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1. In t roduc t ion  

Soon after the announcement  of their discovery in 
1984 [1], quasicrystals hit the headlines. Here was a 
substance--an alloy of aluminum and manganese--  
whose electron diffraction patterns exhibited clear and 
unmistakable icosahedral symmetry (a view along a 
five-fold axis is shown in Figure 1). A clear and unmis- 
takable diffraction pattern of any sort is evidence of 
"long-range order": the diffraction pattern is a picture 
of a Fourier transform. Long-range order is usually 
synonymous  with periodicity, and every periodic 
structure has a translation lattice. But a simple argu- 
ment shows that five-fold rotational symmetry is in- 

compatible with lattices in R 2 and R 3" every lattice has 
a minimum distance d between its points, but if two 
points at this distance are centers of five-fold rotation 
about parallel axes, the rotations will generate an orbit 
with smaller distances between them (Figure 2). By 
this chain of reasoning, it appeared that the impos- 
sible had occurred. 

For the past five years,  quasicrystals have been 
studied intensively by metallurgists, solid-state physi- 
cists, and mathematicians (few crystallographers have 
shown much interest in them). The problem has grad- 
ually been resolved into three more or less separate 
questions, not necessarily according to the field of the 
researcher: 
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1. Crystallography. How are the atoms of real quasi- 
crystals arranged in three-dimensional space? 

2. Physics. What are the physical properties of sub- 
stances with long-range order but no translational 
symmetry? 

3. Mathematics. What kind of order is necessary and 
sufficient for a pattern of points to have a diffraction 
pattern with bright spots? 

As Cahn and Taylor pointed out in 1985 [2], to an- 
swer Question 3 we must draw on a variety of tech- 
niques from many branches of mathematics, including 
tilting theory, almost periodic functions, generalized 
functions, Fourier analysis, algebraic number theory, 
ergodic theory and spectral measures, representations 
of GL(n), and symbolic dynamics  and dynamical  
systems. 

This article is a report on the current status of the 
problem. We began our discussions while attending a 
conference on Number Theory and Physics, at the Centre 
de Physique, Les Houches, France in March 1989. One 
of the foci of that conference was quasiperiodicity and 
quasicrystals, and during our ten days there we en- 
joyed extended discussions with a variety of observers 
and practitioners of this field. But we warn the reader 
that the view we present  here may not be widely 
shared;  in par t icular ,  Ques t ion  3 is usua l ly  not  
phrased in such generality (see Section 6). And like 
the view of the Mont Blanc massif from the conference 
center (Figure 3), the general outline and size of the 
problem is rather clear, but features that are promi- 
nent from our perspective may mask others, including 
the summit. 

Figure 1. A diffraction pattern of an aluminum-manganese 
quasicrystal. Its five-fold rotational symmetry produced 
shock-waves in the world of solid-state science. Photograph 
courtesy of John Cahn. 

2. W h a t  Is a Crysta l?  

The discovery in 1912 that crystals diffract X-rays lent 
overwhelming experimental support to the hypothesis 
that crystalline structure is periodic. What could be a 
better example of Pierre Curie's banal but widely ad- 
mired Principle of Symmetry: "'When certain causes 
produce certain effects, the elements of symmetry in 
the causes ought to reappear in the effects produced"? 
Since then, the lattice has been taken as the definition 
of the crystalline state. 

For the first year or two after their discovery, the 
question most hotly debated among solid-state scien- 
tists was: are quasicrystals  crystals? By this was 
meant, can the structure of these alloys be interpreted 
within the framework of periodicity (for example, as a 
mosaic or intergrowth), or is it something truly new? 
Now, nearly five years later, quasicrystals of varying 
compositions (aluminum-lithium-copper, uranium- 
palladium-silicon, and many others) and high perfec- 
tion have been grown in laboratories all over the world 
and have been analyzed in great detail, and the mosaic 

Figure 2. Five-fold symmetry is incompatible with period- 
icity, because it violates discreteness. Two five-fold centers 
at the minimum distance d generate points whose distance 
is less than d. 

Figure 3. The Mont Blanc massif, seen from the Centre de 
Physique, Les Houches, France. Photo by Pierrette Cassou- 
Nouges. 
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and intergrowth models have been discarded by es- 
sentially everyone but Linus Pauling [3]. It is clear that 
the question should be interpreted differently. To ask 
whether quasicrystals are crystals really means to ask 
what we mean by "crystal." We cannot see inside the 
solid state; we know it only through the images pro- 
vided by diffraction, electron microscopy, and other 
modern techniques. It might be more appropriate to 
define a "crystal" to be a structure with sufficient 
long-range order to exhibit images with properties as- 
sociated with those we call crystalline, such as a dif- 
fraction pattern with sharp spots. 

A diffraction pattern for a material is essentially a 
two-dimensional slice of the square modulus of the 
Fourier transform of its density distribution; it faith- 
fully records the amplitudes of the transform, but 
gives no direct record of the phases. Geometrically, 
we can think of a periodic crystal as an orbit of its 
symmetry group, which is an infinite discrete group 
with compact fundamental  region. It can be shown 
that every orbit of such a group is a union of a finite 

Finding a periodic framework on which to 
hang these structures can be likened to the 
pre-Keplerian problem in astronomy of trying 
to explain planetary orbits by decorating the 
circle with the right number and arrangement 
of epicycles. 

number of congruent lattices. In the first approxima- 
tion, we can take the density distribution of a periodic 
crystal to be a sum of weighted delta functions located 
at the nodes of each of these lattices (with the same 
weight for each point of a particular lattice). The 
Poisson summation formula implies that the Fourier 
transform of a lattice sum of deltas is again such a 
sum. Thus the diffraction pattern of a lattice is a lat- 
tice; it is in fact its dual lattice. The original lattices and 
their weights can be recovered from the diffraction 
pattern with the help of some techniques for recov- 
ering the "phase factor"; this is the experimental and 
theoretical framework for crystal structure analysis. 

However, the lattice hypothesis is not without its 
problems. There are crystals with extremely large re- 
peat units, with thousands of atoms in the unit cell. 
There are crystals that  are more or less random 
stackings of two-dimensional periodic structures. 
There are crystals in which the lattice is disturbed by a 
modulation. Finding a periodic framework on which 
to hang these structures can be likened to the pre- 
Keplerian problem in astronomy of trying to explain 
planetary orbits by decorating the circle with the right 
number and arrangement of epicycles. No number or 
arrangement will be correct for the quasicrystals! The 
quasicrystal phenomenon shows us that a diffraction 

pattern can theoretically show sharp spots even if 
there is a single nonperiodic but well-defined geomet- 
rical pattern that gives rise to it. And although it is 
widely assumed that the crystal lattice is a global con- 
sequence of the play of local interatomic forces, from 
the standpoint of physics or mathematics this is an 
open problem. Indeed,  Miekisz and Radin have 
shown that generically one would expect local forces 
to generate nonperiodic structures [4]. In fact, one can 
even find crystals almost arbitrarily close to "ideal 
quas ic rys ta l s , "  in the same way that  i rrat ional  
numbers can be approximated by rational numbers. 

Thus the deeper question is: what local ordering 
properties are necessary and sufficient to produce or- 
derly images? 

Two minimal properties that we might require of a 
locally ordered point set L C R n are discreteness and 
relative density: there is a minimum distance d be- 
tween any pair of points of L, and a number ~ > 0 
such that every sphere of radius 8 contains at least one 
point of L; such an L is sometimes called a Delone 
system. (Incidentally, Delone's name is sometimes 
spelled Delaunay, reflecting the fact that his forebears 
went to Russia with Napoleon and stayed on.) A finite 
region of a Delone system with no additional structure 
roughly describes the centers of the atoms in a mona- 
tomic gas in a closed container. Increasing the struc- 
ture increases the order. Sufficient local order implies 
periodicity: Delone and his colleagues proved [5] that 
there is a number k = k(8,n), where n is the dimension 
of the space in which L lies, such that if the sets {x E Rn: 
I x - u I ~ k} M L are congruent for each u E L, then L 
is an orbit of a crystallographic group. 

The patterns we are interested in have order some- 
where between amorphous and periodic. The ques- 
tion is, what intermediate conditions are necessary 
and sufficient to ensure that L can produce a diffrac- 
tion pattern with "bright spots"? For example, one 
condition might be local isomorphism: every finite con- 
figuration of L occurs in every bounded region of suf- 
ficient size. But although local isomorphism is present 
in all the examples that we know about, there is no 
proof that it is either necessary or sufficient. Other 
local ordering conditions can of course be proposed, 
but not much is known about their effect either. The 
question remains open. 

One obvious difficulty is that "bright spot" is not 
well defined. We can simplify matters by defining it to 
mean that there are Dirac deltas in the Fourier spec- 
trum, weighted so that some peaks appear isolated. 
Then there are two cases to consider: either the entire 
Fourier spectrum is a set of deltas (possibly dense), or 
else the spectrum also contains a continuous compo- 
nent. But from the experimental point of view a bright 
spot need not represent a "real" delta; it might be due 
to features of the transform that closely approximate 
delta functions. Point sets with this property are of 
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theoretical as well as experimental interest (see Sec- 
tion 4). 

We can formulate these conditions more precisely. 
Any Delone system D has a density distribution that is 
a countable infinite sum of weighted Dirac deltas on 
the points of D; we can assume as a first approxima- 
tion that all the weights  are equal to 1. Then the 
distribution p(x) can be written Ev~ o 8(x - v), where x 

Rn; a distribution of this form is sometimes called a 
Dirac comb. We are looking for Dirac combs whose 
Fourier transforms ~(t) = Ev~ o exp(2"rrit �9 v) are closely 
related to Dirac combs, where by "closely related" we 
mean one of the following: 

(a) The Fourier transform is precisely a Dirac comb; 
such a comb is also called a Poisson comb. (An impor- 
tant special case is when the frequencies v at which 
the delta functions of the Fourier transform occur have 
a finite basis over the integers; the original density is 
then said to be quasiperiodic.) 

(b) The Fourier transform contains a Dirac comb to- 
gether with a continuous part. 

(c) The Fourier transform "looks like" it contains a 
Dirac comb but does not in fact do so; this can happen 
when the spectrum has a singular continuous compo- 
nent. 

Characterizing the order properties of Dirac combs 
satisfying (a), (b), or (c), and classifying these combs, 
is a central problem of quasicrystallography, and in- 
volves all of the branches of mathematics listed above. 
In the absence of a complete answer to our question, 
we study examples. The two classes of combs that 
have been studied in most detail are those obtained by 
projection, and one-dimensional combs. We will also 
discuss some of the relations be tween  combs and 
tilings; some interesting recent work is discussed in 
Section 5. 

3. Point  Sets O b t a i n e d  by  Project ion 

Three years before the discovery of quasicrystals, the 
English crystallographer Alan Mackay [6], long an ad- 
vocate for a more general crystallography, devised an 
ingenious experiment. He arranged for an optical dif- 
fraction mask to be constructed whose holes were lo- 
cated at the vertices of a tiling by Penrose rhombs 
(Figure 4). These filings, which are constructed by jux- 
taposing the rhombs  according to strict matching 
rules, are nonperiodic. Yet they aren't "'disordered": 
one can discern a great deal of local order. Local con- 
figurations with 5-fold symmetry not only occur, they 
occur all over the place. Indeed, the pattern of vertices 
has the local isomorphism property discussed above. 
Moreover, the filings are self-similar. (These and other 
properties of the Penrose tilings will be discussed in 

Figure 4. Part of a Penrose tiling by rhombs. Vertex 
colors and edge arrows must be matched. 

more detail in Section 5.) As Mackay suspected, the 
diffraction pattern obtained with this mask was clear 
and sharp, almost crystalline. And it had the crystallo- 
graphically forbidden five-fold symmetry. 

De Bruijn's construction. Since the quasicrystal in 
question, i.e., the set of the vertices of the Penrose 
tiles, is not a lattice, how can we explain Mackay's ex- 
perimental results? The necessary insight was sup- 
plied by N. G. de Bruijn, in a remarkable set of papers 
published in 1982 [7]. In these papers, de Bruijn gave a 
global method for constructing the Penrose tilings that 
allows us to index the vertices of the rhombs with five 
integer coordinates (x 0 . . . . .  x4). Thus the vertices can 
be identified with a subset S of the points of the in- 
teger lattice in R 5. 

Moreover, de Bruijn showed that 
4 

1 ~  ~ , x i ~ 4 f o r a l l ~  = (x0 . . . . .  x4) E S .  (1) 
k=O 

Since this sum is also the scalar product (x0 . . . . .  x4) �9 
(1 . . . . .  1), the points of S lie in a region M C R s 
which projects to a bounded interval on the line con- 
taining ~ = (1,1,1,1,1); note that this vector is the 
body diagonal of the unit 5-cube ~/s. The vertices of the 
Penrose rhombs are the projections of S onto a plane 
11, one of the two invariant planes of the five-fold ro- 
tation about that diagonal, which cyclically permutes 
the five coordinate axes. Both of these planes are irra- 
tional: their intersections with the lattice are just {0}. 
The tile vertices are integral linear combinations of the 
projections of the five orthonormal unit coordinate 
vectors of R s onto 1-[. Not all vectors satisfying (1) are 
in S; S is the set of points M' of M whose projection 
onto FI • lies in the projection of ~/5 onto that subspace. 
(Any projection of an n-cube is a zonohedron; in this 
case it is a rhombic icosahedron.) 

Katz and Duneau [8], among others, have shown 
that the projection formalism greatly facilitates the 
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Figure 5. A plane tiling by three kinds of rhombs, 
projected from R 7. Courtesy of Andr4 Katz. 

computation of Fourier transforms. The density func- 
tion of the set S is the product of the density function 
of the integer lattice in R s and the characteristic func- 
tion of M'. Thus, since the Fourier transform of a 
product of two functions is the convolution of the 
Fourier transforms of the individual functions, and 
since the Fourier transform of the projection of the 
density function of S is the restriction of the Fourier 
transform of that function to H, we can compute the 
diffraction pattern of the Penrose vertices. (That all of 
this can be made rigorous has been shown, by rather 
different arguments, by de Bruijn [9] and by Porter 
[10].) The Fourier transform is a countable sum of 
delta functions at a dense set of points in the plane; 
thus the set of vertices is a Poisson comb. Although 
the delta functions are dense, we see bright spots in 
the diffraction pattern, because the amplitude of the 
transform attains local maxima at isolated points, and 
at most other points is very small. 

The general case. The Penrose tilings are of course 
very special. To what  extent does the proper ty  of 
being a Poisson comb depend on their remarkable 
properties? Curiously, this dependence is not very 
strong. For example,  while it is easy to construct 
Poisson combs by projection, as far as we know most 
of them are not self-similar. (If we translate M in II3_, 
the projected pattern will include local vertex configu- 
rations that are forbidden by the matching rules of the 

Penrose tiles.) Or, we can carry out the analogous con- 
struction in R', producing plane point sets that are the 
vertices of tilings with local n-fold symmetry for which 
no matching rules are known (see Figure 5). All of 
these patterns have the local isomorphism property, 
however. 

More generally, let A be a lattice in R n, and let IIk be 
any irrational k-dimensional subspace of R" (again, ir- 
rational means that IIk N A = {0}). First, let us see 
under what conditions we can obtain a Delone system 
in Hk by projection. Since IIk is irrational, the orthog- 
onal projection of all of A onto IIk will be nonperiodic, 
but it will also be dense. We need to find a subset S of 
A that projects to a discrete set (relative density is 
guaranteed by the fact that A is a lattice). We know 
that there is a minimum distance d between points of 
A: if -~ and ~ are two vectors of A, then I ;  - ~J t d. 
We can decomposew = x - y m t o l t s l l  k a n a t l  k 

3_ . . 3_ 

components w k and w k. If we resist that twkl < d - e 
for some e > 0, then IWkl >! d. This means that we can 
obtain a discrete set of points in IIk by requiring that 

�9 . . .J- . 

the image of the set S C R" under projection to IIk lie 
�9 . 3_ . 

m an appropriately chosen compact set T C Flk; T Is 
sometimes called the window for the projection. Thus S 
lies in the cylinder M = T • I] k C R n. The computation 
of the Fourier transform then proceeds as in the ex- 
amples above. The projected set always turns out to be 
a Poisson comb�9 

There are many variations on the projection theme�9 
The window need not lie in the orthogonal comple- 
ment of IIk; the vector space need not be Euclidean. 
One technique used quite extensively at the moment 
is to try to replace A by a periodic set of connected 
surfaces in R', and to consider the intersection of H k 
with these surfaces�9 (Again, de Bruijn has provided a 
firm mathematical basis for much of this, in a different 
language [11].) It is true that if one has a Poisson comb 
and its Fourier transform's delta functions have a fi- 
nite basis, and if one knows the full complex ampli- 
tudes of these deltas, then it is possible to reconstruct 
a periodic density in R" and a plane IIk such that the 
restriction of the density in R" to IIk will give the delta 
functions of the density in R k. However, it is not at all 
obvious that there are densities in R" that consist of 
"surfaces" of any particular smoothness. Also, al- 
though using arbitrary surfaces, rather than those 
from projecting a lattice, gives a broader class of 
Poisson combs, it does not always give a noticeably 
broader class of diffraction patterns, because these 
combs may differ from the lattice-projection ones only 
in their intensities and phases, as de Bruijn has noted 
[111. 

A word about symmetry. The most striking thing 
about the diffraction pattern of the Penrose vertices is 
its five-fold rotational symmetry; quasicrystals might 
never have been noticed if this symmetry had not 
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been observed. Indeed,  successful crystal structure de- 
terminat ion depends  on finding directions of high 
symmetry  so that bright spots will appear in the dif- 
fraction pattern. 

The symmetry  we observe in the Fourier transform 
of a projected pa t te rn  depends  on the s y m m e t r y  
group G of the lattice A and on the choice of II k. G is a 
semidirect product of Z" and a finite subgroup P C 
O(n), where P is the stabilizer of 0 E A. If I lk  is in- 
variant under  P, or under  a subgroup of P, the Fourier 
transform will reflect this. This leads us to the impor- 
tant  and interesting problem of determining which lat- 
tices in R n have invariant subspaces of whatever  di- 
mension,  and how crystallographic groups built on 
these lattices act on those subspaces. In short, the pro- 
jection method has opened an interesting chapter in 
n-dimensional crystallography. To date, those lattices 
for which G is or contains the icosahedral group have 
been studied in the most  detail (see, e.g., [12]), be- 
cause they arise in the theory of the three-dimensional 
Penrose tiles (see Section 5) and in the interpretation 
of diffraction patterns of real quasicrystals. 

But from our point of view, it is the bright spots that 
are fundamenta l ,  not  symmet ry  per se. Since bright 
spots are theoretically present  in every projected pat- 
tern, we know that their occurrence is not dependent  
on rotational symmetry.  Indeed, it seems that  rota- 
tional symmetry has nothing a priori to do with our 
problem,  except tha t  w h e n  we find noncrys ta l lo-  
graphic rotational symmet ry  in a diffraction pattern, 
we know that it was produced by a nonperiodic Dirac 
comb. On the other hand ,  bright spots in a diffraction 
pattern indicate some sort of long-range order or gen- 
eralized symmetry.  This brings us back to the ques- 
tions raised in Section 2. 

4. Order on the Line 

The one-dimensional case is the most tractable; here 
we find examples of all three types of order ing for 

nonper iod ic  point  sets. We will describe a few of 
them. 

Sequences with average lattices. The standard ex- 
ample of a one-dimensional quasicrystal is the "Fibon- 
acci" sequence of points 

u, = n + (~ - 1)[n&], (2) 

where "r = (1 + V5)/2 is the golden number  of clas- 
sical and modern  fame, and [x] is the greatest integer 
function. (We will explain the relation of this sequence 
to the classical Fibonacci sequence below.) This se- 
quence can be obtained by projection from R 2 to a line 
11 with slope 1/'r. Let us consider the more general case 
in which the line has slope % where o~ is an irrational 
number.  Using as our window the projection of a unit  

3_ 
square of the integer lattice A onto 11 , the cyhnder M 
is the strip bounded  by the lines y = c~x and y = o~x + 

+ 1 (Figure 6) and M' = M n A. The points in this 
strip have coordinates 

(x,y) = ([n/(oL + 1)], n - [n/(o~ + 1)]), 

and project onto the points (x + o~y)-ff, where -ff is the 
vector (1,~)/(1 + c~ 2) along II. Thus  the projected 
points form a sequence 

p, = om - (~ - 1 , (3) 

and p ,  + 1 - P, = 1 or c~. When c~ = 1/'r, we obtain the 
sequence above (if we multiply everything by 1/'r). The 
methods  of the preceding section can be used to show 
that all of these sequences are Poisson combs. 

The sequences obtained in this way  are often called 
"one -d imens iona l  quas ic rys ta l s . "  But they  do no t  
really illustrate the quasicrystal phenomenon,  because 
in fact these sequences are one-dimensional  modu-  
lated lattices. Modulated crystals were known long be- 
fore the quasicrystals were discovered, and have been 
intensively studied for many years. 

~ y = C o c + ~ + l  

�9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 8 �9 �9 a ! 
�9 D �9 �9 �9 �9 �9 �9 - �9 �9 �9 �9 �9 

�9 �9 e �9 �9 i �9 �9 e �9 �9 �9 �9 �9 

�9 �9 o �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 

Figure 6. A tiling of the 
line obtained by projec- 
tion from R 2. All filings of 
this type have average lat- 
tices. (Adapted from Ref. 
[8].) 
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In what  sense are these sequences modula ted lat- 
tices? Using the equality [x] = x - {x}, where {x} is the 
fractional part of x, we have 

n 
pn = ~n - (~ - 1) + (a - 1 

~ + 1  

- - - . n  + (or - 1) 
o t + l  

or in the case of the Fibonacci sequence (2), u n = 

(2 - 1/'r)n + (~ - 1){n/,r}. Thus we see that {Pn} is built 
upon the one-dimensional  lattice of points of the form 
n(ot 2 + 1)/(or + 1) for n E Z, deviating from it by an 
amount  which is at most  [or - 1[. 

This property, of having a limiting average spacing 
and a bounded  modulat ion away from the lattice with 
this spacing, is called having an "average lattice." 

One  can com pu te  the Fourier  t r ans forms  of se- 
quences of type (4), or indeed of any sequence of the 
form 

v n = c~n + [3{~/n} (5) 

in a straightforward manner  [13]; the sequences are 
always Poisson combs. 

In fact, any  sequence whose  e lements  are of the 
form a n  + g ( n ) ,  where g ( n )  is periodic or almost peri- 
odic, is also a Poisson comb. For appropriate choices 
of parameters, these sequences will be nonperiodic; it 
is not  known whether  they can be obtained by projec- 
tion. 

It is not  known which of the sets obtained by projec- 
tion onto subspaces of dimension greater than 1, con- 
sidered in Section 2, have average lattices. However,  
some of them do. Duneau and Oguey have recently 
shown [14] that the set of vertices of a tiling obtained 
by projection from R 8 to R 2 has an average lattice; the 
construction applies to certain other tilings as well. 

S e q u e n c e s  o b t a i n e d  b y  s u b s t i t u t i o n .  If we interpret the 
letters a and b to be line segments of lengths ~" and 1, 
respectively, then  the sequence u n discussed above is 
the limit 

lim Tn(w0), 
n-~.o0 

where w0 is a word  of the two-letter alphabet {a,b} and 
T is the map, or substitution rule, 

T(a)  = ab, T(b) = a. 

When w 0 = b, then  the length of the word  Tn(w0) is 
Fn+ 1, where F n is the n th Fibonacci number  (F 0 = 0, F1 
= 1, Fn+ 1 = Fn + F n _ l ) ;  Un is sometimes called a Fi- 
bonacci sequence, a l though the classical Fibonacci se- 
quence is Tn(a). It is not  known which of the more gen- 
eral sequences v n discussed above can be produced by 
substitution rules, but  obviously, more general substi- 

tut ion rules can be used to produce sequences on the 
line. 

What  can be said about the Fourier transforms of 
substitution sequences? To prove that a Dirac comb is 
a Poisson comb requires knowing the whole Fourier 
transform; the only way this has been accomplished so 
far is to show that the densi ty p is the sum of delta 
functions on a lattice modula ted  by a periodic or al- 
most  periodic function, or that  p is obtained by slicing 
th rough  a periodic densi ty  in a higher-dimensional  
space. On the other hand,  one can show that a densi ty 
has  p r o p e r t y  (b) as fol lows:  The dens i ty  p(x) = 
Y'n=0,1 .... ~ ( x  - Vn) has  Four ie r  t r ans fo rm 15(q) = 
E n e x p ( 2 ~ r i q  �9 Vn). For any frequency q, the sequence of 
partial sums {Enn=0exp(2"rri q �9 Vn)} is bounded by N + 1. 
If we can show that for some q the sequence grows like 
c N  for some positive c, then  asymptotically the sum is 
a Dirac delta. It is possible to use this technique for 
some substitution sequences. 

A n y  composition rule T acting on an alphabet of n 
letters can be represented by an n x n matrix M with 
nonnegat ive integer entries. If there is a k ( Z such 
that all the entries of M k are positive, then the Perron- 
Frobenius theorem tells us that  M has a simple eigen- 
value 0 that  is greater in absolute value than all the 
others. Bombieri and Taylor [13] showed that if [0[ > 1, 
while all its conjugates have modulus  less than one 
(i.e., if 0 is a Pisot-Vijayaraghavan, or P-V, number)  
then  the Fourier t ransform of the sequence can be 
computed  as a limit of the Fourier transforms of the 
words  Tn(w0). The transform contains a Dirac comb, 
because there are frequencies (forming a dense set) for 
which the sequence of t ransforms grows like N. In 
fact, all of these sequences lie in sets that can be ob- 
tained by projection. 

Every substitution T on a finite alphabet gives rise to 
a topological dynamical system. By assigning appro- 
priate lengths to the letters of the alphabet, a fixed 
point of a sequence Tn(w0) can be interpreted as the list 
of the successive differences of an increasing sequence 
of real numbers,  and we can s tudy  the order proper- 
ties of such sequences. The dynamical systems asso- 
ciated wi th  substitutions of constant  length, and their 
spectra, have been studied by Queff61ec [15]. (Note, 
however,  that the Fibonacci sequence is n o t  of con- 
stant length.) 

Other one-dimensional  Poisson combs. Aubry, Go- 
dr~che, and Luck [18] studied a family of sequences 
that,  for some choices of parameters ,  appear  to be 
Dirac combs of type (c). 

Let h be a subinterval of (0,1) and 00 be any positive 
real number .  Consider the sequence Wn of O's and l ' s  
obtained by setting w n = 0 if {too} ( zi and w n = 1 

otherwise. There are two ways to build a sequence of 
points on the line from the sequence Wn. One can start 
wi th  a one-dimensional  lattice whose  nodes are 1o- 
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cated at the points no~, n ~ Z and then omit those 
nodes for which the corresponding wn is equal to 0. In 
this way we obtain a lattice with vacancies, which can 
be shown to be a Poisson comb. Kesten's theorem [17] 
asserts that this sequence has an average lattice, in the 
sense defined above, if and only if ~ -= r00 rood(l) for 
some r ~ Z. Thus there exist Poisson combs with no 
average lattice! The second way to build a sequence is 
to choose two unequal lengths l 1 and 12 and let u 0 = 0, 
Un+ 1 - un = 11 + (12 - l l )Wn.  In this case, it may 
happen that the Fourier transform has a singular con- 
tinuous component, i.e., the sequence u n is a Dirac 
comb of type (c). As far as we know, property (c) has 
never been completely established for any example. 
However,  there are cases [18] where the possibility of 
Dirac peaks can be eliminated using the procedure ap- 
propriate to case (b), and the possibility of the trans- 
form being absolutely continuous can be essentially 
eliminated by numerical calculation. The spectrum 
should therefore contain a singular continuous part; 
numerical calculations then show it "looks like" a 
Dirac comb. 

5. T h e  T i l i n g  C o n n e c t i o n  

Crystallographers have used tilings as models  for 
crystal structures for centuries. For example, the lattice 
can be regarded as a framework for the partition of 
space into congruent  parallelepidal tiles or "uni t  
cells." These fictitious boxes in turn contain con- 
gruent, real, atomic configurations. 

The diffraction patterns of the first quasicrystals 
looked remarkably like the one obtained earlier by 
Mackay. Thus it was natural to ask whether the three- 
dimensional analogue of the Penrose filings might be a 
model for quasicrystals, with the two kinds of tiles 
playing roles analogous to the unit cells. Further ex- 
perimental work has shown that this is not the case 
(see, e.g., [19]). In any case, the tiles in a nonperiodic 
tiling are not analogous to the unit cells of periodic 
patterns, although it is frequently asserted that they 
are. There are infinitely many ways to choose the 
shape and position of the unit cell for a periodic 
crystal, all equally valid from the abstract point of 
view. In contrast, in the few cases in which nonlattice 
point sets can be associated with tilings by copies of 
one or a few shapes, the choice of cells is usually 
unique, and it is by no means clear what the relation 
between the transforms is when masses are placed at 
vertices or in the tile interiors. 

In fact, it is not dear  what  aspects of a real structure 
the tiles in a nonperiodic tiling might represent. Like 
the Big Dipper and other stellar constellations that one 
learns to identify as a child, the tiles sometimes appear 
to be highly artificial from a physical point of view, 
even when they are convex. For example, the min- 
imum distance between vertices in a tiling by Penrose 

Figure 7. A self-similar tiling for which no 
matching rules are known to exist. (From 
Ref. [20].) 

rhombs is the short diagonal of a thin rhomb; in a rea- 
sonable structure model one would  expect nearest 
neighbors to be linked in some way. 

Still, the possible connection between tilings and 
quasicrystal structure continues to be studied, partly 
because the things help us to visualize some kinds of 
nonperiodic order (this is why  four of our eight illus- 
trations are filings.). It is easy to produce nonperiodic 
tilings by the projection method. In the special case 
where T is the projection of the unit n-cube %, the 
projected points are the vertices of nonoverlapping 
projections of the k-dimensional faces of %. For suit- 
ably chosen subspaces, the number  of distinct tile 
shapes (prototiles) will be small (O(n)). Thus we can 
construct many interesting examples. 

What do nonperiodic tilings have to teach us? The 
Penrose tilings have three important properties: 

(1) they have matching rules that force nonperi- 
odicity, 

(2) they can be obtained by a substitution process 
and they are self-similar, 

(3) they have strong local order (in fact they are 
quasiperiodic). 

Surprisingly, it appears now that these properties 
are independent to some extent. There are substitu- 
tion-produced tiings with matching rules that are not 
self-similar (several examples are shown in [20]). 
Figure 7 shows a tiling that is self-similar but for which 
no matching rules seem to exist; recently it has been 
shown that this tiling is not quasiperiodic (see below). 
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Tilings built with the tiles shown in Figure 8, using 
matching rules, are quasiperiodic but no substitution 
rule has been found for them. 

Matching rules. Why are matching rules of interest 
in the study of quasicrystals? Evidently they are not 
needed in order for a tiling to be a Poisson comb. Their 
importance lies instead in our feeling about what fea- 
tures a good model  should have.  The project ion 
method says nothing about  how the quasicrystal 
g r o w s - - w h y  the atoms order themselves in such a 
pattern. Some sort of local forcing rules would seem to 
be an important part of a good model for quasicrystals, 
since they are an analogue of the local bonding rules 
that presumably determine the structure. 

The matching rules discovered by Penrose and by 
Ammann ([20]) were found by trial and error. Is there 
a more systematic way to do this? De Bruijn showed 
that his indexing system for the Penrose vertices leads 
to an unambiguous  reconstruction of the Penrose 
rules, but his arguments do not apply if the set M is 
translated in R 5. Neither has it proved possible to 
apply it to any of the other plane tilings projected from 
R ". This does not mean that no matching rules exist in 
these  cases.  For example ,  A m m a n n  has  f o u n d  
matching rules for certain tilings of the plane by 
squares and rhombs,  projected from R s (again, see 

It  seems to us no more appropriate to define 
quasicrystals at  this stage of our knowledge 
than to cling to the definition of a crystal as a 
periodic structure. 

[20]). But as de Bruijn points out [21], although Am- 
mann's rules are expressed locally, the property of an 
unmarked tiling to be Ammann-markable is not a local 
property. 

More recently, some progress has been made. Using 
homologous arguments, Katz has developed a method 
for decorating the tiles of certain projected tilings [22]. 
He applied it to the "three-dimensional Penrose tiles," 
thus proving that these tiles can be equipped with 
matching rules that force nonperiodicity (Figure 8). 
However, the construction is not a simple one: when 
decorations are taken into account the two rhombo- 
hedra fall into twenty-two classes. 

Recently, Danzer has announced the discovery of a 
set of four marked tetrahedra [23] that tile R 3 only 
nonperiodically. Although the method by which he 
found them appears to be less systematic than Katz's, 
it is of interest because the number of prototiles is 
small. 

Self-similarity. The self-similarity of the Penrose 
tilings is one of their most remarkable features. But 

until very recently self-similar tilings have been almost 
as hard to find as matching rules. In the first place, to 
be self-similar, a tiling must be a geometric realization 
of a "fixed point" of a substitution map. Any primitive 
matrix defines a substi tut ion map, but  we do not  
know of any theory that tells us which substitutions 
can be realized as tilings. Even when such a realization 
exists, the tiling need not be self-similar in the sense 
that the larger configurations into which the tiles are 
grouped by the action of the substitution map are geo- 
metrically similar to the original tiles. Conversely, 
given a tiling (such as that in Figure 5) it may be very 
difficult if not impossible to determine whether it is 
invariant under some substitution map T. Recently, 
Thurston has developed a method for associating self- 
similar tilings with fractal tile boundaries to a class of 
algebraic integers [24]. Substitution rules are implicit 
in the method, but it is not yet clear to us how to ex -  
tract them. 

Nevertheless, tilings invariant under primitive sub- 
stitution maps are of interest in our context because 
they necessarily have the local isomorphism property. 
Moreover, we can sometimes use the substitution map 
to prove that a tiling is nonperiodic, a property that 
may not be obvious. Notice, for example, that the use 
of matching rules does not guarantee that a tiling is 
nonperiodic; some other argument must be invoked. 

Two different arguments can be used to establish 
the nonperiodicity of a tiling with the substitution 
property. First, if the grouping of tiles into larger ones 
is u n i q u e ,  the tiling has a hierarchical structure that 
must be preserved by any translation. But this is im- 
possible, since repeated iteration of this grouping im- 
plies that at some hierarchical level the inradius of the 
tiles will be larger than any specified translation 
length. 

The other argument might be called a "ratio test" for 
nonperiodicity. It involves the eigenvectors of the sub- 
stitution map. Let T be any primitive, integer n x n 
matrix, and let {a 1 . . . . .  an} be any finite alphabet. A 
word w of this alphabet contains x i copies of the letter 
a i. We can think of -~ = (x v . . . , xn) as a vector of the 
integer lattice in "configuration space." Then -~T is 
another vector in this space; its components are the 
numbers of copies of each of the letters after one ap- 
plication of T. The components of a lef t  eigenvector 
corresponding to its leading eigenvalue 0 are the rela- 
t i v e  numbers  of the different letters in the infinite 
word produced by iterating T. We can now state the 
ratio test. If T has an eigenvalue 0 which is a P-V 
number, then for any initial configuration vector T0, 
the sequence 0-n~0 T" will converge to a left eigen- 
vector of 0. If the components of this eigenvector have 
irrational ratios, then the tiling will be nonperiodic, 
since in a periodic tiling the relative numbers of kinds 
of prototiles is given by the numbers in single repeat 
unit. 
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If T acts on a tiling, then the prototiles of the tiling 
play the role of the letters of an alphabet. We assume 
that they are arranged in such a way that each applica- 
tion of T effects a grouping of the tiles into larger tiles. 
These tiles need not be similar to the original ones, but 
if they are, then the relative volumes of the n proto- 
tiles after each application of T are the components of 
a right eigenvector of 0. This gives us a way to decide 
whether a tiling produced by substitution is self-sim- 
ilar; the Penrose tiles pass the test. 

Which substitution-invariant tilings produce diffrac- 
tion patterns with bright spots? There is no definitive 
answer yet. We have seen that if the tiling can be ob- 
ta ined by projection,  then its set of vert ices is a 
Poisson comb. Recently Godr6che and Luck [25] have 
extended the Bombieri-Taylor method for computing 
the Fourier transforms of substitution sequences to 
tilings of the plane by assigning masses to the tiles 
themselves and expanding the definition of T to take 
into account the geometry of configurations as well as 
the numbers of tiles in them. They then showed that 
Fourier transforms of this density distribution contain 
Dirac combs even when  the matching rules are re- 
laxed. During the Les Houches conference, Godr~che 
succeeded in showing that the tiling of Figure 7 fits 
into case (b) (but the possibility that the spectrum also 
contains a continuous component has not been ruled 
out). It is especially interesting that in this case there is 
no finite basis for the frequencies of the delta functions 
of the Fourier transform, so that the tiling is not quasi- 
periodic [25]. 

Local  order.  The local ordering propert ies  of the 
Penrose tiles are discussed in [20], so we will not go 
into detail here. They include local isomorphism, and 
the fact that the number  of different configurations 
within any finite radius is bounded and grows slowly 
as the radius increases. These properties hold for all 
projected and substitution tilings. But it remains an 
open question to what extent these properties, inde- 
pendently of projection and substitution, can account 
for the tilings' Fourier transforms. 

6. A W o r d  a b o u t  D e f i n i t i o n s  

We mentioned at the beginning that we have posed 
Question 3 more generally than is usually the case. 

We did not mention, but many readers will have 
observed, that we have offered no definition of "qua- 
sicrystal." In fact, most other writers define quasi- 
crystals to be projected (or sliced) structures. There 
may be some justification for this. As we have shown, 
the projection/slicing method does produce an ex- 
tremely large class of Poisson combs. Moreover, the 
models  based on this approach are in very good 
agreement with experiment. But then, experimentally, 
it may be impossible to distinguish Poisson combs 
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Figure 8. The three-dimensional analogue of 
the Penrose rhombs are two rhombohedra. 
When decorated wi th  matching rules ac- 
cording to Katz's scheme, the rhombohedra 
fall into twenty-two classes. Nets for eight of 
the rhombohedra are shown here; the others 
can be generated from this set (see Ref. [22]). 

from the other two cases discussed in Section 2. It 
seems to us no more appropriate to define quasi- 
crystals at this stage of our knowledge than to cling to 
the definition of a crystal as a periodic structure. 

Quest ion 3 is nontrivial mathematically, and it is 
also nontrivial philosophically. The high-dimensional 
formalism is only a stop-gap to be used until we un- 
derstand how quasicrystals grow. String theory not- 
withstanding, it is reasonable to assume that real qua- 
sicrystals, like real periodic ones, grow in R 3, not in 
R n. We need a theory that explains how the patterns 
that we are interested in can be generated at the local 
level; it is not clear to what extent the deterministic 
models we have described are physically meaningful. 
Model ing  g rowth  may require a combinat ion of 
matching rules, modulations, understanding "the so- 
ciological behavior of large groups of atoms" [21], and 
possibly other ideas. It is too early to know what class 
of patterns will achieve this. In our view, the defini- 
tion of quasicrystal should be left open until the fun- 
damental questions have been answered. 
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