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The Tangential Plasticity 
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Various constitutive models for describing the inelastic stretching due to the stress rate component tangen- 
tial to the yield or loading surface, i.e. the non-coaxiality of stress and inelastic stretching have been pro- 
posed in the past. However. a pertinent model applicable to a general loading process for materials with an 
arbitrary yield surface has not been proposed up to the present. In this article, the inelastic constitutive 
equation extended so as to describe the non-coaxiality is formulated generalizing the Rudnicki and Rice's [1 ] 
J2-deformation theory in rate form and incorporating it into the subloading surface model with a smooth 
elastic-plastic transition. 
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1. I N T R O D U C T I O N  

The plastic stretching is independent of the stress rate 
component tangential to the yield or loading surface, 
called the tangential stress rate, in the traditional elas- 
toplastic constitutive equation with a single and smooth 
plastic potential surface. It leads to the coaxiality, i.e. 
principal directions of plastic stretching coincides with 
those of stress. The extension of the constitutive 
equation so as to describe the dependency of inelastic 
stretching on the tangential stress rate, i. e. the non-coax- 

iality would be one of the most fundamental but un- 
solved problems in elastoplasticity at present. Therefore, 
various models for this aim have been proposed in the 
past. A pertinent one applicable to a general loading pro- 
cess for materials with an arbitrary yield surface has not 
been proposed up to the present, however. 

In this article, the elastoplastic constitutive equation is 
extended so as to describe the non-coaxiality of a stress 
and an inelastic stretching by introducing a novel para- 

inelastic stretching caused by the tangential stress rate 
into the subloading surface model  [2-4] with a smooth 
elastic-plastic transition. It fulfills the mechanical re- 
quirements [5-7], i. e. the continui O, condition, the 
smoothness condition, the work rate-stiffness relaxation 
and the Masing effect by keeping the mechanical fea- 
tures of the subloading surface model, and it would be a 
pertinent inelastic constitutive equation applicable to an 
arbitrary loading process including unloading, reloading 
and reverse loading processes for materials with an ar- 

bitrary smooth yield surface. It could be regarded as the 
generalization of Rudnicki and Rice's [1] J2-deformation 

theory in rate form which is limited to a monotonic load- 
ing process in the neighborhood of proportional loading 
of the isotropic metals with the von Mises yield con- 
dition without the kinematic hardening. 

2. O U T L I N E  O F  T H E  S U B L O A D I N G  SUR-  
F A C E  M O D E L  

In this section the subloading surface model is re- 
viewed briefly, since it is the essential one for the for- 
mulation of the extended constitutive equation with a 
tangential stress rate effect. 

As usual, let it be assumed that the stretching D 
(symmetric part of velocity gradient) is additively decom- 
posed into the elastic stretching D" and the plastic stretch- 
ing LF', i.e. 

D = D  e +D p (l) 

where the elastic stretching is given by 

D" = E -~ 0 (2) 

a is a stress and (~ indicates the proper corotational 
rate with the objectivity (e. g. cf. Dafalias [8] and Zbib 
and Aifantis [9] introducing the plastic spin) and the 
fourth-order tensor E is the elastic modulus given in the 
Hooke's type as 

E i jkl = ( K - 2-- G ) (3i j gkl + G ( (~ik s il + ~il 6 ik ) (3) 
3 
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where K and G are the bulk modulus and the shear mo- 
dulus, respectively, which are functions of stress and inl- 
ernal state variables in general and 6,~ is the Kronecker's 
delta, i. e. ~j=l for i=j and ~j=0 for i 4=- j. 

2.1. Normal-yield and subioading surfaces 
Consider the following yield condition as the realistic 

one. 

f(~, H) : F(H) (4) 

where 

6 -  a -  a (5) 

a is the specified point on or inside the normal-yield sur- 
face, while it plays the role of the kinematic hardening 
variable if it translates with a plastic deformation. The 
tensor H and the scalar H denote an anisotropic and an 
isotropic hardening variable, respectively. Let it be as- 
sumed that the function f is homogeneous degree one of 
the tensor &and that H is the dimensionless variable. 
Then, if H=O, the yield surface keeps a similar shape, 
translating with a. An example of H is the rotational har- 
dening variable of the second-order tensor for geoma- 
terials [10]. The yield surface is renamed as the normal- 
yieM surface, since its interior is not regarded to be an 
elastic domain in the present model. 

Now, let the subloading surface [2-4] be introduced, 
which always passes through the current stress t~ and 
keeps the similarity to the normal-yield surface. By de- 
noting the ratio of the size of the subloading surface to 
that of the normal-yield surface as R and the similarity- 
center of the normal-yield and the subloading surfaces 
as s, it holds that 

o'y = l { o - ( 1 - R ) s ~  (ty-s : R ( ~ ,  (6) 

where t~, on the normal-yield surface is regarded as the 
conjugate point of the current stress c~ on the subloading 
surface, obeying the similarity (see Fig. 1). 

By substituting Eq. 6 into Eq. 4, the subloading sur- 
face is described as 

f ( ~ ,  H )  : RF (H) (7) 

where 

=- o - ~  ( :  R 5-) (~) 
= s  - R  (s - a )  ( a  - .s =R ( a - s ) )  (9) 

c2 for the subloading surface is the conjugate point of a 
for the normal-yield surface, obeying the similarity. In 
calculation first R is determined from Eq. 7 with Eqs. 8 

Fig. 1. The normal-yield and the subioading surfaces. 

and 9, substituting values of ~, a, s, H and H, and 
thereafter t2 is done from Eq. 9, while four internal vari- 
ables a, s, H and H are incorporated in the present 
model. 

2.2. Translation rule of similarity-center 
It is required for the similarity-center s to translate 

with a plastic deformation in order to describe real- 
istically a cyclic loading behavior with a closed hys- 
teresis loop. The translation rule of s is described below. 

The following inequality must hold since the sim- 
ilarity-center has to exist inside the normal-yield surface. 

f (,{,H)<_F(H) (10) 

where 

~=s  - a  (11) 

The time-differentiation of (10) is given by 

tr f i)f (d,as H ) ( } _ &  + 4 { tr(.Of ~ _ H ) r  or~ /~) - Pt ~)-_} 

<_0 for f(9, H)=F(H) (12) 

where ( ' )  indicates a material-time derNative. Eq. 10 
or Eq. 12 is called the enclosing condition of similarity- 
center. 

In the ultimate state f(~, H)=F(H) in which s exists on 
the normal-yield surface the vector ~ - s  makes an obtuse 

angle with the vector ~f(:~, H)/~s which is outward-nor- 
mal to the surface f(~, H)=F(H) coinciding with the nor- 
mal-yield surface, since ~ exists on the normal-yield 



65A Koichi Hashiguchi 

surface. Noting this fact, let the following equation be as- 
sumed, which fulfills the inequality Eq. 12. 

")  I1,, 11  13) ~ - &  

from which the translation rule of the similarity-center is 
derived as follows: 

~=c[IDP]] O---+& + l{/~'-tr(~f-~HH) H)}~ (14) 
R 

where c is a material constant influencing the translating 
rate of the similarity-center and 

~=  o--s (15) 

Thus, the evolution of the similarity-center s is det- 
ermined by the plastic stretching/Y' and the hardening 
rates & , / t  and/4. 

2.3. Plastic stretching 
The time-differentiation of Eq. 7 is given by 

t r ( ~ f ( ~  H) 6")-tr(~f(~'H)ao ~)+tr (Of (~HH)I~)  

: RF +RF'/4 (16) 

where 

F ' -  dF (17) 
dH 

Let the evolution rule of R be given by 

R= U ItDPll for O p r O (18) 

where U is the monotonically decreasing function of R, 
satisfying 

R = 0 : U = + o o ]  
E 

0 < R  < 1 :U >0 
R : I : U = O  / (19) 

R > I : U < 0 J  

I1 I stands for the magnitude. Let the function U satis- 
fying Eq. 19 be simply given by 

U = -u lnR (20) 

where u is a material constant. 
By substituting Eq. 18 into Eq. 16 one has the ex- 

tended consistency condition for the subloading surface: 

tr( ~f(ff '  H) &)-tr( ~ f (~ '  H) Fz)+tr( ~f (~ '  H) /~) 
a a  ao- OH 

= U IDPI[ F +RF'H (21) 

Assume the associated flow rule 

D p = ,~N (122) 

where ,a. is the positive proportionality factor, and the 
second-order tensor N is the normalized outward-normal 
of the subloading surface, i. e. 

I =1) (23) aa  ,)a 

The substitution of Eq. 22 into the extended consistency 
condition Eq. 21 leads to 

2= tr(N_- ~) (24) 
at,, 

where 

~Qp-tr O i+{  h -  1 tr(0f }N (25) 
FR 

h, h and ff are functions of the stress, plastic internal 
state variables and N in degree one, which are related to 
/4,/1 as ~ as 

H h (26) h - - ~ - ,  h -  Z 

a 
ff - ~- = z - U(s - ot)-R (z - a  ) (127) 

& 
a = (128) ,a, 

z =-s =C--R +a +--F F'h - h .~ (29) 

since these rate variables include Z in degree one. 
11ae plastic stretching is given from Eqs. 22 ~md 24 as 

Dp _ tr(N_-~-) ~ (31)) 
M,, 

which reduces to the following simple tbrm tor isotropic 
hardening materials with a=s=O (~=O) and H=O. 

Dp = tr(N6") N 
Mp 

N -  a i ( , , ) /  II am,) il 
aa c)a 

Mp = (@h + ~)tr(Ncr) 

(31) 

2.4. Loading criterion 
The loading criterion is given as follows [11,12]: 
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D P ,  O : tr (/VED) >0} 

D p= O : tr (tVED) < 0 (32) 

which is applicable not only to a hardening state but 
also to a perfectly-plastic and a softening state. The 
mechanical background of the loading criterion Eq. 32 is 
examined by the author [13]. 

3.  E X T E N S I O N  T O  T H E  T A N G E N T I A L  
S T R E S S  R A T E  E F F E C T  

The inelastic stretching predicted by traditional elas- 
toplastic constitutive equations including the subloading 
surface model is independent of the stress rate tangential 
to the loading surface. In what follows, let the sub- 
loading surface model be extended so as to describe the 
stretching due to the stress rate tangential to the sub- 
loading surface. 

First, let it be assumed that the stretching is additively 
composed of the elastic stretching D ~, the plastic stretch- 
ing D p and the tangential stretching D' induced by the 
tangential stress rate, i.e. 

D = D "  +D p +l)  t (33) 

Let the tangential stretching D' be formulated as 

D '  = l__&, (34) 
T 

where T is a monotonically decreasing function of R 
satisfying the condition 

T = ~ ,  for R = 0 ]  
(35) 

l J" T = a  for R =: 

where a is the material constant. Let the function T satis- 
fying Eq. 35 be simply given by 

T(R ) = aR -b (36) 

b (> 1) being material constants. The second-order tensor 
&* is given as follows: 

1 
0"* = ~ - - ( Y m l  , (Ym =- -fftro" (37) 

8"* = &*+ &* 

,5-.* = t,(n-* 8"" )/,-* 

8",* = 8""-&;* 

(3a) 

af( ,H)).ll 
,3o- IN*I 

( lln-*ll--- t) (13o) 

"))*ZIl (I[N*II :x=l) (40) 

Let &* be called the deviatoric-tangential stress rate 

which fulfills 

tr (/~/d'r*) = 0 ,  tr d't* = 0 ( 4 1 )  

Hereinafter, let the plastic modulus My be renamed the 
normal-plastic modulus and let the function T be named 
the tangential-plastic modulus. 

The stretching D is given from Eqs. 2, 3(1, 33 and 
34 as 

O = E - '  O+ tr(N_- d') ~ +  1__ d',* (42) 
M,, Z 

which fulfills the extended work rate-stiffness relaxation 
as follows: 

> tr (DtED) > -~{tr (&* d') + Z tr(d',*E/q) tr(Di ED ) 

1 
k - -  tr(&* d') > {) (43) 

T 

Eq. 42 fulfills the continuity condition and the smooth- 
ness condition as well as the original subloading surface 
model. Besides, D' is linearly related to the stress rate. 
Inversely, the stress rate is inversely expressed in terms 
of the stretching as follows: 

tr(NED ) 
1 E D  - [EIV 

- 1 + 2 G / T  Mp + tr(NEN) 

2G { 1 tr(Eff/)/- (h,Ip + 4-tr/V tr(E~/))-~.--;-77-, }] 
+ T 3 3 IN I 

2G tr I -  trN)- -) 
T , , 

(44) 

The tangential stretching D L in Eq. 34 is formulated to 
be induced as R approaches closely to 1, i.e. as the 
stress approaches closely to the normal-yield surtace so 
that the tangential stretching is hardly generated inside 
the normal-yield surface. In other words, the elastic pro- 
perty is not disturbed substantially by the langentiai 
stretching. Needless to say, the plastic stretching for- 
mulated in the preceding section holds as it is. Thus, the 
constitutive Eq. 42 or Eq. 44 would not be required to 
be limited to the neighborhood of proportional loading 
process but would be applicable to a general loading pro- 
cess. Here, note that the tangential stretching D" is linear- 
ly related to the stress rate so that it diminishes during 
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an infinitesimal stress cycle, i. e. it is the so-called work- 
less stretching during that cycle. Thus, the tangential 
stretching has the intermediate property between the 
elastic stretching and the plastic one. Hence, let it be 
called the para-inelastic stretching. 

The following stress rate is adopted in the J2-de- 
formation theory of Rudnicki and Rice [l], i. e. the rate 
form of the Henky's [14] deformation theory reassessed 
by Budiansky [15]. 

n d- ~r* o* a* (45) = - t r ( ~  ~'*) I] r 

The J2-deformation theory has been applied to the 
analysis of plastic instability problems by many workers. 
However, this theory would not be pertinent generally in 
the following points. 

1. The stress rate tensor ~r generally results in 

tr(Nn~'*) =t= 0, trRd* =0 (146) 

That is, ~'* is not tangential to the loading surface and 
thus an inverse expression, i. e. the analytical expression 
of a stress rate in terms of a stretching cannot be derived 
except for materials with a yield surface of axisymmetric 
shape centering on the hydrostatic axis in the principal 
stress space. For instance ~* would not be applicable to 
the kinematic hardening materials (n* ~r ' , / l l~ r  ). It 
would not be also adequate for frictional materials, i. e. 
plastically pressure-dependent materials the shape of 
yield surface of which is not axisymmetric in the prin- 
cipal stress space although it has been applied to fric- 
tional materials by the advocators Rudnicki and Rice [1] 
themselves, Dorris and Nemat-Nasser [16], Yatomi et al. 

[17], Vermeer [18], etc. 
2. The J2-deformation theory falls within the framework 

of the conventional plasticity with the conventional yield 
surface enclosing a purely elastic domain. Therefore, if the 
stretching due to the stress rate ~d-* is assumed to occur al- 
ways, the deformation behavior in the elastic domain is dis- 
turbed exhibiting unrealistic response, while that stretching 
is assumed to be significantly large compared with the e- 
lastic stretching. Instead, if that stretching is assumed to oc- 
cur only in the yield state, it occurs discontinuously de- 
pending on whether or not a stress exist on the yield sur- 
face so that the continuity condition and the smoothness 
condition are violated. 

Eventually, the application of the J:-deformation theo- 
ry has to be limited to the monotonic loading process in 
the neighborhood of proportional loading fl)r materials 
with a yield surface of axisymmetric shape centering on 
the hydrostatic axis in the principal stress space. 

4. C O N C L U D I N G  R E M A R K S  

The elastoplastic constitutive Eq. 42 or Eq. 44 was 
proposed in this article, which describes the non-coax- 
iality of the stress and the inelastic stretching. In this 
equation the novel para-inelastic stretching :induced by 
the tangential stress rate is introduced keeping a single 
smooth (regular) yield surface without incorporating plur- 
al yield surfaces or a corner of the yield surface. It could 
be regarded as the generalization of the Rudnicki and 
Rice's [1] J2-deformation theory. It has the rather simple 
form and its application to boundary value problems 
would be easy compared with the phenomenological 
comer theory [19] which has been applied to analyses 
of plastic instability problems. Furthermore, the con- 
stitutive equation may be applicable to the general load- 
ing process including unloading, reloading and reverse 
loading. 
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