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1 Introduction 

(1.1) It is well known  that  hypersurfaces M" with constant  mean curvature  
in a Riemannian  manifold M"+ 1 ( c )  of constant  sectional curvature  c are solu- 
tions to the variat ional  problem of extremizing the area function for volume- 
preserving variations. In [ B d C E ]  a not ion of  stability for this si tuation was 
considered and it was proved that  if M" is compac t  and stable, and A4 "+1(c) 
is complete and simply-connected,  then M" is a geodesic sphere. 

Less widely k n o w n  but  equally true is that  hypersurfaces M" of  M" + 1 (c) 
with constant  scalar curvature  are solutions to a similar variational problem, 
namely, of  extremizing the integral of the mean curvature  for volume-preserving 
variations. This has been k n o w n  since at least 1973 and follows from a paper  
of  Reilly [R ]  (see also the references there). The si tuation is actually more  general 
than that. Let us denote  by Sr the r th elementary symmetr ic  function of  the 
principal curvatures of  M", r - -0 ,  1 . . . .  , n, and consider the problem of extremiz- 
ing ~ Sr d M  under  arbi t rary variations. Then Reilly computed  JR, p. 470] the 

M 
formulas for the first and second variat ions of such a problem;  from these  
formulas the above statement follows (see w 2 of this paper). Thus, in analogy 
with the case of constant  mean  curvature,  questions of stability can be considered 
for hypersurfaces with constant  scalar curvature.  

We want  to extend to hypersurfaces with constant  scalar curvature  the above  
stability result on  constant  mean  curvature.  So far, we have been able to solve 
the cases where A4 is the euclidean space R" + 1 and A4 is the sphere S" + ~ (c) c R" + 2 
of  constant  curvature  c > 0. More  precisely, we prove 

(1.2) Theorem. Let  371 "+ 1 (c) be a complete, simply-connected Riemannian mani- 
fold with constant sectional curvature c >= O, and let x: M " - ~  ~1" + x (c) be a compact 
orientable hypersurface with constant scalar curvature R. I f  c > O, assume, in addi- 
tion, that M" is contained in an open hemisphere o f  )Vl"+~(c)=S"+X(c). Then 
M is stable if  and only if  it is a geodesic sphere. 
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One interesting fact about  the stability question for hypersurfaces of constant 
scalar curvature is that it involves the study of a second order differential opera- 
tor related to the second fundamental form which appeared also in a paper 
of Cheng and Yau ICY] who used it to classify the complete noncompact  
convex hypersurfaces with constant scalar curvature in R "+ 1. 

(1.3) Remark. If x is an embedding, the result of Theorem 1.2 holds without 
any assumption of stability (see [-MR]). By using the methods of equivariant 
geometry, one should be able to construct examples of nonspherical compact 
hypersurfaces with constant scalar curvature. 

(1.4) Remark. It has been pointed out to us by Barbosa and Sa Earp that 
the operator  above mentioned is elliptic if the scalar curvature is constant and 
greater than that of  the ambient space. This should have interesting implications. 

(1.5) Remark. It the context of surfaces with constant Gaussian curvature in 
a three-space form, we first heard from the above variational problem from 
H. Rosenberg. We want to thank him for sharing this information with us. 

2 The variational problem for constant scalar curvature 

(2.1) In this section, we adapt  w 2 of [BdCE] to the present situation. 
Let M" + 1 (c) be an oriented Riemannian manifold of constant sectional curv- 

ature c and let x: M " ~  t"+l(c) be an immersion of a compact,  connected, 
orientable manifold M with boundary 0M (possibly, 0M=q~) into )~"+1(c). 
Choose an or thonormal  frame {el, ..., e,+l} around x(p), peM, in /~t so that 
e~, ..., e, are tangent to x(M) and diVI(e~ . . . . .  e,+ 0 > 0 ,  where d~t  is the volume 
form of )~t; then e,+ i = N  is globally defined and gives an orientation for M. 

A variation of x is a differentiable map  X: ( - e, e) x M ~ M, e > 0, such that, 
for each t e ( - e ,  e), Xt(p)=X(t, p), peM, is an immersion, Xo---x, and XtJeM 
= XJeM. We define the volume function V: ( -  e, e) ~ R of X by 

V(t)= ~ X*d~l. 
[O,t] x M  

We will need the first three symmetric elementary functions of the principal 
curvatures k 1 . . . .  , k. of an immersion x, namely: 

S i = ~ k , ,  S2= ~ kikj, $3= ~ k, kjke, 
i < j  i < j < g  " 

i,j, E = I  . . . . .  n. Recall that the mean curvature H and the scalar curvature R 
of x are given by: 

H=--I $1, R - c =  2 
n n (n -  1) $2. 

Let X be a variation of x: M" ---, M"§ 1 (C) and W(p)=__d~t ,=o be the variation- 

al vector of X. Set f = ( W ,  N )  where N is the unit normal vector along x. 
A variation is normal if W is parallel to N and volume-preserving if V(t)= V(0) 
for all t. 
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(2.2) Lemma. 

d 
(i) ~ f nil(t) dM,] ,_o= ~ ( - n ( n - - 1 ) ( R - c ) + c n ) f d M ,  

M M 

(ii) d ~  t=o = ~ f d M .  
M 

Proof. (i) is just a translation in our notation of the formula for the first variation 
in p. 470 of I-R]. (ii) has been proved in [BdCE, p. 125]. []  

Now set 

R o = A  -1 ~ RaM,  A =  ~ dM, 
M M 

and define J: ( - e, ~) ~ R by 

J(t) = n ~ H(t) d M t + ( n ( n -  1) (Ro--C)--cn) V(t). 
M 

(2.3) Lemma. Let x: M" ~ ~1 n+ 1 (C) be an immersion. The following statements 
are equivalent: 

(i) x has constant scalar curvature Ro. 
(ii) For all volume-preserving variations, 

d ~ nH(t)dMtlt=~ 

(iii) For all variations, J' (0)= O. 

Proof. The proof follows the same pattern of the proof of Proposition 2.7 in 
[BdC] using Lemma 2.2 of [BdCE]. We shall omit it. [] 

Before presenting the second variation of J we need to introduce the operator 
mentioned in the Introduction. For that, consider for each pEM the linear 
map T: T p M ~ T p M  

T= nHI  -- B, 

where I is the identity map and B is the linear map associated to the second 
fundamental form of x along N. In an orthonormal frame {e  I . . . . .  en} around 
p, the matrix of T is 

T i j = n H  (~ i j - -h i j ,  

where hi~ is the matrix of B. Let f be a differentiable function on M and let 
f~j be the matrix of the hessian of f. We will define an operator [ ]  acting 
on f by 

[] f =  ~, Tijfij = ~ (nH 61j- hij) fij. 
i ,j  i , j  
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This operator was considered by Cheng and Yau in ICY]. Since T~j is divergence- 
free JR, p. 470] it follows [-CY] that the operator [] is self-adjoint relative 
to the L 2 inner product of M, i.e., 

~ f [ ] g = ~ g D f  
M M 

We are now in a position to compute the second variation of J(t). 

(2.4) Lemma. Let x: M" ~ ffl "+ l (c) be a hypersurface with constant scalar curva- 
ture R and let X be a variation of x. Then J"(O) depends only on f and it is 
given by 

J" (0) ( f )  = - 2 ~ ( f  [] f - t - - f  2 [�89 n 2 (n-- 1) (R -- c) n + c n (n-- i) H -  3 $3] ) dM. 
M 

Proof We first observe that 

dJ 
d--~ = I [ ( - n ( n -  1 ) ( R t - c ) + c n ) + ( n ( n -  1)(Ro--c)--cn)]f i  dMt. 

M 

Here R t is the scalar curvature of Xt, dMt is its volume element, and f 

( ) = -~ - ,  Nt , where Nt is the unit normal vector of Xt. Thus, setting n ( n -  1) (Rt 

-c) = - A , ,  we can write 

DJ 
dt = I (A , -Ao) f idMt .  

M 

It follows that 

d2j  
a t  2 - A'tftdMt+ ~ A t f ' d M t -  ~ A o f ' d M t +  S ( A t - A o ) f  dMt 

M M M M 

which, for t = 0, gives 

dt 2 t=~ = I A ' f d M = - -  I(n(n--1)  (0 f d M .  
M M 

Now, we use the formula (9c) in JR, p. 469] to obtain 

�89 1 ) ~ ( O ) = f { ( � 8 9  - 1)(R--c) H -  3S3)+cn(n-- 1) H} + []  f 

and this completes the proof. []  

We can now define stability. 

(2.5) Definition. Let x:M"~If f l"+l(c)  have constant 
immersion x is stable if 

d 2 
at 2 S nH, aM, lt=o >0, 

M 

scalar curvature. The 
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for all volume-preserving variations of x. If M is non compact, we say that 
x is stable if for every compact submanifold M C M with boundary, the restriction 
xlu is stable. 

Just as in [BdCE] we can prove the following criterion of stability. Let ~- 
the set differentiable functions f :  M ~ R  with f l0M=0 and S f d M = O .  Then 

u 
x: M" ~ lffl "+ x (c) with constant scalar curvature is stable if and only if 

J"(0) ( f )  >0,  for all f e o ~  

We can also introduce a notion of a Jacobi field for the present situation. 
Since this is quite similar to the case treated in [BdCE], we omit the details. 

We will close this section by proving that there exist stable hypersurfaces 
with constant scalar curvature. 

(2.6) Proposition. Let ffl"+l(c) be complete and simply-connected and let 
X" (  291 "+ 1 (c) be a geodesic sphere. Then ~ is stable. 

Proof Choose f :  S ~ R  such that ~ f d M = O .  Since X is umbilic, we have that 

IIBll 2 = n H  2 and that 

[] f =(n--1)  n A  f, 

where A f  is the Laplacian o f f  in Z. F rom the fo rmula fo r  the second variation 
o f s  obtain 

Since 

J"(0) ( f ) =  - - 2 ( n -  1) ~ H f A  f 

- 2  ~ f 2 [ � 8 9  1 ) ( R - c ) H + c n ( n -  1) H -  3 $3]. 

tr B 3 = n i l  I]BI] 2 - �89 - 1) H ( R - c ) +  3 $3, 

we obtain, by umbilicity, 

- �89 - 1 ) H ( R - c ) +  3S 3 = t r  B3--nH IlBIh2 = - n ( n -  1) H 3. 

Thus, by Stokes' theorem, 

J"(0) ( f ) =  2 ( n -  1) H S (HVf II 2 - - n ( c + H Z ) f  2) 

>2(n - -  1) H ~ (p(X)--n(c + H2)) f 2, 
Z 

where/~(X) is the first eigenvalue of the Laplacian A in X. Since 2: is a sphere, 
#(~,)=n(c+H2). Hence J " ( 0 ) ( f ) > 0 ,  for all f such that S f d M = O ,  and 2: is 

stable as we wished. []  z 
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3 P r e l i m i n a r y  results  

(3.1) We use the method of moving frames. Let x: M " ~  M" § 1 (c) be an immer- 
sion of a smooth manifold M" into a Riemannian manifold hSt "+ 1 (c) with con- 
stant sectional c. Choose peM and a local orthonormal frame {el, ..., e,, e,+ 
= N )  in /~r"+l(e) around x(p), so that e~, . . . ,e ,  are tangent to x(M). Take 
the corresponding coframe {w~ . . . .  , w,, w,+ 1} and write the structure equations 
(indices A, B, C range from 1 to n +  1): 

d W A - . . - = . Z W A B A W B ,  W A B ~  - - W B A  
B 

dWAB=ZWAc^ WCR+~2AB, ~'2AB = --~'2BA , 
C 

where f2AA is the curvature matrix of ~t, i.e., 

1 
a ~ =  - ~  y~ R.,,co Wc^ wo. 

C, D 

If we denote by the same letters the restrictions of wa and WaB to x(M), 
we can separate the tangent part of the above equations (latin indices range 
from i to n): 

d w i ~ E W i j A  W j, 
J 

1 E Rijkf Wk A Wg, dwij=~wikk ^ Wk~+f2iJ' t2iJ= --2 k,e 

where Rijkr is the curvature tensor of the induced metric on M. 
Notice that the restriction of w, + 1 = O. Thus since 

we can write 

O=dwn+ 1 =ZWn+ 1, j  ^ Wj~, 
J 

Wj, n+ 1 =Zk jk  Wk, hjk=hkj. 
k 

The quadratic form ~, hjk Wj W k is the second fundamental form B of the immer- 
j , k  

sion. It relates the curvatures of M and M by the Gauss' fbrmula: 

(3.2) 

Notice that in /~"  + 1 (c), 

(3.3) 

by: 

Rijkf = g i j k g  - -  (hie hjk -- hik hie). 

R i j k r  = C(t~ik (~jE - -  (~ir ~jk)" 

For  a smooth function f on M, the gradient and the hessian (f/j) are defined 

df=Ef /wi ,  Ef/J wi=df/+EfJ wji. 
i j j 



Stable hypersurfaces 123 

Similarly, the covariant derivative of the second fundamental form is defined 
by 

(3.4) ~hi~kWk=dhij+Y'hkiWki+~hikWkj.  
k k k 

The second fundamental form satisfy the Codazzi equation, i.e., hljk=hikd. 
It follows that hij k is symmetric in all indices. 

The second covariant derivative of h~j is defined by 

Y', hi~ke C~ = d hljk + ~. h,.jk (n,.i + ~. hi,,k CO,.j + ~ hit., oJ., k. 
d m m m 

By exterior differentiation of (3.4), one can show that the following "commuta- 
tion formula" holds 

(3.5) hjeki--hjeik = --~_,hmeRmjik--~_,hjmRmdik. 
m m 

Finally, for a smooth function f on M, we recall that 

[] f =  ~, (nil 6kl-- hke) fke, 
k , g  

where nH = ~ hu. 
i 

We start with a simple lemma that is quite general. 

(3.6) Lemma. Let f, g: M" ~ R. Then 

[]](f g)=gUl f + f [--lg + ZnH VZ, fkgk-- 2 ~.hkefkge. 
k k , g  

Proof. Clearly the hessian o f f g  is given by 

( f  g)ke = ge fk + fe gk + g fke + f gke" 
Thus 

[] ( f  g)= ~. (nil  6ke-- hke) ( f  g)ke 
k , d  

= g [] f + f  [] g + ~ (nil  6kd-- hkd)f k ge 
k,•  

+ 2 (nil  6ke-- hke)f, gk 
k , E  

and the lemma follows. 

(3.7) Lemma. Assume that R ~ const. Then 

[] H =  1 [/VB [l 2 - n  IIVHII 2 + ( n -  1)(g--c) IIBN 2 
n 

~ n2(n - 1) H2(R--c)+ 3 H $3 +c tlBN2--nH2 c. 
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Proof. It is known that 

n 2 H 2 -  ~ h2e= n(n-  1)(R-c). 
k,g 

Take the hessian of  both sides to obtain 

n 2 Hi Hi + n2H H i j -  ~ hkei hkej-- ~. hke h k e i j  = O. 
k,g k,~ 

Setting i--j ,  using Codazz i  equation and (3.5), we obtain 

n 2 (H,) 2 -- ~ h2e, = - nH ~" hikki + ~" hke h,eki 
k,E k k,~ 

= - - n H  E ( h l k i k - - E h m k  R r n i i k - Z h i m  Rmkik ) 
k m m 

-t- 2 (hkr hitik -- hkg 2 hme gmiik -- hkt 2 him gmr 
k, g m m 

= -- n H  ~ (~k,f hiikr nt- 2 hkg hiitk nt- n H  ~. (hmk Rmiik -t- him Rmkik) 
k,~ k,~ k,m 

-- E (hk~" h,~e Rmlik-t- hkt him Rmgik ). 
k,E,m 

Thus 

[] hu = ~ h2ei-- n 2 (Hi) 2 -- ~ (hk~ hme Rmiik + hkt h,., Rmeik) 
k,r k,r 

+nH ~ (hmk Rmiik -]- him Rmkik ). 
k,m 

Using  the Gauss' Eq. (3.2), we obtain from the above  

[ ]  hu = Y'. h2e l -  n2 (/-/i) 2 
k,g 

-- Y'. { hke h,,,e R~uk + hk: h,,,e h,.~ hr hke h,,,e h,,,k h .  
k,t,m 

d- hkr -- 2 him Rml'ik-t- hkr him hke-- hke hi., hrak hei} 

+ni l  ~ h,~k Rmuk + nH E hmk hml hik - n i l  ~ hEk'h. +ni l  ~ hi'~ I~mkik 
k,m k.m k,m k,m 

+ nH ~ h2m hkk-- nH ~. him hmk hki 
k,m k,m 

= ~ h~e,- n 2 (HI)  2 - -  Z hke hme/~muk + (tr B 3) h.  
k,,f k,~,m 

- -  E hkr him Rrnelt~-- IIBIt 2 ~ h2m -t-nil ~ hmk R., i ,k--  n n  IIBtl 2 h .  
k,,f,m m k,m 

Z �9 
k ,  m m 
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By (3.3), we then have 

E ] h i i - ~ - - - c  Z hkehmg'((~mit~ik--(~mk(~ii)--C E hkchim(t~mit~r162 
k,~,m k,#,m 

+ nHc ~. h,.k(6r, i (~ik -- 6..k 6U) + nHc ~. hi.(~,. ~ (~gk-- 6mR 6ik) 
k,m k,m 

+( t r  B 3) hu+ n ( n -  1) ( R - c )  ~h2, .--nH IIBII2 h .  + ~, h~e~-nE(H~) 2 
m k,r 

= ~ h2el--nE(Hi) 2 +c IIBIb 2 --n2HEc+ nEHchi i -nHchu  
k,Y 

+( t r  B 3) h i i+n(n -  1) ( R - c )  ~hEm-nH IIBIl 2 h. .  
m 

Thus 

(3.8) n D H =  IIVBl[E-n 2 IIVHIIE-t-nc IlBl[Z--nZ cHa +nH(tr B 3) 

+ n ( n -  1)(R-c)Ihnl l  2 - n E n  2 Ilnll / 

= IIVBII 2 - n  2 [Ivnll z +nc NB[I 2 -n2H2c-t-nH(tr  B3) - IIBI[ 4. 

Finally, using in (3.8) the fact that 

(3.9) tr B3=nHIIBN2--�89 H(R--c)+ 3S3, 

the lemma follows. [ ]  

4 Proof  of  Theorem 1.2 

In this section, we will use the nota t ion  of w 3. We will need the following 
lemma. 

(4.1) Lemma.  Let x: M"--* M" + x (c) be an immersion with constant scalar curva- 
ture R. Assume that R--  c > O. Then 

1 
-IIVBII2--nlIVHll2~O. 
n 

Here B is the second fundamental form and H is the mean curvature of x. 

Proof. We know that  

n2 H2 -- 2 h~e = n ( n -  1)(R - c). 
k,~ 

Taking the covariant  derivative of the above expression, and using the fact 
that R--cons t . ,  we obtain 

n 2 HHi = ~ hke hkei. 
k,g 

It follows that  

En4HE(H~) 2 = E ( E  hke hke~) 2 <=(E h~,)( E h~e,), 
i i k,~ k,E k,~,i 
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that  is, 
n'* H 2 ItVHIIE 5 []BI] 2 ][VBH 2. 

On the other  hand,  if ( R - c ) _ > 0 ,  we have that  n2H 2 -  FIBII2 ~0 .  Thus 

n2H 2 HVHH2<H 2 PIVBII 2 

and the l emma  follows. 

(4.2) Proo f  o f  Theorem 1.2 for  c = 0 

Assume that  x is stable. We first observe tha t  if this is the case, 

- -  J"(O) ( f )  = 2 S ((�89 (n - 1) H R  -- 3S3)f 3 + f  [] f)  dM 50  
M 

for all functions f :  M --* R with ~ f d M  =0.  To  choose a convenient  test-function, 
~t 

observe that  the second Minkowski ' s  formula  [H, p. 286] gives 

( H + g R ) d M = O ,  
M 

where g = (x ,  N )  is the suppor t  function of  x: M" --* R n + 1. Thus we can choose 
f = H + g R .  

Let us compu te  the in tegrand of J " ( 0 ) ( f )  for f =  H + gR,  using R = const.  : 

f D f  +(�89 - I ) H R - 3 S 3 ) f  2 

= H D H  + H R [ S ] g + g R [ ~ H  + g R  2 [ ] g + � 8 9  + n e ( n - 1 ) g H 2 R  2 

+ �89 n 2 (n -- 1) g2 H R  3 _ 3 H 2 Sa - 6 g H R S 3  - 3 g2 R 2 $3. 

On the other  hand,  since [ ]  is self-adjoint, 

gR[--qH= ~ R H [ ] g .  
M M 

Thus  

S (H[S]H+HR[Ng+g R[S]H+gR2[--qg)= ~ (H[]H+2RH[]g+R2g[]g)"  
M M 

Now,  since c = 0 and  R = const., the following expressions hold: 

(4.3) 

(4.4) 

I - ] g =  - - n ( n - -  1) R - � 8 9  - 1) R H  g + 3 S 3 g, 

.IS] H =  - n  WHII 2 + 1  HVnlr 2 + ( n -  l) R IIBH 2 
n 

--�89 - 1) H2 R + 3HS3.  
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For (4.3), see [R, Eq. 13, p. 475], or compute it directly using the techniques 
of w 3. (4.4) follows from Lemma 3.7 for c = 0. Therefore, 

+ I {(n-- 1) RH HBH 2 -�89 - 1) H3R + 3H2S3} 
M 

+ ~ {-2n(n-1)HR2-n2(n--1)H2R2g+6HRgS3} 
M 

n2 HR 3 g2} +~ {--n(n--1)R3g+3gZRZSa-~-(n-l)  

+ ~ {�89 n 2 ( n -  1) 1-13 g + n 2 (~ - 1) gI-I 2 g ~ + �89 ~ (~-- l) g2 I4R ~} 
M 

+ ~ {-3HESa-6gHRS3--3gERZS3}. 
M 

Fortunately, this expression simplifies into 

+ ( n - 1 )  R ~ H IIBI]Z-n(n--1) R 2 ~ (H + gR)--n(n--1) R ~ HR 
M m M 

n v .  

since I]BII2--nR=n2(H2--R). Notice that, since M is compact, R > 0  and 

O<n(n-1) R=n2 H 2 -  IlB]12 <=n2 H2-nHZ =n(n--1) H2; 

we conclude that H is nowhere zero. Thus an orientation can be chosen so 
that H>0 .  Notice also that H 2 - R > 0  and the equality holds if and only if 
x is umbilic. It follows from Lemma 4.1 that 

(1 ) 
0 > - - � 8 9  {H nHVBIIZ-nHVHH 2 +nZ(n -1)  RH(H 2-R)} dM>O. 

Thus if x is stable, H 2 -  R =0, hence x is umbilic and x(M) is a geodesic sphere. 
The converse follows from Proposition 2.6. [] 

(4.5) Proof of Theorem (1.2)for c > 0  

Let x: M"~s"+a(c)cR "+2. Fix a unit vector w R  "+2 and define functions f 
and ~ on M by 

f(p) = (N(p), v), ~(p)= (x(p), v), p~M. 
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We will need the following expressions:  

(4.6) [] f =  o n ( n -  1) (R- -c )  ~, + 3 S 3 f  - �89 - 1 ) ( R - c )  H f 

(4.7) [ ]  g = n ( n -  1 ) ( R - - e ) f - - n ( n - -  1) cH~. 

For  (4.6) see [-R, Propos i t ion  D, p. 473], and  for (4.7) see [R, r emark  to Theo rem 
E, p. 473];  they can bo th  be compu ted  directly with the techniques of  w 3. 

To  find a convenient  test-function, we set 

h = ( R - - c ) f - - H c ~ .  

Notice  that,  by (4.7), n ( n -  1) h = [ ]  g. Since [ ]  is self-adjoint, ~ h d M  =0.  
M 

F r o m  now on, let us assume c - -  1. Choose  v as an element of  a canonical  
basis ao, ax . . . .  , a , + l  of R "+z and  let fA and ga be the above  functions for 
v=aa,  A = 0 ,  1 . . . . .  n + l .  Set ha=(R- -1 ) fA - -HgA.  

Now,  assume tha t  x is stable. Then, for each A, J"(O)(ha)>O , that  is, 

(4.8) 2 ~ ( h a D h A + { � 8 9  h~)dM<=O. 
M 

We want  to in t roduce ha=(R--1) fA--H~,a  in (4.8) and sum up in A. We 
divide the c o m p u t a t i o n  in two parts ,  and  first compute  the second te rm in 
the in tegrand:  

{�89 1 ) H ( R -  1 ) -  3 $3 + n ( n -  1) H} h 2 

= �89 n 2 (n - 1) H (R -- 1)3f  2 - n  2 ( n -  1) H z (R-- 1)2fA g,A 

+ �89 n 2 (n--  1) H 3 (R - 1) ~2 _ 3 (R - 1) 2 $3 fA 

+ 6 (R -- 1) HS3 fa g,A -- 3 H 2 $3 ~2 + n (n - 1) (R - 1) 2 H J~A 

- 2  n ( n -  1)(R - 1) H2fA g,A + n (n-- 1) H 3 g2. 

N o w  observe that,  since x(M) is conta ined in a unit  sphere, 

(4.9) 

(4.10) 

(4.11) 

It  follows that  

~]g~ = ~ (x ,  aa) 2 = (x ,  x )  = 1, 
A A 

Zf -~  = Z (  N, a a )  = = (N, N> = 1, 
A A 

~ f A  ga = 2 (  N, aA) (x,  aA) = (N, x )  --0. 
A a 

(4.12) ~{ �89  - 1) H(R- -  i ) -  3 $3 + n ( n -  1)H} h z 
A 

= �89 - 1) H(R - 1) 3 + �89 - 1) H3(R - 1) 

- - 3 ( R - -  1)2S3 -- 3H2 $3 + n ( n -  1) ( R -  1)2H 

+ n(n - 1) H 3. 
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We now compute the first term in the integral of (4.8): 

I hA [ ]  hA =(R-- 1) 2 
M 

AT]A--(R--l) ~ fA[3(H~A) 
M M 

- ( R - l )  ~ HgA[[[]fA+ f Hg, AI-I(Hg, A) 
M M 

= ( R - - l )  2 j f A m f A - - 2 ( R - - 1 )  j H~,AVlfa+ I HCA[](H~A) 
M M M 

= ( R -  1) 2 ] fA {n(n-- 1) (R-  1) gA + 3 $3 f A -  �89 n2 (n-- 1) H ( R -  1)fA} 
M 

- 2 ( n - -  1) ~ H~,a{n(n-  1) (R-  1) gA 
M 

+ 3 S3fa -- �89 1) H(R - 1)fA} 

+ ~ HgA{HD~A+~,ADH+2n~(V~,~,A)(Ve,  H) 
M i 

- -  2 ~'~hlj(Ve, g,A) (Ve, H)}, 
i , j  

where we have used the fact that (see w 3, Lemma 3.6) for any two functions 
f, g: M" ~ R, we have 

Therefore 

V l ( f g ) = g i ~ f + f E ] g + 2 n H  fkgk--2 ~ hkefkge. 
k = l  k,d= l 

h a ~  hA 
M 

= n ( n - l ) ( a - m )  3 j fa~,A+B(e--1) 2 ~ f~S3 
M M 

- � 8 9  3 I f~ U - 2 n ( ~ - I ) ( R - 1 )  2 I ~/ - /  
M M 

- 6 ( R - 1 )  S fA~aHS3+n2(n--1)( R-1)2 I fA~A u~ 
M M 

+ ~ I-I~,A {n(n-- 1) (R -- 1) HfA -- n(n-- 1) H2~A-- n~,A Llvglh 2 
M 

1 
+ -  ffA IIVB II 2 j_ (n-- 1) (R-- 1) gA IIBll 2 

n 

1 n2(n _ 1) H2(R -- 1) gA + 3H~A S 3 + IIBII 2~A 
2 

-- n H2 g,a + 2 nH ~ (Vei gA) (Ve, H) 
i 

-- 2 Zhij(Ve, g,A)(Ve~ H)}. 
i , j  
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We sum up the above expression in A, use (4.9), (4.10), (4.11) and the fact 
that 

~2 
0 = V e , ( E  g A ) =  2 E f t  A r e ,  g a  

A A 

to obtain finally 

(4.13) 

Now, using (4.12) and (4.13) we obtain that the sum of (4.8) in A can be 

- -  ~ J" (0) (ha) 
A 

=M~ {�89 n 2 ( n -  1 ) H ( R -  1)3+ �89 n 2 (n-- 1)U 3 (R-- 1)--3 ( R -  1) 2 S3 

- -  3 H 2 $3 + n(n - 1) (R - 1) 2 H + n ( n -  1) H 3 + 3 (R - -  1) 2 S 3 

-�89 - 1 ) ( R -  1) 3 H--2n(n-- 1)(R-- 1)2H-n(n - 1) H 3 

- n i l  tlVHl[ 2 + 1  riVB]l 2 + ( n -  1 ) ( R -  1) U ]lBl[ 2 
n 

-�89 - 1) (R - 1) H 3 + 3H 2 S 3 + H  14Blr 2 - nil3} =<0 

which simplifies into 

(4.14) -~J"(O)(hA)=~{H[IIIvBIla-nlIV.  HII 2] 

+ [ - n ( n -  1 ) ( R -  1) :H + ( n -  1 ) ( R -  1) H II B II 2] 

+ g(lIBl l2-ng)}  <O. 

observe now that, since []Blla=n2H2-n(n-1)(R-1),  we have (n 
Fur- 

W e  

-- 1)(R-- 1) H IIBII 2 _  n(n-  l ) ( R -  1)2H = n 2 ( n -  i ) ( R -  1) H(H 2 -  ( R -  1)). 
thermore, 

n(n-  1) (R-- 1)= n2H 2 -  [lUll 2 < n(n-  1) H2; 

S hal-lhA 
A M 

= 3 ( R - l )  / I S3--�89 3 I H 
M M 

- 2 n ( n - 1 ) ( R - 1 )  2 I H - n ( n - 1 )  I Ha 
M M 

--nMIHl[VH[12+--l~n HHVBII2 

+ ( n - 1 ) ( R - 1 )  ~ HHBI]2--�89 ~ H 3 

M M 

+ 3  ~ H2S3+  j" nl tn l l2 -n  [. H 3. 
M M M 

written as 
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thus,  since R - - 1  > 0 by  hypothes i s ,  H 2 neve r  vanishes ,  a n d  we can  choose  a n  
o r i e n t a t i o n  so tha t  H > 0. 

I t  fol lows tha t  if M is s table,  

A 

1) H(R- 1) [ H  2 - - ( R - -  1)] + H I  I/BJ] 2 -nHZ]~>O. + n 2 ( n  - 

Therefore ,  [IBIIZ=nH z a n d  M is u mb i l i c  as we wished.  The  converse  fol lows 
f rom P r o p o s i t i o n  2.6. [ ]  
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