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Large Deflections of a Clamped Circular Plate Pressed 
by a Hemispherical-Headed Punch 
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A new method of analysis based on the consideration of equilibrium and a physically acceptable dis- 
placement field is proposed in this paper to investigate the fully plastic behaviour of a clamped circular 
plate which is loaded axisymmetrically by a rigid hemispherical-headed punch. The attention is confined to 
the range of loads for which the central deflection of the plate exceeds the plate thickness, and the effect of 
the induced membrane forces is duly allowed for in the theoretical framework to obtain a realistic ex- 
pression for the load-deflection relation in the plastic range. When the central deflection becomes suf- 
ficiently large, the deformation of the plate occurs essentially under membrane stresses alone, and the 
analysis then becomes similar to the one presented earlier by the author for a material that work-hardens iso- 
tropically according to the Ludwik power law. Since the considered range of deflections is sufficiently large, 
the material is assumed to be rigid/plastic, and the work-hardening of the material is disregarded as a neces- 
sary first step towards a more general solution. The complete load-deflection relation is presented in a graph- 
ical form for the situation where the punch radius is equal to the radius of the plate. 
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1. INTRODUCTION 

When a transversely loaded circular plate is deformed 
beyond the elastic limit, the membrane forces developed 
during the bending become increasingly more significant 
as the deflection is increased. For a realistic estimation 
of the load-deflection relation, it is necessary to consider 
the effect of the membrane forces whenever the max- 
imum deflection is more than about 2 to 3 times that at 
the initial yielding of the plate. A useful approximate 
method of analysis for the large deflection of circular 

plates has been proposed by calladine [1], who em- 
ployed an energy principle based on an assumed shape 
of the bent plate. Since the associated work equation is 
completely equivalent to the condition of equilibrium, 
the analysis may also be carried out by solving the 

equation of equilibrium under appropriate boundary con- 
ditions. Calladine's method has been used by Yu et al [2] 
to treat the problem of pressing of a simply supported 
circular plate with a hemispherical-headed punch. These 
authors have also examined the interesting problem of 

springback that occurs on removal of the punch load. 
When the deformation is so large that the bending 

stresses are negligible compared to the membrane 

stresses, a closed form solution for the stretching of a 

clamped circular plate, made of a work-]hardening ma- 
terial, over a hemispherical punch head has been present- 
ed by Chakrabarty [3]. The solution to the clamped plate 
problem over the range of deflections for which the 
bending and membrane stresses are simultaneously im- 
portant is considered in the present paper using the 
equilibrium approach based on a conical mode of de- 
formation. Assuming the punch pressure to be uniformly 

distributed over the region of contact, a new load-de- 
flection formula is established to describe the post-yield 

behaviour of the clamped circular plate. Since the strains 
are considered as large, the elastic defi~rmation of the 
plate is neglected, the material being regarded as rigid/ 
plastic in the theoretical fi'amework. The rigid/plastic 
solution would be sufficiently realistic when the central 
deflection of the plate exceeds the initial plate thickness, 

2. L A R G E  B E N D I N G  O F  A C L A M P E I )  
P L A T E  

A circular plate of radius a and initial thickness h., is 
fully clamped round its periphery, and is centrally load- 
ed by a rigid punch having a hemispherical head of ra- 
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Fig. 1. Deformed configuration of a circular plate press- 
ed by a spherical punch. 

dius R as shown in Fig. 1. The material is assumed to 
be ideally plastic with a constant uniaxial yield stress Y. 
Since we are concerned here with the range of de- 
formation for which the central deflection ,5 exceeds the 
initial plate thickness ho, the elastic strains will be com- 
pletely disregarded. Following calladine [1], the bending 
moments will be referred to the unstretched surface, 
which may be shown to coincide with the bottom face 
of the plate. The work done by the membrane forces is 
then identically zero, and the work equation involves 
only the bending :moments M~ and M 0. The punch is as- 
sumed to be well lubricated, so that the influence of fric- 
tion is negligible. 

There is sufficient theoretical evidence to suggest that 
the ratio of the applied load to the initial collapse load is 
virtually unaffected by the choice of the yield criterion. 
It is convenient lherefore to employ a simplified yiekt 
criterion, which in this particular case may be written as 

~0 =-+Y, -Y < O'r < Y 

Let the unstretched plane be situated at a distance e be- 
low the original bottom face of the plate as shown in 
Fig. 2, where the shape of the deflected plate is assumed 
conical, the effect of curvature of the bent plate over the 
region of contact with the punch head being disregarded 
for the estimation of the bending moment distribution. 
The broken line, representing the horizontal plane of 
zero extension, intersects the upper and lower faces of 
the bent plate at r=r~ and r=r:, respectively. It lbllows 
from simple geometry that 

rl h+e r, e 
- -  = 1  - - l - - -  (1) 
a fi ' a ,5 

The circumferential bending moment transmitted across 
each segment of the radial section ABCD can be easily 
found from the tact that the hoop stress ~ro is equal to Y 

Fig. 2. Conical mode of deformation for a finitely bent 
circular plate. 

everywhere below the broken line, and is equal to -Y 
everywhere above the broken line. Thus 

SI, M~176  1 -  ,5 ) 

fr/M0dr = ~ Moa 

; .Modr = 2 M o a ~ / 1  + ~ )  

where Mo=yho2/4, representing the fully plastic moment 
of the cross section. Combining the above relations, the 
resultant circumferential moment is obtained in the di- 
mensionless form 

(2) 
�9 I hoJ[ 

The analysis is most conveniently carried out by in- 
tegrating the equation of moment equilibrium, using Eq. 
2, instead of considering the associated work equation. 

In the absence of friction, the normal pressure p act- 
ing over the punch head may be assumed as uniform for 
simplicity. Then the equation of equilibrium of the bend- 
ing moments Mr and M 0 over the region of contact may 
be written as 

d r t 
(rMr) = Mo-Saprdr = M 0- 2 p r  2 , t) <r  _< b (3) 

where b is the radius of contact between the punch head 
and the deformed plate. Over the remainder of the plate, 
the equilibrium equation becomes 

d(rMr)  = M o -  
1 

~-pb-,~ b_<r_<a (4) 
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Assuming a hinge circle to form at the clamped edge, 
the boundary condition may be written as M~=-M 0 at r= 
a. In view of the continuity of the bending moments 
across r=b, the integration of Eqs. 3 and 4 results in 

0 Moj /ri + M0 d ~r r_~, 

since M o=2Mo(l+2e/h) at r=a, in view of the hoop 
stress distribution of Fig. 2, the preceding relation can 
be combined with Eq. 2 to give an expression for p 
which has a least value when e=0. Itence 

Pb2 1 -  .~a - -  - -  ' - - -  
4Mo (ho 3 ~ )  ho 

For a given b, the left-hand side of Eq. 5 is easily 
shown to be unity at the initial collapse according to the 
assumed yield criterion. The left-hand of side of Eq. 5 at 
any stage is therefore equal to P/P,, where P,, is the in- 
itial punch load and P the current punch load. Setting qo= 
P,,/2nMo, we finally obtain the simple formula 

2:r - q ~  + 3 ~ ) '  N--~- 

which may be assumed to hold with sufficient accuracy 
for any other form of the yield criterion. If Tresca's 
yield criterion is adopted, the initial collapse load is 
given by [4] 

3 ( + ) ( 1  b qo<:; (7) 1 -  exp - ~  : a ,  - "  

where b=R sin/3, with ]3 denoting the semi-angle of con- 
tact. It follows from simple geometry of the bent plate 
(Fig. 1) that 

5 _ a tan/3- R (sec/3- l) (8) 
ho ho ho 

For given values of R/a and hJa, the load-deflection 
curve for a clamped circular plate pressed by a rigid 
punch is defined by Eqs. 6, 7 and 8, so long as the ef- 
fect of bending is comparable to that of stretching of the 
plate. 

3. MEMBRANE SOLUTION FOR FINITE 
STRAINS 

When the central deflection of the plate is large com- 
pared to the plate thickness, the membrane forces com- 
pletely dominate the process. The essential features of 

the process, in the absence of friction, can be brought 
out by using a simplified theoretical model in which 
each element is assumed to deform under an equal biax- 
ial tension [3]. Let r denote the angle of inclination of 
the surface normal at a generic point of the deformed 
plate with the vertical axis of symmetry. The boundary r 
=a corresponds to ~=~ while the circle of contact r=b 
corresponds to ~=13, as shown in Fig. 3. If the mer- 
idional and circumferential radii of curvature of de- 
formed middle surface are denoted by Pr and p o respec- 
tively, then the condition of equilibrium of an element 
in the direction normal to the surface can be written as 

O r +  O-0 _ p (9a) 
pr Po h 

where p is the normal pressure acting on the element, 
and h the current plate thickness that varies with the an- 
gle 0. The principal radii of curvature Pr and p 0 are 
given by simple geometry as 

--" 3 ~  sec0, Po = r cosecr (9b) P, 

The geometrical constraint requires p~=p o=R over the re- 
gion of contact (0<_r_<b), while the static boundary con- 
dition requires p=0 over the outer region (b:Kr~a)  that: 
is not in contact with the punch head. Since the material 
is non-hardening, the uniaxial yield stress has a constant 
value equal to Y throughout the defbrming plate. 

Consider first the unsupported region, which will be 
in a state of balanced biaxial tension (rrr=Cro-=Y) only if 
the radii of curvatalre satisfy the relation 

Pr = - - P o  = - p (say) 

in view of Eq. 9a, where p is a positive radius. Eq. 9b 

Fig. 3. Geometry of deformation of a circular plate 
stretched as a membrane. 
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therefore give 

Or 
a~ - pcos ~0 . . . .  r cot 4) 

Integrating, and using the boundary condition r--a at ~=~z, 
we get 

r _ sin a p sin o~ 
a sin 0 ' a sin 2 

(~0) 

The continuity condition p=R at the contact boundary 0= 
13 furnishes the relation 

R sin2 fi (1 l) sin ~z = ~- 

It may be noted that the meridional radius of curvature 
changes discontinuously from -R to R as the contact 
boundary is approached from the outer region. The 
shape of the unsupported surface is defined by the dif- 
ferential equation 

_ 3z (sin a )  3z tan 4), or = r = a 
3r - ~  ~sin~ ) 

where z is the vertical height of a generic point below 
the original plane of the plate. In view of the boundary 
condition z=0 at 0=~z, 
equation results in 

the integration of the above 

z : s i n ~ l n {  tan (r } 
tan (a/2) (12) 

The elimination of 4) between Eqs. 10 and 12 furnishes r/ 
a as a function of z/a, the result being 

�9 Z 
a-r =sm acosh ~- coseca+ In tan (13) 

This part of the deformed middle surface actually forms 
a minimal surface, since the mean curvature vanishes at 
each point. Eq. 13 represents a catenoid, which is 
known to be the only minimal surface of revolution. 

The region of contact is a spherical surface of radius 
R, giving p,=po=R and cr~=cro=Y, the effect of friction 
being disregarded. The normal pressure acting over the 
punch head is p=2Yh/R, which varies over the region of 
contact. Using the Levy-Mises flow rule, it can be 
shown [3] that 

h,__ Z _ (1 + cosr e (1 + c~ , 0 _< 0 -<-/3 (14) 
h (1 + cos~ 4 

The punch load P at any stage is given by the condition 
of overall vertical equilibrium of the spherical cap of ra- 

dius b. Thus 

P :: 2rcYh* b sin/3 = 2:rrYRh*sin2,{~ 

where h* is the thickness at r=b, and is obtained by set- 
ting 0=-/3 in Eq. 14. The result may be expressed in the 
dimensionless form 

9 
P -- 4a / 1 47COS/3 l-~iU ~ (15) 

2JrMo ho 1 + coscz 

in view of Eq. 11. the central deflection 6 is obtained 
from simple geometry as 

6 = 6" + R(I - cos/3) 

where 6* is the vertical height of the circle of contact, 
and is given by Eq. 12 with r Hence 

5 _ R (1 -cos /3 )+a-s ina ln~  tan(/3/2) [ 06)  
h,, ho h,, / tan(a/2) [ 

Eqs. 15 and 16 define the load-deflection relationship 
parametrically through a or /3, the two angles being re- 
lated to one another by Eq. 11. the  membrane solution 
would be appropriate for the punch pressing problem 
when the central deflection exceeds only a few times the 
initial plate thickness [5]. 

4. DISCUSSION OF RESULTS 

According to the known solution for the velocity dis- 
tribution at the incipient collapse, a clamped circular 
plate tends to deform into a surface of negative cur- 
vature near the boundary, similar to that predicted by tile 
membrane solution. Consequently, the assumption of a 
conical mode of deformation for the unsupported part of 
the bent plate is expected to underestimate the angle of 
contact and hence the punch load predicted by the bend- 
ing solution is also underestimated. For a realistic es- 
timation of load-deflection relation in the early part of 
the process, it seems to be a better approximation to cal- 
cute the angle /3, corresponding to a given 6/h,} ratio, by 
using Eq. 116 rather than Eq. 8 before evaluating % from 
Eq. 7. The numerical results based on this procedure are 
plotted in Fig. 4, using the values a/ho equal lo 30 and 
50, and assuming R=a, the membrane solution being 
found to be appropriate in the two cases for 6/h, exce- 
eding about 4.5 and 4.0 respectively. Since the pressure 
distribution over the punch head resulting from the as- 
sumed state of stress becomes increasingly inaccurate for 
a non-hardening material as the loading is continued, the 
membrane solution would provide a realistic estimate of 
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Fig. 4. Load-deflection curves for clamped circular 
plate pressed by hemisphericl-headed punch. 

the load only over the range 6/h,, < 10. At the other ex- 
treme, when 8/ho < 1, it would be necessary to modify 
the results of the rigid/plastic analysis to include the ef- 
fect of the elastic strains. It is important to note that the 
equilibrium approach adopted here allows the con- 
sideration of other types of deformation mode of the 
bent p/ate in order to improve the bending solution. 

It would be interesting to have a quantitative as- 
sessment of the influence of work-hardening on the load- 
penetration behaviour of finitely deformed circular plates. 
When the bending effect is negligible, a useful closed 
form solution for the punch stretching of clamped cir- 
cular plates, made of work-hardening materials, is al- 
ready available [3]. However, a work-hardening solution 
for the large bending of circular plates, including the ef- 
fect of the associated membrane forces, does not seem 
to have been attempted in the past. From the practical 
point of view, the solution given in this paper may be 
modified in an approximate manner by replacing the con- 
stant yield stress Y with a mean uniaxial yield stress that 
depends on the amount of central deflection. Such a pro- 
cedure has been found to be quite useful for a number 

of important metal forming processes [6], where 
mathematically rigorous solutions exist when the ma- 
terial is ideally plastic. 

5. C O N C L U S I O N S  

This paper demonstrates how Calladine's approach for 
the inclusion of membrane forces in an approximate 
manner to deal with large bending deflections of rigkt 
plaslic plates can be modified to formulate it in terms of 
the condition of moment equilibrium, rather than the usu- 
al consideration of the work equation. The equilibrium 
method allows the assumed displacement field to be dif- 
ferent from the simple conical field, which is appropriate 
for a limited range of loading conditions. The load-de- 
flection formula developed here for the large deflection 
of a partially loaded clamped circular plate appears to be 
new, and is in complete agreement with the ex- 
perimental fact that the load rises more rapidly with the 
deflection in the case of a clamped plate than in the case 
of a simply supported plate. The predicted load-de- 
flection curves for the punch pressing of a flflly clamped 
circular plate also follows the same trencl as that ex- 
perimentally observed. As in the case of a simply sup- 
ported plate [2], where the situation is complicated by 
the possibility of wrinkling as the plate is pressed into a 
cavity, the punch load is significantly underestimated by 
the neglect of membrane forces even when the central 
deflection is only of the order of the plate thickness. 
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