit sphere in T~X (see [Hei, pg. 535] and the references given there). If G/K 
is a compact, rank one, globally symmetric space, the orbits of G in the Stein 
manifold Gc/Kc are very easy to describe: they are hypersurfaces diffeomorphic 
to the sphere bundle in T*G/K, and an exceptional orbit diffeomorphic to 
G/K. On the other hand, a theorem of Morimoto and Nagano implies that  if 
the connected component of the holomorphic automorphism group of a Stein 
manifold M has a compact, simply connected hypersurface orbit, then M is 
either diffeomorphic to the cotangent bundle of a compact, rank one, globally 
symmetric space, or "pseudo-conformally" equivalent to the unit sphere in C" 
[M-N]. 

For the convenience of the reader we include the following table, which sum- 
marizes the well-known classification of compact, rank one, globally symmetric 
spaces. 
Table 1. Compact rank one symmetric spaces 

Geometric form G K dim G/K Helgason's type 
CIP n SU(n q- 1) S(U(1) x U(n)) 2n AI I I  
S '~ SO(n + 1) SO(n) n BDI 

]RIP" SO(n + 1) O(n) n (n/a) 
lttIP n Sp(n + 1) Sp(1) x Sp(n) 4n CII  
Chip 2 F4 SO(9) 16 F I I 

3. T r i v i a l i z a t i o n  o f  A(n'~ 

On any complex manifold M, the group of holomorphic line bundles on M is 
isomorphic to H 1 (M, O*), where O* is the sheaf of germs of non-vanishing holo- 
morphic functions on M. If M is a Stein manifold, then this group is isomorphic 
to H2(M, 77). In our situation, G/K is a strong deformation retract of M, so 
H~(M, 77) is isomorphic to H2(G/K, 77). Thus if for example H~R(G/K ) = O, 
we can conclude that the canonical bundle A(n,~ is holomorphically trivial. 
The following lemma gives the same conclusion about the canonical bundle of 
Gc/Kc whenever K is connected. More importantly, it gives in that case a Gc- 
equivariant trivialization of A(n'~ This will be essential in the construction 
of our metrics. 
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L e m m a  2. Let M = G c / K r  where G is a compact, semisimple Lie group 
and K a closed, connected subgroup of G. Then there exists a Gc-invariant, 
nonvanishing holomorphic section of A(n'~ 

Proof. The complex structure of G r 1 6 2  is defined by using the canonical 
projection r: Gc ---* G c / K c  to identify the tangent space to the identity coset 
with Pc, where p is the orthogonal complement of t~ in g with respect to the 
Killing form of g (which is negative definite since G is compact). The isotropy 
representation of Kr corresponds to the adjoint representation of Kc  on Pc. 
Choose a nonzero element 12o of the one complex dimensional vector space 
A(n,~ which we will identify with the complex determinant of an n-tuple 
of vectors in Pc with respect to a basis. We need to show that  12o is invariant 
under the co-adjoint action of Kc ,  so that  12o descends to a Gc-invariant, 
nonvanishing section of A("'~ So we must show that the automorphisms 
Ad(kc), kc E Kc,  have determinant one. 

The restriction of the Killing form of gc to Pc is a non-degenerate, complex 
bilinear symmetric form. This form is preserved by the adjoint representation 
of K c  on Pc. Hence the adjoint representation is contained in O(Pc); we must 
show it is actually in SO(pc). Since K is connected, Kv is as well. So the 
determinant is constant on Kr and must be equal to one. 

It remains to remark that  any Gc-invariant (p,0) form 12 on G c / K c  is 
holomorphic. To see this, we note that  it suffices to show that the pullback 
of 12 to Gc is holomorphic. But any left Ge-invariant (p,0) form on Gr is 
holomorphic, since Gc  is holomorphically para]lelizable by left invariant vector 
fields. H 

Notice that  K is connected in all the examples except ]RIP n. It is easy to see 
that the conclusion of lemma 2 is false for the even dimensional real projective 
spaces, since they are not orientable. 

4. R e d u c t i o n  to  an  O.D.E.  

Suppose r  ---+ IR is a strictly plurisubharmonic function. Then ~/~Z"[0~r 
is a real, closed, non-degenerate two form. Let J be the automorphism of 
the real tangent bundle of M which defines its complex structure, and let 
b(.,.) be the symmetric tensor x/-L-T0~r Since r is strictly plurisub- 
harmonic, b is positive definite. In other words, to every such ~b there is a 
canonically associated (Riemannian) K~ihler metric b and an exact symplectic 
form ~ 0R r = -d ( Im~r  

To construct a Ricci-flat Ki~hler metric on M we will look for a Kahler 
potential r such that  the Ricci curvature of the metric b is zero. This means that  
r has to satisfy the non-linear partial differential equation of Monge-Amp6re 
type, 

a ic(r  de__/_v/L-T0 E logdet 02--~r - 0 (1) 
OziO'ej 
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(see e.g. [K-N], p. 158). The left hand side is the Ricci form; it does not depend 
on the choice of coordinates. 

Let M = Gc/Kr  with G compact,  connected and semisimple, K a closed 
subgroup of G. Let n = dim G/K.  The main result of our paper [Ste] is the 
following. 

T h e o r e m  3. There exists a G invariant, real analytic, strictly plurisubharmonic 
exhaustion p: M ---* [0, oo) such that u = v/'fi satisfies I the homogeneous Monge- 
Ampdre equation, 

(0R u)" = o. (2) 

Now let us assume that  G / K  is a compact,  rank one, globally symmetric 
space with K connected. We will show that  equation (1) can be reduced to 
an ordinary differential equation; for the time being, we will not worry about  
whether the solution is strictly plurisubharmonic. The function S(x) that  ap- 
pears in the following proposition is explained in its proof (it is the ratio of 
the volume form of the K~hler metric associated with p and the Gr 
volume form). 

P r o p o s i t i o n  4. Suppose f is a solution of the ordinary differential equation 

= cx"-l/s(.) (c > o). (3) 

Then f(u) is a solution of the nicci equation (1) on M\u-l(O).  

Proof. We will first find an expression for the Ricci form of the K~hler metric 
with potential  p on M. Let f2 be the Gc-invariant ,  non-vanishing holomorphic 
section of A("'~ constructed in lemma 2. Then there is a constant c,~ such 
that  r  A ~ is a volume form compatible with the orientation defined by the 
K~hler form ~:- fO~p.  So there is a positive, real analytic function F such that  

( Vr~'f O~ p)" = F<nl2 A ~ .  

Since p and f2 are invariant under the action of G, F is constant on the connected 
orbits of G. Recalling the discussion in section 2, these orbits are precisely the 
level sets of u, so F must be a function of u. Then there exists a real analytic, 
even function S: IP~---* (0, ~x~) such that  

= e=n  ^ K  (4) 

We can read off from this equation tha t  in local holomorphic coordinates, 

det 0 2 p  - S(u)]hl 2 
Ozi~ 

1 Strictly speaking, the left hand side of the equation only makes sense on the open 
dense set where p # O. 
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for some locally defined, non-vanishing holomorphic function h. Thus the Ricci 
form of the Kiihler metric with potential p is - v f Z T  0~ log S(u). 

Now let us look for a solution of the Ricci equation (1) on M of the form 
f(u) for a yet to be determined smooth function f :  IR --* IR. Away from the set 
u = 0 we have, using the fact that (0R u)" = 0, 

(O~ f(u)) n -- nf"(u)(f'(u))n-aOu A ~u A (O~u) "-1. 

On the other hand, 

p)" = .  2"u"-l Ou A A (o u) 

Thus 
(v/'ZT O~ f(u)) n = 2-'~f"(f ')n-luX-nS(u) e.12 A'-~, 

and the Ricci form associated with f(u) is 

Ric(f (u))  = -v/-L"]" O• log f"(f')"-~u~-'~S(u). 

If f satisfies the equation (3), then Rio(f  (u)) = 0. [] 

5. Solving the O.D.E. 

The equation (3) can be solved by elementary means. We need to check that the 
function f(u) is strictly plurisubharmonic, so that it defines a K~ihler metric. 

L e m m a  5. There is a unique real analytic solution of the equation (3) vanishing 
to second order at zero. The solution is necessarily an even function. 

Proof. Integrating the equation we find that  (f'(x)) n = xOh(x), where h(x) 
is a positive, real analytic, even function of x E IR (since S(x) is positive and 
even). Taking n-th roots and integrating once more gives the unique solution 
with the advertised properties. [] 

P r o p o s i t i o n  6. f(u) is a strictly plurisubharmonic exhaustion of M. 

Proof. As above let p -- u s and let f(u) - g(p). Then g(p) is a real analytic 
function on M. To show that  it is strictly plurisubharmonic, we need to check 
that a-Og(p)(V,V) > 0 for all non-zero V in T(I'~ It suffices to check this 
when p > 0, since g*(0) > 0 and p vanishes to second order when p -- 0. 

Let p(z) > 0 and consider the subspace of T(I'~ given by the annihilator 
of Op at z. Pulled back to this n -  1 (complex) dimensional subspace, O~g(p) is 
equal to g~(p)O~p. From the proof of lemma 5, g'(p) > 0, so O-Og(p) is positive 
on this suhspace. Let Z he the complex gradient of p at z, defined by the 
equation 

o-6 p( z ,  .) = -6p(.). 

Then Z is orthogonal to the annihilator of Op, and together they span TO,~ 
Cover (~) at any point where p > 0. We have to show that O'Og(p)(Z,~) > O. 
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We recall that V/'fi satisfies the homogeneous Monge-Amp~re equation if and 
only if Zp = 2p (see [P-W], equation (3.6)). It follows that cg~p(Z,-Z) = 2p 
and O~g(p)(Z,-Z) = pf"(u) ,  the positivity of which follows from the ordinary 
differential equation f satisfies. 

To show that f (u)  is an exhaustion, we need only show that f (x)  is a home- 
omorphism from [0, oo) to itself. But this is clear since f ' (x)  and f " (x )  are 
positive for x > O. [] 

Summing up, we have proved2: the exhaustion r = f (u)  is a K~hlerpotential 
for a Ricci-flat Kiihler metric on the cotangent bundle of a compact, rank one, 
globally symmetric space. 

6. C o m p l e t e n e s s  o f  t he  m e t r i c  

To prove that  our metric is complete we will need to know something about the 
behavior of the function S(x) appearing in equation (3). It will suffice to show 
that xr' /S(x) is monotonically increasing. The most direct approach is to com- 
pute the Lie derivative of equation (4) with respect to the real gradient vector 
field of the potential p, which we will denote by 2 ~'. To compute the Lie deriva- 
tive of 12 A ~  we will decompose .~ into a sum (over C ~ ( M ) )  of "infinitesimal 
actions" of the complex Lie group, Gr This will require some techniques from 
symplectic geometry developed by Guillemin and Sternberg in [G2], and a short 
digression to describe the momentum map on M. Along the way we will obtain 
an interesting interpretation of the solution of the homogeneous Monge-Amp~re 
equation in terms of the momentum map. 

Let us first assume that xn/S(x)  is monotonically increasing and prove our 
main result. 

P r o p o s i t i o n  7. The Ricci-flat Kdhler metric constructed above is complete. 

Proof. Let F(z)  denote the geodesic distance from z to the compact minimum 
set, {r = 0}. It suffices to show that the distance tubes F-I([0,  T)) have com- 
pact closure for all T E IR. For a K~ihler metric defined by a strictly plurisub- 
harmonic exhaustion of the form r = r - l (u) ,  where u satisfies the homogeneous 
Monge-Amp~re equation (2), the geodesic distance from z to the minimum set 
of r depends only on r in fact, 

dist(z, {r = Cmin)) = ~ JCmin V ~ dt 

(see [P-W], theorem 3.3). Our K~ihler metric is defined by the potential r = 
f(u),  where f satisfies equation (3) (we may without loss of generality assume 
that c = 1). This means that F(z)  = G(u(z)), where 

'2 The case of the real projective spaces must be handled separately (since K is not 
connected). See section 7. 
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= ~ dx 

_ . ~  ~"  . /-i77~ [z"-l /S(z) V f t ( x ) V  ~ dx. 

Since the sets u- l ( [0 ,  T))  have compact  closure, we only need to show that  O(u) 
is unbounded as u ---* cx~. We first est imate f~(x) n from above, for x sufficiently 
large: 

f I'(x)" = t"-'  / s ( O  at 

<_ c t" / s (O at 

<_ c x"+l /s(~)  

(in the last inequality we used the fact that  zn/S(x) is monotonically increas- 
ing). Since f~ is monotonically increasing, we have, for u greater than some large 
uo and some e > O, 

f u dz a ( u )  > c - -  
o X 

which is clearly unbounded as u --~ oo. [] 
We will now review the symplectic ideas we will need to prove that  x'~/S(z) 

is monotonically increasing. Let M, w be a symplectic manifold on which a Lie 
group G acts by symplectomorphisms.  We get a homomorphism from the Lie 
algebra of G to the Lie algebra of vector fields on M by considering the cor- 
responding one parameter  subgroups of symplectomorphisms. We will refer to 
these vector fields as the "infinitesimal" action of G on M, and denote by ~# 
the infinitesimal action corresponding to ~ E g. A vector field V on M is said 
to be Hamiltonian if the one form L(V)w is exact; a Hamiltonian function for 
V is a function f such that  t(V)w = dr. Suppose we can find a homomorphism 
from g to the Lie algebra of smooth functions on M (with Poisson bracket) as- 
signing Hamiltonian functions to the infinitesimal action. The momentum map 
�9 : M --* g* is then defined by < (P(z),~ > =  r where r is the Hamiltonian 
function for the infinitesimal action corresponding to ~ E g (r is called the ~-th 
component  of ~). If  a momentum map exists, then the action of G is said to be 
Hamiltonian. There are cohomological criteria for the existence and uniqueness 
of a momen tum map;  see for example [G2] and the references given there. If  G 
is semisimple, then there exists a unique momentum map, and it is equivariant 3 
with respect to the co-adjoint action of G on ~*. 

Now let M = Gr where G is a compact,  connected, semisimple Lie 
group and K a closed subgroup. As in section 2, M can be G-equivariantly 
identified with T'G/K, and so is equipped with a Hamiltonian G action and 
a unique G equivariant momentum map,  r  Let I" [ denote the norm on ~* 
induced by the Killing form o fg  and let H: M ---* ll~ be the G invariant function 
function, I~l 2. 

3 This property of the momentum map is made part of the definition by some authors. 
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L e m m a  8. H = p, where p is the "Monge-Amp~re" function in theorem 3. 

Proof. Under the identification of M with T* G/ K ,  p gets pulled back to the 
quadratic function "length squared of a covector" induced by the normal met- 
ric on G / K  (see [Ste]). It suffices then to show that the norm squared of the 
momentum map on T ' G / K  is this quadratic function. The symplectic form 
Wo = -dao  on T * G / K  is exact, and ao is invariant under the G action. So the 
G-equivariant momentum map is given over the identity coset o by (see [A-M], 
corollary 4.2.11) 

# 
< ~o(po),~ > = <  po,~/K(O)  > 

= <  Po, are(~) > 

= <  dr~(po),~ >.  

Let (i be an orthonormal basis for p (with respect to the Killing form), and let 
vi = dr,(~i). Let ~ ,  v z denote the dual bases. Then Idrr~(po)l 2 = ~ b ~  where 
< dr~(po),~i > =  bi, and Ipol 2 = where < po, vi > =  ai. The two are clearly 
equal. [] 

Extend the ~i to an orthonormal basis of g. Let r be the ~i-th component 
of the momentum map on M. Then as a corollary of the above, 

d i m  $ 

i = 1  

Let J be the automorphism of the real tangent bundle of M which defines its 
complex structure and let rh # = J~/#. Then (see [G2], lemma 5.2) 

grad p = 2 

(where grad p is the real gradient field of p with respect to the K~hler metric 
defined by p). Note that the action of G extends naturally (and uniquely, by the 
universal property of the complexification) to an action of G c  on M. It is not 
hard to see that r/# = (~/'L']'~)#. Thus the flow of 7/# is not only holomorphic, 
but consists of orbits of one parameter subgroups of Go. 

Let a = Im Op and define the "radial" vector field ~ by t(~)do~ = c~. 

L e m m a  9. ~ = �89 p and S p  = 2p. 

Proof. See [G-S2], appendix 4. Note that ~ is the real part  of the complex 
gradient field Z introduced in the proof of proposition 6. [] 

We are now ready to compute the Lie derivative of equation (4) and finish 
the proof of completeness. 

L e m m a  10. The function xn /S ( z )  is monotonically increasing. 

4 The difference in sign between here and [G-S2] is because the symplectic form is 
taken to have the opposite sign from our convention, so the sign of the gradient field 
is reversed. 
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Proof. Under the identification of M with T*G/K, Im ~p gets pulled back to 
the canonical sympIectic one form, and S to the radial vector field ~ piO/Opi 
(see [Ste] or [G-S], section 5). Thus 

Lx(x/Z-fO-Op)" = n(v/-C]'0Op) n. 

On the other hand, 

n z ( 9  ^ 77) = ~ dr ^ t ( ~ ) ( O  ^ 77) + r n , :  ( ~  ^ 77). 

Since the flow of rh # is an orbit of a one parameter subgroup of Gc  and s is 
invariant under Gc,  L ~ ( / ?  ^77) = 0. Noting that 

0 = L(rh#)(dr A/?  A77) 

= dr A 77) - dCi A t(rh#)(/2 A ~ )  

we see that 
n-(o  ^77) = y ~  ~ ,%, (n  ^77). 

Using the fact that ~ u  = u we obtain from equation (4) the following equation 
for S(u): 

d u" 
log S(u) = 77 

Since r is the (-th component of the momentum map, 

~i # r = ~ - 1  00 p(~i#, ~ )  = b(~i#, ~ ) .  

This quantity is clearly non-negative, so u"/S(u) is monotonically increasing. 
[] 

7. Examples: T'S" and T*IRIP" 

In this section we will demonstrate our general result by proving it for the 
spheres and real projective spaces. We identify the cotangent bundle of S" with 
the affine quadric 

n-t-1 

Qo = {z e c"+':  d = 1} 
i----1 

as in [Szh]. The cotangent bundle of IKIP" is identified with the affine algebraic 
manifold II~IP"\Q n- l ,  where ~n-1  is the compact quadric in r n. It is not 

hard to see that II~IP"\i~ -1 is Q"/7/~ where 772 acts by the "antipodal" map 
z --* - z .  The metric we construct on Qn will be invariant under this covering 

transformation and so will descend to a complete metric on C I P ~ \ ~  - t  with 
the same Ricci curvature. 

V'"+I zi~. All partial deriva- Let r be the restriction to Q" of the function z-,i=1 
tives of r will be with respect to coordinates on Q". We will look for a Kiihler 
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potent ia l  for our metr ic  of the form r = f o  r .  Compu t ing  det ( f  o r)i 7 in te rms 
of riy we obta in  (see [P-W]) 

det  ( f  o "r)i 7 = ( ( f to  r) n -q- ( f to  v)n-l  (ftt o 7")7"i77"i7~) det 7-/7. 

One can compu te  tha t  det ri7 = Ihl2r, where h is a non-zero locally defined holo- 
morphic  function.  For example ,  if n = 2 and we use zl, z2 as coordinates  where 
z3 is not zero, then  h = z3 -1 .  We may  also verify, either by  direct computa t ion  
or by using the fact tha t  cosh-1 r satisfies the homogeneous  Monge-Amp~re  
equat ion,  t ha t  riTri~ = r - l ( r  2 - 1). T h u s  any solution to the ordinary  differ- 
ential  equat ion 

x( f ' )"  + f " ( f ' ) " - l ( x 2  - 1) = c > 0, (5) 

real analyt ic  in the interval  [1, c~) and such tha t  ( f  o r ) i .  > 0, will give us a 
K~ihler po ten t ia l  for a Ricci-flat K~ihler metr ic  on Q'~. Making the change of 
variable w = cosh-1  z turns  this into the exact  equat ion 

d~( f ' (w) ) "  = nc(sinh w) " - 1 ,  

i.e., S(w) = (w/s inhw)  '~-'. Clearly wn/S(w)  is monotonica l ly  increasing, 
which confirms our previous computa t ion .  

When  n = 2 one can easily solve this equat ion with the initial condition 
f'(O) = 0 to obta in  f (w)  = 4x/'~cosh w/2 .  Then  g(x)  := f ( cosh  -1 z)  solves the 
equat ion (5). Hence we obtain  the following corollary. 

C o r o l l a r y  11. The function ( r +  1) 1/2 is the potential function for a complete, 
Ricci-flat Kffhler metric on Q2. 

Let us now show tha t  this is the metr ic  const ructed by Eguchi  and Hanson 
in [E-H]. We realize the co tangent  bundle of S z as 

T*S 2 = {(z ,~)  E IR a • IRa: Ixl = 1, z . ~  = 0}. 

The  group G = SO(3)  acts  s imply  t ransi t ively on the sets I~1 = c > 0 by the 
linear action, 

g .  (x ,  = (gx ,  

(which is the act ion of G on S 2 lifted to  T'S2) .  Identify (0, ~ )  • G with T*S 2 
minus the zero section by the m a p  

( g .  , ). 

Take as a basis of  the Lie a lgebra  so(3): (01 ) (00 
X1 = - 1  0 , X2 = 0 0 

0 0 - 1  0 
, X a =  0 . 

- 1  
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Also denote by Xi the corresponding left-invariant vector fields on (0, ~ )  • G. 
Identify S 2 with S 0 ( 3 ) / S 0 ( 2 )  together with the metric induced by (minus) 
the Killing form on so(3) (this gives S 2 the round metric of radius x/~). We 
can then make explicit the identification of T * S  2 with the complex manifold 
G c / K c  given in [Ste2], and find the corresponding adapted complex structure 
to be 

j O  = - X 3 ,  JX1  = - t a n h r X 2 .  
Or 

Let dr, w l , w 2 , w  3 be the dual basis. The K~hler metric with potential f ( r )  is 

2ds 2 = f " ( d r )  2 + f '  tanh r (wl) 2 + f '  coth r (w2) z + f , (w3)2.  

The Gc-invariant holomorphic 2-form is 

sinh r yl A q~ 

where 7? 1 = dr+vZL-'TJdr, 7} 2 = w t + x / - L ~ J w  1. The ordinary differential equation 
is 

f " f '  = c sinh r cosh r, 

so f ( r )  = cosh r (up to a positive multiplieative constant). The Ricci-flat K~hler 
metric is 

2ds 2 = cosh r (dr) 2 + sinh r tanh r (wl) 2 + cosh r ((w2) 2 + (w3)~). 

After the change of variable cosh r = ( t /a )  2 this becomes 

a 2 a 4 ~2 a 4 t2 
- ~ d s  2 -- (1 - ~ - ) - l ( d t )  2 + ~-(1 - ~- ) (wl )  2 + ~((w2)  2 + (~.~j3)2). 

The right hand side is the Eguchi-Hauson metric with parameter a (see [G-P], 
eq. 4.17). 
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