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Abstract In this paper we consider (hierarchical, La-
grange) reduced basis approximation and a posteriori
error estimation for linear functional outputs of affinely
parametrized elliptic coercive partial differential equa-
tions. The essential ingredients are (primal-dual) Galer-
kin projection onto a low-dimensional space associated
with a smooth “parametric manifold” — dimension re-
duction; efficient and effective greedy sampling meth-
ods for identification of optimal and numerically stable
approximations — rapid convergence; a posteriori er-
ror estimation procedures — rigorous and sharp bounds
for the linear-functional outputs of interest; and Offline-
Online computational decomposition strategies — min-
imum marginal cost for high performance in the real-
time/embedded (e.g., parameter-estimation, control) and
many-query (e.g., design optimization, multi-model/
scale) contexts. We present illustrative results for heat
conduction and convection-diffusion, inviscid flow, and
linear elasticity; outputs include transport rates, added
mass, and stress intensity factors.
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1 Introduction and Motivation

In this work we describe reduced basis (RB) approxima-
tion and a posteriori error estimation methods for rapid
and reliable evaluation of input-output relationships in
which the output is expressed as a functional of a field
variable that is the solution of an input-parametrized
partial differential equation (PDE). In this particular
paper we shall focus on linear output functionals and
affinely parametrized linear elliptic coercive PDEs; how-
ever the methodology is much more generally applicable,
as we discuss in Section 2.

We emphasize applications in transport and mechan-
ics: unsteady and steady heat and mass transfer; acoustics;
and solid and fluid mechanics. (Of course we do not pre-
clude other domains of inquiry within engineering (e.g.,
electromagnetics) or even more broadly within the quan-
titative disciplines (e.g., finance).) The input-parameter
vector typically characterizes the geometric configura-
tion, the physical properties, and the boundary condi-
tions and sources. The outputs of interest might be the
maximum system temperature, an added mass coeffi-
cient, a crack stress intensity factor, an effective consti-
tutive property, an acoustic waveguide transmission loss,
or a channel flowrate or pressure drop. Finally, the field
variables that connect the input parameters to the out-
puts can represent a distribution function, temperature
or concentration, displacement, pressure, or velocity.

The methodology we describe in this paper is mo-
tivated by, optimized for, and applied within two par-
ticular contexts: the real-time context (e.g., parameter-
estimation [54,96,154] or control [124]); and the many-
query context (e.g., design optimization [107] or multi-
model/scale simulation [26,49]). Both these contexts are
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crucial to computational engineering and to more wide-
spread adoption and application of numerical methods
for PDEs in engineering practice and education.

We first illustrate the real-time context : we can also
characterize this context as “deployed” or “in the field”
or “embedded.” As an example of a real-time — and
in fact, often also many-query — application, we con-
sider a crack in a critical structural component such
as a composite-reinforced concrete support (or an air-
craft engine). We first pursue Non-Destructive Evalua-
tion (NDE) parameter estimation procedures [17,96,154]
— say by vibration or thermal transient analysis — to
determine the location and configuration of the delami-
nation crack in the support. We then evaluate stress in-
tensity factors to determine the critical load for fracture
or the anticipated crack growth due to fatigue. Finally
we modify “on site” the installation or subsequent mis-
sion profile to prolong life. Safety and economics require
rapid and reliable response in the field.

We next illustrate the many-query context. As an ex-
ample of a general family of many-query applications, we
cite multiscale (temporal, spatial) or multiphysics mod-
els in which behavior at a larger scale must “invoke”
many spatial or temporal realizations of parametrized
behavior at a smaller scale. Particular cases (to which
RB methods have been applied) include stress intensity
factor evaluation [5,62] within a crack fatigue growth
model [63]; calculation of spatially varying cell properties
[26,75] within homogenization theory [25] predictions for
macroscale composite properties; assembly and interac-
tion of many similar building blocks [79] in large (e.g.,
cardio-vascular [136]) biological networks; or molecular
dynamics computations based on quantum-derived ener-
gies/forces [36]. In all these cases, the number of input-
output evaluations is often measured in the tens of thou-
sands.

Both the real-time and many-query contexts present
a significant and often unsurmountable challenge to “clas-
sical” numerical techniques such as the finite element
(FE) method. These contexts are often much better served
by the reduced basis approximations and associated a
posteriori error estimation techniques described in this
work. We note, however, that the RB methods we de-
scribe do not replace, but rather build upon and are mea-
sured (as regards accuracy) relative to, a finite element
model [22,41,126,147,158]: the reduced basis approxi-
mates not the exact solution but rather a “given” finite
element discretization of (typically) very large dimen-
sion N . In short, we pursue an algorithmic collaboration
rather than an algorithmic competition.

2 Historical Perspective and Background

The development of the reduced basis (RB) method can
perhaps be viewed as a response to the considerations
and imperatives described above. In particular, the para-

metric real-time and many-query contexts represent not
only computational challenges, but also computational
opportunities. We identify two key opportunities that
can be gainfully exploited:
Opportunity I . In the parametric setting, we restrict our
attention to a typically smooth and rather low-dimen-
sional parametrically induced manifold: the set of fields
engendered as the input varies over the parameter do-
main; in the case of single parameter, the parametrically
induced manifold is a one-dimensional filament within
the infinite dimensional space which characterizes gen-
eral solutions to the PDE. Clearly, generic approxima-
tion spaces are unnecessarily rich and hence unnecessar-
ily expensive within the parametric framework. �
Opportunity II . In the real-time or many-query contexts,
in which the premium is on marginal cost (or equiva-
lently asymptotic average cost) per input-output eval-
uation, we can accept greatly increased pre-processing
or “Offline” cost — not tolerable for a single or few
evaluations — in exchange for greatly decreased “On-
line” (or deployed) cost for each new/additional input-
output evaluation. Clearly, resource allocation typical for
“single-query” investigations will be far from optimal for
many-query and real-time exercises. �
We shall review the development of RB methods in terms
of these two opportunities.

Opportunity I

Reduced Basis discretization is, in brief, (Galerkin) pro-
jection on an N -dimensional approximation space that
focuses (typically through Taylor expansions or Lagrange
“snapshots”) on the parametrically induced manifold iden-
tified in Opportunity I. Initial work grew out of two
related streams of inquiry: from the need for more ef-
fective, and perhaps also more interactive, many-query
design evaluation — [48] considers linear structural ex-
amples; and from the need for more efficient parameter
continuation methods — [4,98,99,101,104,105] consider
nonlinear structural analysis problems. (Several modal
analysis techniques from this era [92] are also closely re-
lated to RB notions.)

The ideas present in these early somewhat domain-
specific contexts were soon extended to (i) general finite-
dimensional systems as well as certain classes of PDEs
(and ODEs) [19,47,76,100,106,120,131,132], and (ii) a
variety of different reduced basis approximation spaces
— in particular Taylor and Lagrange [119] and more re-
cently Hermite [67] expansions. The next decade(s) saw
further expansion into different applications and classes
of equations, such as fluid dynamics and the incompress-
ible Navier-Stokes equations [57,66–69,114].

However, in these early methods, the approximation
spaces tended to be rather local and typically rather low-
dimensional in parameter (often a single parameter). In
part, this was due to the nature of the applications —
parametric continuation. But it was also due to the ab-
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sence of a posteriori error estimators and effective sam-
pling procedures. It is clear that in more global, higher-
dimensional parameter domains the ad hoc reduced basis
predictions “far” from any sample points can not neces-
sarily be trusted, and hence a posteriori error estimators
are crucial to reliability (and ultimately, safe engineer-
ing interventions in particular in the real-time context).
It is equally clear that in more global, higher-dimensional
parameter domains simple tensor-product/factorial “de-
signs” are not practicable, and hence sophisticated sam-
pling strategies are crucial to convergence and computa-
tional efficiency1.

Much current effort is thus devoted to development
of (i) a posteriori error estimation procedures and in
particular rigorous error bounds for outputs of interest
[121], and (ii) effective sampling strategies in particular
for higher (than one) dimensional parameter domains
[33,32,97,138,153]. The a posteriori error bounds are of
course indispensable for rigorous certification of any par-
ticular reduced basis (Online) output prediction. How-
ever, the error estimators can also play an important
role in efficient and effective (greedy) sampling proce-
dures: the inexpensive error bounds permit us first, to
explore much larger subsets of the parameter domain in
search of most representative or best “snapshots,” and
second, to determine when we have just enough basis
functions. Just as in the finite element context [12], the
simultaneous emergence of error estimation and adap-
tive sampling/approximation capabilities is certainly not
a coincidence.

We note here that greedy sampling methods are sim-
ilar in objective to, but very different in approach from,
more well-known Proper Orthogonal Decomposition
(POD) methods [8,24,58,73,77,93,127–129,144,145,157].
For reasons that we shall explore, the former are applied
in the (multi -dimensional) parameter domain, while the
latter are most often applied in the (one-dimensional)
temporal domain. However, POD economization tech-
niques can be, and have successfully been, applied within
the parametric RB context [31,40,42,59,83,154,49]. (We
shall conduct a brief comparison of greedy and POD ap-
proaches — computational cost and performance — in
Section 8.1.4.)

Opportunity II

Early work on the reduced basis method certainly ex-
ploited Opportunity II — but not fully. In particular,
and perhaps at least partially because of the difficult
nonlinear nature of the initial applications, early RB ap-
proaches did not fully decouple the underlying FE ap-

1 Several early papers [102–104] did indeed discuss a
posteriori error estimation and even adaptive improve-
ment/sampling of the RB space; however, the approach could
not be efficiently or rigorously applied to partial differential
equations due to the computational requirements, the resid-
ual norms employed, and the absence of any stability consid-
erations.

proximation — of very high dimension N — from the
subsequent reduced basis projection and evaluation —
of very low dimension N . More precisely, most often the
Galerkin stiffness equations for the reduced basis system
were generated by direct appeal to the high-dimensional
FE representation: in nuts and bolts terms, pre- and
post-multiplication of the FE stiffness system by rectan-
gular basis matrices. As a result of this expensive pro-
jection the computational savings provided by RB treat-
ment (relative to classical FE evaluation) were typically
rather modest [98,119,120] despite the very small size of
the ultimate reduced basis stiffness system.

Much current work is thus devoted to full decoupling
of the FE and RB spaces through Offline-Online proce-
dures: the complexity of the Offline stage depends on N
(the dimension of the FE space); the complexity of the
Online stage — in which we respond to a new value of
the input parameter — depends only on N (the dimen-
sion of the reduced basis space) and Q (which measures
the parametric complexity of the operator and data, as
defined below). In essence, in the Online stage we are
guaranteed the accuracy of a high-fidelity finite element
model but at the very low cost of a reduced-order model.

In the context of affine parameter dependence, in
which the operator is expressible as the sum of Q prod-
ucts of parameter-dependent functions and parameter-
independent operators, the Offline-Online idea is quite
self-apparent and indeed has been re-invented often [15,
66,70,114]; however, application of the concept to a pos-
teriori error estimation — note the Online complexity of
both the output and the output error bound calculation
must be independent of N — is more involved and more
recent [64,121,122]. In the case of nonaffine parameter
dependence the development of Offline-Online strategies
is much less transparent, and only in the last few years
have effective procedures — in effect, efficient methods
for approximate reduction to affine form — been estab-
lished [18,53,137]. Clearly, Offline-Online procedures are
a crucial ingredient in the real-time and many-query con-
texts.

We note that historically [47] and in this paper RB
methods are built upon, and measured (as regards ac-
curacy) relative to, underlying finite element discretiza-
tions (or related spectral element approaches [79,82,80,
81,111]): the variational framework provides a very con-
venient setting for approximation and error estimation.
However there are certainly many good reasons to con-
sider alternative settings: a systematic finite volume
framework for RB approximation and a posteriori er-
ror estimation is proposed and developed in [60]. We do
note that boundary and integral approximations are less
amenable to RB treatment or at least Offline-Online de-
compositions, as the inverse operator will typically not
be affine in the parameter.
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3 Current Status of Reduced Basis Methods

3.1 Affinely Parametrized Elliptic Coercive Problems

In this paper we shall consider the case of linear func-
tional outputs of affinely parametrized linear elliptic co-
ercive partial differential equations. This class of prob-
lems — relatively simple, yet relevant to many important
applications in transport (e.g., conduction and convection-
diffusion) and continuum mechanics (e.g., linear elastic-
ity) — proves a convenient expository vehicle for the
methodology. We provide here a brief “table of contents”
for the remainder of this review.

In Section 4 (compliant problems) and at the conclu-
sion of the paper in Section 11 (non-compliant problems)
we describe the affine linear elliptic coercive setting; in
Section 5 we consider admissible classes of piecewise-
affine geometry and coefficient parametric variation; in
Section 6 we introduce several “working examples” which
shall serve to illustrate the formulation and methodology.

In Section 7.1 for compliant problems and subsequently
Section 11.2 for non-compliant problems we discuss
(primal-dual [117]) RB Galerkin projection [121] and op-
timality; in Section 7.2 we describe (briefly) POD meth-
ods [8,24,58,73] and (more extensively) greedy sampling
procedures [32,33,153] for optimal space identification;
in Section 8.1 for one parameter and Section 8.2 for many
parameters we investigate the critical role of parametric
smoothness [47,85] in convergence theory and practice.

In Section 9 we present rigorous and relatively sharp
a posteriori output error bounds [3,23,108] for RB ap-
proximations [121,142]; in Section 10 we develop the
coercivity-constant lower bounds [64] required by the a
posteriori error estimation procedures.

In Section 7.1 for the output prediction and Sec-
tion 9.4 for the output error bounds [84] we present the
Offline-Online computational strategies crucial to rapid
real-time/many-query (Online) response. In Section 8.2
we also provide a quantitative comparison between RB
(Offline and Online) and FE computational performance.

Although this paper focuses on the affine linear ellip-
tic coercive case, the reduced basis approximation and
a posteriori error estimation methodology is much more
general. Furthermore, most of the basic concepts intro-
duced in the affine linear elliptic coercive case are equally
crucial — with suitable extension — to more general
equations. In the next section we briefly review the cur-
rent landscape and provide references for further inquiry.

3.2 Extensions and Generalizations

First, the reduced basis approach can also be readily
applied to the more general case of affine linear elliptic
non-coercive problems.2 The canonical example is the

2 The special issues associated with saddle problems [28,
29], in particular the Stokes equations of incompressible flow,

ubiquitous Helmholtz (reduced-wave equation) relevant
to time-harmonic acoustics [141], elasticity [95], and elec-
tromagnetics. (We also note that a special formulation
for quadratic output functionals [62,141] — important
in such applications as acoustics (transmission loss out-
puts) and linear elastic fracture theory (stress intensity
factor outputs) — is perforce non-coercive.) With re-
spect to the elements we consider in the current paper
on coercive problems, the key new methodological chal-
lenges for non-coercive problems are the development of
(i) discretely stable primal-dual RB approximations [86,
134], and (ii) efficient Offline-Online computational pro-
cedures [64,142] for the construction of lower bounds for
the (no longer coercivity , but rather) inf-sup constant [9]
required by the a posteriori error estimators. The pos-
sibility of resonances and near-resonances can adversely
affect the efficiency of the both the RB approximation
and the RB error bounds, often limiting the dimension-
ality or extent of the parameter domain.

RB-like “snapshot” ideas are also found in some of
the many Reduced Order Model (ROM) approaches in
the temporal domain [14,38,39,89,116,130,145,155,156]:
POD sampling procedures are often invoked, and more
recently greedy sampling approaches have also been con-
sidered [21]. Thus, combination of “parameter + time”
approaches — essentially the marriage of ROM in time
with RB in parameter, sometimes referred to as PROM
(Parametric ROM) — is quite natural [31,40,42,59,46,
83,143]. The exploration of the “parameter + time” frame-
work in the important context of affine linear (stable)
parabolic PDEs — such as the heat equation and the pas-
sive scalar convection-diffusion equation (also the Black-
Scholes equation of derivative theory [118]) — is carried
out in [52,55,60,133]; many of the primal-dual approxi-
mations, greedy (or, better yet, greedy + POD) sampling
strategies, a posteriori error estimation concepts, and
Offline-Online computational strategies described here
for elliptic PDEs admit ready extension to the parabolic
case.

The reduced basis methodology, in both the elliptic
and parabolic cases, can also be extended to problems
with non-affine parametric variation. The strategy is os-
tensibly simple: reduce the nonaffine operator and data
to approximate affine form, and then apply the methods
developed for affine operators described in this paper.
However, this reduction must be done efficiently in or-
der to avoid a proliferation of parametric functions and
a corresponding degradation of Online response time.
This extension is based on the Empirical Interpolation
Method (EIM) [18]: a collateral RB space for the offend-
ing nonaffine coefficient functions; an interpolation sys-
tem that avoids costly (N -dependent) projections; and
several (from less rigorous/simple to completely rigor-
ous/very cumbersome) a posteriori error estimators. The
EIM within the context of RB treatment of elliptic and

are addressed for divergence-free spaces in [57,67,114] and
non-divergence-free spaces in [135,139].



Reduced basis approximation and a posteriori error estimation 5

parabolic PDEs with nonaffine coefficient functions is
considered in [52,53,95,137,148]; the resulting approx-
imations preserve the usual Offline-Online efficiency —
the complexity of the Online stage is independent of N .

The reduced basis approach and associated Offline-
Online procedures can be applied without serious com-
putational difficulties to quadratic (and arguably cubic
[34,153]) nonlinearities. Much work focuses on the sta-
tionary incompressible (quadratically nonlinear) Navier-
Stokes equations [29,50,57] of incompressible fluid flow:
suitable stable approximations are considered in [57,67,
114,123,136,139]; rigorous a posteriori error estimation
— within the general Brezzi-Rappaz-Raviart (“BRR”) a
posteriori framework [30,34] — is considered in [45,97,
151,152]. The latter is admittedly quite complicated, and
presently limited to very few parameters — a Reynolds
number and perhaps a Prandtl number or aspect ratio.

Symmetric eigenproblems associated with (say) the
Laplacian [10] or linear elasticity operator are another
important example of quadratic nonlinearities. Reduced
basis formulations for one or two lowest eigenvalues (as
relevant in structural mechanics) and for the first “many”
eigenvalues (as relevant in quantum chemistry) are de-
veloped in [84] and [35,36,113], respectively. Here, im-
plicitly, the interpretation of the BRR theory is unfortu-
nately less compelling due to the (guaranteed) multiplic-
ity of often nearby solutions; hence the a posteriori error
estimators for eigenvalue problems [84,113] are currently
less than satisfactory.

Nonpolynomial nonlinearities (in the operator and
also output functional) for both elliptic and parabolic
PDEs may be considered. The Empirical Interpolation
Method can be extended to address this important class
of problems [36,53,113]: the nonlinearity is treated in
a collateral reduced basis expansion, the coefficients of
which are then obtained by interpolation relative to the
reduced basis approximation of the field variable; the
usual Offline-Online efficiency can be maintained — On-
line evaluation of the output is independent of N . (For
alternative approaches to nonlinearities in the ROM con-
text, see [16,39,115].) Unfortunately, for this difficult
class of problems we can not yet cite either rigorous a
posteriori error estimators or particularly efficient sam-
pling procedures. (It it perhaps not surprising that initial
work in RB methods [98,101], which focused on highly
nonlinear problems, attempted neither complete Offline-
Online decoupling nor rigorous error estimation.)

Finally, we mention two other topics of current re-
search interest. First, the “reduced basis element method”
[79,82,80,81] is a marriage of reduced basis and domain
decomposition concepts that permits much greater geo-
metric complexity and also provides a framework for the
integration of multiple models. Second, (at least linear)
hyperbolic problems are also ripe for further develop-
ment: although there are many issues related to smooth-
ness and stability, there are also proofs-of-concept in
both the first order [60,111] and second order [74] con-

texts which demonstrate that RB approximation and a
posteriori error estimation can be gainfully applied to
hyperbolic equations.

4 Elliptic Coercive Parametric PDEs

We consider the following problem: Given μ ∈ D ⊂ R
P ,

evaluate

se(μ) = �(ue(μ)) ,

where ue(μ) ∈ Xe(Ω) satisfies

a(ue(μ), v;μ) = f(v), ∀ v ∈ Xe . (1)

The superscript e refers to “exact.” Here μ is the input
parameter — a P -tuple; D is the parameter domain —
a subset of R

P ; se is the scalar output; � is the linear
output functional; ue is the field variable; Ω is a suitably
regular bounded spatial domain in Rd (for d = 2 or 3)
with boundary ∂Ω; Xe is a Hilbert space; and a and f
are the bilinear and linear forms, respectively, associated
with our PDE.

We shall exclusively consider second-order partial dif-
ferential equations, and hence (H1

0 (Ω))ν ⊂ Xe ⊂
(H1(Ω))ν , where ν = 1 (respectively, ν = d) for a scalar
(respectively, vector) field. Here H1(Ω) = {v ∈ L2(Ω)|∇v
∈ (L2(Ω))d},H1

0 (Ω) = {v ∈ H1(Ω)|v|∂Ω = 0}, and
L2(Ω) = {v measurable| ∫

Ω
v2 finite}. We associate to

Xe an inner product and induced norm (equivalent to
the H1(Ω) norm), the choice of which shall be described
below.

We shall assume that the bilinear form a(·, ·;μ): Xe×
Xe → R is continuous and coercive over Xe for all μ in
D. (We provide precise definitions of our continuity and
coercivity constants and conditions below.) We further
assume that f is a bounded linear functional over Xe.
Under these standard hypotheses on a and f , (1) admits
a unique solution.

We shall further presume for most of this paper that
we are “in compliance” [112]. In particular, we assume
that (i) a is symmetric — a(w, v;μ) = a(v, w;μ),∀w, v ∈
Xe,∀μ ∈ D, and furthermore (ii) � = f . This assump-
tion will greatly simplify the presentation while still ex-
ercising most of the important RB concepts; further-
more, many important engineering problems are in fact
“compliant” (see Section 6). At the conclusion of the pa-
per, Section 11, we indicate the rather straightforward
(primal-dual) extension to the “non-compliant” case in
which now a may be non-symmetric and � may be any
bounded linear functional over Xe.

We shall make one last assumption, crucial to Offline-
Online procedures and hence computational performance.
In particular, we assume that the parametric bilinear
form a is “affine” in the parameter μ, by which we shall
mean

a(w, v;μ) =
Q∑

q=1

Θq(μ) aq(w, v) . (2)
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Here, for q = 1, . . . , Q, the Θq : D → R are (typically very
smooth) μ-dependent functions, and the aq : Xe×Xe →
R are μ-independent Xe-continuous bilinear forms. (In
the compliant case the aq, 1 ≤ q ≤ Q, are addition-
ally symmetric; however, in neither the compliant nor
non-compliant cases do we place any restrictions on the
“sign” of the aq, 1 ≤ q ≤ Q.) In actual practice, f
may also depend affinely on the parameter: in this case,
f(v;μ) may be expressed as a sum of Qf products of
parameter-dependent functions and parameter-indepen-
dent Xe-bounded linear forms.

As we shall see in Section 5, the assumption of affine
parameter dependence is broadly relevant to many in-
stances of both property and geometry parametric vari-
ation. Furthermore, as already described in Section 3.2,
the assumption of affine parameter dependence may be
relaxed; however, even in the non-affine case, the (now
approximate) representation (2) shall still play a crucial
computational role in the Offline-Online computational
procedures.

We next proceed to the finite element (FE) approxi-
mation to the problem (1): Given μ ∈ D ⊂ R

P , evaluate

sN (μ) = f(uN (μ))

(recall our compliance assumption: � = f), where uN (μ) ∈
XN ⊂ Xe satisfies

a(uN (μ), v;μ) = f(v), ∀ v ∈ XN . (3)

Here XN ⊂ Xe is a sequence of (conforming) FE ap-
proximation spaces indexed by dim(XN ) ≡ N . It fol-
lows directly from our assumptions on a, f , and XN
that (3) admits a unique solution. (Note in actual prac-
tice we must often replace a with aN and f with fN to
reflect numerical quadrature and domain approximation
“variational crimes.”) We recall that our RB field and
RB output shall approximate, for given N , the FE field
uN (μ) and FE output sN (μ) (and not ue(μ) and se(μ)).

We can now define our inner products and norms for
members of XN and Xe. First,
((w, v))μ ≡ a(w, v;μ), ∀ w, v ∈ Xe , (4)

|||w|||μ ≡ ((w,w))1/2
μ , ∀ w ∈ Xe , (5)

shall define our energy inner product and energy norm,
respectively. (Recall that a is coercive and symmetric.)
Next, for given μ ∈ D and (non-negative) real τ ,
(w, v)X ≡ ((w, v))μ + τ(w, v)L2(Ω), ∀ w, v ∈ Xe , (6)

‖w‖X ≡ (w,w)1/2
X , ∀ w, v ∈ Xe ,

shall define our XN and Xe inner product and norm,
respectively; here (w, v)L2(Ω) ≡

∫
Ω

wv. Corresponding
dual norms and dual spaces — for which we must now
distinguish between XN and Xe — will be introduced
as needed.3 It is imperative to observe that although

3 We note that the choice of μ and τ will affect the quality
and efficiency of our RB a posteriori error estimators, but
will not directly affect our RB output predictions. We return
to this point in Sections 10 and 11.

our RB approximation shall be built relative to a finite-
dimensional FE approximation, we must insist on (H1(Ω)-
equivalent) norms that are stable as N →∞.

Finally, we can now define more precisely our coerciv-
ity and continuity constants (and coercivity and conti-
nuity conditions). In particular, we define the exact and
FE coercivity constants as

αe(μ) = inf
w∈Xe

a(w,w;μ)
‖w‖2X

, (7)

and

αN (μ) = inf
w∈XN

a(w,w;μ)
‖w‖2X

, (8)

respectively. It follows from our coercivity hypothesis
that αe(μ) ≥ α0 > 0,∀μ ∈ D, and from our conforming
hypothesis (ignoring any variational crimes) that αN (μ)
≥ αe(μ), ∀μ ∈ D. Similarly, we define the exact and FE
continuity constants as

γe(μ) = sup
w∈Xe

sup
v∈Xe

a(w, v;μ)
‖w‖X‖v‖X

, (9)

and

γN (μ) = sup
w∈XN

sup
v∈XN

a(w, v;μ)
‖w‖X‖v‖X

, (10)

respectively. It follows from our continuity hypothesis
that γe(μ) is finite ∀μ ∈ D, and from our conforming hy-
pothesis (ignoring any variational crimes) that γN (μ) ≤
γe(μ),∀μ ∈ D.

5 Problem “Scope”

We begin in Section 5 with perhaps the most difficult is-
sue: the family of geometric parametric variations consis-
tent with our affine restriction, (2). Then, in Section 5.2
we describe the general class of scalar problems that ad-
mit the abstract statement of Section 4. (For simplicity,
we consider only the scalar case; the vector case [61] per-
mits an analogous treatment.)

5.1 Geometry

5.1.1 Affine Geometry Precondition

The RB recipe, in effect, requires that Ω be a parameter-
independent domain: if we wish to consider linear com-
binations of snapshots, these snapshots must be defined
relative to a common spatial configuration. Thus to per-
mit geometric variation we must interpret Ω, our
parameter-independent reference domain, as the pre-
image of Ωo(μ), the parameter-dependent “actual” or
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“original” domain of interest. The geometric transfor-
mation will yield variable (parameter dependent) coeffi-
cients in the reference-domain linear and bilinear forms
that, under suitable hypotheses to be discussed below,
will take the requisite affine form, (2).

We shall assume that, for all μ in D, Ωo(μ) is ex-
pressed as

Ωo(μ) = ∪Lreg
�=1Ro,�(μ) , (11)

where the Ro,�(μ), 1 ≤ � ≤ Lreg, are mutually non-
overlapping open “regions,”

Ro,�(μ) ∩Ro,�′(μ) = ∅, 1 ≤ � < �′ ≤ Lreg , (12)

the integrity of which must be respected/preserved in
subsequent representations and discretizations. Typically
the different regions correspond to different materials
and hence material properties, or more generally differ-
ent (discontinuously varying in space) PDE coefficients;
however the regions may also be introduced for algorith-
mic purposes to ensure well-behaved mappings, as dis-
cussed in the next section. We shall refer to the bound-
aries of Ro,�(μ), 1 ≤ � ≤ Lreg, that do not reside on the
boundary of Ωo(μ) as internal interfaces.

We next introduce, for all μ in D, a domain decom-
position of Ωo(μ),

Ωo(μ) = ∪Kdom
k=1 Ω

k

o(μ) , (13)

where the Ωk
o (μ), 1 ≤ k ≤ Kdom, are mutually non-

overlapping open subdomains,

Ωk
o (μ) ∩Ωk′

o (μ) = ∅, 1 ≤ k < k′ ≤ Kdom , (14)

that “honor” the regions in the sense that

Ro,�(μ) = ∪k∈K�
Ω

k

o(μ) , (15)

where the K�, 1 ≤ � ≤ Lreg, are mutually exclusive sub-
sets of {1, . . . , Kdom}.

We now choose a value μref ∈ D and define our ref-
erence domain as Ω ≡ Ωo(μref). It immediately follows
from (13), (14), and (15) that

Ω = ∪Kdom
k=1 Ω

k
, (16)

Ωk ∩Ωk′
= ∅, 1 ≤ k < k′ ≤ Kdom , (17)

and

R� = ∪k∈K�
Ω

k
, (18)

for Ωk = Ωk
o (μref), 1 ≤ k ≤ Kdom, and R� = Ro,�(μref),

1 ≤ � ≤ Lreg.
We will build our FE approximation on a very fine

“N” FE subtriangulation of the coarse “Kdom” domain
decomposition — which we shall denote our “RB trian-
gulation” — of Ω. (Recall that our FE and RB approx-
imations are defined over the reference domain.) This
FE subtriangulation ensures that the FE approximation

accurately treats the perhaps discontinuous coefficients
(arising from property and geometry variation) associ-
ated with the different regions; the subtriangulation also
plays an important role in the generation of our affine
representation, (2). We emphasize that μref only affects
the accuracy of the underlying FE approximation upon
which the RB discretization and a posteriori error esti-
mator is built: typically a value of of μref at the “center”
of D minimizes distortion and reduces the requisite N
(for a given acceptable FE error over D).

We now state our Affine Geometry Precondition. We
can treat any original domain Ωo(μ) and associated re-
gions (11) that admits a domain decomposition (13)–(15)
for which (there exists a μref ∈ D such that), ∀μ ∈ D,

Ω
k

o(μ) = T aff,k(Ω
k
;μ), 1 ≤ k ≤ Kdom , (19)

for affine mappings T aff,k(·;μ): Ωk → Ωk
o (μ), 1 ≤ k ≤

Kdom, that are (i) individually bijective, and (ii) collec-
tively continuous,

T aff,k(x;μ) = T aff,k′
(x;μ), ∀ x ∈ Ω

k ∩Ω
k′

,
1 ≤ k < k′ ≤ Kdom .

(20)

The Affine Geometry Precondition is a necessary condi-
tion for affine parameter dependence as defined in (2).
Note that we purposely define Kdom with respect to the
exact problem, rather than the FE approximation: Kdom

can not depend on N (to be meaningful).
We now define our (bijective) affine mappings more

explicitly: for 1 ≤ k ≤ Kdom, any μ in D, and any x ∈
Ωk,

T aff,k
i (x;μ) = Caff,k

i (μ) +
d∑

j=1

Gaff,k
i j (μ) xj , 1 ≤ i ≤ d ,

(21)

for given Caff,k: D → R
d and Gaff,k: D → R

d×d. We can
then define the associated Jacobians

Jaff,k(μ) = |det(Gaff,k(μ))|, 1 ≤ k ≤ Kdom , (22)

where det denotes determinant; note the Jacobian is con-
stant in space over each subdomain. We further define,
for any μ ∈ D,

Daff,k(μ) = (Gaff,k(μ))−1, 1 ≤ k ≤ Kdom ; (23)

this matrix shall prove convenient in subsequent deriva-
tive transformations.

We may interpret our local mappings in terms of a
global transformation. In particular, for any μ ∈ D, the
local mappings (19) induce a global bijective piecewise-
affine transformation T aff( · ;μ): Ω → Ωo(μ): for any
μ ∈ D,

T aff(x;μ) = T aff,k(x;μ), k = min
k′∈{1,...,Kdom} | x∈Ω

k′
k′;
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(24)

note the one-to-one property of this mapping (and, hence
the arbitrariness of our “min” choice in (24)) is ensured
by the interface condition (20). We can further demon-
strate that these global continuous mappings are com-
patible with our second-order PDE variational formu-
lation: for any μ ∈ D, given any wo ∈ H1(Ωo(μ)),
w ≡ wo ◦ T aff ∈ H1(Ω); this ensures that our mapped
problem on the reference domain is of the classical “con-
forming” variety.

Although this largely concludes the formal exposition
of admissible geometry variations, the relevance and ul-
timately application of these conditions requires famil-
iarity with the scope of the affine mappings (21). We
first consider, in Section 5.1.2, a single subdomain (and
hence necessarily a single region). We next consider, in
Section 5.1.3, the case of multiple subdomains: we give a
prescriptive definition of a family of admissible domains,
and we briefly summarize an algorithm to identify the
associated domain decomposition and affine mappings.
Finally, in Sections 5.2 and 5.3, we discuss the incorpo-
ration of these affine mappings into our weak form and
provide several illustrative computational results.

5.1.2 Affine Mappings: Single Subdomain

As we consider a single subdomain in this section, we
shall suppress the subdomain superscript for clarity of
exposition. We shall focus on the two-dimensional case
(d = 2); the extension to three dimensions (d = 3) is,
although certainly possible, not trivial. Note that some
of the elementary material presented here is available in
linear algebra or computer graphics texts [146,90]; we
emphasize application within our particular parametric
PDE context.

We first rewrite our affine transformation (21), for
simplicity, without the subdomain superscript: for any
given μ ∈ D, the reference domain Ω induces the parameter-
dependent geometry of interest, Ωo(μ), through the affine
mapping

T aff
i (x;μ) = Caff

i (μ) +
d∑

j=1

Gaff
i j (μ) xj , 1 ≤ i ≤ d ; (25)

we shall refer to Caff(μ) ∈ R
d and Gaff(μ) ∈ R

d×d as
the “mapping coefficients.” Under our assumption that
the mapping is invertible we know that our Jacobian,
Jaff(μ) of (22), is strictly positive, and that the deriv-
ative transformation matrix, Daff(μ) = (Gaff(μ))−1 of
(23), is well defined.

We recall that, in two dimensions, an affine transfor-
mation maps straight lines to straight lines and in fact
parallel lines to parallel lines and indeed parallel lines of
equal length to parallel lines of equal length: it follows
that a triangle maps onto a triangle (or a tetrahedron

onto a tetrahedron in three dimensions), that a paral-
lelogram maps onto a parallelogram (or a parallelepiped
onto a parallelepiped in three dimensions), and that an
n-gon maps onto an n-gon (or an n-hedron onto an n-
hedron in three dimensions). We also recall that an affine
transformation maps ellipses to ellipses (and ellipsoids
to ellipsoids). These “straight line” and “ellipse” prop-
erties will be crucial for the descriptions of domains rel-
evant in the engineering context.

Basic Technology

Our affine transformation (25) is completely defined, for
d = 2, by the (d(d+1)) = 6 mapping coefficients Caff(μ) ∈
R

d=2 and Gaff(μ) ∈ R
d×d=2×2. It immediately follows

that, for any μ ∈ D, we can uniquely identify Caff(μ)
and Gaff(μ) from the relationship between 3 non-colinear
pre-image points — or “nodes” — in Ω, (z1,z2,z3) ≡
((z1

1, z
1
2), (z

2
1, z

2
2), (z

3
1, z

3
2)), and 3 parametrized image nodes

in Ωo(μ), (z1
o(μ),z2

o(μ),z3
o(μ)) ≡ ((z1

o 1, z
1
o 2), (z

2
o 1, z

2
o 2),

(z3
o 1, z

3
o 2))(μ). (Note that, from our assumption that

the affine transformation is bijective, the image nodes
are perforce also non-colinear.) In particular, for given
μ ∈ D, application of (25) to the selected “nodes” yields

zm
o i(μ) = Caff

i (μ) +
2∑

j=1

Gaff
i j (μ) zm

j , 1 ≤ i ≤ 2 ,
1 ≤ m ≤ 3 ;

(26)

(26) constitutes 6 independent equations by which to
determine the 6 mapping coefficients. (In three-space di-
mensions, we must follow the “trajectories” of the 3 coor-
dinates of 4 pre-image/image points: this yields 12 equa-
tions for the 12 mapping coefficients.)

To be more explicit in our construction, we first form
the matrix B

aff ∈ R
6×6 (more generally, R

(d2+d)×(d2+d)),

B
aff =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 z1
1 z1

2 0 0

0 1 0 0 z1
1 z1

2

1 0 z2
1 z2

2 0 0

0 1 0 0 z2
1 z2

2

1 0 z3
1 z3

2 0 0

0 1 0 0 z3
1 z3

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (27)
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We further introduce the vector V aff(μ) of image nodal
locations,

V aff(μ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1
o 1(μ)

z1
o 2(μ)

z2
o 1(μ)

z2
o 2(μ)

z3
o 1(μ)

z3
o 2(μ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (28)

The solution of the linear system (26) can then be suc-
cinctly expressed as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Caff
1 (μ)

Caff
2 (μ)

Gaff
1 1(μ)

Gaff
1 2(μ)

Gaff
2 1(μ)

Gaff
2 2(μ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= (Baff)−1 V aff(μ) ; (29)

note that B
aff is non-singular under our hypothesis of

non-colinear pre-image nodes.
The matrix B

aff is independent of μ; the parametric
dependence derives from V aff(μ). In particular, the μ de-
pendence of the geometry “enters” through the parame-
trized locations of the image nodes (z1

o(μ),z2
o(μ),z3

o(μ))
as represented in V aff(μ). To illustrate how the para-
metric dependence propagates from the (desired) para-
metrized domain to the mapping coefficients — and to
exercise the general affine technology presented above
— we now consider several different domains. (In Sec-
tion 5.2 we consider how the parametric dependence fur-
ther propagates from the mapping coefficients to the
affine expansion of the bilinear form, (2), associated with
our PDE.)

We note that parallelograms and (in three space di-
mensions) parallelepipeds are the most intuitive subdo-
mains by which to effect transformations “by hand” —
invoking the usual translation, dilation, rotation, and
shear primitives; we consider such a case in the three-
dimensional linear elasticity example of Section 6. How-
ever, it is (Standard) triangles, Elliptical Triangles, and
more general “Curvy” Triangles which admit symbolic
and numerical automation, and which are thus the build-
ing blocks of choice in general multi-subdomain software
(e.g., [1]). We shall thus focus on triangular building
blocks in our discussion here.

(a) (b)

Fig. 1 (a) Reference domain Ω, and (b) actual (or original)
domain Ωo(μ1).

Ωo(μ): (Standard) Triangles

Triangles will thus be the “workhorses” in our geomet-
ric decompositions: the fundamental building blocks. To
demonstrate the application of the technology to tri-
angular domains, we consider a single parameter, μ ≡
μ1 ∈ D ≡ [0.5, 2]. We take for Ω the triangle with ver-
tices (counter-clockwise) (0, 0), (1, 0), (1, 1); these ver-
tices shall also serve as the pre-image nodes, and hence
z1 = (0, 0), z2 = (1, 0), z3 = (1, 1). We take for Ωo(μ)
the triangle with vertices (counter-clockwise) (0, 0), (μ1, 0),
(1, 1); these vertices shall also serve as the image nodes,
and hence z1

o(μ1) = (0, 0), z2
o(μ1) = (μ1, 0), z3

o(μ1) =
(1, 1). (Note for triangles, our three points uniquely de-
fine not only the transformation but also the reference
and parametrized domains.) As already noted in Sec-
tion 5.1.1, the pre-image nodes correspond to the im-
age nodes for a particular value of the parameter: in
our example here, μ1 ref = 1 such that (z1, z2, z3) =
(z1

o(μ1 ref), z2
o(μ1 ref), z3

o(μ1 ref)). The domains Ω and
Ωo(μ) are depicted in Figure 1(a) and Figure 1(b), re-
spectively.

If we turn the crank, we find from (29) that⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Caff
1 (μ1)

Caff
2 (μ1)

Gaff
1 1(μ1)

Gaff
1 2(μ1)

Gaff
2 1(μ1)

Gaff
2 2(μ1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 1 0 0 0 0

−1 0 1 0 0 0

0 0 −1 0 1 0

0 −1 0 1 0 0

0 0 0 −1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

μ1

0

1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (30)

and hence (Caff(μ1) = 0 — no translation — and)

Gaff(μ1) =

[
μ1 1− μ1

0 1

]
. (31)

It directly follows from (22) and (23) that

Jaff(μ1) = μ1 , (32)
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(a) (b)

Fig. 2 (a) “Inwards” (convex domain) Elliptical Triangle,
and (b) “Outwards” (non-convex domain) Elliptical Triangle.

and

Daff(μ1) =

[ 1
μ1
− 1−μ1

μ1

0 1

]
. (33)

Note that Daff is not linear in μ1. (We also note that a
translation would affect Caff(μ1) but not Gaff(μ1), Jaff(μ1),
or Daff(μ1).)

We can readily construct an affine map from any ref-
erence triangle in R

2 (simplex in d space dimensions),
Ω ≡ sim, onto any desired triangle in R

2, Ωo(μ) ≡
simo(μ): it will prove most convenient to choose for our
nodes (say, in two dimensions) (z1,z2,z3) and (z1

o(μ),
z2

o(μ),z3
o(μ)) the vertices of sim and simo(μ). (We could

also choose the “barycentric” co-ordinates of the FE con-
text [27,41].)

Ωo(μ): “Elliptical Triangles”

It is important to note that the Geometric Affine Precon-
dition places no restriction on the shape of the (sub)domains:
although an affine mapping transforms straight lines to
straight lines, we are not constrained (say, for d = 2)
to straight lines in the definition of the boundary of the
(sub)domain. For example, if Ω is the unit circle then
translation creates a shifted circle, isotropic dilation cre-
ates a larger or smaller circle, and anisotropic dilation
creates an ellipse.

In fact, an “Elliptical Triangle” Ωo(μ) and even a
more general “Curvy Triangle” Ωo(μ) shall be the basic
building blocks in our multidomain framework of Sec-
tion 5.2. We consider in this section the former. We
depict in Figure 2 the two types of Elliptical Trian-
gles, “Inwards” and “Outwards.” In both cases, the El-
liptical Triangle Ωo(μ) is defined by the three nodes
(vertices) z1

o(μ),z2
o(μ),z3

o(μ), by the two straight edges
z1

o(μ) z2
o(μ) and z1

o(μ) z3
o(μ), and by an elliptical arc

z2
o(μ) z3

o(μ)
arc

. We now define each of these components
more precisely, and identify constraints that must be
honored in order to obtain admissible/controlled geomet-
ric descriptions.

Fig. 3 Definition of a point on a prescribed parametrized
ellipse.

We shall describe a point on a prescribed parame-
trized ellipse

(xo −O(μ))T Qrot(μ) S−2(μ) Qrot(μ)T(xo −O(μ)) = 1
(34)

as

xo ≡
(

xo1

xo2

)
= O(μ) + Qrot(μ) S(μ)

(
cos t

sin t

)
(35)

for given t ∈ R . Here O(μ): D → R
2 is the center of the

ellipse; ρ1: D → R+ and ρ2: D → R+ are semi-axes that
define the diagonal dilation or “scaling” matrix

S(μ) ≡
(

ρ1(μ) 0

0 ρ2(μ)

)
; (36)

and φ(μ): D → R is an angle of inclination that defines
the rotation matrix

Qrot(μ) =

(
cos φ(μ) − sinφ(μ)

sinφ(μ) cos φ(μ)

)
. (37)

We depict the geometry in Figure 3.
We now take our points z2

o(μ), z3
o(μ) as

zm
o (μ) = O(μ) + Qrot(μ) S(μ)

(
cos tm

sin tm

)
, m = 1, 2 ,

(38)

for prescribed t2 ∈ R, t3 ∈ R, such that 0 ≤ t3 − t2 < π;
the desired elliptical arc is then given by

z2
o(μ) z3

o(μ)
arc

=
{

O(μ) +

Qrot(μ) S(μ)
( cos t

sin t

) ∣∣∣∣ t2 ≤ t ≤ t3
}

.

(39)

It remains to choose the third point (actually, the first
point, z1

o) to achieve our ends.
In particular, for an “Elliptical Triangle,” and unlike

a Standard Triangle, the choice of the first point is not
arbitrary: z1

o(μ) must be selected such that, under affine
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transformation, we generate the desired arc (39); if the
first point is not selected appropriately not only will we
not control the arc but, in the multidomain context, we
risk a discontinuous global mapping. The first point must
also be chosen to ensure a “proper” (Elliptical) Triangle:
the internal angle condition 0 < θ12 < π, 0 < θ23 <
π, 0 < θ31 < π, must be satisfied. (We shall initially
assume that the internal angle condition is satisfied, and
subsequently derive the relevant prescriptive criteria.)

We shall choose the first point as

z1
o(μ) = O(μ) + ωQrot(μ) S(μ)

( cos t1

sin t1

)
, (40)

for given ω ∈ R and t1 ∈ [t2, t3] . We can hence express
our three image points zm

o (μ), 1 ≤ m ≤ 3, as

zm
o (μ) = O(μ) + ωmQrot(μ) S(μ)

( cos tm

sin tm

)
, (41)

for ω1 = ω, ω2 = ω3 = 1. It follows that our pre-image
points are then given by

zm = O(μref) + ωmQrot(μref) S(μref)
( cos tm

sin tm

)
, (42)

for 1 ≤ m ≤ 3.
We conclude from (41),(42) that (recall Qrot(μ) is

orthogonal)

zm
o (μ) = O(μ) +

Qrot(μ) S(μ) S(μref)−1Qrot(μref)T(zm −O(μref))

= O(μ)−Qrot(μ) S(μ) S(μref)−1 Qrot(μref)TO(μref)

+ Qrot(μ) S(μ) S(μref)−1 Qrot(μref)T zm ,

(43)

for 1 ≤ m ≤ 3. We can then directly identify our affine
mapping coefficients from (43) as

Caff(μ) =

O(μ)−Qrot(μ) S(μ) S(μref)−1 Qrot(μref)T O(μref) ,

(44)

and

Gaff(μ) = Qrot(μ) S(μ) S(μref)
−1 Qrot(μref)

T ; (45)

T aff is then given by (25). (Of course, if we were to apply
the formal procedure of (27)–(29) we would arrive at the
same result.)

We note from (44)–(45) that

xo −O(μ) =

Qrot(μ) S(μ) S(μref)−1 Qrot(μref)T(x−O(μref)) ,

(46)

and hence

x−O(μref) =

Qrot(μref) S(μref) S(μ)−1 Qrot(μ)T(xo −O(μ)) .

(47)

We observe, not unexpectedly, that the mapping is a
translation combined with the product of a rotation and
dilation.

We can now define our Elliptical Triangles. In partic-
ular, for both the Inwards and Outwards cases, we can
write (since Ω is perforce star-shaped with respect to z1)

Ω =
⋃

t∈[t2,t3]

z1
(
O(μref) + Qrot(μref)S(μref)

( cos t
sin t

))
.

(48)

It immediately follows from (46) — recall straight lines
map to straight lines — that

Ωo(μ)

= T aff
⋃

t∈[t2,t3]
z1
(
O(μref) + Qrot(μref)S(μref)

( cos t
sin t

))
=
⋃

t∈[t2,t3]
T affz1

(
O(μref) + Qrot(μref)S(μref)

( cos t
sin t

))
=
⋃

t∈[t2,t3]
z1

o

(
O(μ) + Qrot(μ)S(μ)

( cos t
sin t

))
,

(49)

as required by (39). (It might appear that to obtain the
requisite elliptical arc we must sacrifice free selection of
z1(μ): this is true. However, in the multi-domain con-
text, the z1(μ) shall always be internal nodes; we shall
thus retain control of the (boundary of the) actual do-
main Ωo(μ).)

It remains to obtain conditions on ω such that the
three internal angles, θ12, θ23, θ31, are all bounded be-
tween 0 and π: the angle conditions ensure a well-defined
domain and subsequent finite element triangulation. It is
also important to confirm, as we shall, that the condition
can be satisfied for all μ ∈ D. To begin, we consider the
diagram in Figure 4. Clearly, a necessary and sufficient
condition to ensure the angle condition for Inwards El-
liptical Triangles (respectively, Outward Elliptical Trian-
gles) is z1

o(μ) ∈ RIn(μ) (respectively, z1
o(μ) ∈ ROut(μ)),

where

RIn(μ) =
{
z1

o(μ) ∈ R
2
∣∣ (z1

o(μ)− z2
o(μ))T n2(μ) < 0,

(z1
o(μ)− z3

o(μ))T n3(μ) < 0,

(z1
o(μ)− z2,3

o (μ))T n2,3(μ) < 0
}

(50)
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Fig. 4 Regions in which z1
o(μ) must reside for an Inwards

Elliptical Triangle (RIn(μ)) and an Outwards Elliptical Tri-
angle (ROut(μ)) in order to ensure the internal angle condi-
tion.

and

ROut(μ) =
{
z1

o(μ) ∈ R
2
∣∣ (z1

o(μ)− z2
o(μ))T n2(μ) > 0,

(z1
o(μ)− z3

o(μ))T n3(μ) > 0
}

(51)

for zm
o (μ), 1 ≤ m ≤ 3, given by (41). Here n2(μ) and

n3(μ) are the outwards-oriented normals to the ellipse
at z2

o(μ) and z3
o(μ), respectively, z2,3

o (μ) = 1
2 (z2

o(μ) +
z3

o(μ)), and n2,3(μ) is the “outward” normal to the line
segment z2

o(μ) z3
o(μ) at z2,3

o (μ).
It is simple to derive, based on elementary trigono-

metric identities, explicit conditions on ω such that the
angle conditions (50),(51) shall be satisfied. Several happy
circumstances conspire to ensure that our condition is μ-
independent: hence if the angle condition is honored for
μref ∈ D corresponding to the reference domain, then the
angle condition is satisfied for all μ ∈ D. We provide here
the condition for the particular choice t1 = 1

2 (t2+t3). For
this choice, recalling that 0 < t3 − t2 < π, (50) reduces
to

ω < cos
(

t3 − t2

2

)
for the Inwards case, and (51) reduces to

ω >
1

cos
(

t3−t2

2

)
for the Outwards case. (It is clear that, in the multido-
main context, t3− t2 must be not just less than π but in
fact well away from π.)

It is evident that we must exercise some care in the
construction of Elliptical Triangles to ensure controlled
elliptical arcs, continuous (Inwards/Outwards) mappings,
and well-defined internal angles. We do note (as some

consolation) that Elliptical Triangles are “consistent” un-
der refinement: if we split either a straight edge or the el-
liptical arc of an Elliptical Triangle described by (41) for
ω satisfying the internal angle conditions (50),(51), we
obtain two daughter Elliptical Triangles each described
by (41) for (different) ω satisfying the internal angle con-
ditions (50),(51). (In fact, the daughter Elliptical Trian-
gles share the same affine mapping as the parent.) This
edge-split consistency property provides, in the multi-
domain context, a simple mechanism by which to in-
tegrate Elliptical Triangles into domain decompositions
which respect boundaries and internal interfaces. We dis-
cuss this further below.

Ωo(μ): “Curvy” Triangles

The extension from “Elliptical” Triangles to (general)
“Curvy” Triangles is, at least formally, very straight-
forward: we simply replace cos t, sin t in (41) (and in
all subsequent occurrences) with a general parametriza-
tion g1(t), g2(t). We restrict our attention to curvy arcs
which, within a particular “Curvy” Triangle, are either
strictly convex (“Inwards”) or strictly concave (“Out-
wards”) for all μ ∈ D; this condition is easily articulated
in terms of the sign of the derivative of the normal, or
equivalently the curvature. It can then be shown that our
internal angle conditions (50),(51) are directly applica-
ble and (as in the Elliptical case) parameter-independent .
We can further demonstrate that, for a proper choice of
“center,” these angle conditions reduce to a simple set of
algebraic equations — in terms of g1(t), g2(t), g′1(t), and
g′2(t) evaluated at t1, t2, and t3 — that indeed admit a
feasible solution. However, even in the convex/concave
case, we can not express the Curvy Triangle solution in
any simple closed form analogous to the Elliptical Tri-
angle result.

5.1.3 Piecewise-Affine Mappings: Multiple Subdomains

A single affine mapping can treat only a very limited fam-
ily of parametrized domains Ωo(μ). However, piecewise
affine mappings — in our case (typically) based on a do-
main decomposition in Standard, Elliptical, and Curvy
Triangles — can address a much larger class of geomet-
ric variations. We restrict attention here to two space
dimensions (in the examples of Section 6 we consider a
specific three-dimensional problem).

We shall consider “Elliptical-Edge” domains: domains
and associated regions for which the boundary and inter-
nal interfaces can be represented by either straight edges
or the elliptical arcs described by (39); we shall naturally
choose for our building blocks (Standard and) Elliptical
Triangles. (An analogous family of “Curvy-Edge” do-
mains built from Curvy Triangles can also be considered.
The Curvy-Edge procedure is very similar to the Elliptic-
Edge procedure, but on somewhat less firm theoretical
ground. We consider an example in the next section.)
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There are three steps to the multi-domain mapping
process. First (our emphasis in this section), we shall gen-
erate an “RB triangulation” (17) of the reference domain
Ω, (16), and associated reference regions, (18), that is
compatible with the mapping continuity condition (20);
second (as already developed in the previous section),
we will construct the parameter-dependent affine map-
pings (21) for each subdomain following the recipe (27)–
(29); third (as described in the next section), we will
translate these parametric mappings into PDE coeffi-
cients, and then “optimize” — coalesce similar mapping-
induced PDE coefficients into single terms — to arrive
at an economical affine expansion, (2). In fact, the first
and second steps are implicitly coupled — most notably
(but not exclusively) for Elliptical Triangles in which the
point selection must be constrained, (41) and (50),(51),
to ensure consistent, continuous, and invertible affine
mappings.

Our focus here is thus on the RB triangulation of Ω.
We wish to generate a domain decomposition (17) of our
reference geometry Ω, (16), and associated reference re-
gions, (18), that is compatible with the mapping global
continuity condition (20) (and in particular satisfies the
Elliptical Triangle consistency/continuity (41) and inter-
nal angle, (50),(51), conditions). The User input is a set
of (parametrized) “control” points and edges that com-
pletely specify the domain boundary and region internal
interfaces. There are two stages to the algorithm (which
shares some features with classical FE triangulation):

Stage 1 . In this stage we focus on the Elliptical Triangles
required by non-straight edges on the boundary or inter-
nal interfaces. We introduce an (Inwards or Outwards)
Elliptical Triangle for each elliptical-arc boundary edge
and two (an Inwards and an Outwards) Elliptical Tri-
angles for each elliptical-arc internal interface edge; we
perform “splits” of the elliptical-arc boundary/interface
edges as necessary to ensure reference Elliptical Triangles
that satisfy both the internal angle conditions (50),(51)
and the region integrity conditions (18). The new points
created by introduction of the Elliptical Triangles are
denoted interior control points. �
Stage 2 . In this stage we “fill” in the remainder of the
domain with Standard Triangles: (a) We perform a De-
launay triangulation on the boundary/internal interface
control points (initially provided by the User) and the
interior control points (initially introduced in Stage 1
of the algorithm). (b) We next search for a (any) “dis-
respectful” edge: here a “disrespectful” edge is an edge
that belongs to the domain boundary or an internal in-
terface or an Elliptical Triangle but does not (yet) be-
long to the Delaunay triangulation. (c) We then split
the “disrespectful” edge; note this step will create ad-
ditional boundary/internal interface or interior control
points (and Elliptical Triangles). (d) We repeat (a)–
(c) until no disrespectful edges remain. (Note that since
Stage 1 already enforces all curved-edge considerations,

Stage 2 need only consider “logical” edges associated
with the control point connectivity graph.) �
Note the mapping continuity condition (20) is satisfied
for both (i) Elliptical Triangles — the constrained choice
of points, (41), ensures Inwards/Outwards compatibility,
and (ii) Standard Triangles — two affine mappings that
agree at the endpoints of a segment also agree at all
points on the segment.

Unfortunately, our algorithm does not guarantee —
even for very simple parametric domains Ωo(μ) with
straight-edge boundaries decomposed in Standard Trian-
gles — that the Jacobians of the associated affine map-
pings will remain (strictly) positive for all μ ∈ D, and
in particular for μ far from μref . Equivalently, our algo-
rithm does not guarantee that a “valid” domain decom-
position of Ω, (16)–(18), will induce a “valid” domain
decomposition of Ωo(μ), (13)–(15), for all μ ∈ D.4 Fur-
thermore, even if the Jacobian does not vanish, “small”
Jacobians corresponding to excessive distortion will lead
to FE approximations — which we recall shall be built
on a very fine “N” FE subtriangulation of the coarse
“Kdom” RB triangulation — that are at best inefficient
and at worst very ill-conditioned.

We further caution that even well-behaved/non-
singular mappings can be quite “inefficient” as regards
ultimate performance of the reduced basis approxima-
tion. Inefficient RB triangulations are characterized by
many parametrically “dissimilar” triangles that, in turn,
generate many distinct affine mappings (21): we obtain
a large value for Q in (2) and ultimately (as we shall see)
poor Offline and Online RB performance.5 In contrast,
efficient RB triangulations are characterized by (not nec-
essarily relatively few triangles, but rather) relatively few
parametrically “dissimilar” triangles that, in turn, gen-
erate relatively few distinct affine mappings (21) — in
particular, relatively few distinct Jaff,· and Daff,·: we ob-
tain a smaller value for Q in (2) and ultimately better
Offline and Online RB performance.

Fortunately, proper selection of the initial control
point/edge data perhaps supplemented by the introduc-
tion of “artificial” regions — regions motivated by map-
ping considerations rather than physical/mathematical
(e.g., discontinuous property/coefficient) considerations
— can ensure both well-behaved/non-singular and ef-
ficient transformations; in most cases, good (and bad)
choices are rather self-evident. We shall consider several
examples in the next section, but we must first under-

4 The Elliptical Triangles of Stage 1 satisfy the parameter-
independent angle conditions (50),(51): hence the Elliptical
Triangles of Stage I remain non-singular. However, the Stan-
dard Triangles of Stage 2 are not in general of the form (41)
and will not satisfy the conditions (50),(51): hence the Stan-
dard Triangles of Stage II may degenerate to a line — zero
Jacobian — and then proceed to “penetrate” other (Standard
or Elliptical) Triangles.

5 As discussed in Sections 7.1 and 9.4, the RB Offline com-
putational complexity scales as Q, and the RB Online com-
putational complexity scales as Q2.
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stand the connection between the domain decomposition
and associated mapping coefficients developed here and
the final affine representation of the PDE bilinear form,
(2).

5.2 Bilinear Form

As already indicated, we shall consider here only the
scalar case; the vector case (linear elasticity) admits an
analogous treatment [61].

5.2.1 Formulation on “Original” Domain

Our problem is initially posed on the “original” domain
Ωo(μ), which we assume realizes the Affine Geometry
Precondition as described in the previous section. We
shall assume for simplicity that Xe

o(μ) = H1
0 (Ωo(μ)),

which corresponds to homogeneous Dirichlet boundary
conditions over the entire boundary ∂Ωo(μ); we sub-
sequently discuss natural (Neumann and Robin) condi-
tions.

Given μ ∈ D, we evaluate

se
o(μ) = fo(ue

o(μ)) ,

where ue
o(μ) ∈ Xe

o(μ) satisfies

ao(ue
o(μ), v;μ) = fo(v),∀v ∈ Xe

o(μ) .

We now place conditions on ao and fo such that, in con-
junction with the Affine Geometry Precondition, we are
ensured an affine expansion of the bilinear form.

In particular, we require that ao(·, ·;μ): H1(Ωo(μ))×
H1(Ωo(μ))→ R can be expressed as

ao(w, v;μ) =

Lreg∑
�=1

∫
∪k∈K�

Ωk
o (μ)

[
∂w

∂xo1

∂w
∂xo2

w
]Ko,� ij(μ)

⎡⎢⎣
∂v

∂xo1

∂v
∂xo2

v

⎤⎥⎦ ,

(52)

where xo = (xo1, xo2) denotes a point in Ωo(μ). Here,
for 1 ≤ � ≤ Lreg, Ko,� : D → R3×3 is a given symmetric
positive definite matrix (which in turn ensures coercivity
of our bilinear form): the upper 2 × 2 principal subma-
trix of Ko,� is the usual tensor conductivity/diffusivity;
the (3, 3) element of Ko,� represents the identity operator
(“mass matrix”); and the (3, 1), (3, 2) (and (1, 3), (2, 3))
elements of Ko,� — which we can choose here as zero
thanks to our current restriction to symmetric operators
— permit first derivative (or “convection”) terms. (In
Section 11 we consider non-compliant and in particular
non-symmetric bilinear forms, in which case the convec-
tion contributions are non-zero.)

Similarly, we require that fo: H1(Ωo(μ))→ R can be
expressed as

fo(v) =
Lreg∑
�=1

∫
∪k∈K�

Ωk
o (μ)

Fo,�(μ)v ,

where, for 1 ≤ � ≤ Lreg, Fo,�: D → R. (As we discuss
below, somewhat greater generality is in fact permitted.)

5.2.2 Formulation on Reference Domain

We now apply standard techniques to transform the prob-
lem statement over the original domain to an equiva-
lent problem statement over the reference domain: Given
μ ∈ D, we find

se(μ) = f(ue(μ)) ,

where ue(μ) ∈ Xe ≡ H1
0 (Ω) satisfies

a(ue(μ), v;μ) = f(v), ∀v ∈ Xe .

We may then identify se(μ) = se
o(μ) and ue(μ) = ue

o (μ)
◦ T aff(·;μ).

The transformed bilinear form, a, can be expressed
as

a(w, v;μ) =
Kdom∑
k=1

∫
Ωk

[
∂w
∂x1

∂w
∂x2

w
]Kk

ij(μ)

⎡⎢⎣
∂v
∂x1

∂v
∂x2

v

⎤⎥⎦ ,

(53)

where x = (x1, x2) denotes a point in Ω. Here the Kk : D
→ R

3×3, 1 ≤ k ≤ Kdom, are symmetric positive definite
matrices given by

Kk(μ) = Jaff,k(μ) Gk(μ)Ko,�(μ)(Gk(μ))T, ∀ k ∈ K� ,

(54)

for 1 ≤ � ≤ Lreg; the Gk: D → R
3×3, 1 ≤ k ≤ Kdom, are

given by

Gk(μ) =

⎛⎝Daff,k(μ) 0
0

0 0 1

⎞⎠ ; (55)

Jaff,k(μ) and Daff,k(μ), 1 ≤ k ≤ Kdom, are given by (22)
and (23), respectively; and T denotes transpose.

Similarly, the transformed linear form can be expressed
as

f(v) =
Kdom∑
k=1

∫
Ωk

Fk(μ)v .

Here Fk: D → R, 1 ≤ k ≤ Kdom, is given by

Fk = Jaff,k(μ)Fo,�(μ), ∀ k ∈ K�, 1 ≤ � ≤ Lreg .
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(We recall that, for 1 ≤ � ≤ Lreg, K� is the set of sub-
domains associated with region �: K� ∩K�′ = 0, 1 ≤ � <

�′ ≤ Lreg, and ∪Lreg
�=1 K� = {1, . . . , Kdom}.)

We note that, in general, the Kk(μ) and Fk(μ), 1 ≤
k ≤ Kdom, will be different for each subdomain Ωk. The
differences can arise either due to “property” variation
or to geometry variation — or both. We thus require, as
already indicated earlier, that the FE approximation be
built upon a subtriangulation of the RB triangulation:
discontinuities in PDE coefficients are thereby restricted
to element edges to ensure (more) rapid convergence;
and identification/extraction of the terms in the affine
expansion (2) is more readily effected — as we now dis-
cuss.

5.2.3 Affine Form

We focus here on a, though f admits a similar treat-
ment. We simply expand the form (53) by considering in
turn each subdomain Ωk and each entry of the diffusivity
tensor Kk

ij , 1 ≤ i, j ≤ 3, 1 ≤ k ≤ Kdom. Thus,

a(w, v;μ) = K1
11(μ)

∫
Ω1

∂w

∂x1

∂v

∂x1
+

K1
12(μ)

∫
Ω1

∂w

∂x1

∂v

∂x2
+ · · ·+KKdom

33 (μ)
∫

ΩKdom

wv .

(56)

We can then identify each component in the affine ex-
pansion: for each term in (56), the pre-factor represents
Θq(μ), while the integral represents aq.

Taking into account the symmetry of the bilinear
form, such that (effectively) only the (1, 1), (1, 2) (=
(2, 1)), (2, 2), and (3, 3) entries of Ko,�(μ) — and hence
Kk(μ) — must be accommodated, there are (at most)
Q = 4K terms in the affine expansion. The Θq(μ) are
given by (for the obvious numbering scheme) Θ1(μ) =
K1

11(μ), Θ2(μ) = K1
12(μ), . . . , Θ5(μ) = K2

11(μ), . . . , ΘQ(μ)
= KKdom

33 (μ); the aq(w, v) are given by

a1(w, v) =
∫

Ω1

∂w

∂x1

∂v

∂x1
,

a2(w, v) =
∫

Ω1

∂w

∂x1

∂v

∂x2
,

...

a5(w, v) =
∫

Ω2

∂w

∂x1

∂v

∂x1
,

...

aQ(w, v) =
∫

ΩKdom

wv .

This identification constitutes a constructive proof that
the Affine Geometry Precondition and the property/
coefficient variation permitted by (52) do indeed yield
a bilinear form which can be expressed in the requisite
affine form, (2).

In fact, many of the terms in the development (56)
may indeed vanish: often, many entries in Ko,�, 1 ≤ � ≤
Lreg, or in Gk, 1 ≤ k ≤ Kdom, will be zero. For ex-
ample, for a “pure Laplacian” with isotropic diffusiv-
ity and “pure dilation” geometry transformations, we
immediately reduce the number of non-zero terms in
(56) to Q = 2Kdom. In practice, even in more com-
plicated/general situations, not only will there often be
many zero entries, but there will also be many “dupli-
cate” — linearly dependent — entries: in our develop-
ment (56), if (say) K2

11(μ) = ConstK1
11(μ), we may elim-

inate Θ5(μ) and redefine

a1(w, v) =
∫

Ω1

∂w

∂x1

∂v

∂x1
+ Const

∫
Ω2

∂w

∂x1

∂v

∂x1
,

thereby reducing Q. Symbolic manipulation techniques
can identify and eliminate all (zero and) redundant terms
in (56) to arrive at a minimal-Q affine expansion. How-
ever, “good” choice of the User-provided initial control
points/edges for our RB triangulation — a choice that
honors symmetries and isolates geometric variation —
remains important: we describe an example below. (We
re-emphasize that fewer subdomains is not important;
many parametrically similar subdomains will generate
“like terms” that will be automatically coalesced by sym-
bolic economization procedures.)

We close with a discussion of generality. In fact, the
conditions we provide are sufficient but not necessary.
For example, we can permit affine polynomial depen-
dence on xo in both Ko,�(xo;μ) and Fo,�(xo;μ) and still
ensure an affine development, (2); furthermore, in the
absence of geometric variation (in a particular region
�), Ko,�(xo;μ) and Fo,�(xo;μ) can take on any “sepa-
rable” form in x,μ. However, the affine expansion (2) is
by no means completely general: for more complicated
data parametric dependencies, non-affine techniques [18,
53,137] must be invoked.

Another memento mori is provided by inhomoge-
neous natural boundary conditions. Homogeneous Neu-
man conditions obviously pose no problem, as neither a
nor f is affected in this case: we may thus consider homo-
geneous Neumann conditions on any straight, circular,
elliptical, or generally curvy edge of ∂Ω. However, for
inhomogeneous Neuman conditions (which modify f) or
Robin conditions (which modify a), the situation is less
satisfactory: effecting the usual mapping techniques (in
this case involving the “edge” Jacobian), we find that
the transformed equations admit an affine form (2) only
in the case of straight or circular edges. Again, to treat
the more general case, non-affine techniques [18] must be
invoked.

5.3 Computational Results

We consider here several examples of parametrized geome-
tries that illustrate the RB triangulation, mapping, and
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Fig. 5 (a) Original domain Ωo(μ) with single region Ro,1(μ)
and initial control points/edges indicated, and (b) Kdom = 2

RB triangulation Ω = ∪Kdom
k=1 Ω

k
(the numbers refer to sub-

domains).

affine decomposition (and economization) procedures de-
scribed in the previous sections. We consider either ho-
mogeneous Dirichlet boundary conditions, homogeneous
Neumann conditions, or inhomogeneous Neumann con-
ditions on straight edges. We restrict our attention to the
affine representation associated with the bilinear form a,
(2), though in all cases considered f also admits an affine
representation.

As our first example, we consider the original domain
Ωo(μ) shown in Figure 5(a): an obelisk with vertices
(0, 0), (1, 1), (0, μ1), (−1, 1). The single (P = 1) parame-
ter μ1 corresponds to the height of the upper part of the
obelisk; the parameter domain is given by D = [0.5, 3].
We choose for our reference parameter μref = μ1 ref =
2.5.

In the first instance we choose a single region, hence
Lreg = 1, corresponding to the entire domain shown
in Figure 5(a); the User-provided control points ((0, 0),
(1, 1), (0, μ1), (−1, 1)) and control edges (sequential point
pairs) are also indicated in Figure 5(a). In this case we
obtain the RB triangulation (we need only perform one
“sweep” of Stage 2 of the algorithm of Section 5.1.3)
shown in Figure 5(b); clearly, at μ1 = 1 the mapping
will become singular.

In the second instance we now consider the two re-
gions, Lreg = 2, shown in Figure 6(a); the User-provided
control points (in fact, still (0, 0), (1, 1), (0, μ1), (−1, 1))
and control edges — which now include a vertical bi-
sector — are also indicated in Figure 6(a). We now ob-
tain the RB triangulation — in this case we require an
edge split, and hence two sweeps of Stage 2 — shown
in Figure 6(b); the resulting mapping is well defined,
even if somewhat “distorted,” for all μ ∈ D. (We re-
iterate that the regions primarily serve to identify differ-
ent/discontinuous PDE coefficients; however, the regions
can also serve to “stimulate” better mappings.)

We now consider a second, only slightly more in-
volved example, to illustrate how the choice of control
points can affect not only well-posedness but also ef-
ficiency of the “economized” affine representation, (2).
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Fig. 6 (a) Original domain Ωo(μ) with Lreg = 2 regions
Ro,1(μ) (left triangle), and Ro,2(μ) (right triangle) and ini-
tial control points/edges indicated, and (b) Kdom = 4 RB

triangulation Ω = ∪Kdom
k=1 Ω

k
.

(The dependence of the algorithm on the User-provided
control points is in fact a liability, not a feature: we would
prefer complete automation. Our goal here is only to
demonstrate that without too much effort we can guide
the triangulation in the good direction.) We shall con-
sider both (i) the Laplacian with isotropic diffusivity
corresponding to Ko,� 11 = Ko,� 22 = 1 and all other
entries of Ko,� zero for 1 ≤ � ≤ Lreg, and (ii) linear
elasticity for an isotropic (either plane stress or plane
strain) material [61]. We consider the original domain
Ωo(μ) =]− 2, 2[×]− 2, 2[\[−μ1, μ1]× [−μ2, μ2]: a square
with a variable rectangular hole; we choose a single re-
gion, hence Lreg = 1, corresponding to the entire do-
main. The two (P = 2) parameters correspond to the
dimensions of the rectangular hole; the parameter do-
main is given by D = [0.5, 1.5] × [0.5, 1.5]. We choose
μref = (1.0, 1.0).

In the first instance, we choose the User-provided
control points/edges as shown in Figure 7(a), which yields
the Kdom = 8 RB triangulation of Ω shown in Fig-
ure 7(b). Upon economization, there are Q = 10 terms
and Q = 19 terms in our affine expansion (2) for the
Laplacian and elasticity problems, respectively. There is
some symmetry in the RB triangulation, and the econo-
mization does reduce the number of terms in the affine
expansion (say, for the Laplacian) from the maximum
possible of 24 to 10. However, the RB triangulation in-
cludes many (unnecessary) shear terms, which leads to
the rather large Q for this relatively simple problem.

In the second instance, we choose the User-provided
control points/edges as shown in Figure 8(a), which yields
the Kdom = 16 RB triangulation shown in Figure 8(b).
Upon economization, there are Q = 6 terms and Q = 7
terms in our affine expansion (2) for the Laplacian and
elasticity problems, respectively. In this case, the RB tri-
angulation both retains the available symmetries and
avoids (unnecessary) shear contributions. The control
points of Figure 8(a) do exhibit one drawback: the ef-
fect of the hole “propagates” to the outer boundary, and
hence would not be efficient if Ωo(μ) in fact represents a
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Ωo(μ1, μ2) Ω

(a) (b)

Fig. 7 (a) Original domain Ωo(μ) with single region Ro,1(μ)
and initial control points/edges indicated, and (b) Kdom = 8

RB triangulation Ω = ∪Kdom
k=1 Ω

k
(the numbers refer to sub-

domains).

Ωo(μ1, μ2) Ω

(a) (b)

Fig. 8 (a) Original domain Ωo(μ) with single region Ro,1(μ)
and initial control points/edges indicated, and (b) Kdom = 16

RB triangulation Ω = ∪Kdom
k=1 Ω

k
.

region within a larger more complex domain; in the lat-
ter case, the control points of Figure 7(a), which localize
the geometric variation, are preferred.

We now turn to an Elliptical-Edge domain. We con-
sider a Laplacian with a “sink/reaction” term: Ko,� ij =
δij , 1 ≤ i, j ≤ 3, 1 ≤ � ≤ Lreg; here δij is the Kronecker
delta. We consider the original domain Ωo(μ) with two
regions: Ro,1(μ) is the ellipse defined by x2

o1/μ2
1+x2

o2/μ2
2

< 1; Ro,2(μ) =]−2, 2[× ]−2, 2[\Ro,1(μ). In actual prac-
tice, we would introduce different (parameter-dependent)
material properties/discontinuous coefficients in the PDE
in the two regions: for simplicity here, we consider just
the two (P = 2) geometric parameters which define the
ellipse major/minor axes; the parameter domain is given
by D = [0.5, 1.5]× [0.5, 1.5]. We choose μref = (1.0, 1.0).

We select the User-provided control points/edges
shown in Figure 9(a); we obtain the Kdom = 34 RB trian-
gulation of Ω shown in Figure 9(b). (Note the many con-
trol points/edges in Figure 9(b) relative to Figure 9(a):
we perform many edge splits in both Stage 1 and Stage 2.)
Note that all the subdomains inside the ellipse are In-
wards Elliptical Triangles, and the subdomains k = 16,
18, 20, 21, 24, 25, 29, 31 are all Outwards Elliptical Tri-
angles.
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Fig. 9 (a) Original domain Ωo(μ) with Lreg = 2 regions
Ro,1(μ) and Ro,2(μ) and initial control points/edges indi-

cated, and (b) Kdom = 34 RB triangulation Ω = ∪Kdom
k=1 Ω

k
.

In this case, we obtain Q = 15, which is quite mod-
est; furthermore, the geometric feature is “localized” in
the sense that the control points on the outer square are
parameter-independent. We observe that many subdo-
mains does not necessarily imply large Q; in this case,
all the Inwards and Outwards Elliptical Triangles share
the same (anisotropic) dilation mapping, and hence gen-
erate similar mapping coefficients that can be coalesced
in the final affine representation.

As our last example, we consider a more general Curvy-
Edge domain with a single region. We consider an isotropic
Laplacian corresponding to Ko,1 11 = Ko,1 22 = 1 (all
other entries of Ko,1 are set to zero). We consider the
original domain Ωo(μ) given by {(xo1, xo2) | 0 < xo1 <
1,−1 < xo2 < μ1 cos πxo1}. The single (P = 1) para-
meter represents the amplitude of the cosinusoidal top
boundary; the parameter domain is given by D = [ 16 , 1

2 ].
We choose μref = 1/3.

We select the User-provided control points and edges
shown in Figure 10(a). Note for the Curvy Edge associ-
ated with control points (0, μ1) and (1/2, 0) we choose
center (0, 0) and hence our parameterization is given by(

xo1

xo2

)
=
[

1 0
0 μ1

] [
t

cos πt

]
(57)

for 0 ≤ t ≤ 1/2; for the Curvy Edge associated with con-
trol points (0, 1/2) and (1,−μ1) we choose center (1, 0)
and hence our parameterization is given by(

xo1

xo2

)
=
[

1
0

]
+
[

1 0
0 μ1

] [
t− 1
cos πt

]
(58)

for 1/2 ≤ t ≤ 1. These choices yield the Kdom = 8
RB triangulation of Ω shown in Figure 10(b). We note
that subdomains k = 5, 6 correspond to Outwards and
Inwards Curvy Triangles, respectively.

In this case we obtain Q = 9, again rather modest.
This particular problem is more obviously treated by a
“stretch” mapping (which is not affine); however, for our
purposes we clearly prefer the piecewise-affine mapping
presented here. We emphasize that arbitrary Curvy Edge
domains will not, in general, permit affine treatment:
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Fig. 10 (a) Original domain Ωo(μ) with single region
Ro,1(μ) and initial control points/edges indicated, and

(b) Kdom = 8 RB triangulation Ω = ∪Kdom
k=1 Ω

k
.

the Curvy Edges must admit a (parameter-independent)
concave/convex decomposition and appropriate centers
in order for our approach to be directly applicable.

6 Working Examples

6.1 Scalar Problems

We consider two “working” examples. The first shall
serve as a vehicle for the convergence theory; the sec-
ond is intended to illustrate an application. We note that
in all cases we provide the formulation for the “exact”
problem (superscript e); the FE approximation is then
derived from the exact statement (and RB triangulation)
following the procedures described earlier. Note also that
all problems are presented in non-dimensional form.

6.1.1 Thermal Block

We consider heat conduction in a square domain. The
square comprises B1 × B2 blocks: each block is a differ-
ent region with different thermal conductivity; the geom-
etry is depicted in Figure 11. Inhomogeneous Neumann
(non-zero flux) boundary conditions are imposed on Γbot;
homogeneous Dirichlet (temperature) conditions are im-
posed on Γtop; and homogeneous (zero flux) Neuman
conditions are imposed on the two sides. The output of
interest is the average temperature over Γbot [6,7].

The parameters are then the conductivities in the
first B1B2−1 blocks (with the blocks numbered as shown
in Figure 11); note in our non-dimensionalization the
conductivity of the last block, which serves for normal-
ization, is unity. Hence P = B1B2 − 1 and μ = (μ1, . . . ,
μP ), where μp is the conductivity of block p; the pa-
rameter domain is then given by D = [μmin, μmax]P
with μmin = 1/

√
μr, μmax =

√
μr for μr = 100 (hence

μmax/μmin = 100).
We immediately recover our abstract statement of

(1): we identify Xe ≡ {v ∈ H1(Ω)
∣∣ v|Γtop = 0}, which

imposes the Dirichlet conditions;

a(w, v;μ) =
P∑

i=1

μi

∫
Ri

∇w · ∇v +
∫
RP+1

∇w · ∇v , (59)

0 1
0

1

Fig. 11 Thermal Block problem for B1 = B2 = 3.

which represents the Laplacian and homogeneous Neu-
mann conditions (as well as internal flux continuity con-
ditions); and

f(v) ≡ fNeu(v) ≡
∫

Γbot

v , (60)

which imposes the inhomogeneous Neumann conditions.
Here

Ω = ∪P+1
i=1 Ri ,

where the Ri, i = 1 . . . , P +1, correspond to the regions
associated with the respective blocks/conductivities, as
indicated in Figure 11.

The problem is readily demonstrated to be coercive,
symmetric, and compliant (the Neumann boundary con-
dition functional indeed corresponds to the average tem-
perature functional). The problem is also affine in para-
meter, (59): in this case no geometric transformations are
required, though the regions still serve to accommodate
the discontinuous PDE coefficients; we directly observe
that Q = P +1 with Θq(μ) = μq, 1 ≤ q ≤ P , ΘP+1 = 1,
and

aq(w, v) =
∫
Rq

∇w · ∇v, 1 ≤ q ≤ P + 1 .

(Note for this problem f is indeed independent of μ.)
This problem shall serve to illustrate the convergence

rate of the RB discretization, both for P = 1 in which
we can compare with available a priori theory, and for
P = 8 corresponding to “many parameters.”

6.1.2 Inviscid Flow: Added Mass

We consider inviscid incompressible flow induced by small
motions of a square body in a “basin.” In this case, there
is only a single region: the physical (flow) domain Ωo(μ)
— the basin \ the body — is depicted in Figure 12(a).
The governing equation is Laplace’s equation for the
pressure. Inhomogeneous Neumann boundary conditions
on the pressure (corresponding to inhomogeneous condi-
tions on the normal velocity) are imposed on Γ±o,1; ho-
mogeneous Dirichlet (“free surface”) conditions on the
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Fig. 12 (a) Original domain Ωo(μ) with single region
Ro,1(μ) and initial control points/edges indicated, and

(b) Kdom = 22 RB triangulation Ω = ∪Kdom
k=1 Ω

k
.

pressure are imposed on Γo,s; and homogeneous Neu-
mann conditions on the pressure (zero normal flow) are
imposed on all other boundaries. The output of interest
is the classical added mass [94].

The three parameters — in this case, all the parame-
ters are geometric — are indicated in Figure 12(a). Hence
P = 3 and μ = (μ1, μ2, μ3): μ1 is the lateral extent of the
basin, μ2 is the minor axis of the elliptical arc describing
the bottom of the basin, and μ3 is the horizontal location
of the (center of the) square block; the parameter domain
is given by D = [1.5, 3] × [0.5, 1.5] × [−0.35,−0.35]. We
choose μref = (2, 1, 0) which in turn defines our reference
domain Ω = Ωo(μref).

We again realize the abstraction of (1), however in
this case — and in fact, in all cases involving geometric
variation — it shall prove more convenient to define the
constituents with respect to the “original” (parameter-
dependent) domain. In particular, we identify Xe

o(μ) ≡
{v ∈ H1(Ωo(μ))

∣∣v|Γo,s = 0}, which imposes the Dirichlet
conditions;

ao(w, v;μ) =
∫

Ωo(μ)

∇w · ∇v ,

which represents the Laplacian and homogeneous Neu-
mann/zero normal flow conditions; and

fo(v) ≡
∫

Γ+
o,1

v −
∫

Γ−
o,1

v ,

which imposes a xo1-velocity of unity on both Γ+
o,1 and

Γ−o,1. The problem is clearly coercive, symmetric, and
compliant (the normal velocity functional also corresponds
to the pressure force — and hence added mass — func-
tional).

We may then apply our methods of Section 5.1: for
the control points/edges indicated in Figure 12(a), the
algorithm of Section 5.1.3 yields the Kdom = 22 RB tri-
angulation of Ω depicted in Figure 12(b); we then con-
struct the associated affine mappings according to the
recipe of Section 5.1.2; we next effect the re-formulation
on the reference domain, as described in Section 5.2.2;
finally, we extract and coalesce/economize the terms in
the affine expansion, (2), following the process defined in
Section 5.2.3. In this particular case, we obtain an affine
expansion (2) with Q = 34 terms. (For this problem, f
does not depend on μ, as the edges Γ±o,1 do not depend
on the parameters.) Note this proliferation of terms from
P = 3 to Q = 34 — typical of more geometrically com-
plex problems — adversely affects Online performance
(which depends on Q), and in practice limits the scope
of our approach; without economization, the situation
would be much worse.

We note that the current added-mass example also il-
lustrates the many query context: in practice, the output
might appear as a position-dependent (μ3-dependent)
coefficient in the acceleration term of the dynamical equa-
tion for the position of the body; numerical integration
of these equations of motion could thus require repeated
evaluation of the added-mass output. (Applications can
be conceived at both the large ocean engineering scale or
the small bio-engineering scale.) Reduced basis methods
are very efficient for treatment of this class of problems.

6.2 Vector Problems: Linear Elasticity

We consider two “working” examples. The first (in d = 3
space dimensions) shall serve as a vehicle for quantify-
ing computational performance; the second (in d = 2
dimensions) is intended to illustrate an application. We
note that in all cases we provide the formulation for the
“exact” problem (superscript e); the FE approximation
is then derived from the exact statement (and RB trian-
gulation) following the procedures described earlier —
suitably extended to the vector case. Note also that all
problems are presented in non-dimensional form.

6.2.1 Elastic Block 3D

We consider linear elasticity in a cubic domain ]0, 3[ 3

with a centered parallelepiped of different material —
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Fig. 13 Domain (and two regions) for Elastic Block 3D.

an inhomogeneous inclusion — and of variable dimen-
sion. Each material is associated with a different region;
we depict the geometry Ωo(μ) and two regions in Fig-
ure 13. The governing equation is the equation of linear
elasticity (isotropic material) for the displacement. In-
homogeneous Neumann boundary conditions on the dis-
placement (corresponding to uniform normal stress) are
imposed on Γo,T ; homogeneous Dirichlet conditions on
the displacement (“clamped”) are imposed on Γo,D; and
homogeneous Neumann conditions on the displacement
(zero normal and tangential stress) are imposed on all
other boundaries. The output of interest is the integrated
normal displacement over Γo,T [150].

There are four parameters. The first three parameters
are geometric, while the fourth parameter relates to ma-
terial properties. Hence P = 4 and μ = (μ1, μ2, μ3, μ4):
μ1, μ2, and μ3 are the extent of the parallelepiped in-
clusion (with center (3/2, 3/2, 3/2)) in the xo1, xo2, and
xo3 coordinates, while μ4 is the Young’s modulus of the
inclusion relative to the Young’s modulus of the “con-
tinuous phase” (the two materials are assumed to have
the same Poisson ratio νPo = 0.3); the parameter do-
main is given by D = [0.5, 2]3 × [0.1, 10]. We choose
μref = (1, 1, 1, · ).

We again realize the abstraction of (1). As before, it
is most convenient to define the constituents with respect
to the “original” (parameter-dependent) domain. In par-
ticular, we identify Xe

o(μ) ≡ {v ∈ (H1(Ωo(μ)))3
∣∣v|Γo,D =

0}, which imposes the clamped conditions;

ao(w, v;μ) =
∫
Ro,1(μ)

∂wi

∂xoj
C1 ijmn(μ)

∂wm

∂xon
+

∫
Ro,2(μ)

∂wi

∂xoj
C2 ijmn(μ)

∂wm

∂xon
,

where for � = 1, 2,

C� ijmn(μ) = λ1
�(μ) δijδmn + λ2

�(μ)(δimδjn + δinδjm) ,

with δij the Kronecker delta symbol and

λ1
1(μ) =

μ4ν
Po

(1 + νPo)(1− 2νPo)
, λ2

1(μ) =
μ4

2(νPo + 1)

λ1
2(μ) =

νPo

(1 + νPo)(1− 2νPo)
, λ2

2(μ) =
1

2(νPo + 1)

the non-dimensional Lamé constants for an isotropic elas-
tic material; finally,

fo(v;μ) ≡
∫

Γo,T

v1 ,

which imposes the normal stress of unity on Γo,T . The
problem is clearly coercive, symmetric, and compliant
(the normal stress functional also corresponds to the in-
tegrated displacement functional).

We now apply (the vector version of) our methods
of Section 5, but in this case “by hand”: we choose 27
cubic subdomains as our uniform RB “triangulation” of
Ω — the inclusion region Ro,1(μ) (respectively, the con-
tinuous phase region Ro,2(μ)) comprises the “middle”
subdomain � = 14 (respectively, the remaining subdo-
mains � = 1, . . . , 13, 15, . . . , 27); we then construct the
associated affine mappings by inspection — anisotropic
dilations; we next effect the re-formulation on the ref-
erence domain, as described in Section 5.2.2 (suitably
extended to the vector case); finally, we extract and co-
alesce/economize the affine expansion, (2), following the
process defined in Section 5.2.3. In this particular exam-
ple, we obtain an affine expansion for a, (2), with Q = 48
terms. (For this problem, f does depend on μ: f(v;μ)
admits a 4-term affine expansion.) As is typically the case
— in particular for rectilinear problems — the Θq(μ) are
low-order rational polynomials in μ.

This example shall serve to (quantitatively) assess
computational performance of the RB method relative
to the FE method. This problem is also quite similar
to the cell problems that must be solved in the many-
query non-periodic homogenization context; see [26] for
application of the RB approach to non-periodic homog-
enization theory.

6.2.2 Elastic Crack: Stress Intensity Factor

We consider linear elasticity for a crack emanating from
a hole in “Mode I” tension; we consider only one quarter
of the domain thanks to symmetry of geometry and load-
ing. We depict the geometry (and single region) Ωo(μ)
in Figure 14; note the crack corresponds to boundary
segment Γo,1. The governing equation is the equation of
linear elasticity (isotropic material) for the displacement.
Inhomogeneous Neumann boundary conditions on the
displacement (corresponding to uniform normal stress)
are imposed on Γo,4; mixed homogeneous Dirichlet/
Neumann conditions on the displacement (“symmetry”)
are imposed on Γo,2 and Γo,5; homogeneous Neumann
conditions on the displacement (zero normal and tangen-
tial stress) are imposed on all other boundaries (includ-
ing the crack and hole). The ultimate output of interest
is the Stress Intensity Factor for the crack, which we shall
derive from an intermediate (compliant) energy output
by application of the virtual crack extension approach
[109].
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(a) (b)

Fig. 14 Elastic Crack: (a) Original domain Ωo(μ) (single
region) with initial control points/edges indicated, and (b)
Boundary segments on ∂Ωo(μ).

There are two parameters; both parameters are geo-
metric in origin, as shown in Figure 14. (In our scal-
ing, the Young’s modulus of the material is unity; the
Poisson ratio is fixed at νPo = 0.3.) Hence P = 2 and
μ = (μ1, μ2): μ1 is the length of the crack (as measured
from the hole), while μ2 is the radius of the hole; the
parameter domain is given by D = [0.1, 0.3] × [0.1, 0.5].
We now choose μref = [0.2, 0.3] which in turn defines our
reference domain Ω = Ωo(μref). (Note that as μ1 varies
for μ2 fixed the length of the crack changes but the ra-
dius of the hole is invariant; this shall be important in
evaluating the Stress Intensity Factor.)

We again realize the abstraction of (1). As before, it
is most convenient to define the constituents with respect
to the “original” (parameter-dependent) domain. In par-
ticular, we identify Xe

o(μ) ≡ {v ∈ (H1(Ωo)(μ))2
∣∣v1|Γo,5 =

0, v2|Γo,2 = 0}, which imposes the Dirichlet component
of the symmetry conditions;

ao(w, v;μ) =
∫

Ωo(μ)

∂wi

∂xoj
Cijkl

∂wk

∂xol
,

where

Cijkl = λ1δijδkl + λ2(δikδjl + δilδjk) ,

with δij the Kronecker delta symbol and

λ1 =
νPo

(1− νPo)2
, λ2 =

1
2(νPo + 1)

the non-dimensional Lamé constants for an isotropic lin-
ear elastic material in plane stress (νPo = 0.3); finally,

fo(v;μ) ≡
∫

Γo,4

v1 ,

which imposes the normal stress of unity on Γo,4. The
problem is clearly coercive, symmetric, and — by con-
struction — compliant.

We may then apply (the vector version of) our meth-
ods of Section 5: for the control points/edges indicated in
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Fig. 15 Elastic Crack: Kdom = 6 RB triangulation Ω =

∪Kdom
k=1 Ω

k
.

Figure 14(a) (recall there is a single region in this exam-
ple), the algorithm of Section 5.1.3 yields the Kdom = 6
RB triangulation of Ω depicted in Figure 15; we then
construct the associated affine mappings according to the
recipe of Section 5.1.2; we next effect the re-formulation
on the reference domain, as described in Section 5.2.2
(suitably extended to the vector case); finally, we ex-
tract and coalesce/economize the affine expansion, (2),
following the process defined in Section 5.2.3. In this par-
ticular case, we obtain an affine expansion for a, (2), with
Q = 25 terms. (For this problem, f does not depend on
μ.) We again note the modest but non insignificant am-
plification from P = 2 (geometric) parameters to Q = 25
terms in the affine expansion.

As already indicated, the (transformed) output se(μ)
= f(ue(μ)) is, in this example, only an intermediate re-
sult “on the way” to the Stress Intensity Factor (SIF). In
particular, the virtual crack extension method [109] —
based on the energy formulation of the Stress Intensity
Factor — yields the Energy Release Rate (ERRe), Ge,
as

Ge(μ) = −
(∂se(μ)

∂μ1

)
in terms of which (in our non-dimensionalization) the
Stress Intensity Factor can then be expressed as SIFe(μ) =√

Ge(μ). We can thus construct, for suitably small δμ1,
a finite-difference approximation to the ERRe as

Ĝe(μ) = −
(se(μ + δμ1)− se(μ)

δμ1

)
and subsequently to the SIFe as ŜIF

e
(μ) =

√
Ĝe(μ). We

shall later develop first a FE approximation and subse-
quently a corresponding RB approximation — and asso-
ciated RB error bound — for Ĝe(μ).

The ERR and SIF often serve in the real-time or
many-query contexts. In the real-time context, we might
require “in the field” evaluation of fracture for given
(varying) environmental conditions [20]. In the many-
query context, we might require evaluation of crack growth
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from Paris’s law in which the SIF — itself a function a
crack length — is the crucial term.

7 The Reduced Basis Method

7.1 Reduced Basis Approximation

7.1.1 RB Spaces

We assume that we are given a FE approximation space
of dimension N , XN . (We shall subsequently confirm
that all our results are computationally and mathemat-
ically stable as N → ∞; however, in order to define a
particular reduced basis space, we may consider a fixed
N .) We then introduce, given a positive integer Nmax, an
associated sequence of (what shall ultimately be reduced
basis) approximation spaces: for N = 1, . . . , Nmax, XN

N
is a N -dimensional subspace of XN ; we further suppose
that

XN
1 ⊂ XN

2 ⊂ · · ·XN
Nmax

⊂ XN . (61)

As we shall see, the nested or hierarchical condition (61)
is important in ensuring (memory) efficiency of the re-
sulting reduced basis approximation. (In one instance —
which we will clearly mark — we will for purely theo-
retical purposes consider a non-hierarchical sequence of
spaces.)

We recall from Section 2 that there are several clas-
sical RB proposals — Taylor, Lagrange, and Hermite
spaces — as well as several more recent contenders —
such as POD spaces. All of these spaces “focus” in one
fashion or another on the low-dimensional, smooth para-
metric manifold, MN = {u(μ) | μ ∈ D}, already identi-
fied in Opportunity I of Section 2: indeed, the central role
of this parametric manifold is the defining (albeit some-
what imprecisely defined here) characteristic of “proper”
reduced basis spaces. Much of what we present — in par-
ticular, all the material of this section related to optimal-
ity, discrete equations, conditioning, and Offline-Online
procedures, and all the material of Section 9 related to
a posteriori error estimation — shall be relevant to any
of these reduced basis spaces/approximations.

However, some of what we shall present, in particular
related to sampling strategies in Section 7.2, is restricted
to the particular reduced basis space which shall be our
primary focus: the Lagrange reduced basis spaces [119],
which we shall denote by (XN

N =) WN
N . In order to de-

fine a (hierarchical) sequence of Lagrange spaces WN
N ,

1 ≤ N ≤ Nmax, we first introduce a “master set” of pa-
rameter points μn ∈ D, 1 ≤ n ≤ Nmax. We then define,
for given N ∈ {1, . . . , Nmax}, the Lagrange parameter
samples

SN = {μ1, . . . ,μN} , (62)

and associated Lagrange RB spaces

WN
N = span{uN (μn), 1 ≤ n ≤ N} . (63)

“snapshots”

Fig. 16 The “snapshots” uN (μn), 1 ≤ n ≤ N , on the para-
metric manifold MN .

We observe that, by construction, these Lagrange spaces
XN

N = WN
N satisfy (61): the samples (62) are nested

— S1 = {μ1} ⊂ S2 = {μ1,μ2} ⊂ · · · ⊂ SNmax ; the
Lagrange RB spaces (63) are hierarchical — WN

1 =
span{uN (μ1)} ⊂WN

2 = span{uN (μ1), uN (μ2)} ⊂ · · · ⊂
WN

Nmax
.

The uN (μn), 1 ≤ n ≤ Nmax, are often referred to as
“snapshots” of the parametric manifold MN . For rea-
sons that will become clear subsequently, we shall de-
note these snapshots more precisely as “retained snap-
shots.” We depict the retained snapshots graphically in
Figure 16. It is clear that, if indeed the manifold is low-
dimensional and smooth (a point we return to later),
then we would expect to well approximate any member
of the manifold — any solution uN (μ) for some μ in D—
in terms of relatively few retained snapshots. However,
we must first ensure that we can choose a good combina-
tion of the available retained snapshots (Section 7.1.2),
that we can represent the retained snapshots in a sta-
ble RB basis (Section 7.1.2), that we can efficiently ob-
tain the associated RB basis coefficients (Section 7.1.3),
and finally that we can choose our retained snapshots
— in essence, the parameter sample SNmax — optimally
(Section 7.2.2). (Note only the last item is specific to
Lagrange RB spaces.)

7.1.2 Galerkin Projection

For our particular class of equations, Galerkin projection
is arguably the best approach. Given μ ∈ D, evaluate
(recalling our compliance assumption)

sNN (μ) = f(uNN (μ)) ,

where uNN (μ) ∈ XN
N ⊂ XN (or more precisely, uN

XN
N

(μ) ∈
XN

N ) satisfies

a(uNN (μ), v;μ) = f(v), ∀ v ∈ XN
N . (64)

We emphasize that our ultimate interest is the output
prediction: the field variable serves as an intermediary.
(We discuss below a simpler but less rigorous and typi-
cally less efficient alternative: direct approximation/
interpolation of the input-output relation μ→ s(μ).)
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We immediately obtain the classical optimality result
in the energy norm (5):

|||uN (μ)− uNN (μ)|||μ ≤ inf
w∈XN

N

|||uN (μ)− w|||μ ; (65)

in the energy norm, the Galerkin procedure automat-
ically selects the best combination of snapshots. (Sim-
ilar but sub-optimal results obtain in other equivalent
norms.) It is also readily derived that

sN (μ)− sNN (μ) ≡ |||uN (μ)− uNN (μ)|||2μ ; (66)

the output — our quantity of interest — converges as
the “square” of the energy error. (Although this latter re-
sult depends critically on the compliance assumption, ex-
tension via adjoint approximations to the non-compliant
case is possible; we discuss this further in Section 11.)

We now consider the discrete equations associated
with the Galerkin approximation (64). We must first
choose an appropriate basis for our space: incorrect choice
of the RB basis can lead to very poorly conditioned
systems; this is immediately apparent in the Lagrange
case — if WN

N provides rapid convergence then, by con-
struction, the snapshots of (63) will be increasingly co-
linear as N increases. Towards this end, we apply the
Gram-Schmidt process [88,149] in the (·, ·)X inner prod-
uct to our snapshots uN (μn), 1 ≤ n ≤ Nmax, to obtain
mutually orthonormal functions ζNn , 1 ≤ n ≤ Nmax:
(ζNn , ζNm )X = δnm, 1 ≤ n, m ≤ Nmax, where δnm is
the Kronecker-delta symbol. We then choose the sets
{ζNn }n=1,...,N as our bases for WN

N , 1 ≤ N ≤ Nmax.
We now insert

uNN (μ) =
N∑

m=1

uNN m(μ)ζNm , (67)

and v = ζNn , 1 ≤ n ≤ N , into (64) to obtain the RB
“stiffness” equations

N∑
m=1

a(ζNm , ζNn ;μ) uNN m(μ) = f(ζNn ), 1 ≤ n ≤ N , (68)

for the RB coefficients uNN m(μ), 1 ≤ m ≤ N ; we can
subsequently evaluate the RB output prediction as

sNN (μ) =
N∑

m=1

uNN m(μ)f(ζNm ) . (69)

It can be readily proven [112] that the condition number
of the matrix a(ζNm , ζNn ;μ), 1 ≤ n, m ≤ N , is bounded
by γe(μ)/αe(μ) independent of N and N .

7.1.3 Offline-Online Procedure

The system (68) is nominally of small size: a set of N
linear algebraic equations in N unknowns. However, the
formation of the stiffness matrix, and indeed the load
vector, involves entities ζNn , 1 ≤ n ≤ N, associated with
our N -dimensional FE approximation space. If we must
invoke FE fields in order to form the RB stiffness matrix
for each new value of μ the marginal cost per input-
output evaluation μ → sN (μ) will remain unacceptably
large.

Fortunately, we can appeal to affine parameter de-
pendence to construct very efficient Offline-Online pro-
cedures, as we now discuss. In particular, we note that
our system (68) can be expressed, thanks to (2), as

N∑
m=1

(
Q∑

q=1
Θq(μ) aq(ζNm , ζNn )

)
uNN m(μ) = f(ζNn ),

1 ≤ n ≤ N .

(70)

We observe that the ζN. are now isolated in terms that
are independent of μ and hence that can be pre-computed
in an Offline-Online procedure.

In the Offline stage, we first compute the uN (μn),
1 ≤ n ≤ Nmax, and subsequently the ζNn , 1 ≤ n ≤ Nmax;
we then form and store the

f(ζNn ), 1 ≤ n ≤ Nmax , (71)

and

aq(ζNm , ζNn ), 1 ≤ n, m ≤ Nmax, 1 ≤ q ≤ Q . (72)

The Offlline operation count depends on Nmax, Q, and
N .

In the Online (or “deployed”) stage, we retrieve (72)
to form

Q∑
q=1

Θq(μ)aq(ζNm , ζNn ), 1 ≤ n, m ≤ N ; (73)

we solve the resulting N × N stiffness system (70) to
obtain the uNN m(μ), 1 ≤ m ≤ N ; and finally we access
(71) to evaluate the output (69). The Online operation
count is O(QN2) to perform the sum (73), O(N3) to
invert (70) — note that the RB stiffness matrix is full,
and finally O(N) to effect the inner product (69). The
Online storage (the data archived in the Offline stage)
is — thanks to our hierarchical condition (61) — only
O(QN2

max) + O(Nmax): for any given N , we may ex-
tract the necessary RB N × N matrices (respectively,
N -vectors) as principal submatrices (respectively, prin-
cipal subvectors) of the corresponding Nmax×Nmax (re-
spectively, Nmax) quantities.

The Online cost (operation count and storage) — and
hence marginal cost and also asymptotic average cost —
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to evaluate μ → sNN (μ) is thus independent of N . The
implications are two-fold: first, if N is indeed small, we
will achieve very fast response in the real-time and many-
query contexts; second, we may choose N very conserv-
atively — to effectively eliminate the error between the
exact and FE predictions — without adversely affect-
ing the Online (marginal) cost. We now turn to a more
detailed discussion of sampling and (in Section 8) con-
vergence in order to understand how, to a certain extent,
why, we can achieve high accuracy for N independent of
N and indeed N � N .

7.2 “Sampling” Strategies

We first indicate a few preliminaries. We then turn to
two examples of sampling strategies.

We shall denote by Ξ a finite sample of points in D.
These “test” samples Ξ shall serve as surrogates for D in
the calculation and presentation of errors (and, in Sec-
tion 9, error bounds and effectivities) over the parameter
domain. Typically these samples are chosen by Monte
Carlo methods with respect to a uniform or log-uniform
density. For brevity we will often report neither the spe-
cific distribution, nor the precise number, of points in
Ξ: we always ensure (and empirically confirm) that Ξ is
sufficiently large that the reported results are insensitive
to further refinement of the parameter sample.

Given a function y: D → R, we define

‖y‖L∞(Ξ) ≡ max
μ∈Ξ

|y(μ)| ,

and

‖y‖Lp(Ξ) ≡
(
|Ξ|−1

∑
μ∈Ξ

|y|p(μ)
)1/p

.

Given a function z : D → XN (or Xe), we then define

‖z‖L∞(Ξ;X) ≡ max
μ∈Ξ

‖z(μ)‖X ,

and

‖z‖Lp(Ξ;X) ≡
(
|Ξ|−1

∑
μ∈Ξ

‖z(μ)‖p
X

)1/p

.

Here |Ξ| denotes the cardinality of (the finite number of
elements in) the test sample Ξ.

We denote the particular samples which shall serve
to select our RB space — or “train” our RB approxima-
tion — by Ξtrain. The cardinality of Ξtrain will be de-
noted |Ξtrain| = ntrain. We note that although the “test”
samples Ξ serve primarily to understand and assess the
quality of the RB approximation and a posteriori error
estimators, the “train” samples Ξtrain serve to generate
the RB approximation. The choice of ntrain and Ξtrain

thus have important Offline and Online computational
implications.

7.2.1 POD RB Spaces: XN POD
N

These POD RB spaces can be defined very simply [37,
58,72,73,78]: Given Ξtrain, the XN POD

N , 1 ≤ N ≤ Nmax,
are the solution to the optimization problem

XN POD
N =

arg inf
XN

N ⊂span{uN (μ) | μ∈Ξtrain}
‖uN −ΠXN

N
uN ‖L2(Ξtrain;X) ,

(74)

where ΠXN
N

: XN → XN
N refers to the projection in the X

inner product. We shall denote the functions uN (μ),μ ∈
Ξtrain, as “candidate snapshots.” Although certainly not
immediately apparent, it can be readily demonstrated
that the POD spaces are indeed hierarchical, (61).

It is a well-known but nevertheless remarkable fact
[58] that the optimization problem (74) — ostensibly of
combinatorial complexity in ntrain — can be reduced to
the solution of an ntrain×ntrain correlation-matrix eigen-
problem — of algebraic complexity in ntrain.6 However,
the POD approach is nevertheless very expensive: first,
and most importantly, we must compute all ntrain (FE)
candidate snapshots — and perform n2

train/2 candidate
snapshot-candidate snapshot X inner products — in or-
der to form the correlation matrix; second, we must solve
for the first Nmax eigenvalues/eigenproblems of the very
large — ntrain×ntrain — correlation matrix. In practice,
this can severely limit ntrain, which in turn (in partic-
ular for higher parameter dimensions P ) can result in
poor spaces — slow convergence, and large errors over
D \ Ξtrain.

7.2.2 Greedy Lagrange RB Spaces: WN Greedy
N and

WN Greedy,en
N

We now develop a sample strategy particular to RB La-
grange spaces. The method can be viewed as a “heuris-
tic” (more precisely, sub-optimal) solution to the
L∞(Ξtrain;X) optimization problem analogous to the
L2(Ξtrain;X) POD optimization problem (74).

We are given Ξtrain and Nmax, as well as S1 = {μ1},
WN Greedy

1 = span{uN (μ1)}. (In actual practice we may
set Nmax either directly, or indirectly through a pre-
scribed error tolerance.) Then, for N = 2, . . . , Nmax, we
find

μN = arg max
μ∈Ξtrain

ΔN−1(μ) ,

6 The eigenfunctions associated with the Nmax largest
eigenvalues — with minor postprocessing — directly pro-
vide the requisite orthonormal basis functions [112]. Note,
however, that each basis function in general will combine all
ntrain candidate snapshots uN (μ), μ ∈ Ξtrain, and thus the
XN POD

N will not correspond to Lagrange RB spaces.
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set SN = SN−1 ∪ μN , and update WN Greedy
N = WN Greedy

N−1

+ span{uN (μN )}. As we shall describe in detail in Sec-
tion 9, ΔN (μ) is a sharp, (asymptotically) inexpensive a
posteriori error bound for ‖uN (μ)− uN

WN Greedy
N

(μ)‖X .

Roughly, at iteration N the greedy algorithm ap-
pends to the retained snapshots that particular candi-
date snapshot — over all candidate snapshots uN (μ),
μ ∈ Ξtrain — which is (predicted by the a posteriori
error bound to be the) least well approximated by (the
RB prediction associated to) WN Greedy

N−1 . Typically, this
greedy approach will be much less expensive than the
POD approach: in the greedy approach, we need com-
pute only the N — typically very few — FE retained
snapshots; in the POD approach, we must compute all
ntrain — typically/desirably very many — FE candi-
date snapshots.7 Furthermore we shall observe empiri-
cally, although at present we have no proof, that the
short-horizon “greedy” selection criterion in fact engen-
ders rapidly convergent RB approximation spaces — typ-
ically as good as the POD spaces. (The temporal evolu-
tion case is quite different: the greedy approach [52,55]
can encounter difficulties best treated by incorporating
elements of the POD selection process [60].)

We can develop an analogous greedy procedure in the
energy norm; the energy norm is particularly relevant
in the “compliant” case, since the error in the energy
norm is directly related to the error in the output (see
Section 7.1.2). As before, we are given Ξtrain and Nmax,
as well as S1 = {μ1}, WN Greedy,en

1 = span{uN (μ1)} .
Then, for N = 2, . . . , Nmax, we find

μN = arg max
μ∈Ξtrain

(ωN (μ))−1 Δen
N−1(μ) ,

set SN = SN−1 ∪ μN , and update WN Greedy,en
N =

WN Greedy,en
N−1 +span{uN (μN )}. As described in detail in

Section 9.3, Δen
N (μ) is a sharp, (asymptotically) inexpen-

sive a posteriori error bound for |||uN (μ) −
uN

WN Greedy,en
N

(μ)|||μ. The prefactor ωN (μ) is typically cho-

sen either as unity or (as in all cases in this paper)
|||uN

WN Greedy,en
N

(μ)|||μ; for the latter choice, the greedy se-

lects on relative energy error (the square of which yields
the relative output error).

We now turn to theoretical and computational evi-
dence that this greedy selection process generates spaces
which are, if not optimal, at least very good.

7 Clearly the accuracy and cost of the a posteriori error
estimator ΔN (μ) are crucial to the success of the greedy al-
gorithm: we provide theoretical results for the effectivity and
asymptotic average operation count in Section 9. Detailed
operation counts for the aggregate greedy procedure, includ-
ing all a posteriori estimation contributions, are provided in
[112].

0 1
0

1

Fig. 17 Thermal Block problem: B1 = 2, B2 = 1.

8 Convergence of RB Approximations

8.1 Single Parameter Case: P = 1

8.1.1 Model Problem

We shall consider the Thermal Block problem of Sec-
tion 6.1.1 for the case in which B1 = 2, B2 = 1, as shown
in Figure 17. The governing equations are then given by
(59),(60) for two blocks/regions R1 and R2, the single
parameter μ = μ = μ1 representing the conductivity of
region R1 (the conductivity of region R2 is unity), and
the parameter domain D = [μmin, μmax] ≡ [1/

√
μr,
√

μr]
for μr = 100; the associated affine expansion (2) now
comprises only Q = 2 terms. The FE discretization is
then described by (3): for most of our results, we con-
sider a FE approximation with N = 1024 degrees of
freedom; as we describe in Section 8.2.1, our results are
largely insensitive to N for sufficiently large N (and any
fixed N).

Our RB approximation is then given by (64). We
shall consider three choices for our space: the hierar-
chical POD spaces XN

N = XNPOD
N , 1 ≤ N ≤ Nmax,

generated by the algorithm described in Section 7.2.1;
the hierarchical Lagrange spaces XN

N = WN Greedy,en
N ,

1 ≤ N ≤ Nmax, generated by the (energy version) of the
greedy algorithm described in Section 7.2.2; and finally,
purely for theoretical purposes, the non-hierarchical La-
grange spaces WN nh,ln, 1 ≤ N ≤ Nmax, given by

WN nh,ln
N = span{uN (μn

N ), 1 ≤ n ≤ N} , (75)

for the (non-nested, or only occasionally nested) para-
meter points given by

μn
N = μmin exp

{
n−1
N−1 ln

(
μmax

μmin

)}
,

1 ≤ n ≤ N, 1 ≤ N ≤ Nmax .

(76)

We denote the corresponding RB approximations by
uN

XN POD
N

or simply uN POD
N , uN

WN Greedy,en
N

or simply

uN Greedy,en
N , and uN

WN nh,ln
N

or simply uN nh,ln
N , respec-

tively.
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The a priori theory described below suggests that the
spaces (75) — which we shall denote “equi-ln” spaces —
contain certainly optimality properties, though we shall
observe that our more automatic sample selection proce-
dures do just as well (and perhaps even better for larger
N). We note the analysis presented here in fact is rele-
vant to a large class of single parameter coercive prob-
lems [85,87,112].

8.1.2 Equi-ln Spaces: A Priori Theory

We present from [85,87,112] an a priori theory for RB
approximations associated with the specific non-hierarchical
equi-ln spaces (75). (In fact, the parameters need only
be quasi-uniform in lnμ [85,87].) In particular, for the
model problem of Section 8.1.1, given general data f (of
which fNeu of (60) is a particular example), we obtain
[112]

Proposition 1 For any N ≥ Ncrit, and ∀ μ ∈ D,

|||uN (μ)− uN nh,ln
N (μ)|||μ

|||uN (μ)|||μ
≤ exp

{
− N − 1

Ncrit − 1

}
, (77)

where

Ncrit = 1 + [2e lnμr]+ .

(Here [ ]+ returns the smallest integer greater than or
equal to its real argument.)

Note we can directly derive from Proposition 1 and (66)
a bound on the relative (compliant) output error.

The proof is a “parameter” version of the standard
(finite element) variational arguments. In particular, we
first invoke (65); we then take as our surrogate for the
best fit a high-order polynomial interpolant in the pa-
rameter μ (in fact, in the mapped parameter lnμ) of
uN (μ); we next apply the standard Lagrange interpolant
remainder formula; finally, we appeal to an eigenfunction
expansion to bound the parametric (sensitivity) deriv-
atives and optimize the order of the polynomial inter-
polant. The result is not particularly sharp: independent
tests [112] indicate that the interpolant in parameter is in
fact reasonably accurate (though of course sub-optimal
in the energy norm relative to the Galerkin projection);
however, our estimate for the parametric derivatives and
hence interpolant error is rather crude — thus yielding
a rather pessimistic bound.

Nevertheless, we can draw several important conclu-
sions from Proposition 1. First, the notion of RB ap-
proximation as a “parameter domain” analogue to FE
approximation in the “physical domain” is not only qual-
itatively but also quantitatively relevant. Second, and re-
lated, RB convergence relies on smoothness in parameter
but not on spatial regularity — recall that Proposition 1
is valid for any f ∈ (Xe)′. Third, the RB convergence
rate — more precisely, our bound (77) for the RB con-
vergence rate — does not depend on N . (The actual

convergence rate does in fact depend on the underlying
FE approximation space, however for any fixed N this
dependence vanishes as N increases.) Fourth, the RB
convergence rate depends quite weakly on the extent of
the parameter domain: the exponent in the convergence
rate decreases only logarithmically with μr; the RB ap-
proximation is indeed global. Fifth, and finally, the RB
approximation can converge very quickly.

8.1.3 Greedy Lagrange Spaces: XN = WN Greedy,en
N

In actual practice, we invoke the hierarchical, automati-
cally generated, spaces WN Greedy,en

N — RB approxima-
tions associated with Lagrange spaces generated by the
(energy version of the) greedy algorithm described in
Section 7.2.2 — not the non-hierarchical, “hand-crafted”
equi-ln spaces WN nh,ln

N .
We present in Figure 18 the relative energy error

in the L∞(Ξ) norm as a function of N for the non-
hierarchical equi-ln spaces associated with our a priori
theory of Section 8.1.2,

max
μ∈Ξ

( |||uN (μ)− uN
WN nh,ln

N

(μ)|||μ
|||uN (μ)|||μ

)
, (78)

and for our greedy spaces,

max
μ∈Ξ

( |||uN (μ)− uN
WN Greedy,en

N

(μ)|||μ
|||uN (μ)|||μ

)
. (79)

(Here Ξ is a suitably large log-random sample over D.)
We observe, first, that both spaces provide extremely fast
convergence: the relative energy error is 1e−6 (and hence
from (66) the relative output error is 1e−12) already
for N = 6. Second, we observe that the greedy spaces
are initially very slightly worse than the equi-ln spaces,
but for “larger” N the greedy and equi-ln results are
indistinguishable.

The nearly identical convergence results could signal
either that there are many possibly very different spaces
all of which provide very rapid convergence, or that the
equi-ln and greedy spaces are in fact quite similar. In
Figure 19 we present (in log-lin format) (i) the sample
points μn

N=6 for the equi-log space, (76), and (ii) the
sample points μn′

, 1 ≤ n′ ≤ 6, for the hierarchical space
generated by the energy version of the greedy algorithm.
(The greedy points are plotted in ascending order for eas-
ier comparison.) We observe that the greedy algorithm
selects points quite close to the equi-ln distribution: this
result can serve (somewhat circularly) as evidence of the
optimality of either the equi-ln distribution or the greedy
distribution. In fact, it appears that the greedy distribu-
tion is tending to a Chebyshev in ln μ distribution, with
clustering near the endpoints of the parameter domain:
the Chebyshev-ln distribution perhaps performs better
than the equi-ln distribution.
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Fig. 18 Thermal Block problem for B1 = 2, B2 = 1:
L∞(Ξ) relative energy error as a function of N for the spaces

WN nh,ln (∗) and WNGreedy,en
N (◦) ((78) and (79), respec-

tively).
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Fig. 19 Thermal Block problem for B1 = 2, B1 = 1: Sample

points μn
N=6 for WN nh,ln (∗) and μn′

for WNGreedy,en
N=6 (◦).

8.1.4 POD Spaces: XN
N = XN POD

N

We recall that the POD truly minimizes the projection
error in L2(Ξtrain;X), whereas the greedy algorithm
heuristically minimizes the RB error bound in L∞
(Ξtrain;X). (Note in this subsection, in order to more
directly compare with the POD result, we consider the
X-norm rather than energy version of the greedy algo-
rithm of Section 7.2.2.) We might thus expect that, if the
greedy heuristic is performing well, then the POD RB
error should be smaller (respectively, larger) than the
greedy RB error in the L2(Ξtrain;X) norm (respectively
L∞(Ξtrain;X) norm); equivalently, we might conclude
that if the POD RB error is in fact smaller (respectively,
larger) than the greedy RB error in the L2(Ξtrain;X)
norm (respectively L∞(Ξtrain;X) norm), then the greedy
heuristic is indeed performing well.

We present in Figure 20(a) the L2(Ξ;X) errors for
the RB approximations associated with the POD and
greedy Lagrange spaces, ||uN−uN POD

N ||L2(Ξ;X) and ||uN−
uN Greedy

N ||L2(Ξ;X), respectively, as a function of N ; we
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Fig. 20 Thermal Block problem for B1 = 2, B2 = 1:
(a) ||uN −uN POD

N ||L2(Ξ;X) (×) and ||uN −uN Greedy
N ||L2(Ξ;X)

(♦) as a function of N ; (b) ||uN − uN POD
N ||L∞(Ξ;X) (◦) and

||uN − uN Greedy
N ||L∞(Ξ;X) (∗) as a function of N .

present in Figure 20(b) the L∞(Ξ;X) errors for the RB
approximations associated with the POD and greedy
Lagrange spaces, ||uN − uN POD

N ||L∞(Ξ;X) and ||uN −
uN Greedy

N ||L∞(Ξ;X), respectively, as a function of N . In
both cases, Ξ is a suitably large test sample. We ob-
serve, as anticipated, that the POD spaces perform a
bit better than the greedy spaces in the L2(Ξ;X) norm,
while the greedy spaces perform very slightly better than
the POD spaces in the (somewhat stronger) L∞(Ξ;X)
norm. Presuming that this performance is “generic,” and
taking into account the much lower cost of the greedy al-
gorithm in particular for larger ntrain, we conclude that
the greedy approach — despite the very short-horizon
heuristic — is a computationally attractive alternative to
the POD. (Further improvement to the greedy algorithm
is possible: [33,32] replaces the simple enumeration max-
imization of the error bound described in Section 7.2.2
with a much more efficient gradient-based search proce-
dure.)
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Fig. 21 Thermal Block problem for B1 = 2, B2 = 1: Relative
output error as a function of N for the output interpolant (∗)
and RB output prediction (♦) ((80) and (81), respectively).

8.1.5 Output Interpolation

It might appear that the reduced basis approach is full of
sound and fury (and complicated algorithms), signifying
little computational advantage. Indeed, there is a much
simpler alternative that avoids the field-variable “inter-
mediary”: direct interpolation (in parameter) of the out-
put sN (μ).

We compare in Figure 21 the N -point Gauss-Lobatto
Chebyshev polynomial interpolant in lnμ [112,125] of
sN (μ), denoted sNN,int(μ), to the RB output associated
with the greedy (energy) spaces, sN Greedy,en

N (μ): we pre-
sent

max
μ∈Ξ

|sN (μ)− sNN,int(μ)|
sN (μ)

(80)

and

max
μ∈Ξ

|sN (μ)− sN Greedy,en
N (μ)|

sN (μ)
(81)

for a suitably fine test sample Ξ. We observe that the
Chebyshev output interpolant is in fact more accurate
than the RB output, and certainly more efficient — eval-
uation μ→ sNN,int(μ) requires O(N2) operations whereas
(Online) evaluation μ → sN Greedy,en

N (μ) requires O(N3)
operations.

However, in higher parameter dimensions (P > 1), it
will not be possible to develop an efficient output inter-
polant. First, the obvious tensor product sample point
distributions are very inefficient, and optimal scattered
data alternatives are difficult to find. Even for P = 1,
we must be astute or at least awake in first effecting
the ln μ transform before appealing to the Chebyshev
distribution; in contrast, the greedy algorithm automat-
ically uncovers the good choice. Second, the generation
of good interpolation procedures for general data in R

P

is not a simple task; in contrast, the Galerkin projection
automatically chooses the best combination of retained
snapshots, at least in the energy norm. Third, and finally,
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Fig. 22 Schematic of the RB approximation process.

we note that it is rather difficult to obtain rigorous and
sharp a posteriori bounds for the output interpolant er-
ror |sN (μ)− sNN,int(μ)|; in contrast, as we shall describe
in Section 9, we can readily develop rigorous and sharp
bounds for the RB output error, |sN (μ)− sNN (μ)|.

8.2 Convergence: P > 1

As already highlighted in the previous section, the key
to RB convergence in higher parameter dimensions is
the role of the PDE and field variable in determining ap-
propriate sample points and combinations of (retained)
snapshots. We illustrate the process schematically in Fig-
ure 22: the RB field approximation, via the PDE resid-
ual, yields the error bound; the error bound, in turn,
facilitates the greedy selection of good sample points;
the Galerkin projection then provides the optimal com-
bination of retained snapshots; finally, the RB output
approximation — application of the output functional —
inherits the good properties of the RB field variable, (66).
As we shall observe shortly, the Greedy sample points are
quite non-intuitive and very far from the obvious (and
inefficient) tensor-product recipes. (In general, however,
we do observe clustering near the boundaries of D, as we
might expect from classical approximation theory.)

The computational success of the (implicit) compli-
cated process described by Figure 22 is in fact also re-
sponsible for the failure, at present, to provide any gen-
eral a priori convergence theory: we can not construct
a best-fit surrogate since a priori we can neither predict
an efficient sample nor construct an effective parametric
interpolant.

We can anticipate that for a good set of points (and
from Galerkin a good combination of retained snapshots),
we should obtain rapid convergence: as already identified
in Opportunity I of Section 2, uN (μ) ∈ XN — the field
we wish to approximate by the RB method — perforce
resides on the parametrically induced low-dimensional,
smooth manifold MN = {uN (μ)|μ ∈ D}8; the essential

8 As regards smoothness, we note that for Θq ∈ C∞(D),
1 ≤ q ≤ Q, it can be shown under our coercivity, continu-
ity, and affine hypotheses of Section 4 that ‖DσuN (μ)‖X is

bounded by a constant C|σ| (independent of N ) for all μ ∈ D;
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role of parametric smoothness — already exploited in
Section 8.1 for the single-parameter case — was identi-
fied in the first theoretical (typically asymptotic) analy-
ses of Taylor RB spaces [47] and subsequently Lagrange
RB spaces [119]. However, it is not obvious that a good
set of points (and hence a good Lagrange RB space) must
exist, and even less obvious that the greedy algorithm
will identify this good set (or even a slightly less good set)
of points. At present, we have only empirical evidence
for particular examples, as we now describe. Note in all
cases we consider RB approximations uNN = uN Greedy,en

N

associated with the spaces WN
N = WN Greedy,en

N .

8.2.1 Thermal Block: B1 = B2 = 3

We first consider the Thermal Block problem introduced
in Section 6.1.1 and (for B1 = B2 = 3) depicted in Fig-
ure 11; note that now there are P = 8 parameters. For
problems in one parameter, it is simple to choose “suffi-
ciently rich” test and train samples; in the current situa-
tion, with P = 8 parameters, it is very difficult to afford
— even with the greedy algorithm — a sufficiently rich
test/train sample. We choose for Ξtrain a log-uniform
random sample of size ntrain = 5000; note that, in any
event, we always have recourse to our a posteriori error
bounds for any new μ ∈ D visited Online.

We present in Figure 23 the error measure

max
μ∈Ξtrain

(
Δen

N (μ)
|||uNN (μ)|||μ

)
(82)

as a function of N ; note that Δen
N (μ) is an upper bound

for |||uN (μ)−uNN (μ)|||μ and |||uNN (μ)|||μ is a lower bound
for |||uN (μ)|||μ, and hence Δen

N (μ)/|||uNN (μ)|||μ is in fact
an upper bound for the relative error in the energy norm.
(We note that, implicitly, Ξtrain serves both as train and,
in Figure 23, test sample; since ntrain � N , this statis-
tical crime will have little sensible effect on our assess-
ment.)

We observe in Figure 23 that, despite the rather large
parameter dimension, and extensive parameter domain,
the RB approximation still converges very rapidly with
N . We achieve an accuracy of 1e−2 in the relative en-
ergy error (and hence an accuracy of 1e−4 in the rela-
tive output error) with only N ≈ 40 degrees of freedom.
Clearly, if we compare Figure 23 for P = 8 to Figure 18
for P = 1, there is an effect, even a significant effect, due
to the increased parameter dimension. However, the de-
crease in convergence rate with the increase in P , at least
for this particular — admittedly rather simple — prob-
lem is rather modest. This example is proof of concept
that the reduced basis method can in fact treat problems
with “many” parameters.

This problem can also serve to verify the weak effect
of XN . The results of Figure 23 are obtained for a rather

here DσuN (μ) refers to the σ multi-index derivative of uN

with respect to μ.
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Fig. 23 Thermal Block problem for B1 = B2 = 3: (upper
bound for the) L∞(Ξtrain) relative energy error, (82), as a
function of N .
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Fig. 24 Thermal Block problem for B1 = B2 = 3: (upper
bound for the) L∞(Ξtrain) relative energy error, (82), as a
function of N ; N = 137 (dotted), N = 453 (dashed), and
N = 661, 1737, 2545, 6808 (all quite similar).

modest FE discretization corresponding to N = 661 de-
grees of freedom. We now repeat the calculations of Fig-
ure 23, but for several different N from N = 137 to
N = 6808. We note that for this particular problem the
dimension of span{MN } is in fact Const×

√
N — only

the boundaries of the blocks “count” — with Const ≈ 7.
We observe, as expected, that if N approaches the di-
mension of span{MN }, then the RB error will “arti-
ficially” plummet to zero. However, for any fixed N ,
the RB convergence rate is largely insensitive to N as
N → 0. It follows that the reduced basis can replicate
an arbitrarily rich finite element approximation to any
desired accuracy for N independent of N .

8.2.2 Inviscid Flow: Added Mass

We next consider the inviscid flow added mass example
of Section 6.1.2. For this problem, with only P = 3 para-
meters, we can now visualize the greedy-predicted sam-
ple. We show in Figure 25 the sample SNmax obtained
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Fig. 25 Inviscid flow example: greedy (energy version) sam-
ple SNmax ; note the value of μ2 (0.5 ≤ μ2 ≤ 1.5) is propor-
tional to the radius of the circle.
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Fig. 26 Inviscid flow example: maxμ∈Ξtrain

�
Δen

N (μ)/

|||uN
N (μ)|||μ

�
as a function of N for the Lagrange RB ap-

proximations associated with the sample of Figure 25; here
Ξtrain is a log-uniform random sample of size ntrain = 3000.

by application of the (energy version of the) greedy al-
gorithm of Section 7.2.2 for Ξtrain a log-uniform random
sample of size ntrain = 3000. Clearly, the point distri-
bution is very far from tensor-product in form: there is
some clustering near the boundaries of the parameter do-
main, however the interior of the domain is very sparsely
populated. We also note that the sample SNmax reflects
the particular problem of interest, as would be expected
from the “adaptive” greedy procedure: the densest clus-
tering of points is near μ1 = 1.5 and for μ3 = ±0.35,
corresponding to regions of D in which the parametric
sensitivity is largest.

We plot in Figure 26 maxμ∈Ξtrain

(
Δen

N (μ)/
|||uNN (μ)|||μ

)
for the Lagrange RB approximations as-

sociated with the sample of Figure 25. We again observe
very rapid, exponential convergence.

8.2.3 Elastic Crack

We next consider the two dimensional elasticity crack
problem described in Section 6.2.2. We recall that this
problem is characterized by P = 2 parameters, in which
the first parameter μ1 corresponds to the length of the

crack. As described in Section 6.2.2, the (now FE) En-
ergy Release Rate (ERR) GN (μ) can be calculated from
the compliant output sN (μ) as GN (μ) = −(∂sN (μ)/∂μ1);
we consider a finite-difference approximation ĜN (μ) to
GN (μ) given by

ĜN (μ) =
sN (μ)− sN (μ + δμ1)

δμ1
(83)

for some given (small) δμ1. For our purposes here, we
shall take ĜN (μ) as “equivalent” to GN (μ).9

We next define our reduced basis ERR approximation
as

ĜNN (μ) =
sNN (μ)− sNN (μ + δμ1)

δμ1
, (84)

where sNN (μ) is our usual RB compliant output. We then
define

Δ
bG
N (μ) =

Δs
N (μ) + Δs

N (μ + δμ1)
δμ1

, (85)

where Δs
N (μ) is the RB compliant output error bound

defined in Section 9. It readily follows that Δ
bG
N (μ) is a

rigorous bound for the RB ERR prediction: |ĜN (μ) −
ĜNN (μ)| ≤ Δ

bG
N (μ). We note that the choice of our virtual

crack displacement value δμ1 is not arbitrary. It is clear
that δμ1 must to be chosen as small as possible to provide
an accurate finite-difference approximation — to ensure
that ĜNN is indeed sufficiently close to GNN ; however, if
the value δμ1 is too small, our ERR error bound (85)
will suffer due to amplification of the RB contribution.

We first construct a reduced basis approximation to
the compliant output s(μ). We choose for Ξtrain a log-
uniform random sample of size ntrain = 3000. We again
observe rapid convergence: we achieve a relative (com-
pliant) output error of 1e−5 for N ≈ 70; note that in
this example our parameter range represents a relatively
large geometric variation. We next choose δμ1 = 0.01 for
our ERR prediction ĜN (μ) of (83), and hence RB ERR
prediction ĜNN (μ) of (84).10

We plot in Figure 27 ĜNN (μ) and the error bar interval
[ĜNN (μ) −Δ

bG
N (μ), ĜNN (μ) + Δ

bG
N (μ)] for μ1 ∈ [0.1, 0.45],

μ2 = 0.25, and N = 15. It is clear that our error bound
Δ

bG
N (μ) is too large, mostly due to the relatively small

9 We note that a completely rigorous formulation of the
exact and subsequently FE and RB crack problems — a con-
struction that eliminates the nuisance, error, and uncertainty
associated with δμ1 — is described in detail in [61]. This for-
mulation is, however, non-coercive (and also rather compli-
cated) and hence beyond of the scope of the current paper.
10 We compare our results with reference data [91] available
for several μ: our ERR results are in very good agrement
with the reference results; for this particular δμ1 value, the
maximum relative error compared to the reference results is
only 2%. This confirms that our choice of δμ1 is adequately
small.
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Fig. 27 Elastic Crack problem: �GN
N (μ) and the error bar in-

terval [ �GN
N (μ)−Δ

bG
N (μ), �GN

N (μ)+Δ
bG
N (μ)] for μ1 ∈ [0.1, 0.45],

μ2 = 0.25, and N = 15.
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Fig. 28 Elastic Crack problem: �GN
N (μ) and the error bar in-

terval [ �GN
N (μ)−Δ

bG
N (μ), �GN

N (μ)+Δ
bG
N (μ)] for μ1 ∈ [0.1, 0.45],

μ2 = 0.25, and N = 30.

value of δμ1 compared to the errors in the associated RB
compliant output. We next plot, in Figure 28, ĜNN (μ)
and the error bar interval [ĜNN (μ) − Δ

bG
N (μ), ĜNN (μ) +

Δ
bG
N (μ)] for μ1 ∈ [0.1, 0.45], μ2 = 0.25, and N = 30;

it is now observed that the estimated error is signifi-
cantly improved — thanks to better reduced basis ap-
proximation that compensates for the small value of δμ1.
This example demonstrates how, in practice, the error
bounds serve in the Online stage to confirm and, if nec-
essary improve, the RB accuracy. We emphasize that
ĜN (μ) ∈ [ĜNN (μ) − Δ

bG
N (μ), ĜNN (μ) + Δ

bG
N (μ)] for all

μ ∈ D and all N ∈ {1, . . . , Nmax}: the high-fidelity FE
ERR prediction must lie within the error bounds pro-
vided.

8.2.4 Elastic Block

We now consider the three-dimensional elasticity prob-
lem described in Section 6.2.1; we recall that this prob-
lem is characterized by P = 4 parameters, three of which
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105

Fig. 29 Elastic Block problem: (upper bound for the)
L∞(Ξtrain) relative output error, (86), as a function of N .

are geometric in nature. We choose for Ξtrain a log-uniform
random sample of size ntrain = 4000. We focus in this
(three-dimensional) example on computational perfor-
mance.

We first present in Figure 29 the error measure

max
μ∈Ξtrain

Δs
N (μ)

sNN (μ)
; (86)

note that Δs
N (μ) is an upper bound for |sN (μ)−sNN (μ)|

and sNN (μ) is a lower bound for sN (μ), and therefore
Δs

N (μ)/sNN (μ) is in fact an upper bound for the relative
error in the output. We observe that we again achieve
rapid convergence: to obtain a relative output error of
1e−4, we require only N ≈ 30 points.

The spatial dimensionality plays little role in RB con-
vergence: it follows that the relative efficiency of the
RB approach — relative to direct FE evaluation — in-
creases with increasing spatial dimension. We consider
three different FE approximations: XNvf (very fine) cor-
responding to Nvf = 106,754; XNf (fine) correspond-
ing to Nf = 26,952; and XNc (coarse) corresponding to
Nc = 6,315. We shall take the “very fine” approxima-
tion as “exact”: we then conclude (admittedly from a
very coarse parameter test sample — since evaluation of
uNvf (μ) is very expensive) that the relative output error
on the “fine” mesh is roughly 0.01 and on the “coarse”
mesh roughly 0.09.

We now invoke the (energy version of the) greedy
algorithm of Section 7.2.2 to construct two RB approx-
imations spaces: WNf Greedy,en

N , 1 ≤ N ≤ Nmax f , such
that

max
μ∈Ξtrain

Δs
Nmax f

(μ)

sNf Greedy,en
Nmax f

(μ)
=

1
4
× 0.09

and WNc Greedy,en
N , 1 ≤ N ≤ Nmax c, such that

max
μ∈Ξtrain

Δs
Nmax c

(μ)

sNc Greedy,en
Nmax c

(μ)
=

1
4
× 0.1 ,

where in both cases Ξtrain is our random uniform train
sample of size ntrain = 4000; we obtain Nmax f = 22
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and Nmax c = 15. In essence, the RB output approxima-
tion associated with WNf Greedy,en

Nmax f
replicates the “fine”

FE approximation to roughly the accuracy of the “fine”
FE approximation (relative to the exact result), and the
RB output approximation associated with WNc Greedy,en

Nmax c
replicates the “coarse” FE approximation to roughly the
accuracy of the “coarse” FE approximation (relative to
the exact result). We thus can evaluate the efficiency of
RB prediction relative to FE prediction at fixed accu-
racy .

We first consider the coarse case. We find that Online
RB evaluation μ → sNc

Nmax c
(μ), Δs

Nmax c
(μ) is roughly

50 times faster than direct FE evaluation μ → sNc(μ): a
considerable speed-up. Proceeding now to the fine case,
the Online RB evaluation μ → sNf

Nmax f
(μ), Δs

Nmax f
(μ)

is now roughly 500 times faster than direct FE evalua-
tion μ → sNf (μ): as our (linear element) FE approxima-
tion converges only algebraically, and the RB approx-
imation converges exponentially, the RB advantage in-
creases as the error tolerance decreases. (In the fine case,
the RB output error bound calculation Δs

Nmax f
(μ) con-

sumes roughly 70% of the Online time; we describe the
Online error bound procedure in detail in Section 9.4.)
Finally, we observe that for the fine case, the Offline ef-
fort is roughly 54 times more expensive that a single FE
evaluation μ → sNf (μ); equivalently, the many-query
“break-even” point at which the RB approximation is
first computationally “interesting” is a rather modest 54
evaluations.11

Finally, we note that our comparison is skewed a bit
towards the reduced basis — and hence the savings of
500 are probably too optimistic. First, we consider here
only linear finite elements; at least quadratic finite el-
ements should be considered. Second, we apply (mini-
mum fill-in) Cholesky factorization to solve the FE sys-
tems [125]; certainly, at least for the finer FE meshes,
preconditioned conjugate gradients or other efficient it-
erative solvers must be pursued. (However, the Cholesky
factorization does have some benefits as regards the FE
pseudo-solutions related to a posteriori error estimation:
one factorization serves many right-hand sides, as we
shall see in the next section.)

9 A Posteriori Error Estimation

9.1 Role

Effective a posteriori error bounds for the quantity of in-
terest — our output — are crucial both for the efficiency
and the reliability of RB approximations. As regards ef-
ficiency (related to the concept of “adaptivity” within

11 Note the Offline operation count depends on N (the FE
solutions and FE “pseudo”-solutions related to a posteriori
error estimation) but also ntrain (the greedy error bound max-
imization); ideally, the computational time associated with
these two components should be in balance.

the FE context), error bounds play a role in both the
Offline and Online stages. In the greedy algorithms of
Section 7.2.2, the application of error bounds (as sur-
rogates for the actual error) permits significantly larger
training samples Ξtrain ⊂ D at greatly reduced Offline
computational cost. These more extensive training sam-
ples in turn engender RB approximations which provide
high accuracy at greatly reduced Online computational
cost. The error bounds also serve directly in the On-
line stage — to find the smallest RB dimension N that
achieves the requisite accuracy — to further optimize
Online performance. In short, a posteriori error estima-
tion permits us to (inexpensively) control the error which
in turn permits us to minimize the computational effort.

As regards reliability , it is clear that our Offline sam-
pling procedures can not be exhaustive: for larger para-
meter dimensions P there will be large “parts” of the
parameter set D that remain unexplored — the output
error uncharacterized; we must admit that we will only
encounter most parameter values in D Online. Our a pos-
teriori estimation procedures ensure that we can rigor-
ously and efficiently bound the output error in the Online
(deployed/application) stage. We can thus be sure that
constraints are satisfied, feasibility (and safety/failure)
conditions are verified, and prognoses are valid: real-time
or design decisions are endowed with the full assurances
of the high-fidelity FE solution. In short, a posteriori er-
ror bounds permit us to confidently — with certainty —
exploit the rapid predictive power of the RB approxima-
tion.

We should emphasize that a posteriori output error
bounds are particularly important for RB approxima-
tions. First, RB approximations are ad hoc: each problem
is different as regards discretization. Second, RB approx-
imations are typically pre-asymptotic: we will choose N
quite small — before any “tail” in the convergence rate.
Third, the RB basis functions can not be directly related
to any spatial or temporal scales: physical intuition is of
little value. And fourth and finally, the RB approach
is typically applied in the real-time context: there is no
time for Offline verification; errors are immediately man-
ifested and often in deleterious ways. There is, thus, even
greater need for a posteriori error estimation in the RB
context than in the much more studied FE context [2,3,
11–13,23].

Our motivations for error estimation in turn place re-
quirements on our error bounds. First, the error bounds
must be rigorous — valid for all N and for all parameter
values in the parameter domain D: non-rigorous error
“indicators” may suffice for adaptivity, but not for re-
liability. Second, the bounds must be reasonably sharp:
an overly conservative error bound can yield inefficient
approximations (N too large) or suboptimal engineer-
ing results (unnecessary safety margins); design should
be dictated by the output and not the output error. And
third, the bounds must be very efficient : the Online oper-
ation count and storage to compute the RB error bounds
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— the marginal or asymptotic average cost — must be
independent ofN (and hopefully commensurate with the
cost associated with the RB output prediction). We do
re-emphasize here that our our RB error bounds are de-
fined relative to the underlying “truth” FE approxima-
tion; however, we also recall that the RB Online cost is
independent of N , and hence the truth approximation
can and should be chosen conservatively.

9.2 Preliminaries

The central equation in a posteriori theory is the error
residual relationship. In particular, it follows from the
problem statements for uN (μ), (3), and uNN (μ), (64),
that the error (eN (μ) ≡) e(μ) ≡ uN (μ)− uNN (μ) ∈ XN
satisfies

a(e(μ), v;μ) = r(v;μ), ∀ v ∈ XN . (87)

Here r(v;μ) ∈ (XN )′ (the dual space to XN ) is the
residual,

r(v;μ) ≡ f(v;μ)− a(uNN (μ), v;μ), ∀ v ∈ XN . (88)

(Indeed, (87) directly follows from the definition (88),
f(v;μ) = a(uN (μ), v;μ), ∀v ∈ XN , bilinearity of a, and
the definition of e(μ).)

It shall prove convenient to introduce the Riesz rep-
resentation of r(v;μ): ê(μ) ∈ XN [112] satisfies

(ê(μ), v)X = r(v;μ), ∀ v ∈ XN . (89)

We can thus also write the error residual equation (87)
as

a(e(μ), v;μ) = (ê(μ), v)X , ∀ v ∈ XN . (90)

It also follows that

‖r( · ;μ)‖(XN )′ ≡ sup
v∈XN

r(v;μ)
‖v‖X

= ‖ê(μ)‖X ; (91)

the evaluation of the dual norm of the residual through
the Riesz representation is central to the Offline-Online
procedures developed in Section 9.4 below.

We recall the definition of the exact and FE coer-
civity constants, (7) and (8), respectively. We shall re-
quire a lower bound to the coercivity constant αN (μ),
αNLB: D → R, such that (i) 0 < αNLB(μ) ≤ αN (μ),
∀μ ∈ D, and (ii) the Online computational time to eval-
uate μ → αNLB(μ) is independent of N . In Section 10
we provide a methodology [64] to construct the requisite
lower bound.

9.3 Error Bounds

We define error estimators for the energy norm and out-
put as

Δen
N (μ) ≡ ‖ê(μ)‖X

/
(αNLB(μ))1/2 ,

and

Δs
N (μ) ≡ ‖ê(μ)‖2X

/
αNLB(μ) ,

respectively. We next introduce the effectivities associ-
ated with these error estimators as

ηen
N (μ) ≡ Δen

N (μ)
/|||uN (μ)− uNN (μ)|||μ ,

and

ηs
N (μ) ≡ Δs

N (μ)
/
(sN (μ)− sNN (μ)) ,

respectively.
Clearly, the effectivities are a measure of the quality

of the proposed estimator: for rigor, we shall insist upon
effectivities ≥ 1; for sharpness, we desire effectivities as
close to unity as possible. We can prove

Proposition 2 For any N = 1, . . . , Nmax, the effectivi-
ties satisfy

1 ≤ ηen
N (μ) ≤

√
γe(μ)

αNLB(μ)
, ∀ μ ∈ D , (92)

1 ≤ ηs
N (μ) ≤ γe(μ)

αNLB(μ)
, ∀ μ ∈ D . (93)

Proof. It follows directly from (90) for v = e(μ) and the
Cauchy-Schwarz inequality that

|||e(μ)|||2μ ≤ ‖ê(μ)‖X ‖e(μ)‖X . (94)

But (αN (μ))
1
2 ‖e(μ)‖X ≤ a

1
2 (e(μ), e(μ);μ) ≡ |||e(μ)|||μ,

and hence from (94) we obtain |||e(μ)|||μ ≤ Δen
N (μ) or

ηen
N (μ) ≥ 1. We now again consider (90) — but now

for v = ê(μ) — and the Cauchy-Schwarz inequality to
obtain

‖ê(μ)‖2X ≤ |||ê(μ)|||μ |||e(μ)|||μ . (95)

But from continuity |||ê(μ)|||μ ≤ (γe(μ))
1
2 ‖ê(μ)‖X , and

hence from (95) Δen
N (μ) ≡ (αNLB(μ))−

1
2 ‖ê(μ)‖X ≤

(αNLB(μ))−
1
2 (γe(μ))

1
2 |||e(μ)|||μ, or ηen

N (μ) ≤
√

γe(μ)

αN
LB(μ)

.

Next, we know from (66) that sN (μ) − sNN (μ) =
|||e(μ)|||2μ, and hence since Δs

N (μ) = (Δen
N (μ))2

ηs
N (μ) ≡ Δs

N (μ)
sN (μ)− sNN (μ)

=
(Δen

N (μ))2

|||e(μ)|||2μ
= (ηen

N (μ))2 ;

(96)

(93) directly follows from (92) and (96). �
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Similar results can be obtained for ΔN (μ), the a poste-
riori error bound in the X norm.

It is important to observe that our effectivity upper
bounds, (92) and (93), are independent of N , and hence
stable with respect to RB refinement . Furthermore, it is
sometimes possible (see Section 10) to provide a rigorous
lower bound for αNLB(μ) that depends only on μ: in this
case we obtain an upper bound for the effectivity which
is (not only independent of N but also) independent of
N , and hence stable with respect to FE refinement ; the
latter reflects our proper choice of (H1(Ω)-equivalent)
inner product/norm. More generally, our construction
for αNLB(μ) (see Section 10) is designed to ensure that
αN (μ)/αNLB(μ) will be bounded by a constant — typi-
cally 4 for our choice of tolerances — for most μ in D;
since (say, for the output effectivity)

ηs
N (μ) ≤ γe(μ)

αNLB(μ)
≤ αN (μ)

αNLB(μ)
γe(μ)
αe(μ)

, ∀ μ ∈ D , (97)

we again obtain stability with respect to FE refinement.

9.4 Offline-Online: ‖ê(μ)‖X

The error bounds of the previous section are of no utility
without an accompanying Offline-Online computational
approach.

9.4.1 Ingredients

The computationally crucial component of all the error
bounds of the previous section is ‖ê(μ)‖X , the dual norm
of the residual. (Offline-Online treatment of αNLB(μ) is
addressed in Section 10.)

To develop an Offline-Online procedure for the dual
norm of the residual we first expand the residual (88)
according to (67) and (2):

r(v;μ) ≡ f(v)− a(uNN (μ), v;μ)

= f(v)− a
( N∑

n=1
uNNn(μ) ζNn , v;μ

)
= f(v)−

N∑
n=1

uNNn(μ) a(ζNn , v;μ)

= f(v)−
N∑

n=1
uNNn(μ)

Q∑
q=1

Θq(μ) aq(ζNn , v) .

(98)

If we insert (98) in (89) and apply linear superposition,
we obtain

(ê(μ), v)X = f(v)−
Q∑

q=1

N∑
n=1

Θq(μ) uNNn(μ) aq(ζNn , v) ,

or

ê(μ) = C +
Q∑

q=1

N∑
n=1

Θq(μ) uNNn(μ) Lq
n ,

where (C, v)X = f(v), ∀v ∈ XN , and (Lq
n, v)X = −aq(ζNn , v),

∀ v ∈ XN , 1 ≤ n ≤ N , 1 ≤ q ≤ Q. We denote the C,
Lq

n, 1 ≤ n ≤ N , 1 ≤ q ≤ Q, as FE “pseudo”-solutions —
solutions of “associated” FE Poisson problems.

We thus obtain

‖ê(μ)‖2X

=
(
C +

Q∑
q=1

N∑
n=1

Θq(μ) uNNn(μ) Lq
n , •

)
X

= (C, C)X +
Q∑

q=1

N∑
n=1

Θq(μ) uNNn(μ)
{

2(C,Lq
n)X +

Q∑
q′=1

N∑
n′=1

Θq′
(μ) uNNn′(μ) (Lq

n,Lq′
n′)X

}
,

(99)

from which we can directly calculate the requisite dual
norm of the residual through (91).

9.4.2 Computational Procedure

The Offline-Online decomposition is now clear. In the
Offline stage we form the parameter-independent quanti-
ties. In particular, we compute the FE “pseudo”-solutions
C,Lq

n, 1 ≤ n ≤ Nmax, 1 ≤ q ≤ Q, and form/store
(C, C)X , (C,Lq

n)X , (Lq
n,Lq′

n′)X , 1 ≤ n, n′ ≤ Nmax, 1 ≤
q, q′ ≤ Q. (Note that, in the direct context, a single fac-
torization suffices to obtain all 1 + QNmax FE pseudo-
solutions.) The Offline operation count depends on Nmax,
Q, and N .

In the Online stage, given any “new” value of μ —
and Θq(μ), 1 ≤ q ≤ Q, uNN n(μ), 1 ≤ n ≤ N — we
simply retrieve the stored quantities (C, C)X , (C,Lq

n)X ,
(Lq

n,Lq′
n′)X , 1 ≤ n, n′ ≤ N , 1 ≤ q, q′ ≤ Q, and then

evaluate the sum (99). The Online operation count, and
hence also the marginal cost and asymptotic average
cost, is O(Q2N2) — and independent of N .12 (Note
again the advantage of the hierarchical spaces: the nec-
essary quantities for any N ∈ {1, . . . , Nmax} can be sim-
ply extracted from the corresponding quantities for N =
Nmax.)

9.5 Numerical Results

In fact, in Section 8 we have already presented several nu-
merical examples illustrating the relevance, (Offline and
Online) application, and computational efficiency of the
a posteriori error bounds. In the current section (and
again in Section 11.3 for the non-compliant case) we re-
strict attention to a brief study of sharpness as measured
by the effectivity.
12 It thus follows that the a posteriori error estimation con-
tribution to the cost of the greedy algorithm of Section 7.2.2
is O(QNmaxN ·)+O(Q2N2

maxN )+O(ntrainQ2N3
max): we may

thus choose N and ntrain independently (and large).
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We consider here the Thermal Block problem of Sec-
tion 6.1.1 with B1 = 3, B2 = 3, and hence P = 8. Here
1/μmin

i = μmax
i =

√
μr (= 10), 1 ≤ i ≤ P , and hence

μmax
i /μmin

i = μr (= 100), 1 ≤ i ≤ P ; we choose μi = 1,
1 ≤ i ≤ P , and τ = 0 in our inner product, (6). For the
truth discretization, we take N = 661: we confirm, per
the theory, that the effectivities are insensitive to N for
sufficiently large N . (For the construction of αNLB(μ) for
this particular problem, see Section 10.2.)

We then define, for a given (fine) test sample Ξ,

Δs
N,max = max

μ∈Ξ
Δs

N (μ) ,

ηs
N,max = max

μ∈Ξ
ηs

N (μ) ,

and

ηs
N,ave =

1
|Ξ|

∑
μ∈Ξ

ηs
N (μ) .

We shall shortly provide numerical results for these ef-
fectivity metrics. However, we first briefly derive a theo-
retical result for the particular problem of interest.

To wit, we note from (59) that

|a(w, v;μ)| =
∣∣∣∣ P∑

i=1

μi

∫
Ri

∇w · ∇v +
∫
RP+1

∇w · ∇v

∣∣∣∣
≤ max(1, μ1, . . . , μP )

P+1∑
i=1

∫
Ri

|∇w||∇v| .

However, for our choice of norm,
P+1∑
i=1

∫
Ri

|∇w||∇v| ≤
P+1∑
i=1

(∫
Ri

|∇w|2
) 1

2
(∫

Ri

|∇v|2
) 1

2

≤ ‖w‖X‖v‖X

by repeated application of the Cauchy-Schwarz inequal-
ity. We conclude that γe(μ) ≤ max(1, μ1, . . . , μP ). We
shall further demonstrate in Section 10.2 that αNLB(μ) ≥
min(1, μ1, . . . , μP ). Hence,

ηs
N,max ≤ max

μ∈D
γe(μ)

αNLB(μ)

≤ max
μ∈D

max(1, μ1, . . . , μP )
min(1, μ1, . . . , μP )

≤ μr ,

(100)

since we can readily find a μ ∈ D such that max(1, μ1,
. . . , μP ) =

√
μr and min(1, μ1, . . . , μP ) = 1/

√
μr.

We now turn to the numerical results. We present
in Table 1 Δs

N,max, ηs
N,max, and ηs

N,ave as a function of
N . The effectivities are of course greater than unity: our
error estimates are rigorous upper bounds. We further
observe that ηs

N,max ≤ μr = 100: unfortunately, the the-
oretical estimate (100) is reasonably accurate, and hence

N Δs
N,max ηs

N,max ηs
N,ave

10 2.2036E+00 31.2850 6.7067
20 2.0020E−01 37.3024 7.5587
30 1.5100E−02 62.2537 12.1138
40 1.2000E−03 73.1151 14.4598
50 1.0000E−04 57.5113 10.2566

Table 1 Thermal Block problem for B1 = B2 = 3: Output
error bound and effectivity metrics as a function of N .

ηs
N,max can be quite large; however, on “average,” the ef-

fectivities are quite moderate even for this rather exten-
sive parameter variation. Finally, we note that the effect
of error over-estimation on (decreased) efficiency — due
to choice of an unnecessarily large N — will be modest
given the rapid convergence of the RB approximation
[112].

10 Lower Bounds for the Coercivity Constant

As introduced in Section 9, our a posteriori error analy-
sis of reduced basis approximations to (affinely) para-
metrized partial differential equations requires a lower
bound for the coercivity constant.

In essence, the discrete coercivity constant (8) is a
generalized minimum eigenvalue [112]. There are many
classical techniques for the estimation of minimum eigen-
values or minimum singular values. One class of meth-
ods is based on Gershgorin’s theorem and variants [110].
Within our particular context, these approaches are not
optimal: generalized eigenvalue and singular value prob-
lems are difficult to treat; the operation count will scale
with N ; and finally, the Gershgorin-like bounds are of-
ten not useful for elliptic PDEs. A second class of meth-
ods is based on eigenfunction/eigenvalue (e.g., Rayleigh
Ritz) approximation and subsequent residual evaluation
[71,65]. Unfortunately, the lower bounds are not truly
rigorous: we obtain lower bounds not for the smallest
eigenvalue, but rather for the eigenvalue closest to the
proposed approximate eigenvalue.

In this section we shall describe the Successive Con-
straint Method (SCM), an approach to the construction
of lower bounds for coercivity (and, in the non-coercive
case, inf-sup stability) constants [64]. The method —
based on an Offline-Online strategy relevant in the many-
query and real-time context — reduces the Online (real-
time/deployed) calculation to a small Linear Program
for which the operation count is independent of N . The
SCM is more efficient and general than earlier proposals
[142,121,97]; also the SCM is much more easily imple-
mented [64].
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10.1 Successive Constraint Method (SCM)

10.1.1 Preliminaries

We start by recalling the definition of our FE coercivity
constant of Section 4,

αN (μ) = inf
w∈XN

a(w,w;μ)
‖w‖2X

, ∀ μ ∈ D. (101)

We assume that a is coercive, αN (μ) > 0,∀μ ∈ D, and
continuous; we also recall that a is “affine” in the para-
meter μ, (2), and symmetric. All of these properties shall
be exploited in our development here. However, we note
that the SCM can be readily extended to non-symmetric
coercive operators (see Section 11) as well as general non-
coercive operators [64,61,141].

We first introduce an objective function J obj : D ×
R

Q → R given by

J obj(μ; y) =
Q∑

q=1

Θq(μ)yq, (102)

where y = (y1, . . . , yQ). We may then express our coer-
civity constant as

αN (μ) = inf
y∈Y

J obj(μ; y), (103)

where the set Y ⊂ R
Q is defined by

Y =
{

y ∈ R
Q | ∃wy ∈ XN

s.t. yq =
aq(wy, wy)
‖wy‖2X

, 1 ≤ q ≤ Q

}
. (104)

The equivalence between (101) and (103), (104) is readily
confirmed: (2) is the crucial ingredient.

We next introduce the “continuity constraint” box

B =
Q∏

q=1

[
inf

w∈XN

aq(w,w)
‖w‖2X

, sup
w∈XN

aq(w,w)
‖w‖2X

]
; (105)

from our continuity hypothesis, B is bounded. We then
define our “coercivity constraint” sample,

CJ = {μ1
SCM ∈ D, . . . ,μJ

SCM ∈ D}. (106)

We denote by CM,μ
J the set of M (≥ 1) points in CJ

closest (in the usual Euclidian norm) to a given μ ∈ D.
(Note that if M > J , then we set CM,μ

J = CJ .)

10.1.2 Lower Bound

Now for given CJ , M ∈ N ≡ {1, 2, . . .}, and any μ ∈ D,
we define the “lower bound” set YLB(μ; CJ ,M) ⊂ R

Q as

YLB(μ; CJ ,M) ≡
{

y ∈ R
Q | y ∈ B ,

Q∑
q=1

Θq(μ′)yq ≥ αN (μ′),∀μ′ ∈ CM,μ
J

}
.

(107)

We then demonstrate

Lemma 1 Given CJ ⊂ D and M ∈ N,

Y ⊂ YLB(μ; CJ ,M), ∀ μ ∈ D. (108)

Proof. For any y ∈ Y, ∃ wy ∈ XN such that yq =
aq(wy,wy)

‖wy‖2X
, 1 ≤ q ≤ Q. Then, since

inf
w∈XN

aq(w,w)
‖w‖2X

≤ aq(wy, wy)
‖wy‖2X︸ ︷︷ ︸

yq

≤ sup
w∈XN

aq(w,w)
‖w‖2X

, (109)

and also

Q∑
q=1

Θq(μ)
aq(wy, wy)
‖wy‖2X

=
a(wy, wy;μ)
‖wy‖2X

≥ αN (μ), ∀μ ∈ D,

(110)

it follows that every member y of Y is also a member of
YLB(μ; CJ ,M). This concludes the proof. �

We then define our lower bound

αNLB(μ; CJ ,M) = min
y∈YLB(μ;CJ ,M)

J obj(μ; y). (111)

We may then obtain

Proposition 3 For given CJ ⊂ D, M ∈ N,

αNLB(μ) ≤ αN (μ), ∀μ ∈ D. (112)

Proof. It readily follows that, given CJ ⊂ D, M ∈ N,

αNLB(μ) = min
y∈YLB(μ;CJ ,M)

J obj(μ; y)

≤ min
y∈Y

J obj(μ; y)

= αN (μ), ∀μ ∈ D ; (113)

here we invoke the definition of αNLB(μ), (111), Lemma 1,
and then (103). �

We note that our lower bound (111) is in fact a lin-
ear optimization problem (or Linear Program (LP)); in-
deed, (111) resembles a discretized linear semi-infinite
program [51]. We observe that our LP (111) contains
Q design variables and 2Q + M (one-sided) inequality
constraints. The crucial observation is that the opera-
tion count to evaluate μ→ αNLB(μ), given B and the set
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{αN (μ′) | μ′ ∈ CJ}, is independent of N . We return to
this point in Section 10.1.5.

We pause here and make an observation for the case
in which the coercive bilinear form a is parametrically
coercive. We say that a is parametrically coercive [112]
if Θq(μ) > 0, ∀μ ∈ D, and aq(w,w) ≥ 0, ∀w ∈ Xe,
1 ≤ q ≤ Q. In this case, for any μ ∈ D, any μ′ ∈ CM,μ

J ,
and any y ∈ YLB(μ; CJ ,M),

J obj(μ; y) =
Q∑

q=1

Θq(μ)yq =
Q∑

q=1

Θq(μ)
Θq(μ′)

Θq(μ′)yq

≥ min
q∈[1,Q]

Θq(μ)
Θq(μ′)

Q∑
q=1

Θq(μ′)yq ≥ min
q∈[1,Q]

Θq(μ)
Θq(μ′)

αN (μ′)

since B ⊂ R
Q
+ in the parametrically coercive case. (Here

R
Q
+ is the set {y ∈ R

Q|yq ≥ 0, 1 ≤ q ≤ Q}.) It is observed
that, for this particular case, the SCM will provide a
positive lower bound even for J = 1; indeed for J ≥ 1,

αNLB(μ; CJ ,M) ≥ max
μ′∈C

M,μ
J

(
min

q∈[1,Q]

Θq(μ)
Θq(μ′)

αN (μ′)
)

.

(114)

The result (114) will not in general be true for problems
that are not parametrically coercive.

10.1.3 Upper Bound

As we shall see, we also require an upper bound for the
coercivity constant for the (effective) construction of a
good “coercivity constraint” sample CJ . For given CJ ,
M ∈ N, and any μ ∈ D, we introduce our “upper bound”
set YUB(μ; CJ ,M) ∈ R

Q as

YUB(μ; CJ ,M) =
{

y∗(μ′) | μ′ ∈ CM,μ
J

}
, (115)

where

y∗(μ) = arg inf
y∈Y

J obj(μ; y)

(in the event of non-uniqueness, any minimizer suffices).
We can then define our upper bound as

αNUB(μ; CJ ,M) = min
y∈YUB(μ;CJ ,M)

J obj(μ; y). (116)

It directly follows from (115) that YUB(μ; CJ ,M) ⊂ Y
and hence, for given CJ , M ∈ N, αNUB(μ; CJ ,M) ≥ αN (μ),
∀ μ ∈ D.

We note that the upper bound (116) is a simple enu-
meration; the operation count for the Online stage to
evaluate μ → αNUB(μ), given the set {y∗(μ′) | μ′ ∈ CJ},
is independent of N .

10.1.4 Greedy Selection of CJ

In some cases, in particular for parametrically coercive
problems, we can often specify our lower bound construc-
tion “by hand”: we prescribe J , CJ , and M ; the lower
bound (111) then directly follows. We shall give an ex-
ample in Section 10.2. However, more generally, we must
appeal to a greedy algorithm.

We now present the construction of the set CJ by
an Offline greedy algorithm. We shall require a “train”
sample Ξtrain,SCM = {μ1

train,SCM, . . . ,μ
ntrain,SCM
train,SCM} ⊂ D of

ntrain,SCM parameter points. We also require a tolerance
εSCM ∈ (0, 1) which shall control the error in the lower
bound prediction. We first set J = 1 and choose C1 =
{μ1

SCM} arbitrarily. We then perform

While max
μ∈Ξtrain,SCM

[
αN

UB(μ;CJ ,M)−αN
LB(μ;CJ ,M)

αN
UB(μ;CJ ,M)

]
> εSCM :

μJ+1
SCM = arg max

μ∈Ξtrain,SCM

[
αN

UB(μ;CJ ,M)−αN
LB(μ;CJ ,M)

αN
UB(μ;CJ ,M)

]
;

CJ+1 = CJ ∪ μJ+1
SCM ;

J ← J + 1 ;

end.

Set Jmax = J.

Note that Jmax = Jmax(εSCM) refers to the particular
lower bound construction which satisfies the specified er-
ror tolerance.

In essence, at each iteration of the greedy procedure,
we add to our “coercivity constraint” sample that point
in D for which (roughly) the current lower bound ap-
proximation is least accurate; we may anticipate that the
“gap” between αNLB(μ; CJ ,M) and αNUB(μ; CJ ,M) will be
reduced at each iteration. In fact, since αNUB(μ; CJ ,M) =
αNLB(μ; CJ ,M), ∀μ ∈ CJ , it follows from continuity con-
siderations that, for sufficiently large J(= Jmax(εSCM)),
our error tolerance εSCM will be honored. In practice,
Jmax(εSCM) will be reasonably small, as we discuss fur-
ther in Section 10.2.

We note that we choose αNUB(μ; CJ ,M), not αNLB
(μ; CJ ,M), in the denominator of our selection crite-
rion since αNLB(μ; CJ ,M) may be negative or zero. Fur-
thermore, our choice of stopping criterion permits us to
bound

αN (μ)

αN
LB(μ;CJmax ,M)

= αN (μ)

αN
UB(μ;CJmax ,M)−(αN

UB(μ;CJmax ,M)−αN
LB(μ;CJmax ,M))

≤ αN (μ)

αN
UB(μ;CJmax ,M)

1
1−εSCM

≤ 1
1−εSCM

, ∀ μ ∈ Ξtrain, SCM .

We may then replace our output effectivity upper bounds
(97) — though rigorously now only for μ ∈ Ξtrain, SCM

— with γe(μ)/
(
(1−εSCM)αe(μ)

)
(independent of N and
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N ). We conclude that even a rather crude lower bound
— we often choose εSCM = 0.75 — will have relatively
little deleterious effect on our error bounds.

10.1.5 Offline-Online Procedure

We conclude our development of the SCM by summariz-
ing the cost of the Offline and Online computations.

In the Offline stage, the notable computations are
(i) 2Q (respectively, Jmax) eigenproblems over XN to
form B (respectively, to form {αN (μ′) | μ′ ∈ CJmax}),
(ii) JmaxQ inner products over XN to subsequently form
{y∗(μ′) | μ′ ∈ CJmax}, and (iii) ntrain,SCMJmax lower
bound LP’s of “size” 2Q+M (as well as associated upper
bound enumerations) to perform the “arg max”. The to-
tal computation cost thus roughly scales as O(N ·(2Q +
Jmax))+O(NQJmax)+O(ntrain,SCMJmaxQM), which of
course depends on N ; however, we note that there is no
“cross-term” O(ntrain,SCMN ), and thus in practice we
can choose both ntrain,SCM and N very large. (There is
a clear analogy with our RB greedy algorithm of Sec-
tion 7.2.2: by replacing the true error with a surrogate,
we can perform a more efficient and/or thorough search.)

The eigenproblems associated with the calculation of
the αN (μ′), μ′ ∈ CJ , can be treated very efficiently
by the Lanczos method [44,149]. In particular, it fol-
lows from the Rayleigh quotient (8) that αN (μ′) is the
minimum eigenvalue of a generalized eigenproblem: find
(χ, λ) ∈ XN × R+ such that

a(χ, v;μ) = λ(χ, v)X , ∀v ∈ XN . (117)

For the (parameter-independent) choice

τ = inf
w∈XN

a(w,w;μ)
(w,w)L2(Ω)

(118)

in (6), it can be shown that λmin = λ1 of (117) is “well-
separated” from λ2; the latter, in turn, ensures rapid con-
vergence of the Lanczos procedure. As indicated earlier,
the choice of norm (6) will not affect the RB output pre-
diction (except indirectly through the greedy process),
but will affect the quality and cost of the a posteriori
output error bound; we now further understand that the
choice of μ affects the effectivity (see Section 9) while
the choice of τ affects Offline (eigenvalue) efficiency.

In the Online stage, for each evaluation μ → αNLB
(μ; CJ ,M), (i) we first perform a sort of the Jmax points
in CJmax to determine the set CM,μ

Jmax
— the operation

count is at most O(MJmax), (ii) we must next effect
(M + 1)Q evaluations μq → Θq(μ′), 1 ≤ q ≤ Q —
the operation count is O((M + 1)Q), (iii) we then ex-
tract the selected M members of the pre-computed set
{αN (μ′) | μ′ ∈ CJ} and solve the resulting LP to ob-
tain αNLB(μ; CJ ,M) — a variety of standard procedures
of both the simplex and interior point variety can be ap-
plied to this LP of rather modest size. In closing, and
most importantly, we note that the operation count for

the Online evaluation of αNLB(μ; CJ ,M) does not depend
on N and hence we can retain rapid response in the
many-query and real-time contexts.

10.2 Numerical Results

We shall next present some numerical results. We first
consider the Thermal Block (B1 = B2 = 3) example of
Sections 6.1.1, 8.2.1, and 9.5. For this problem we choose
(μ = (1 1 . . . 1)) and τ = 0: this choice for τ — corre-
sponding to the numerical results of Section 9.5 — ad-
mits very simple analysis. It is readily observed from (59)
that the Thermal Block problem is parametrically coer-
cive: we may thus construct a lower bound “by hand”;
we can also expect rapid convergence of the automated
greedy procedure.

We first construct a lower bound by hand: we choose
J = 1, CJ = {μ} = {(1 1 . . . 1)}, M = 1; the earlier
numerical results reported in Sections 8.2.1 and 9.5 cor-
respond to this simple lower bound. It follows directly
from (114) that

αNLB(μ; CJ ,M) ≥ min(1, μ1, . . . , μP ) αN (μ)

= min(1, μ1, . . . , μP )
(119)

since a(w, v; μ) = (w, v)X for τ = 0 and hence αN (μ) =
1.13 We have already taken advantage of this estimate in
Section 9 to derive a simple effectivity upper bound.

In practice, even for parametrically coercive prob-
lems, the greedy procedure will improve upon any “by
hand” proposal — ensuring closer adherence of αNLB
(μ; CJ ,M) to αN (μ) and hence, from Proposition 2, bet-
ter effectivities. We now apply our Offline SCM Greedy
algorithm of Section 10.1.4 to the Thermal Block prob-
lem: we choose μ1

SCM = μ, a random sample Ξtrain,SCM

of size ntrain,SCM = 500, εSCM = 0.75, and M = 64. We
obtain Jmax = 12 (which effectively “resets” M to 12
since Cμ,64

Jmax
= Cμ,12

Jmax
= CJmax); we expect that αN (μ)/

αNLB(μ; CJmax ,M) ≈ 4 for most μ ∈ D. As expected, the
greedy converges very quickly for this parametrically co-
ercive problem despite the large number of parameters.14
(In fact, ntrain,SCM = 500 is rather small for P = 8 pa-
rameters; however, for parametrically coercive problems,
smaller samples typically suffice.)

None of our remaining examples — inviscid flow of
6.1.2, center crack of 6.2.2, or elastic block of 6.2.1 —
is parametrically coercive, and hence the greedy SCM
construction is indispensable; in all the numerical re-
sults presented in Section 8, the coercivity lower bound

13 In fact, the numerical results of Sections 8.2.1 and 9.5 cor-
respond to a coercivity lower bound min(1, μ1, . . . , μP ) which
is, from (119), a simple analytical (positive) conservative es-
timate for the SCM prediction αN

LB(μ; CJ , M) [112].
14 However, our choice τ = 0, though theoretically conve-
nient, yields poor Lanczos convergence; in practice (see be-
low), we choose τ according to (118).
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is provided by the greedy SCM result αNLB(μ; CJmax ,M).
We present numerical evidence here for the inviscid flow
added mass example: we choose (as in all our examples
except Thermal Block) μ = μref and τ according to
(118); the latter ensures rapid convergence of the req-
uisite Offline eigenproblems.

We consider a random sample Ξtrain,SCM of size
ntrain,SCM = 500, εSCM = 0.75, and M = 8. We ob-
tain Jmax = 63: as expected for this non-parametrically
coercive problem, we require at least a few “coercivity
constraint” sample points in each parameter direction
in order to ensure compliance with our error tolerance.
However, the Offline effort is still not excessive: thanks
to our choice of τ , the number of Lanczos iterations “per
αN (μ′)” is quite modest, typically ≈ 10 to achieve a rel-
ative accuracy of 10−2. Furthermore, the Online effort
is very insensitive to Jmax, since the size of the LP is
dictated solely by Q and M .

We close with several general comments. First, for
problems with many parameters that are not parametri-
cally coercive, we must choose Ξtrain,SCM quite large —
larger than ntrain,SCM = 500 — to obtain a lower bound
αNLB(μ) that is viable (positive) for all μ in D. Second, as
already noted, we do not need high accuracy for αNLB: an
increase in εSCM from ≈ 0 to 0.75 will only increase our
output bound effectivities by a factor of roughly four.
Third, we note that M can be chosen to balance Offline
and Online effort: M very large will economize Offline
performance (reduce Jmax) but degrade Online perfor-
mance, while M very small will increase Offline cost (in-
crease Jmax) but improve Online response; typically, M

should be chosen such that CM,μ
J “covers” variations in

all the parametric coordinates.
Finally, we note that we must anticipate that Jmax,

unlike Nmax, will increase exponentially with P — at
least for problems that are not parametrically coercive.
This will certainly limit the number of parameters that
may be considered; in the non-coercive case [64] the ef-
fect will be even more pronounced. However, the “con-
stants” appear to be quite favorable, at least for coercive
problems; for all of our working examples in this paper,
Jmax < 100.

11 Extension to Noncompliant Problems

11.1 General Primal-Dual Approximation Framework

We now consider the more general non-compliant prob-
lem: given μ ∈ D, find

s(μ) = �(ue(μ)) , (120)

where ue(μ) ∈ Xe satisfies

a(ue(μ), v;μ) = f(v), ∀ v ∈ Xe . (121)

We assume that a is coercive and continuous (and affine,
(2)) but not necessarily symmetric. We further assume

that both � and f are bounded functionals but we no
longer require � = f .15 We shall also need the dual prob-
lem associated to �: find ψe(μ) ∈ Xe such that

a(v, ψe(μ);μ) = −�(v), ∀ v ∈ Xe ;

ψe is denoted the “adjoint” or “dual” field.
Our FE approximation is then given by

sN (μ) = �(uN (μ)) ,

where

a(uN (μ), v;μ) = f(v), ∀ v ∈ XN ,

and

a(v, ψN (μ);μ) = −�(v), ∀ v ∈ XN .

For our purposes here a single FE space suffices for both
the primal and dual. In actual FE practice — in which
the dual approximation serves to improve output accu-
racy [117] or develop output error bounds [23,108] — the
FE primal and dual spaces may be different.

By way of motivation, we first consider approxima-
tion of the primal problem given by (120),(121) under
the stated hypotheses on �, f , and a. We shall require two
approximation subspaces X̃pr

1 ⊂ XN and X̃pr
2 (μ) ⊂ XN

(possibly parameter dependent) and a given function Φ:
D → XN . Ultimately X̃pr

1 and X̃pr
2 shall be interpreted

as RB spaces; however, at present the particular nature
of these approximation subspaces is not crucial.

We then introduce a general Petrov-Galerkin approx-
imation: Given μ ∈ D, find ũN (μ) ∈ X̃pr

1 such that

a(ũN (μ), v;μ) = f(v), ∀ v ∈ X̃pr
2 (μ) , (122)

and evaluate the output as

s̃N (μ) = �(ũN (μ))− r̃pr(Φ(μ);μ) , (123)

where

r̃pr(v;μ) ≡ f(v)− a(ũN (μ), v;μ), ∀ v ∈ Xe , (124)

is the primal residual. Ultimately, ũN (μ) and s̃N (μ)
shall be interpreted as our RB approximations to the
field uN (μ) and output sN (μ), respectively.

We note that for coercive problems it shall suffice to
consider standard Galerkin RB approximation — X̃pr

2

(parameter-independent) = X̃pr
1 . (For non-coercive prob-

lems, consideration of Petrov-Galerkin RB approxima-
tions is much more interesting [134,86].) However, the
different roles of the “trial” and “test spaces” is best il-
luminated in the full Petrov-Galerkin context; we hence
15 Typical output fuctionals correspond to the “integral” of
the field u(μ) over an area or line (in particular, boundary

segment) in Ω. However, by appropriate lifting techniques
[56,1], “integrals” of the flux over boundary segments can
also be considered.
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consider the more general framework for the purposes of
this conceptual discussion.

We define the discrete coercivity, inf-sup, and conti-
nuity constants associated with our spaces as

α̃(μ) = inf
w∈ eXpr

1

a(w,w;μ)
‖w‖2X

(125)

β̃(μ) = inf
w∈ eXpr

1

sup
v∈ eXpr

2 (μ)

a(w, v;μ)
‖w‖X‖v‖X

, (126)

and

γ̃(μ) = sup
w∈ eXpr

1

sup
v∈ eXpr

2 (μ)

a(w, v;μ)
‖w‖X‖v‖X

, (127)

respectively. Our norm ‖ ·‖X is defined, as before, by (6)
of Section 4.

We can then prove (under the assumption that a is
coercive and continuous)

Proposition 4 For ũN (μ) and s̃N (μ) given by (122)
and (123), respectively,

‖uN (μ)− ũN (μ)‖X ≤
(

1+
γe(μ)
β̃(μ)

)
inf

w̃∈ eXpr
1

‖uN (μ)− w̃‖X ,

(128)

and

|sN (μ)− s̃N (μ)| ≤

γe(μ)‖uN (μ)− ũN (μ)‖X inf
ṽ∈ eXpr

2 (μ)
‖ψN (μ)− Φ(μ)− ṽ‖X .

(129)

Here Φ: D → XN is a (any) given function.

The proof is standard.
We observe that X̃pr

2 (μ) in fact plays two roles. First,
(for given X̃pr

1 chosen based on approximation considera-
tions) X̃pr

2 (μ) determines, through β̃(μ), the stability of
our approximation — both as regards convergence and
also algebraic conditioning. (For coercive problems we
can ensure stability simply through the Galerkin recipe,
X̃pr

2 (μ) = X̃pr
1 ; for non-coercive problems, alternative

non-Galerkin choices for X̃pr
2 (μ) can be advantageous.)

Note that stability is a significant concern in the RB
context since the RB spaces do not have general approx-
imation properties. Second, X̃pr

2 (μ) can improve the ac-
curacy of the output prediction: if members of X̃pr

2 (μ)
approximate well the adjoint ψN (μ), then the second
term in (129) will be small — quite independent of the
primal approximation properties of X̃pr

1 as reflected in
(128) and the first term in (129).

This double role of the test space informs the choice
X̃pr

2 (μ) and the introduction/selection of Φ(μ). In par-
ticular, if we choose X̃pr

2 (μ) solely based on stability

considerations, we forego the approximation advantages
associated with the second term in (129). Conversely, if
we choose X̃pr

2 (μ) solely based on adjoint approximation
considerations, we shall have no guarantee of stability. It
is the additional “degree of freedom” afforded by Φ(μ)
that can resolve the dilemma: we will typically select
X̃pr

2 (μ) to control stability — for coercive problems, by
the simple Galerkin recipe X̃pr

2 (μ) = X̃pr
1 — and select

Φ(μ) to control better the second term in (129).
The choice of Φ(μ) will in most cases take the form of

a Petrov-Galerkin (Galerkin for coercive problems) ap-
proximation to the dual problem: Given μ ∈ D, ψ̃N (μ)
(≡ Φ(μ)) ∈ X̃du

1 satisfies

a(v, ψ̃N (μ);μ) = −�(v), ∀ v ∈ X̃du
2 (μ) . (130)

Here the space X̃du
1 ⊂ XN is chosen to provide good ap-

proximation of ψN (μ), and the space X̃du
2 (μ) (possibly

parameter-dependent) is chosen to provide good stabil-
ity of the discrete dual problem. As regards the former,
we emphasize that in the ad hoc RB context, even more
so than in the “generic” FE context, the dual and primal
approximation spaces may be fundamentally different —
with very little shared approximation properties. As re-
gards the latter, we again observe that, in the coercive
case, the Galerkin recipe X̃du

2 = X̃du
1 is certainly a viable

approach.

11.2 The Reduced Basis Context

At this stage we can now motivate (roughly) the compu-
tational motivation for, and benefit of, the adjoint.

11.2.1 Approximation

We choose the primal and dual approximation spaces ac-
cording to the (greedy) Lagrange RB prescription: X̃pr

1 =
W pr

Npr — the span of Npr snapshots of uN (μ), μ ∈ D;
X̃du

1 = W du
Ndu — the span of Ndu snapshots of ψN (μ),

μ ∈ D. We choose the corresponding primal and dual
test spaces (perforce stably) according to the Galerkin
recipe: X̃pr

2 = W pr
Npr ; X̃du

2 = W du
Ndu .

The resulting RB primal approximation — ũN (μ) of
(122) for our particular RB primal spaces — will be de-
noted uNNpr(μ); the resulting RB dual approximation —
ψ̃N of (130) for our particular RB dual spaces — will be
denoted ψNNdu(μ). (We shall adopt the convention that
Npr = 0 and Ndu = 0 corresponds to uNNpr = 0 and
ψNNpr = 0, respectively.) Finally, the associated RB out-
put approximation — s̃N of (123) for Φ(μ) = ψNNdu(μ)
— will take the form

sNNpr,Ndu(μ) = �(uNNpr(μ))− rpr(ψNNdu(μ);μ) . (131)

Recall that rpr is the RB primal residual as defined in
(88).
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Next, and solely for the purposes of our arguments
here, we suppose that

‖uN (μ)− uNNpr(μ)‖X = ‖uN (μ)‖Xgerr(Npr) , (132)

and

‖ψN (μ)− ψNNdu(μ)‖X = ‖ψN (μ)‖Xgerr(Ndu) . (133)

Here gerr: N0 → R is a presumed monotonically decreas-
ing “convergence” function with associated inverse g−1

err

(such that g−1
err (gerr(N)) = N); note it follows from our

conventions for Npr = 0 and Ndu = 0 that g(0) = 1.
(Implicitly in (132),(133) we presume — given our single
primal/dual convergence function — that the primal and
dual problems are of similar regularity or “difficulty”; we
shall return to this point below.) Finally, we shall sup-
pose — as motivated by the result (129) — that

|sN (μ)− sNNpr,Ndu(μ)| =
Cs‖uN (μ)‖X ‖ψN (μ)‖Xgerr(Npr) gerr(Ndu) ,

(134)

where Cs is a constant that reflects the non-zero angle
between the primal and dual errors.

It then follows from our assumptions that, at fixed
output error |sN (μ) − sNNpr,Ndu(μ)| = Cs‖uN (μ)‖X

‖ψN (μ)‖Xε,

Online Cost of sNN (μ) with adjoint

Online Cost of sNN (μ) without adjoint

= 2
(

g−1
err (
√

ε)
g−1
err (ε)

)3

;

(135)

here “with adjoint” refers to the optimal — given
(132),(133) — choice Npr = Ndu, and “without ad-
joint” refers to the choice Npr �= 0, Ndu = 0 (and
hence, according to our convention, ψNNpr = 0). The cube
in (135) arises from the assumed dominant LU decompo-
sition of the (dense) RB stiffness matrices as described
in Section 7. Even in the “worst” case, in which gerr(N)
is exponential — gerr(N) = e−ωN for given positive real
ω — the ratio in (135) is 1

4 : by “normal” standards, a
reduction in effort of 75% is very large. Furthermore, if
convergence is only algebraic — gerr(N) = (N +1)−ω —
the ratio (135) is approximately 2ε3/(2ω), and hence the
reduction in effort is even more significant (in particular
for smaller ε).

In actual practice the best (most efficient) decompo-
sition between primal and dual degrees of freedom will
be strongly problem dependent. In particular, we must
in general replace gerr by gpr

err in (132) and by gdu
err in

(133); the optimal choice of Npr, Ndu — the choice that
minimizes Online effort — will in general depend on the
ratio between gpr

err and gdu
err. For example, if gpr

err � gdu
err

then we should choose Npr �= 0, Ndu = 0; conversely, if
gdu
err � gpr

acc, then we should choose Npr = 0, Ndu �= 0.

We further note that these arguments will be influenced
by the number of outputs: clearly for many outputs the
adjoint becomes a good idea that we can no longer afford,
largely independent of the relative convergence rates of
the primal and dual RB approximations.

11.2.2 A Posteriori Error Estimation

Finally, we briefly discuss a posteriori error estimation in
order to provide yet another motivation for the adjoint.
We first consider the case “without adjoint,” Ndu = 0,
corresponding to ψNNdu = 0 in (131) and hence sNNpr,Ndu(μ)
= �(uNNpr(μ)) and

|sN (μ)− sNNpr,Ndu(μ)| = |�(uNNpr(μ)− uN (μ))| . (136)

Our a posteriori error bound in this case shall (must) in
general take the form

Δs
N (μ) = ‖�‖(XN )′ΔN (μ) , (137)

where ΔN (μ) is the error bound for ‖uN (μ)−uNNpr(μ)‖X .
It is clear that (137) is indeed a rigorous bound for the
error in the output.

However, we can demonstrate that the bound (137)
can, in some situations, be very poor. In particular, we
consider the (compliant) case � = f : since from (66)
|sN (μ)−sNNpr,Ndu(μ)| ≤ γe(μ)‖uN (μ)−uNNpr(μ)‖2X , and
from Proposition 3 (extended to the X norm [112]) ΔN (μ)
≥ ‖uN (μ)− uNNpr(μ)‖X , we obtain

Δs
N (μ)

|sN (μ)− sN
Npr,Ndu(μ)| ≥

‖�‖(XN )′

γe(μ)‖uN (μ)− uNNpr(μ)‖X
;

(138)

hence the effectivity of the output error bound (137)
tends to infinity as (N → ∞ and) uNNpr(μ) → uN (μ).
We expect similar behavior for any � “close” to f : the
failing is that (137) does not reflect the contribution of
the test space to the convergence of the output.

The introduction of the RB adjoint approximation
will largely cure this problem — and ensure a stable
limit N → ∞. In particular, in the non-compliant case,
the output error bound takes the form

Δs
N (μ) ≡ ‖rpr( · ;μ)‖(XN )′

(αNLB(μ))1/2

‖rdu( · ;μ)‖(XN )′

(αNLB(μ))1/2
, (139)

where

rdu(v;μ) ≡ −�(v)+a(v, ψNNdu(μ);μ), ∀ v ∈ Xe , (140)

is the dual residual. In effect, (139) is the product of
primal and dual errors (with the coercivity constant de-
tributed “symmetrically” for the purposes of the sepa-
rate primal and dual greedy algorithms).

The effect of the test space, “through” Φ = ψNNdu ,
is now reflected in our error bound (139): we recover,
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in the compliant case, our earlier (N -independent) effec-
tivity bound of Proposition 2. Unfortunately, even with
the adjoint, the effectivities — though bounded — may
be quite large, in particular in the very non-compliant
limit in which the primal and dual errors can be very
uncorrelated.

11.3 An Advection-Diffusion Problem

We consider an advection-diffusion example in a rectan-
gular domain Ωo(μ) = ]0, L[× ]0, 1[ representing a chan-
nel. The governing equation for the passive-scalar field
(say, temperature) is the advection-diffusion equation
with imposed Couette velocity (xo2, 0). Neumann (flux)
boundary conditions are imposed on the bottom wall
Γo,bot; homogeneous Dirichlet conditions are imposed on
the top wall Γo,top and on the “inflow” left boundary
Γo,in; and homogeneous (zero flux) Neumann conditions
are imposed on the “outflow” right boundary Γo,out. The
output of interest is the integral of the temperature over
the heated (bottom) surface Γo,bot. This example is a
simplified version of a Couette-Graetz problem [140].

We consider two parameters: the length of the chan-
nel, L, and the Peclet number, Pe [57]. Hence P = 2
and μ = (μ1, μ2): μ1 is the channel length L, and μ2

is the Peclet number Pe; the parameter domain is given
by D = [1, 10] × [0.1, 100]. We now choose μref = (1, 1),
which in turn defines the reference domain Ω = Ωo(μref).

In terms of the original domain, we identify Xe
o(μ) ≡

{v ∈ H1(Ωo(μ))
∣∣ v|Γo,top∪Γo,in = 0}, which imposes the

Dirichlet conditions;

ao(w, v;μ) =
∫

Ωo(L)

xo2
∂w

∂x1
v+

1
Pe

∫
Ωo(L)

∇w·∇v, (141)

which represents the advection (non-symmetric) and dif-
fusion (symmetric) contributions as well as the homoge-
neous Neumann conditions; and

fo(v) = �o(v) ≡
∫

Γo,bot(L)

v , (142)

which reflects the inhomogeneous Neumann conditions
and bottom-wall temperature output functional.

In this case we effect the simple dilation-in-xo1 affine
mapping — (x1, x2) = (xo1/L, xo2) — “by hand”: we di-
rectly obtain the reference domain abstraction (120),(121)
for Xe ≡ {v ∈ H1(Ω)

∣∣ v|Γtop∪Γin = 0},

a(w, v,μ) ≡
∫

Ω

x2
∂w

∂x1
v +

1
μ1μ2

∫
Ω

∂w

∂x1

∂v

∂x1

+
μ1

μ2

∫
Ω

∂w

∂x2

∂v

∂x2
(143)

and

f(v;μ) = �(v;μ) ≡ μ1

∫
Γbot

v .
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Fig. 30 Advection-Diffusion problem: maxμ∈Ξtrain Δs
N (μ)

as a function of N ; note |sN (μ) − sNN (μ)| ≤ Δs
N (μ).

(We observe that � and f depend affinely on μ; as in the
compliant case, this extension is straightforward.) Note
that although � = f this problem is not compliant since
a is not symmetric and hence ue(μ) �= ψe(μ): we must
invoke the full primal-dual technology described in the
previous two sections.

We construct the primal and dual hierarchical RB ap-
proximations by (two separate) greedy procedures anal-
ogous to the method described in Section 7.2.2 for the
(primal only) compliant case. We consider for Ξtrain a
random sample of size ntrain = 2000. We plot in Fig-
ure 30 the maximum of the a posteriori output error
bound over Ξtrain as a function of N = Npr = Ndu. (In
actual practice, in the Offline stage we can form “look-
up” tables of cost-optimal Npr, Ndu discretization pairs
as a function of maximum output error (bound) over D;
in the Online stage we then search this table to select an
RB primal-dual discretization pair Npr, Ndu appropriate
for the desired accuracy [44].) We observe that the out-
put converges quite rapidly despite the rather large para-
metric variations in the channel length and in particular
the Peclet number.

We next consider a posteriori error estimation for the
output. In fact, our procedures of Sections 9 and 10 for
the symmetric case require very little modification. Our
output error bound in the noncompliant case is given by
(139): we now must perform two dual norm calculations
— one for the primal residual, (88), and one for the dual
residual, (140); however, the fundamental Offline-Online
procedure described in Section 9.4 requires no modifica-
tion. Similarly, our SCM procedure is little changed: to
construct a lower bound for the coercivity constant of
a non-symmetric bilinear form a, we simply apply the
SCM procedure of Section 10.1 but now to the symmet-
ric part of a. For a random sample Ξtrain,SCM of size
ntrain,SCM = 1000, εSCM = 0.75, and M = 4 we obtain
Jmax = 4; the symmetric part of a is parametrically coer-
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Fig. 31 Advection-Diffusion problem: αN
UB(μ) (upper curve,

solid) and αN
LB(μ) (lower curve, dotted) as a function of

μ′ ∈ Ξtrain,SCM after Jmax = 4 iterations of the SCM greedy
algorithm; here the abscissa represents the index of the point
μk

train,SCM in Ξtrain,SCM.

N Δs
N,max ηs

N,max ηs
N,ave

10 1.9E−01 63.1 7.9
15 5.3E−02 46.78 9.3
25 4.0E−03 48.5 5.9
33 1.0E−03 94.3 8.2
40 2.5E−04 81.4 17.8

Table 2 Advection-Diffusion problem: Output error bound
and effectivity metrics as a function of N .

cive — hence the rapid convergence. We plot in Figure 31
the SCM lower and upper bounds for the coercivity con-
stant.

We present in Table 2 the output error bound (139)
and associated effectivity measures (see Section 9.5) as
a function of N = Npr = Ndu for a random test sam-
ple Ξ of size 2000. We note that, in the non-compliant
case (without further assumptions on the output conver-
gence), we can no longer obtain an upper bound for the
output error bound effectivity, and hence we anticipate
that the effectivities might be larger and also perhaps
more erratic than in the compliant case; this expectation
is (unfortunately) realized in Table 2, though in fact at
least the average effectivities remain quite well-behaved.
(We note that the higher values of the effectivity obtain
for the higher Peclet values — for which the continu-
ity/coercivity ratio is larger and furthermore the primal
and dual solutions are less correlated.)

In other studies, the time-dependent advection-diffu-
sion (parabolic) equation is considered [52]. Future work
must also address RB approximation of stabilized FE
approximations (for high Peclet number) [43,124].
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