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1 Introduction 

Here we study the behavior  of  energy minimizing harmonic  maps  into round  
cones, specifically, maps  from a region O c IR m into CE~ where, for ~c > 0, 

�9 ~ = C ~ - -  {(x, y)e~, p x P,: y - - [ K -  ll~lx[}, 

with the induced metric f rom either the Euclidean metric of I R P x l I ~ I R  p+l 
in case ~c > 1 or f rom the Minkowski  metric of  IR p x ~ I R  p'I in case 0 <  ~c < 1. 
Thus [L2]  ~ is a singular (for ~c4= 1) Riemannian  submanifold which is positive- 
ly curved for K > 1 and negatively curved for ~c < 1. For  a discussion of  harmonic  
maps into singular spaces, in particular, negatively curved spaces, see the impor-  
tant recent work [G-S]  of  G r o m o v  and Schoen. 

Our  mot ivat ion for s tudying harmonic  maps  into such cones comes f rom 
an Ericksen model  for nematic  liquid crystals [E2, L1, H, L2, L4, V] where 
m = 3 and p = 3. Several results on partial regularity of energy minimizers have 
been discussed in IL l ,  H, Am,  L2] with [L2]  giving the most general results. 
Briefly, a minimizer u is H61der cont inuous everywhere for all positive ~c and 
Lipschitz for 0 <  ~c< 1. It is moreover  real analytic away from the set u-1  {0} 
which has (except for the degenerate case u - 0 )  Hausdorf f  dimension __< m - 2  
for ~c > 1 and dimension =< m -  1 for tc < 1. Here we give one improvement  (3.4) 
in showing that 

if ~c>l and p > 3 ,  
then u-  1 {0} has dimension < m -  3 and is isolated for m = 3. 

We also give some discussion concerning the asymptot ic  behavior  o f  a minimizer 
u near a point of  u -  1 {0}. As in I-L3], and [A1], the monotonic i ty  of  frequency 
allows useful considerat ion of  possible homogeneous blow-ups of  v at points  
of f2. Let  IB m denote  the unit ball in IR". In 3.2 we obta in  a full classification 
of the possible homogeneous  harmonic  maps from 1132 to 112~. By dimension 
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reduction [L2] this is relevant for understanding the codimension one and codi- 
mension two singularities of energy-minimizing harmonic maps from N"  to 

Note that, a mapping depending on only one variable given by a constant 
speed geodesic passing through the vertex of (E~ 2 is minimizing if and only if 
•< 1. The nonminimality when ~c > 1 may be established by a variation which 
peels the geodesic off the vertex. Here the first variation of energy is - o o .  
We generalize this construction in 2.2 to show that, 

for x > 1, there is no nonconstant energy minimizing map from ~2 

to tE~ whose image hits 0 and is contained in a subcone IE 2. 

Combining this with the classification result 3.2 and standard dimension reduc- 
tion arguments leads to the above improved dimension estimate. 

In w 4 we discuss the use of cones in the Ericksen model of nematic liquid 
crystals. As described in [L1, H], one considers, for a region f 2 c N  3, a map 

u = (v, w):  ~ --, a ;2 .  

One may recover from this map the two relevant physical quantities of the 
v 

Ericksen model, the director field n = l v  I (which is defined wherever v+0)  and 

the orientation order parameter s = Iv[ = I ~c- 11 - ~ I w l. In terms of these, the energy 
of u is given by 

f. I Vul ~ dx + f. Wo(~C -~ lul) dx = f. gs=lV nl ~ + ~clVsl z] dx + f. Wo(s) dx 
Y2 .O D f2 

where Wo (see [E2, w 5-7]) is a positive smooth function which has a unique 
minimum in the interval (0, 1), has derivative 0 at 0, and has limit oo on approach 
to either endpoint - � 8 9  or 1. As discussed in [L2], the zero order term W 0 
does not affect the estimates on the singularity set or the existence or structure 
of the homogeneous blowups. In particular, by [L2] and the present paper, 

the zero set u -  1 {0} has dimension < 2 for 0 < • < 1 

and is isolated for ~c > 1. 

Specific examples with ~c < 1 of 2 dimensional singular sets have been obtained 
in [A-V]. Many physical examples of singularities of dimensions 0, 1, and 2 
in liquid crystals and other mechanical systems are described in [K].  

In w 4 we consider additional cones that are particularly useful for liquid 
crystal applications. Since it is usually not physically natural to distinguish 
the director n from - n ,  it is useful to consider the director lying in the real 
projective plane IR~ '2. When the orientation order s is assumed constant, as 
in [H-K-L] ,  there is, as noted in 4.1, little change in results. For  the general 
Ericksen model, we consider a target ~'~ that is essentially a cone over real 
projective space. Fortunately, most  of our present work, including the classifica- 
tion of homogeneous minimizers of 2 variables, carries over, with some adjust- 
ments. However, because IRIP 1 is not contractible in N.~ 2, the construction 
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of 2.2 is not always applicable. In contrast to maps to 1123, we now obtain 
the weaker result that 

the singular set of an energy-minimizing map from N3 to V~ 
has dimension < 1 for ~c > 1. 

This singularity estimate is nevertheless optimal, as seen in 4.2, and is in accord 
with most observed nematic liquid crystals. We appreciate the remarks of 
R. Meyers that one should expect line singularities in nematic liquid crystals 
even for ~c > 1. We also thank J. Ericksen for his continual encouragement. 

As a final remark, we recall that the mathematical  derivation of the order 
parameter  [E2, w 2] leads to the range - �89 < s < 1 for the order parameter.  Thus 
it makes sense to allow negative s and consider maps into corresponding truncat- 
ed double-cones X~ and ) ~ .  With these cones, one has a homogeneouse degree 
1 minimizer induced by a straight line passing through 0 from the upper cone 
to the lower cone. So the new singular set estimate 

dim u-  1 {0} __< 2, 

which we now obtain for a nonconstant minimizing map u into X~ or ) ~ ,  
is optimal for all p and ~c. We also observe that use of the cone ) ~  overcomes 
the sign ambiguity, pointed out by Ericksen [E2, w 2], that arises with an 
lR3-valued model based on the function s-n. 

A serious restriction on the applicability of the present work to nematic 
liquid crystals is the absence of a treatment of the general (non-equal-constant) 
Oseen-Frank energy functional. It is an open problem whether our estimates 
of the singular set continue to hold in such a general context. 

2 Harmonic maps into subcones 

In this section, we show that, for ~c> 1, a nonsmooth energy minimizing map 
into C2 cannot have image in the lower dimensional subcone C~ ~(IRa x {0} 
x lR)~  2 = t I~ .  To motivate this, consider the simple case of a piecewise constant- 
speed geodesic map u of the interval [ - 1 ,  1] into I12~ with u(0)=0 and lu(-1)1 
= lu (+ l ) l # :0 .  Here u(t) is simply - t u ( - 1 )  for t < 0  and t u ( + l )  for t>0 .  To 
be minimizing, even harmonic, the (minimum) angle between v_ 1 and v+l ,  with 
respect to the 1122 metric must be at least ~. (To see this geometrically simply 
unroll ~ isometrically to a sector in the plane.) This means the Euclidean 
angle must be at least 7c~c- ~. Thus, for ~c > 1, the curve fails to be minimizing. 

X 
In the following we use spherical coordinates (p, ~), p= lx [ ,  c o = ] ~  for a 

point x e lR ' .  

2.1. Theorem. Suppose K > 1 and h is a f in i te  energy map f rom  ~3" into the subcone 
II;~ n (IR p- 1 x {0} x ~ )  ~ (12~- 1. Suppose also that h is homogeneous so that 

h(p, ~ ) =  p~(O(~o), O, ~ c -  110 (re)l) 

f o r  some ~ > 0 and mapping ~ : S '~- 1 ~ IR p- 1 with ~ ~ O. Then under the variation 
h ~ : ~ ~ C~, 

h~(p, ~0) = (p~ 0, 2(1 -p~),  ~ ]~SgiO 12 + 22(1 - p~)5), 
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the energy E(2)= ~ IV hXl2 dx is continuous. Moreover, if m<=2 or if 

x 2 ~ + m - - 2  - - <  
x--1 m--2 ' 

then E has a local maximum at 0; in fact, 

lim [E(2) -  E(0)] <0. 
�9 ,L~O 2 2 

Proof. We compute, at almost every x ~ ~, the partial derivatives 

h2--1 
oo,  , o _ 4 ' o ,  

h ~ , \  , /p2,]Oi2 + 22(1 _p,)2,] 

~ U ] - ( ~  o~ =- ' 14' I ~ -2~(1 -p=) ~p~-')) 
ho~ = ( ~ p ~ -  14', - - ~ p ~ -  12, /p2~14 '12  + 22(1 __p~) 2 

~,, ~ l(p'l 4'12 -22(1 - p,))] 

X 
where co~, 0)2, ..., ram-1 are or thonormal  vectors perpendicular to t~ = [xl" Then 
the energy integrand is 

iF(ha)12 -2 z 2 z 2 =p 2lh,o,I +(hp) 
i 

(K--l" 2 cc'~" I "  2 )P X q,.4'~,,I [z =p2~-2 14'~,12+ p2~14'12 + 2 2 ( 1 - p a ) 2  

+ 0~2(,4',2 +2 2 _~(K--1)(pZ'[4']4--222p'(1- p,)14'[2 + 2 4 ( 1 -  p~)2))] 
p2~14'12 +22(1 __p,)2 

Thus, 

c~- 2 P 2 ~ 1 4 ' '  4"~ 12 ~- 2 ~ 14' " I/'t~ ).2 
(I V(hZ)l 2 -117(h~ 2) i i 

(K-- 1) ~2p 2~-2 -p2=14'12+22(1-p=)2 14,12 FOe--1 ~ 
+(P2~14'14 222p~(l_p~)14'12+24(l_p~)2) 

p2=14'12+22(1 __p~)2 14'12 
)~ 

< 0 + - -  (~-  1) 
�9 2 2 "2 ~ a 2 ( - -22(1- -P)  14'l - 2 2  p (1--p)14'1 +24(1-p~)  2) 

-t- p2~14'12 + 22(1 _p~)2 

2 4 ( 1 _ p , ) 2 ( ~ + 2 2 1 4 ' [ 2  ( tc  ~p2~ 2214'12 
\(K- ])1 \ ~ -  1)] = 

= 22(F + G) where 

22 (1 - P~)2 ( ( - f f ~ )  ] 4' [2 [ [ ~ ' I  Pz~'- l ] [ k ( ~ : -  1)] J 
F -  G=  p2~[4'12 + 22(1 - -  p~)2 ' p2~14'12 + 22(1 - p ~ ) 2  " 
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First note that  by simply d ropping  the term p2~1~12 in F, we obta in  the pointwise 
bound  

F. (~:-  1) ~2 p2~- ~ < ~:~2 p 2 , -  2. 

Decompos ing  G into its positive and negative parts,  G = G + - G_ and d ropp ing  
the te rm 22(1 _p~)2 in G+,  we similarly est imate 

G+ .(K-1)o~2 p2~- 2 ~ o ~ 2  p 2cL- 2. 

Note  that  the function p2~-2 is integrable on IB m even for m = l  because in 
that  case the finiteness of  the energy of h requires that  c~ > �89 F r o m  the inequali ty 

[ 17 (ha)j2 .~ I 17 (h~ 2 + 22 (F + G +). (K -- 1) cd p2 ~-  2 

<~ 117 (h~ 2 -t- 222 Ko~ 2 p2~ - 2 

and the domina ted  convergence theorem, we now deduce the cont inui ty in 2 
of the energy E(2). [ E ( 2 ) - E ( 0 ) ]  

To  est imate the quot ient  22 , we treat  separately two cases: 

Case m<2. Here we est imate the G term from below by chosing Po so that  

=~- and checking that  

1 

S~ i 0 

o i ,lz.(�89 p2=-2p,, 'dpdO 
> ( ~ c -  1) cd ~ p2,1~]2 +22(1 __p,) 2 

Sm 1 

which approaches  

po 
n(K--1)  O~ 2 ~ pm-3dp=oo 

0 
as 2 ~ 0  

by m o n o t o n e  convergence.  Thus  for m < 2, 

lim [-E(2)-  E(0)] 2_ 2 a~o 22 - l i m  ~ ~([17(ha)12-lV(h~ 
) . ~ 0  S,m-I 0 

1 
= l i m  ~ ~(F+G+-G_).(~c-1)~2p2~-2pm-~dpdO=-oo. 

a~osm-1 0 

Case m > 3. 
bound  

Here,  by d ropping  the term 22 (1 -pa)2, we obta in  ano ther  pointwise 

]G] .(to-- 1) ~2 p 2 ~ -  2 ,~ K0~2 p 2 ~ -  2 -~- (K - -  1) (X210 - 2 ,  
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and now 
1 

S S(tcc~2p2"-z+oc-1) c~ZP-2)pm-'dpdc~ 
S m - I  0 

because m => 3. We conclude, using dominated convergence and the hypothesis, 

1 

l i m [ E ( 2 ) - - E ( 0 ) ] - - l i m  I ~(F+G)'(~c-1)c~2P2~-2Pm-~dodO 
) . ~ 0  ,~2 X ~ O s m - 1  0 

1 

= I I limF'(~c--1) c~2p2~-Zpm-ldp dCo 
S " - 1  0 2 ~ 0  

1 

+ ~ ~ l i m G ' ( ~ - l ) ~ 2 p a ~ - 2 p  r" ldpd~o 
S ~  1 0 2 ~ 0  

1 

= 0 + ~ 2  I I ( tcP2~+m-3-( t r  pm-3)dp de~ 
S " - 1  0 

(2c~+m--2) ( m - 2 ) ]  < 0 '  [] 

2.2. Corollary. For ~> 1 and p> 2, there is no nonsmooth energy minimizing 
map u: ~ 2  __~ Hpr with image in the subcone 

r r--, ( ~ , ' - '  x {o} x ~ ) - -  c ~ - '  

Proof. For  such a map u with singular point c ~ E  2, one sees from [L2] that 
u(a) = 0 and any homogeneous blow-up h of u at a is a nonconstant homogeneous 
energy minimizing map from IB 2 to H~ with image in the same subcone 
H~ c~ (Np-  1 x {0} x IR). But then one may use the variation h ~ of 2.1 to contradict 
the energy minimality of h. [] 

3 Homogeneous energy minimizing maps 

The dimension reduction argument for estimating the size of the singular set 
of energy minimizing maps gives interest to the problem of classifying all noncon- 
stant homogeneous energy minimizing maps from IB m to HP~. As discussed above 
in w 2, the answer is simple for m = 1. Here the order ~ of homogeneity is necessar- 
ily one, and the map  is given by two constant equal-speed geodesic rays through 
0 whose angle, with respect to the H~ p metric must be at least n. So necessarily 
K =< 1 with equality only if the rays form a straight line. 

The case m = 2 offers many new possibilities described in 3.2 below. A useful 
tool for the study of energy minimizing maps (or more generally stationary 
[-S]) harmonic maps is the holomorphic quadratic differential. 

3.1. Lemma.  Suppose h: ]B2-~HP~ is an energy minimizing map. Then the local 
coordinate expression 

[(Ihx[[ 2 - I h y l [ 2 ) - 2 i ( h x  �9 hr) ] d x |  

defines a holomorphic quadratic differential co h on ~2. 
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Proof. One may follow the proof of the first part of [-J], and note that only 
smooth variations of the parameter domain are used. The vanishing of the 
first variation of energy with respect to such variations proves the holomorphi- 
city. []  

3.2. Theorem (Classification of homogeneous minimizers from ~ 2  to I~K). Sup- 
pose h(r, O)= r~qo(O) is a nonconstant homogeneous energy minimizing map from 
~ 2 t o  1~r = I~P r where ~ > 0 and q) : lR ~ 112~ is absolutely continuous and 2 n periodic. 
Then 

~o=(4`,1~c-11~14`1) where 4`: I R ~ R P  

has, after suitable orthogonal changes of coordinates in domain and range, one 
of the following forms: 

(1) (constant length) 

With ~c>O, e=m~c -�89 for  some me{l ,  2 . . . .  ) and 2 > 0  such that ~c <= 1 for p > 3. 

4`(0) = 2(cos mO, sin mO, 0 . . . . .  0). 

(2) (piece-wise constant direction) 

With 0 < K <  1, ~ = � 8 9  some me{2, 3, ...}, and 2>0,  

4`(O)=2(sin�89 on [0e ,0t+l]  for  E = l , 2  . . . . .  m, 

where Or-  2 n ( ( -  1) and the vr are unit vectors in IR p such that the (Euclidean) 
m 

angles between consecutive vectors vt, v2, v3, ..., v,,, Vl are all at least n~c ~. 

(3) (varying lenght, varying direction) 

2~ 
With ~ c = - - ,  e=�89 for  some fE{1,2  . . . .  }, me{Z, 3 . . . .  }, and a, b, c e N  such 

m 

that K <= 1 for p > 3, 

Po4`(O)=(a cos�89 b cos �89  sin�89 ..., 0) 

where P(r cos 0, r sin 0, x3, ..., xp)=(r cos x -  1 0, r sin ~:- 1 0, x3 . . . . .  x,) for r>0 ,  

OE(-  n, n), and (x3 . . . . .  x v ) ~ , p  3. 

Proof. First observe that the condition K=<I for p > 3  in conclusions (1) and 
(3) is required by 2.2. Next we derive some differential equations. Since h is 
smooth away from h- l{0} and [~ol 2= K14`[2, we may differentiate ~0 near every 
point 0o with qg(0o)+0 to find the relations 

(*) ~P0 = (4`0, I~c- 1[ ~ -4̀  "00~, 14'1 ) ~o. q~0= ~4`.4`0 

where we use subscripts to denote partial differentiation. Near such a point 
we may derive the Euler-Lagrange equation for 0 by considering a variation 
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with O'(r, O)=O(O)+t~(r, O) where ~ is smooth,  2n periodic in 0, 

R = s u p { r :  ~(r, 0 ) # 0  for some O} < ~ ,  

and Itl and spt ~ are small enough so that  0t does not  vanish on spt ~. 
Then 

ht,=@r~- l O~ + r~t ~r, ~r~- l lK-11�89 + r~i~- l i�89 0t. ~ )  , 

h~ = r ~ (0~, I ~c - 11~ (0 t. 0~)/10 tl), 

lOG ~ }' 
IhtrlZ=~x2r2~- ZlOtl2 + r2~lt~,12 + 2~r2~- l (Ot.t ~, ) 

+~2r2=-21sc-  1110'12-i- r2'<ls:- 11 (O"t~r)2 
lOG 2 

+ 2~r2'<- IlK-- ll(Ot.t~,). 

By the energy minimality of h = h ~ we find that  

d 1 t2 d 1 t 2  
0 = ~  t = o ~  i v / [  dx=~[t=o~[(h t , '2+(@)]dx  

= f [~176 
~BR 

(0" 0o)(0o. ~ + 0" Go) -t-rZa-20o.(o+r2~-elK-- 11 1012 

- r 2 ~ - 2 1 ~ c - 1  [(0"0~ ~]dx 
tl ) 

0 0 L 

(0.0o)(0o. 0 
+r2~-lOo'~o-t-r2~-altr 1012 

(0" 00)(0" G0) 
+r2~<- 1 I s : -  11 lOi 2 

--r2:- '1~ill  [(O'O~ [ ~ ] O . ~ ] d r d O  

where ~ = 1+  I x - 1  I- Not ing  that  0 , = 0  and letting Q = 0" 00 
the weak equat ion 1012 , we deduce that 

(**) 0oo+ l-~cd +l~c-11Qo+l~c- llQ=3 0=0  

holds on any interval on which r does not vanish. 
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For tuna te ly  we m a y  simplify this O D E  by considering the ho lomorph ic  qua-  
dratic differential co h associated with h as in the 3.1. Here  co n equals f ( z ) d z  2 
for some entire function f .  Clearly f has the form r 2~- 2 q~(0). In part icular ,  

either co h - 0 

or ~ = � 8 9  a n d f ( z ) =  C z  2~-2 for some m~{2, 3 . . . .  } and C e ~  {0}. 

First  we consider  the case o~ h== - O. Here  we differentiate to find that  

hr=~r=-lq~,  ho=r'q~o, 
and 

(o~r 2=-2) �89 2= 2(q~-~o0) 

=hr"  ( ~ )  = (hx cos0  + hy sin O ) . ( - h x  sin 0 + hr 0) COS 

=(-[hx[2+]hy]  z) cos 0 sin O+(hx.hr)(cos 2 0 - s i n Z  0 ) - 0 .  

Thus, �89  [tPl is a posit ive cons tant  2, Q - 0 ,  and  
the ODE(**)  becomes simply 

4 J 0 0 + ~ 2 = 0  

which is now valid for all 0. Since ~9 is periodic of  per iod 2~, 

for some integer m. Moreover ,  the vector  6 maps  into a 2 d imensional  subspace.  
To check this, we m a y  choose a nonzero  mutual ly  o r thogona l  vectors v~, 
v z . . . . .  vp 2 ~ R  p with vi .6(O)=O=vi .6o(O) ,  observe that  each scalar functions 
y = vi. ~ is identically zero because 

Yoo+m2y=O with y(O)=O=yo(O), 

and conclude that  ~ has image in the 2 plane 

V = { x ~ l R P : x . v i = O f o r i = l , 2 ,  . . . ,  p - 2 } .  

After rota t ing IR p to make  V = I R Z •  {0}, we infer from the simplified O D E  
that  

= (~  cos m ( 0 - 7 ) ,  b cos re(O-6) ,  0 . . . .  , O) 

for some constants  a, b, 7, 6. The  condi t ion 14~[--2 gives the form 

4, = 2(cos m ( O -  ?), sin re(O-7) ,  0 . . . . .  0), 

and we m a y  rota te  the domain  to make  y = 0 .  Thus  we obta in  (1). 
N o w  we turn to the case where 

O~h~0 
SO that  

(oh=r2a- 2 ~(0) dz  2 = ~.ei# z 2~- 2 dz2 
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where 2>0,  f l ~ ,  and ~=�89 for some me{2, 3 . . . .  }; hence, 

cb(19)= 2(cos(fl + 2~19- 219) + i sin(fl + 2~O- 20)). 

We may rotate the domain to make fl=0. Returning to the definition of co h, 

we compute 4(0) in terms of c~ and q9(19). Since r2=x2+y 2 and t a n 0 =  y ,  we 
see that x 

h~=h~'r~+ho'Ox=h~'(~)+ho'(~-),  

hy=h~'ry+h~176 

f = (I hxl 2 - I h ~ [  2) - 2i(h~. hy) 

=[h2-(~)2]  [(x2~yz~|-4hr[h~ r 2 J k r ] k r  2 ] 

�9 

A /  

[ = hE -- COS 2 0-- 2 h~ sin 2 0 

t kL r \ r ]  ] 

On the other hand, the sum formulas show that 

f = ,~ ( r  2 a - 2 COS 2 ~ 0 COS 219 + / . 2  a - 2 sin 2 ~ 19 sin 2 0) 
_ _  i ( r  2 ~ - 2 COS 2 ~ 19 s i n  219 - -  r 2a - 2 s i n  2 ~ 0 c o s  2 0). 

Equating the real and imaginary parts, we conclude that the two vectors 

(h2 - - (~ )  2, 2h,(~s and (}~r 2 ~ - 2  Cos  2c~19, J~r 2 ~ - 2  sin 2c~0) 

are equal because they coincide after rotation by 219. We obtain the two formulas 

r 2 -  2~ [ h  2 (ho]2] 
~2[~012--[~0012= [ r -k r  ] j=2 cos2~tO, 

2cz cp' ~Oo =2r2-2~h~ (ho]= - 2  sin 250. 
\ r /  

Integrating the second one gives 

1~012 = 1  ~ - 2  ~(C..~ COS 2c~0) 

for some constant c_>_ 1, and substituting into the first gives 

I~ol 2 = � 8 9  cos  2~0). 
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We now use (,) to compute  

( - ~  sin 2e0)  (?- 
( c + c o s 2 ~ 0 ) '  

( - 2 c d ) ( 1  + c  cos 2~0) 
Qo = (c + cos 2 ~ 0) 2 

Substi tut ing into (**) we find that  

(***) ~oo+CdI~ IK-11(-sin22~O+Z+Zcc~ 
( c + c o s 2 ~ 0 )  2 ~ = 0  

which is valid on ~, ~ 9 -  1 {0}; that  is, whenever  c + c o s  2~0 is positive. 
Ra the r  than try to find suitable solutions of  (***) for var ious c, we first 

argue by the linearity of equat ion  (***) as before to see that, 

for each c o m p o n e n t  I of IR ~ ~ - 1  {0}, ~ (I) always lies in some two 
dimensional  subspace 1/1 of IRL 

We now consider the two possible cases: 

Case 1 tp/x t~' =- 0 on every componen t  I of IR ~ ~ -  1 {0}. 

~(tt)  for some fixed point  t1~I. Then  ~/x v1=0  on I because Here,  we let v l -  I~'(t~)l 

/x vl is a solut ion of (***) with the initial condi t ions 

(t~/x vt)(tl) = ~b (tl)/x ~k (t,) = 0 and  (~ A Vi)t(tl) = O'(ti)/x ~ (tl) = O. 

Thus, on I, ~ = gl vI for some positive function gl and 

h=r'q~(O)=r'g1(O)(vl, I x -  1[ ~) 

is a ha rmonic  m a p p i n g  into the linear span of the vector  (re, I~:-  1 I~). 
First, it follows that  ff must  vanish somewhere .  Otherwise,  I = R  and r'g~(O) 

would be a real-valued ha rmonic  function on the plane. This implies that  the 
function gl must  be of the form 2~ sin ~ ( 0 -  0i) so that  gl, and hence ~b, vanishes 
somewhere.  

We now see that  I has the form (0~, Os+d~) where O<O~<O~+d~<2rc and 
O(0i)= 0 = O(0z + dl). Then  the rescaled function 

is a posit ive ha rmonic  function on the upper  half  plane with bounda ry  values 
0 along the X-axis.  By odd  reflection abou t  the X-axis,  H I extends to a ha rmonic  
function on the plane. Reason ing  as above,  

Ht  (r, 0) = 2 i  r\" ! s in  c~ 0 
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where, by the posit ivi ty in the upper  half  plane, )ol > 0 and ( ~ )  c~ = 1. In part icu-  

lar, dr =--~, being independent  of I, must  exactly divide 2 7z by the 2 it periodici ty 

of ~9. Thus, 

27[ 
d 1 = - -  and e = � 8 9  

m 
for some positive integer m, 

and we deduce that  

~k(O)=21(sin�89 on I. 

Since the ho lomorph i c  quadra t ic  differential then satisfies 

[ o ) h l = ( ~ ) 2 ~ r  " - 2  on {(r,O):r>OandO~I}, 

we see that  2 = 2i is also independent  of  I. These conclusions remain  true under  
the ro ta t ion  of domain .  So we can forget our  initial normal iz ing  ro ta t ion  to 
achieve f l = 0  and again  ro ta te  the doma in  to get the intervals I to be in the 
form 

e - \  m ' for d = l , 2  . . . . .  m. 

We now need to verify the necessity and  sufficiency of the lower bound  on 
the angles between the consecutive vt = v~, as described in (2). 

Fo r  this we will use the local fact tha t  the composition of a geodesic curve 
with a real-valued harmonic function is a harmonic map. This is easily verified 
for maps  into a s m o o t h  R iemann ian  manifold.  F o r  the present  context  of maps  
into the cone I12~ we may,  for example,  use the smoo th  app rox ima t ion  of I-L2]. 
Since each generat ing ray of II;~ is a geodesic in (E~, it only remains  to consider  
the harmonic i ty  of  h(r, O) near  every point  

( r , ~ )  for r > 0  and  d = l , 2  . . . . .  m. 

F o r  r > 0 this is s imply a quest ion of whether  each union of two rays generat-  
ed by consecutive vectors  v e, re+ I forms a geodesic in II;~ for Y= 1, 2 . . . . .  m 
(where we set v , ,+ l=Vo for no ta t iona l  convenience). This is true if and only 
if the rays meet  at an angle > re, where the angle is measured  with respect 
to the metr ic  induced f rom the Eucl idean metric  of ~t  4 in case ~: > 1 or  the 
Minkowsk i  metric  of  1113 x IR ~ IR 3' 1 in case ~c < 1. This is the case if and only 
if the Euclidean angle between the rays is at  least z~ ~c ~. U n d e r  these angle condi-  
t ions m > 2  (because the angle between v I and itself is 0) and ~c<l.  The  case 
x =  1 only occurs when m = 2  and v2 = - v  1. To  comple te  the p roo f  of case 1, 
we need to verify the harmonic i ty  at 0 of  an h satisfying the above  conditions.  
We'l l  show that  h actual ly minimizes energy a m o n g  maps  having the same 
b o u n d a r y  values on the unit  circle. For  this we'll use the fact that  each geodesic 
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formed from a pair v e, re+ a minimizes energy, Now consider a compet ing map 
g e H  1 (IB 2, tI;K) with gl01B z = h  I OlB 2. Note  that  h maps each sector 

De= (r,O):O<r<l,O-~-mmele for ? = 1 , 2  . . . . .  m 

into the geodesic formed by the 2 rays spanned by re, ve+ ~. Let D denote  
the unit upper  half ball in ~2 ,  and f e : D ~ D e  be the associated conformal  
homeomorph i sm which maps, in polar coordinates,  

2 
+ n 

Then (gore)IS* c",~D=(hofe)lSlc-',OD. Moreover ,  we readily compute  that, in 
rectangular  coordinates  on D, 

(hoft)(Xl,X2)=(Alxll)(-ve) for x l < 0 ,  
(hofi)(xl,xz)=(2lxll)(ve+O for xl  >0 .  

Thus, for each fixed x 2 with 0 < x 2 < 1, the map (hofe)(., xz) is a constant  speed 
energy minimizing geodesic in II;~. Using this minimali ty along with the confor- 
real invariance of energy, we conclude 

S ]Vh[ z d x =  
De D 

-i 
0 

1 

<I 
0 

<=I 
D 

[g(h ofe)l 2 dx 

- Vla---z~ [ +  V~ +x~[ (?(h of_0 - 0 x '  (x, , x2 )2dx ,  d x 2 

vl-x~ O(g~ x2) Zdxl S ~U~-x tX~, dx~ 
-vi=--~ 
IV(g~ 2dx= ~ IVglZdx. 

De 

Summing in ( gives the desired energy minimality. 

Case 2 (~ ^ ~O')(00)+0 at some point  0oe[0,  2n). 

Here the linear span of if(00) and (~')(0o) is the two dimensional  space 1/i which 
contains qJ (I) where ! is the component  of IR ~ ~9-1 {0} that  contains 00. Rota t ing  
~K, we assume that  Vt---IR 2 x {0}. Note  that  h now has image in the 2-dimension- 
al cone ~2 • {0}, for which we have the local isometry into R2 given by simply 
rolling along the rays of the cone. Tha t  is, near  each ray 

1�89 r, Ro={(rcosqo ,rs in t lo , ]~- - I  0 . . . . .  0): r > 0 }  c(E2 x {0}, 

the formula 

H(r cos O, r sin O, ]~ -- 1 [~ r, O, . . . ,  O) = (~ r cos ~ - 1 (0 -- ~/o), ~ r sin ~ -  1 (0 - ~o)) 
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defines a local isometry of ~2 • {0} into IR 2. So, near any ray Qo of h-  ~ (Ro), 
H o h is a homogeneous-degree-a. RZ-valued harmonic function. Thus H o h has 
the form 

(Ar  ~ cos ~(0-- 01), Br  ~ cos ~(0-- 02)) 

for some real A, B and 0~, 02~[0 ,2n  ). Assuming Qo, has argument in I, we 
see that A and B are nonzero and that 0 ~ - 0 2  is not a multiple of n. The 
cosine sum formula shows that the image under H oh of an arc of S ~ lies in 
a nondegenerate, noncircular, ellipse centered at the origin. In particular, by 
analytic continuation, [~1 never vanishes and I= IR .  Let g be the abolute value 
of the winding number  of ~,(0) about  the origin, as 0 varies over a single period. 
Then d # 0 and 

~ c - l d = o t = � 8 9  for some me{2, 3 . . . .  }. 

Rotat ing the domain and using the cosine sum formula gives the form in conclu- 
sion (3). 

Finally we verify that each of the homogeneous harmonic maps h given 
in 3.2(1) (2) (3) is, in fact, energy minimizing. In case so< 1, C~ has negative 
curvature, and the argument of I-H-K-W] implies that h JlB r is, for every r >0,  
the unique harmonic map into C~ with respect to its Dirichlet boundary data. 

Suppose now that s :> l .  Then, in accord with 3.2(1) (3) and 2.1, we only 
have the case p = 2 .  That  is, C 2 is an ordinary "ice-cream cone" which we 
may, as above, slit open and map  isometrically into sector in the plane via 
the projection 

H ( r  cos 0, r sin 0 , ( • -  1)~r) =(Kr cos ~ -  10, Kr sin to- a 0). 

i 
In case, ~c is rational, say K = _  for positive integers i , j ,  we consider H = I l o h o z  j, 

J < 2 n  2n 4n 
which is defined in the sector 0_< 0 For  the second sector __=< 0 <  _ , 

J J J 

we define H(r, 0) by rotating H r, 0 -  through an angle of _ _ .  After j 
J 

such extensions, we close up and obtain a continuous homogeneous harmonic 
map  from IR 2 to N 2. Since, for each r > 0 ,  g l IB,  is unique with respect to 
its Dirichlet boundary values, so is h llB r. 

Finally suppose that ~c> 1 is irrational and, for contradiction, that one of 
the homogeneous functions h:11t 2 ~ C ~  from 3.2(1) or 3.2(3) were not energy 
minimizing. Then, there would be an r > 0, and a function g l]Br ~ ~ with g l~r 
= h ] O ~  giving the strict inequality 

]Vgl 2dx< ~ IVh[2dx. 
g3r 

For any rational # > 1, let h u : ]R 2 ~ ~ 2  be the corresponding homogeneous func- 
tion from 3.2(1) or 3.2(3). Then, for # sufficiently close to K, 

Iv(~~ 2ax< S Ivh~l 2ax, 
Br 
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where flu(X, y ,z)=(x,  y,(ll~-\~]l[/t]z). This contradicts the previous paragraph 

and completes the proof. [] 

3.3. Corollary. There are no nonconstant homogeneous energy minimizing maps 
from ~32 to (12~ if ~c > 1 and p > 3. 

Proof. Theorem 3.2 implies that such a map would have image in a subcone 
I12~. But this would contradict 2.2. [] 

3.4. Corollary. I f  x>  1, p>3, and u is a nonconstant energy minimizing map 
from ~"  to (U~, then u-1{0} has Hausdorff dimension <=m-3 and is isolated 
for m=3.  

Proof. This follows from 3.3 by Federer's dimension reduction argument as 
in [L2]. []  

3.5. Remarks. There remains the interesting question of classifying homogeneous 
harmonic maps into 112~ of 3 or more variables. Of particular interest for liquid 
crystals is the case of a homogeneous harmonic map 

u'  B3--*(E 3, u(po~)=p~(o(o)) where c~>0 and (p" S2--*C 3. 

To discuss this, we use the variables 

q~(co) 
s(po~)=p=l~o(co)l, n(co)= Irp(~o)l 

As derived in [L2] we obtain the Euler-Lagrange system 

~:As-slVnl2=O, 
s2An+ 2sVs .Vn+nlgnl2s2=O. 

In case I~01 is a nonzero constant, the second equation becomes the equation 
for a harmonic map from S 2 to itself: 

An+nIVnl2=O. 

However, the first equation becomes 

~ ( ~ - 1 )  
IVnl 2 -  102 

Referring to the classification of harmonic maps of N 2, we see that the constancy 

of IFnl  2 on N / implies that n(x)=?(~xXl)for some orthogonal rotation ? of 

IR 3. Moreover, c~ is a positive solution of K~(c~- 1)=2. Thus, 

if kal---c, then qo=c? for some rotation T oflR 3. 

It would be interesting to find solutions s, q~ of the above system with [qo[ 
not being a constant. 
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4 Other cones for liquid crystal models 

As noted in [E l i ,  [E2], most discussions of nematic liquid crystals do not 
involve distinguishing the director field n from - n .  Thus it is reasonable to 
consider the director as having values in the real projective space NIP 2 rather 
than in the sphere S 2. 

4.1. Remarks. In the simpler model [H-K-L]  where one neglects the orientation 
order s and considers minimizers of the Oseen-Frank free energy S W(n, 17n) dx 

r~ 
among maps n: f2 ~ S  2, the qualitative properties obtained in [H-K-L] change 
little with the replacement of S 2 by NP : .  In fact one first notes that the Oseen- 
Frank free energy is well-defined and H 1 weakly lower semicontinuous for such 
maps. For  Dirichlet boundary data of some finite energy map from f2 to NIP 2, 
one may establish the existence of an energy minimizer by the device of [H-K-L, 
w 1]. As discussed briefly in [H-L1] the blowing-up argument of [H-K-L, w 2] 
carries over for an arbitrary target manifold. One may use [S-U, 4.3] to replace 
[H-K-L, 2.3] whose proof does not immediately carry over. Thus the singular 
set Z is again a closed set of i dimensional Hausdorff measure zero. This means 
that locally one may actually locally orient a minimizing line field to get a 
corresponding minimizing unit vectorfietd. In fact, suppose u: lBr(a ) ~ N P :  mini- 
mizes the Oseen-Frank free energy with singular set Z. Since the vanishing 
of Jg l (Z)  implies that ~3r(a),-~Z is simply connected, we may lift ul(lBr(a)~Z) 
to a map vu : lB,(a)~ Z - *  S 2 with the same Oseen-Frank energy. Then v, is itself 
minimizing which gives further information about the singular behavior of u. 
For  example, in the harmonic map case of equal Oseen-Frank constants, the 
singular points are isolated and the precise behavior at a singularity for u follows 
from that of vu (see e.g. [H-L1]). 

One does find some differences with maps to ] R P  2 when one considers bound- 
ary singularities. In particular, unlike [H-L1]. 

there exists an H ~ mapping q~: t31B 3 --* IRF z which admits no 
extension to a finite energy map from 1133 to IRP 2. 

For example suppose r is the horizontal line passing through x = ( x l ,  x2, x3) 
and (0, 0, x3) for xeO~33 ~ {(0, 0, - 1), (0, 0, - 1)}. Then, as in [H-El i ,  ~o~H~(t3~33, 
IRIp2). But the existence of a finite energy extension would give an energy mini- 
mizing map u: ~33 -o ~,.~,2 with Dirichlet boundary data ~0. The regularity theory 
would then imply that u llB3n {x3 = c} is continuous for all but finitely many 
c ~ ( - 1 ,  1). But this is impossible because each curve ~o[(01B3)c~ {x3=c}] is not 
contractible in ~,.p2. 

4.2. Ericksen model. To obtain a target manifold'more suitable for the Ericksen 
model, we will essentially work with a cone over IRIP 2. More precisely, we 
will say two points x, x ' e ~  3 are sign equivalent if x = _+ x', and define the projec- 
tivised cone 

~'~ = {(s y): (x, y)~ V~ and ~ is the sign equivalence class of x}. 

Here _ 3 V~- IE~ and ~'~ has the quotient topology and the quotient metric whereby 
the quotient map (x, y)e V~ ,~ {(0, 0)} --* (s y)e ~'~,-~ {(0, 0)} is a locally isometric 
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2 sheeted covering map. Thus ~ is metrically a cone over IR• a, equipped with 
the round metric from its 2-sheeted covering S 2. 

We will briefly discuss how things carry over to the k'~ model. Theorem 
2.1 does not carry over because NIP 1 is not contractible in ~IP 2. However, 
Lemma 3.1, whose proof has no relation to the target, is still true. Most of 
the proof of 3.2 follows as before. Solving the resulting ODE, one needs only 
make some simple modifications in the periodicity of the functions 0(0). For  
example, the constant length solutions of 3.2(a) now come from functions t~(0) 
where 

~(0)= 2(cos toO, sin mO, 0 . . . . .  O) 

with 2 > 0 and rn being a positive integer or now possibly a positive half-integer. 

However, for each integer j, the closed curve ~ 0, covers its image with 

even multiplicity and so is contractible away from the origin. In fact, it clearly 

lifts to the closed curve 0 0, in V~. Restricting to the wedge defined by 

0e 0, , we can, upstairs in V~, apply the peeling-off construction of 2.1 

provided that p > 3  and ~:>1. We conclude that in 3.2(a) with p > 3  and to>l ,  
~(0) is determined by 

(0) = 2 (cos ( + �89 0), sin( + �89 0), 0 . . . . .  0). 

When p = 2 or ~: -<_ 1, the other integer or half-integer values of m all give suitable 
~. The cases corresponding to 3.2(b) and 3.2(c) are similarly modified. Replacing 
Corollary 3.4, is the estimate that 

the zero set ofa  nonconstant energy-minimizing map from N3 to V~ 
has dimension __< 2 for 0 < ~:__< 1 and dimension __< 1 for ~: > 1. 

This is optimal. For  0<•=<1 one has the rank-one maps of 3.2(2). For ~c>l, 
one may chose boundary data q~:0N 3--, ~'~ precisely as in 4.1. Let u be an 
energy minimizer with boundary data ~o. Since u is continuous away from 
u -1 {0}, we conclude, as in 4.1, that u(lB3c~ {x3=a}) must contain 0 for each 
a e ( -  1, 1). In particular, dim u-  i {0} > 1. 

Finally, we recall that the mathematical derivation [E2, w 2] of the director 
field n and the orientation order function s leads to the range -�89 s__< 1. Thus 
we also consider maps into the truncated double-cone 

X,r {(x,y)eV,r - � 8 9  I [~<y<IK - 11 ~} 

or, better yet, the projectivised truncated double-cone 

~7~ = {0z, y): (x, y )~x~}  
= {(2, y): (if, ]Y[)~ V~ and - �89 1 [~<y <  1~:- 11~}. 

To handle simultaneously n and s, it is geometrically and analytically tempt- 
ing to let n be a unit vector and work with the vector function s.n. However, 
as J. Ericksen has pointed out [E2, w 2], one cannot unambiguously extract 
the orientation order and director field from the vector s.n. Here use of the 
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cone ) ~  overcomes this sign ambiguity. Thus, associated to a map  u=(~,w): 
(2 ~ X~, we have the well-defined order parameter  

and director 
~ = l , ~ - l l ~ w  �9 a -~ [ - L  1] 

n =  : ~ q ~ s -  {0} ~ IRIP 2. 

One may modify the classification of 3.2 for either X~ and X~. The most signifi- 
cant difference is the possibility of nontrivial rank one maps in the new version 
of 3.2(b) even when ~c> 1. Then arise, for example, by using two rays from 
0, one in the upper cone and one in the lower cone. The resulting minimizing 
map on IB s has a 2 dimensional singular set, and this estimate may be obtained, 
as in the previous cases, by the dimension reduction argument. 
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