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The ways in which people have used symmetry, for both 
practical and aesthetic purposes, are far too various and nu- 
merous for us to discuss here comprehensively. Therefore we 
will focus attention on some work in just two (related) areas 
in which craftsmen have used the mathematics of symmetry, 
at least implicitly. First, we discuss the covering of a plane 
surface with ornaments, or, in more familiar language, wall- 
paper patterns and patterns suitable for tiling. Second, we 
look at the craft of weaving together strands of materials such 
as cotton, linen, wool, and straw to make cloth, baskets, or 
balls. 

Flowers, Pentagrams, and Leonardo da Vinci 
(the Cyclic and Dihedral Groups) 

How did people first become aware of symmetry? It's 
not too far-fetched to imagine a cave dweller distin- 
guishing be tween  a flower with three petals and a 
flower with five petals---or the same person observing 
that a perfect circle appeared in the sky at regular in- 
tervals. These are observations about symmetry. Even 
the most casual observer, faced with the abundance of 
symmetry in nature, would have to make a deliberate 
effort to avoid it---and would even then certainly fail. 
We ourselves are bilaterally symmetric, and the con- 
sequences of that symmetry affect almost everything 
we do: our method of locomotion, our vision, how we 
eat, and how we communicate. (See [2], [8], [15, 16], 
[18], or [20].) 

It is no wonder that when craftsmen and artists began 
to make objects their constructions possessed  sym- 
metries similar to those they had already observed in 
Nature; and, in fact, some sociologists believe that these 
symmetrical constructions can be explained as a con- 
scious effort to imitate Nature. There certainly must 
have been such an effort, but as a complete explana- 
tion it is far too simple. Many craftsmen have actually 
used mathematics in a very real if intuitive sense, usu- 
ally without the appropriate mathematical tools. This 
has resulted in a proliferation of symbols and nomen- 

clatures, and one frequently detects a feeling on the 
part of the craftsmen that, although they have a good 
deal of conviction about certain things being possible, 
they are not sure that certain other things cannot be 
done. What they are lacking is the real certainty that 
mathematics can provide. 

Let's return to the flowers. Figure la shows a blossom 
from a common California buttercup (Ranunculus cali- 
fornicus) which has the symmetry of the dihedral group 
D5, and Figure lb (reproduced from [20], p. 66) shows 
the Vinca herbacea blossom which  has the more re- 
stricted symmetry of the cyclic group Cs (because the 
individual petals lack bilateral symmetry). (Perhaps the 
intense appreciation many feel for the beauty of or- 
chids has something to do with the fact that they have 
only one plane of symmetry.) The bare bones of these 
symmetries are represented in Figure 2, which typifies 
three-petaled flowers; flags have been placed on the 
arms of the tripos at the left to produce the triquetrum 
on the right. The triquetrum is a mystical symbol placed 
by the Greeks on the center of Medusa's  head to rep- 
resent the three-cornered island of Sicily. 

These and other relatively simple plane figures ap- 

Jean Pedersen 

THE MATHEMATICAL INTELLIGENCER VOL. 5, NO. 4 �9 1983 Springer-Verlag New York 37 



Figure 1 Figure 2 

Figure 3 

Figure 4 

38 THE MATHEMATICAL INTELLIGENCER VOL. 5, NO. 4, 1983 

pear frequently in folklore. Hermann Weyl pointed out 
in [20] that Figure 2b may be modified to have four 
arms instead of three, thereby yielding the infamous 
swastika (Weyl made a point not to display it in his 
book). In his account of a lecture he gave on symmetry 
in Vienna in the fall of 1937 he stated, "I added con- 
cerning the swastika; 'In our days it has become the 
symbol of a terror far more terrible than the snake- 
girdled Medusa's head ' - -and  a pandemonium of ap- 
plause and booing broke loose in the audience." 

Less current, but still fascinating, is the pentagram 
of Figure 3 (possessing D 5 symmetry). According to 
Rouse Ball [1] it was used by the Pythagoreans as a 
sign by which they could recognize each other, and 
Weyl says it is "the famous pentagram by which Dr. 
Faust banned Mephistopheles the devil." There is even 
a legend saying that, if the pentagram is oriented so 
that one vertex points directly down it represents evil, 
but  if one vertex points directly up it represents good. 
Leonardo da Vinci's perfect  man can be neat ly in- 
scribed inside the " g o o d "  pentagram.  I find it in- 
triguing that Weyl shows it with one side vertical with 
respect to the bottom of the page, suspended exactly 
midway between good and evil! 

Man imitates Nature. Although appearing at first 



sight to be unrelated to the study of flowers, Leonardo 
da Vinci's work on the possible symmetries of a central 
building surrounded by chapels and niches consisted, 
in fact, of an at tempt  to list all the cyclic and dihedral 
groups. For da Vinci stipulated in his work [21] that 
the attachment of the chapels and niches should not 
diminish the symmetry of the central core. 

Wallpaper, Pottery, and Baskets (Classification 
by Symmetry) 

As is well known (see [3, 4], [10], or [19]), it is possible 
to tile the plane with regular triangles, squares, or hex- 
agons (Figure 4). Long ago creative tilemakers sought 
to make symmetrical designs of greater interest. They 
looked for, and found, all the distinct pattern types 
that  were possible based on their criteria. And,  as 
Weyl said, 

One can hardly overestimate the depth of geometric imagination 
and inventiveness reflected in these patterns. Their construction is 
far from being mathematically trivial. The art of ornament contains 
in implicit form the oldest piece of higher mathematics known to 
us. To be sure, the conceptual means for a complete abstract for- 
mulation of the underlying problem, namely the mathematical no- 
tion of a group of transformations, was not provided before the 
nineteenth century; and only on this basis is one able to prove that 
the 17 symmetries already implicitly known to the Egyptian craftsmen 
exhaust all possibilities. Strangely enough the proof was carried out 
only as late as 1924 by George P61ya, now teaching at Stanford. 

Weyl's book was published in 1952. I am very happy 
to report that George P61ya and his wife, Stella, still 
live near Stanford, close enough for the author to visit 
them fairly often. 

Figure 5, taken from [14], shows P61ya's examples 
of the 17 different types of symmetry with double in- 
finite rapport (that is, doubly periodic). The interna- 
tional symbol for the ornamental  class had been added 
in parentheses below each pattern. If you don' t  al- 
ready know what  the notations mean you may enjoy 
trying to decipher them! (If you have trouble see [5].) 

A fascinating application of mathematical classifica- 
tion by symmetry type is currently being carried out 
by Dorothy K. Washburn (an anthropologist with the 
California Academy of Sciences) and Donald W. Crowe 
(a mathematician at the University of Wisconsin). They 
believe it may be useful to classify shards and baskets 
by symmetry type. In order to make their approach 
acceptable and useful to anthropologists they have de- 
vised a scheme [5] which  involves pos ing  and an- 
swering a sequence of "yes-no" questions regarding 
symmetry ,  so that  the comple ted  quest ionnaire  (in 
flowchart form) enables one to identify the symmetry 
type for singly periodic and doubly periodic designs. 
Since these symmetry types occur in many crafts, such 
as pottery and basket weaving, found in various cul- 
tures, they believe it may be useful to look at the un- 
derlying "bare bones" symmetry,  rather than to con- 

centrate on the less definitive trims the artist attaches 
to those symmetries. It appears that such consider- 
ations of symmetry are largely neglected in current 
research in this area. 

On the basis of the results of preliminary investi- 
gations (see [5] and [17]) their assumptions seem to be 
justified, and they hope that their scheme may help 
anthropologists to solve more of the mysteries con- 
cerning the migrations and trading activities of ancient 
civilizations. It is surprising to a mathematician that 
no one had previously thought of examining these more 
basic features of the designs. (It is not so surprising 
that Washburn and Crowe are having some difficulty 
in convincing anthropologists of the merit of their more 
mathematical method.)  

The geometry connected with woven materials like 
those pictured in Figures 6 and 7 is readily apparent,  
yet new mathematics relating to the simplest and most  
regular weaves in the plane appeared only three years 
ago [6], and Grfinbaum and Shephard's definitive paper 
on weavings in the plane, "Isonemal Fabrics" [7] is 
still awaiting publication. The main definitions and the 
principal theorem from that paper are given here so 

Obcr tile Analog,e tier KrsMallsymmcltie in der Ebtlw 281 

C2(e~-) 

CB (er 

D2kkgg 2 g g nqo4,~ U411,4_ ̀  

N 

Figure 5 

THE M A T H E M A T I C A L  1NTELL1GENCER VOL.  5, NO.  4, 1983 39 



Figure 6. Left: a four-way (large) weave over a two-way iso- Figure 7. Example of a three-way, threefold isonemal weave 
nemal (small) weave. Right: a two-way weave, commonly found in baskets. 

that they  can be used (with appropr ia te  adjustment)  
to obtain related results in three-dimensional  space. 

DEFINITIONS A strand (see Figure 8a) is a doubly 
infinite open  strip of constant  wid th  (think of a strip 
of paper  having  zero thickness). In these illustrations 
it is shaded  in accordance with its direction. 

A layer is a collection of disjoint (parallel) strands 

such that each point  of the plane either belongs to one 
of the strands or is on  the bounda ry  of two adjacent 
s trands (see Figure 8b). 

A fabric is, roughly  speaking,  two or more  layers of 
connec ted  strands in the same plane E such that the 
s t r ands  of d i f fe ren t  layers  are nonpara l le l  and  they  
" w e a v e "  over  and u n d e r  each other  in a specified way 
(the ranking) so that the fabric "hangs  toge ther . "  To be 

Figure 8. 

Figure 9. Horizontal strands are labeled "1" and vertical 
strands are labeled "2". The ranking "21" means that the 
vertical strand goes over the horizontal strand. 
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Figure 10 

more precise, weaving means that, at any point Q of E 
which does not lie on the boundary of a strand, the 
strands containing Q have a stated ranking, which is 
the same for each point Q contained in those strands.1 
The ranking indicates that one strand is higher than or 
passes over the other. Saying that the fabric hangs to- 
gether means that it is impossible to partition the set 
of all strands into two nonempty subsets so that each 
strand of the first subset passes over every strand of 
the second subset. 

If a fabric consists of n layers, it is called an n-fold 
fabric. Figures 9a and b represent the same two-fold 
fabric [in (a) the s t rands have been  separa ted  for 
clarity--Figure 9a may be regarded as representing the 
real fabric corresponding to the idealized fabric of (b)]. 
Figure 9 illustrates the most common and familiar of 
all fabrics, known variously as the over-and-under,  
plain, calico, or tabby weave. This weave forms the 
small mesh on the left of the picture in Figure 6. 

A systematic way of representing fabrics graphically 
is to draw all the straight lines that bound the various 
strands; this determines a tiling of the plane. The 
strands are then labeled according to the layer to which 
they belong, and their ranking in each tile is indicated 
by the order in which the labels are written (the top 
layer first, the second layer next, etc.). This is illus- 
trated in Figure 9c for a plain weave. 

A fabric F is said to be k-way provided the layers that 
form F are parallel to k directions. Figure 9 illustrates 
a two-way, two-fold fabric. If the strands of this figure 

1 Thus ,  because  of the  "ho l e s "  and  different  n u m b e r  of layers,  the  
large weave  on the  left in Figure 6 is not cons idered  to be a fabric. 

were all "doubled up,"  the resulting fabric would be 
two-way  and four-fold, and if only the horizontal 
strands were doubled up, it would  be a two-way,  
three-fold fabric (which one senses, intuitively, is not 
as symmetric as the other two-way fabrics mentioned). 
A three-way, three-fold fabric is pictured in Figure 7. 

A symmetry of fabric F is any isometry of the plane 
of F onto itself which maps each strand of F onto a 
strand of F. We include, as a matter of convention, the 
symmetries which reverse all rankings ("t~rning the 
fabric over"). The group of symmetries of F is denoted 
by S(F). The subgroup consisting of those symmetries 
of F that preserve the rankings of the strands is den- 
oted by S0(F)--those are the symmetries that preserve 
the sides of F (so that rotations and translations of the 
fabric in its plane are permitted; turning the fabric over 
is not). 

Finally, a fabric F is called isonemal 2 if its group of 
symmetries S(F) acts transitively on its strands--that 
means that for any two strands there is some element 
of S(F) taking one strand onto the other. The two-way, 
three-fold variation of Figure 9 and the large weave on 
the right in Figure 6 are not isonemal. 

Theorem [7] If F is a k-way, n-fold isonemal fabric, then 
the pair (k, n) is one of the following six: (2, 2), (2, 4), (3, 
3), (3, 6), (4, 4), or (6, 6). Conversely for each of these six 
pairs (k, n) there exist infinitely many distinct k-way, n- 
fold periodic isonemal fabrics. 

2 I sonemal  is a t e rm der ived f rom the  Greek word  tcrocr (equal) and  
~/TIt~cr ( thread or yarn).  This t e rm was  in t roduced  by Gr ( inbaum an d  
S h e p h a r d  [7]. 
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Figure 11 

Examples of the first three have already been illus- 
trated. To obtain an example of a three-way, six-fold 
isonemal fabric you simply double up all the strands 
in the fabric pictured in Figure 7. The four-way, four- 
fold isonemal fabric is obtained by weaving together 
two copies of a two-way, two-fold isonemal fabric in 
such a way that each strand of that fabric "floats" at 
regular intervals over several other strands. Figure 10 
shows what is known as a "sponge weave,"  and it is 
one of the many fabrics that can be woven this way. 

If you think of the black squares as being the visible 
portions of the vertical strands and the white squares 
as being the visible portions of the horizontal strands, 
then you  can verify from the illustration that each 
strand on this fabric repeats the following sequence, 
with regard to the number of strands it goes over (O) 
and under  (U) in succession: 

05 ,  U1, 03,  U3, O1, U5, O1, U3, 03,  U1, 0 5  . . . .  
J 

one complete period 

The " 0 5 "  portions of the strands in this fabric consti- 
tute an array of floating parts. If you take two copies 
of this fabric, they can be oriented so that those floating 
port ions can be interwoven,  producing a four-way, 
four-fold isonemal fabric. Figure 11 shows only the 
floating strands of the two copies which are inter- 
woven at the places marked by the stars. 

The six-way, six-fold fabric is realizable by an anal~ 
ogous technique, that is, by interweaving the floating 
strands from two copies of a suitable three-way, three- 
fold fabric (see [7]). 

Some of the infinitely many distinct kinds of two- 
way, two-fold isonemal fabrics are discussed and il- 
lustrated in [6]. 

So far as we have been  able to determine,  no 
craftsman, working empirically, has discovered either 
a four-way,  four-fold or six-way, six-fold isonemal 
fabric. 

Griinbaum and Shephard's original version of "Iso- 
nemal Fabrics" [7] contained a question at the end 
asking if it is possible to find analogous weavings that 
completely cover the surface of a polyhedron. In other 
words: What is the nature of fabrics woven on topo- 
logical spheres where you use, for strands, cylinderlike 

Figure 12. (a) A cube woven from three strands. Each crossing area is a square. An example of a three-way, two-fold 
isonemal covering of a cube. (b) A "diagonal cube" woven from four strands. Each crossing area is a square. An ex- 
ample of a four-way, two-fold covering of the cube. 
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rings ins tead of s t raight  strips (as were  used  in the 
plane) and  then  require  that  the closures of the s t rands  
complete ly  cover  the sphere  in some un i fo rm and sym-  
metric way? The resul t ing fabrics wou ld  be referred to 
as " w o v e n  p o l y h e d r a . "  The au thor  was  for tunate  to 
see the original vers ion of [7] and  was  thus  able to 
c o m m u n i c a t e  to G r f i n b a u m  and  S h e p h a r d  her  con- 
struction of such po lyhedra .  

Isonemal Weaves in Space 

A year  or so before  read ing  Gr f inbaum and  Shepha rd ' s  
pape r  I had  been  concerned  with  construct ing models  
that  would  enable  one  s imply  to count the n u m b e r  of 
u n b o u n d e d  regions  p roduced  in space by  extending 
the face planes  of each of the platonic solids. Suitably 
interpreted,  the mode l s  of Figures 12a, 12b, 13a, and 
13d, constructed, respectively, with 3, 4, 6 and  10 strips, 
answer  this question for the cube, octahedron, dodeca- 
hedron ,  and  i cosahedron  (for more  detail see [11] and  
[13]). 3 

3 The Sepak Tackraw ball shown in Figure 13b was given to me in 
1980 by Dr. Mee-Chooi Cheng, chairman of the mathematics de- 
partment at the University of Malaya in Kuala Lumpur, after I had 
given a talk there in which the model in Figure 13a played a prom- 
inent role. Martin Gardner has told me in a letter that it is of ancient 
origin, being mentioned in very old books concerned with leather 
braiding. 

Figure 13 (a) A "golden dodecahedron" woven from six 
strands. Each crossing area is a rhomb. (b) A Sepak Tackraw 
ball from Malaysia, used to play a type of football. (c) Six 
strands woven about the ghost of an icosahedron. (d) Ten 
strands woven about the ghost of a dodecahedron. 
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Figure 14 (a) Four-way, three-fold isonemal covering of a stella octangula. Each crossing is a 60~176 ~ rhomb. 
(b) Four-way, two-fold isonemal covering of a "subdued" stella octangula. Each crossing is a square. 

It is not surprising that knowledge of these construc- 
tions suggested that there might be a result in space 
corresponding to Gri~nbaum and Shephard's theorem 
about isonemal weavings in the plane. Of course there 
were difficulties. For example: (1) How could one get 
rid of the holes (as in Figures 13a and d); (2) what 
might be a reasonable three-dimensional analogy to 
their theorem, and (3) how would one go about con- 
structing the possibilities once it was known what those 
possibilities should be? 

The first question seemed relatively simple (in prin- 
ciple). It looks as if all one has to do is to tighten up 
each strand until the holes disappear. My intuition said 
that it could be done but  it was a little difficult to 
imagine what the resulting polyhedron would look like. 
I felt that the answer to this question for the model of 
Figure 13a would  indicate the general procedure for 
eliminating holes. 

The clue to solving the problem is to look at the stella 
octangula (pictured in Figure 14a). This model can be 
woven with four strips of equilateral triangles. Each 
portion of its surface is covered by exactly three strips 
(like the portion of the basket shown in Figure 7). More 
important, from our point of view, is the fact that the 
surface of this model can be thought of as the surface 
that results when  you glue a regular tetrahedron to 
each face of a regular  octahedron.  A little experi- 
menting shows that, if one were to glue a "shorter" 
pyramid--that  is, one whose slant faces are all right- 
angled isosceles t r iangles-- to each face of the octa- 
hedron, the model pictured in Figure 14b would result. 
It is easy to see, with the model in hand, that its sur- 

face can be completely covered with four strips and, 
as in Figure 14a, the strips can be woven over and 
under each other in such a way as to preserve octa- 
hedral symmetry. 

As will be shown, the idea of gluing either regular 
tetrahedra or "cube corners" onto the faces of poly- 
hedra having triangular faces makes it possible to ob- 
tain all the different types of isonemal coverings of 
polyhedra that are analogous (in one certain way) to 
the isonemal coverings of the plane. Before looking at 
these details we need to discuss precisely what  the 
analogy is and determine exactly what all the different 
types should be. 

We begin by making the appropriate changes in the 
previously mentioned definitions, so that the weaving 
becomes a linkage of strands on the surface of a poly- 
hedron. A strand (or ring) is isometric to the curved 
surface of a (short) cylinder. It may be scored to pro- 
duce flat polygonal faces, as in Figure 13a, c, and d. 
We say that a k-way, n-fold polyhedral fabric is a set 
of k strands on a topological sphere (or polyhedron) 
such that every point  on the surface not  on the 
boundary of a strand belongs to exactly n strands. And 
we further require that the fabric hang together in the 
same way as for the fabrics in the plane. Thus for any 
point Q on the surface of the polyhedron and not on 
the boundary of a strand, the strands containing Q 
have a stated ranking--this can be denoted on the net 
(or netlike) diagrams exactly as in the plane. A sym- 
metry of the polyhedral weaving is any isometry of the 
polyhedron onto itself which maps each strand of the 
polyhedron onto a strand of the polyhedron. If P de- 
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Figure 15 

notes the polyhedral weaving, then all symmetries of 
P form a group under composition; call it S(P), the 
group of symmetries of P. However,  more significant for 
us is the subgroup So(P) that consists of those sym- 
metries of P that preserve the rankings of the strands, 
since such symmetries may actually be achieved. (In 
the case of a plane fabric you can actually turn the 
fabric over - -you cannot actually turn a polyhedron in- 
side out.) This time we call a polyhedral weaving iso- 
nemal if the group So(P) [rather than S(P)] acts transi- 
tively on its strands. 

Now we wish to investigate the permissible values 
of (k, n) in an isonemal polyhedral weaving. It is nat- 
ural to look first at the most symmetrical arrangements 
possible (many other arrangements exist, as will be 
pointed out later), so we observe that the fabrics dis- 
cussed in the theorem in the plane are related to sym- 
metries of polygons that form tesselations in the plane. 
For example, the two-way, two-fold isonemal fabric, 
with strands crossing at right angles, has all its strands 
perpendicular to one of two axes of symmetry that join 

opposite sides of some square in the plane of the fabric. 
Alternatively, we could view these strands as being 
perpendicular to one of the two axes of symmetry that 
join opposite vertices of some square in the plane of 
the fabric. Of course, because of the way the two-way, 
four-fold fabrics are constructed, their strands will re- 
late to the axes of symmetry for some square in the 
same way. The four-way, four-fold isonemal fabric in 
Figure 11 has strands that can be partitioned into ex- 
actly four sets, so that the strands of each set are per- 
pendicular to either one of the axes of symmetry joining 
opposite sides, or opposite vertices, of some parallelo- 
gram. Corresponding statements hold for the other iso- 
nemal fabrics. 

This suggests that an analogous situation might exist 
for symmetric isonemal weavings on surfaces of polyhe- 
dra. Since Platonic solids may be viewed as three-dimen- 
sional analogs of the regular tesselations in the plane, 
it seems plausible that we could find isonemal weavings 
for polyhedra such that the rings "go around" each of the 
axes in the various sets of axes for Platonic solids. 
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Figure 16 (a) Six-way, two-fold isonemal weave. (b) Ten-way, two-fold isonemal weave. 

An enumeration of all the various sets of axes of 
symmetry  related to Platonic solids is illustrated in 
Figure 15. Consequently we know that we must look 
for polyhedra that can be woven with 3, 4, 6, 10, or 15 
rings. 

The details for the construction of each of these pos- 
sibilities are carried out in [11], but we show here pic- 
tures of each case for the two-fold models. Examples 
of three-way, two-fold and four-way, two-fold models 

appear in Figure 12. In both cases the symmetry group 
can be reduced to A4 (instead of $4) by simply drawing 
the edges of one of the inscribed tetrahedra on the 
surface of the model. The six-way, two-fold model is 
shown in Figure 16a. The "parent" polyhedron is the 
regular icosahedron; that is, you may think of the sur- 
face of this model as being constructed by adding a 
triangular pyramid (whose slant faces are right-angled 
isosceles triangles) to each face of a regular icosa- 

Figure 17 (a) Snub dodecahedron (reproduced from [10]). (b) Fifteen-way, two-fold isonemal weave. 
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hedron. The 10-way, two-fold model shown in Figure 
16b was constructed by first adding pentagonal pyra- 
mids (consisting of five equilateral triangles) to the faces 
of the regular dodecahedron .  This model  now be- 
comes the parent polyhedron in the sense explained 
above. 

A 15-way, two-fold isonemal covering may be ob- 
tained by taking a snub dodecahedron (as shown in 
Figure 17a) and replacing the pentagons with pentag- 
onal pyramids (consisting of five equilateral triangles) 
that point "in"; and, as before, this model becomes 
the parent polyhedron for the final version which is 
pictured in Figure 17b. 

The surfaces on all of the two-fold models can be 
converted to models that permit three-fold coverings 
by replacing all the right-angle isosceles triangles with 
equilateral triangles. Moreover, it is a fascinating fact 
that, although the layer cycles on a two-way weave 
(which go "over, under . . . .  ") are quite different from 
the layer cycles on a three-way weave (which go "over, 
over, middle, under, under, middle . . . .  ") it turns out 
that the coloring arrangement is preserved; that is, if 
you orient the strips so that the colors around one 
vertex on the two-fold model match the colors around 
a vertex on the three-fold model, then the entire col- 
oring of both models will match! 

Producing these models raises many more ques- 
tions: 

�9 Are there any other examples of these particular 
isonemal weaves? (Yes. See [11] for some of them.) 

�9 How many others are there and how do you find 
them? 

�9 Are there weavings on polyhedra that are, in some 
sense, equivalent to the satins and twills in the plane? 

�9 Are there models that admit "semiregular" woven 
coverings? (Yes, see Figure 18c). 

�9 Is it possible to have an isonemal weaving on a 
polyhedron so that the polygon formed when the strips 
cross is some polygon other than a square or a 60 ~ 
120~176 ~ rhombus? (I don't  think so, but I can't 
prove it.) 

�9 Is it possible to construct an isonemal weave (cov- 
ering a polyhedron) with one strip? (Yes!) 

�9 Can you find a polyhedron, whose surface is a 
toms, that will admit a woven isonemal covering? (Yes, 
see [12].) 

�9 What about other genera? 

Epi logue  

I would like to close by relating a delightful personal 
encounter I had while preparing this article. A picture 
appeared in our local newspaper of a collection of Te- 
mari balls 4 made by Kazuko Yamamoto (of Saratoga, 
California). I was instantly attracted to their beauty 
and then to their startling similarity to my own woven 

Kazuko Yamamoto 

models. I called Mrs. Yamamoto and we decided to 
meet, so that I could learn more about her craft and 
so that my son Chris could photograph her Temari 
balls for this article. During that first meeting I dis- 
cussed Temari balls, art, photography, and dramatic 
performances with Mrs. Yamamoto, a woman of re- 
markable talent and versatili ty who is a painter,  
sculptor, and pantomimist. 

Mrs. Yamamoto explained that certain Temari balls 
are the only possibilities if you want the entire ball to 
be "completely symmetric". Kazuko, as I quickly came 
to address her, then pointed out that another ball had 
a single axis of symmetry through the north and south 
poles and that you can exchange the poles and the 
symmetry will remain the same. She was completely 
unaware that she had constructed objects from all the 
proper rotation groups described by Felix Klein [9], but 
she told me that it is not possible to make a ball with 
any other kind of symmetry. She was not in the least 
surprised to discover that this had been proved; her 
"proof" was that "basically people are the same every- 
where" ! 

Kazuko and I have now met several times to discuss 
Temari balls and mathematics. The result is that Ka- 
zuko is now able to make Temari balls with somewhat 
different designs, and she is findirig other "reason- 

4 Temari balls were  originally made  in China,  but  they have been  
k n o w n  in Japan for over a thousand  years. The center  of the ball 
consists of some reasonably resilient material like rice hulls. This 
material is held  together  by cloth (or, in modern  times, plastic), and 
yarn or thread is then  w o u n d  a round  it until the whole  forms a 
spherical shape.  The surface is then  decorated with yarn or thread 
to form beautiful and imaginative symmetrical  designs.  
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Figure 18 (a) A collection of Temari balls. (b) Left: The ball before decoration is added. Center: The 
initial markings of a "10 divider." Right: The initial markings 
of an "8 divider." 

(c) A "semiregular" weave, involving 18 strands. Note that 
there are 2 kinds of strands, 6 about great circles and 12 (in 
pairs) on either side of those 6. (d) Icosadodecahedron (reproduced from [10]). 

able" ways  to color and  design the " o p e n  spaces"; and 
I have begun  to investigate "semiregular"  weaves and 
the possibilities of twill or satin weaves  that seem to 
be suggested  by  the designs Kuzuko had created on 
her  Temari  balls before we met. We are learning each 
other 's  language.  She now knows  wha t  Platonic solids 
are; and  I have  learned that a "10 divider"  means  a 

f inished Temari  ball wi th  icosahedral  symmet ry  (A5), 
while an "8 divider"  is one  with octahedral  symmet ry  
($4) (see Figure 18). 

At our  next meet ing we  will discuss the relation of 
Arch imedean  solids to the semiregular  weavings on 
her  Temari  balls (Figure 18c and  d); and we are plan- 
ning a joint exhibition of our  models  next year. 
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