
S'0ME GEOMETRICAL APPLICATIONS OF FOURIER SERIES. 

By 1" s u r u i 0 h i H a y a s h i (Sendal, Japan). 

Adunanza dell'xl maggio 1924 . 

I. 

In , Festschrift zum 7 o. Geburtstag yon H. WE~EI~ , ,  Leipzig, 1912, A. KNPSElt x) 

proved the beautiful theorem: An oval has at least four vertices, i. e. On an oval 

there are at least four points, where the radii of curvature are extremum. In ,, Kreis 

und Kugel, ,  Leipzig, I916 , p. i6o, W. BLASCHKE gave another clever proof of the 

same theorem, which depends upon the equations 

f o  2~ COS ? sin ~? d ~? ~- o, 

where ? is the radius of curvature of the given curve, and 3 is the inclination of the 

positive tangent referred to an x-direction. 

The rectangular coordinates (x, y) of STUI~mR'S curvature-centroid (Krfimmungs- 

Schwerpunkt in German) are 

I f I  x x = ~-~d--~ ds,  if+ y - -  y d s ,  

where d s is the curve-element. If p be the length of the perpendicular dropped from 

the curvature-centroid upon the tangent, then the coordinates are reduced to 

x = - -  p sin ~d? ,  y - -  - -  - -  cosgd ~ "). 
"~ ~'o 7; 

x) A. KN~SER, Bemerkungen i2ber die Anzabl der Extreme der Kr~mmung auf gechlossenen Kurven 
und aber verwandte Fragen in einer nicht.euklidischen Geometrie [Festschrift zum 7 o. Geburtstag yon 
H. WEB~R, pp. I7O-I8o]. 

2) T. KVBOTA, Ober die S~bwerpunkte der korwexen gescMossenen Kurven un~ Fld~cben [T6hoku 
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Hence if the origin of coordinates is the curvature-centroid itself 

ff =. sin 
Pcos q~dq~ "-" o. 

If we apply the method of proof due to BLASCHKE, using the unit-circle, on the 

circumference of which the mass proportional to p is laid at the extremity of the ra- 

dius parallel to the positive tangent, we arrive at the theorem: The perpendicular di- 

stance of the tangent to an oval from its curvature-centroid becomes maximum 2 + k 

times and becomes minimum = + k times, k being either o or a positive integer. That 

is to say; The radius vector of the pedal curve of an oval with respect to its curvature- 

centroid becomes maximum 2 + k times and becomes minimum 2--~ k times. 

Let 0 be the curvature-centroid and F be the foot of the perpendicular p dropped 

from 0 on the tangent to the curve at the point P; and let O P  be denoted by r. 
Then since 

we have 

P F  = dp 
d~ = P "  

r2 ..---- p2 + p/2 * 

When p becomes extremum, p' - -  o and hence r = p. 

When r becomes extremum, 

dr 2 
- -  2(pp '  + p 'p")  -" 2p ' (p  Jr" P") = 2p' ? --- o, 

where p" is the second derivative of p with respect to % 

Hence rejecting the ease where ~ is always zero, p ' - - o ,  and hence r - - p ,  

when r becomes extremum. Therefore when p becomes extremum, r becomes extre- 

mum, and vice versa; and O F  coincides with OP. Therefore: The radius vector of 
an oval drawn from its curvature-centroid becomes maximum 2 Jr" k times and becomes 
minimum 2 + k times, k being either o or a positive integer, and the radius vector is a 

normal to the curve. 

Hence: Normals to the oval at the points where the oval and its pedal curve with 
respect to its curvature-centroid touch each other, pass through the curvature-centroid. 

From the curvature-centroid of an oval, at least four normals can be drawn to the 

oval. 

According to KNeSER'S theorem above mentioned, the evolute of an oval has 

Mathematical Journal, vol. 14 0918), pp. 2027], p. 23. Also see S. NAIiAJIMA, The circle and the 
straight line nearest to n given points, n given straight lines or a given curve [T6hoku Mathematical 
Journal, vol. 19 (I92I), pp. xI-2o], p. 18, and T. HAYASHI, on STEINEX'S curvature.centroid [Science Re- 
ports of the T6hoku Imperial University, vol. 12 (i924), pp. xo9-i32]. 

Rend. Circ. Mantra. Palcrrao, t. L (|9~t6).--Sttmptto il a6 maggio tga6, l$ 



9 8 TSURUiCHi HA~ASHi. 

4 + 2k cusps and is closed, but not necessarily simple. From a point lying within 
the evolute, at least four normals can be drawn to the given oval. When the evolute 
has such a form that it cuts itself, it separates the plane into several parts, from a 
point within each of which 4, 6, 8, . . . ,  4--[-2 k normals can be drawn to the oval, 
while if the point lie on the evolute some of the normals become coincident. The 
innermost region of the evolute is that region, from any point within which tile most 
(just 4 Jr" 2k in number) normals can be drawn to the given oval. The curvature- 
centroid lies within the evolute, and seems always to lie within the innermost region, 
from which the most normals (just 4-Jr-2 k in number) to the oval can be drawn. 
But we have no proof for this. 

It can be easily shown that if the origin of coordinates be the curvature-cen- 
troid, then 

fo*=p ~?d~? 
(n) COS 

sin . - -  o, 

where p/")is the n-th derivative of p with respect to 9. 

II. 

In the BLASCHKE proof of KseseR'S theorem above mentioned, we can take instead 
of 8 or p any one-valued and continuous function f(~),  if it be periodic with period 
2=. It need not be a positive function. Hence: If  a function f (~) ,  be one-valued, 
continuous and periodic with period 2 =, and satisfy the conditions 

fo 2~. .COS . 
jt, qOsin ,aq~ - -  o, 

then the function has even extrema in the interval o ~ 9 ~ 2 r~, one half maxima and 

the other half minima, and it has at least two maxima and two minima, the extrema 
taking place alternately excepting the case where f(~?) is a constant. 

If f ( , )  be expanded into FOURIER'S series, then by the assumed conditions 

a o  oo 
f(~?) = ~ -  + ~- (a~ cosk~ + b, sin k~). 

Since this function has at least two maxima and two minima, its derivative 

where 

f'  = 5- (b; cos k r + a; sin k 
k=2 

a '  - -  - -  k a  k b' k - -  k 3 k ,  

vanishes even times, and at least four times, in the interval o ~ . ?  .Q 2m 
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Moreover, the function defined by 

k=2 

always vanishes even times, and at least four times, in the interval o ~ So < 2~. 

For, by integration 

f F(9)d~? --  a--z~ + ~- (a k cos kq~ + b~ sin k~?), 
2 k~2 

where ao/2 is a constant of integration, and 

and hence if we put 

then 

I p I b" 
a k - -  k at, b k = ~ -  ~, 

f F(~)d~ .-=- f(~), 

foo 2~ t t  x COS 
J t~)  sin ~ d ~ - -  o. 

Therefore by the preceding theorem f (9 )  has even extrema in the interval 
o ~ ~? ~ 2 ~:, one half maxima and the other half minima, and it has at least two 

maxima and two minima. Therefore f '(q0, i. e. F(?)  has at least four zeros in the 
same interval. 

T, herefore, by the virtue of BL~scrIKz's proof, we can prove the theorem: The 
trigonometric series (eitber finite or infinite) 

o~ 

y (a k co~ k q~ + b k sin k ~?) 
k~2 

has even ~eros, and at least four ~eros, in the interval o ~ o? ~ 2 ~. 

This theorem is a particular case of HuRW~TZ'S theorem on FOORtER'S series 
lacking first terms a). 

Though HURWrTz's proof for the general case is difficult to be applied, the proof 
here given for this particular case is not so difficult. 

Conversely, if we apply HURWITZ'S theorem to this particular case we can con- 
clude that: The trigonometric series (eitber finite or infinite) 

a o  o~ 
-~- 2 r- y(akcoske? + Ok sin kq0 

k=2 

bas even extrema, and at least four extrema, in the said interval. 

a) A. HURWlTZ, Ober die FOURIERscben konstanten integrierbarer Funktionen [Mathematische Anna- 

len, Bd. 57 (I9o3), S. 425-446], p. 444. 
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Therefore: The trigonometric series 

a.__2o 2 + cos k + sin k 

takes the value ao/2 even times, and at least four times, in the said interval. 
Now if we expand the radius of curvature 0 of an oval in Fougmg's series by 

means of the inclination q~ of its positive tangent referred to a fixed x-direction, then 

where 

o ~  

ao .ql_ ~ (a k cos k ~? + b k sin k q~), 

a o = L/x:, 

L being the perimeter of the given oval. Hence 0 takes the value L/2 ,x even times, 
and  at least four times, in the said interval. Therefore: The even number, and at least 

four, of the osculating circles of an oval have the perimeters equal to the perimeter of 
the oval. 

The perimeter of an oval lies between the perimeters of the osculating circles 
whose radii are greatest and least respectively. This theorem is due to HugwITz and 
BLASCHKE in BLASCHKE'S ((Kreis und Kugel ,~, p. I16 r 

From my theorem above got, we can conclude that : At least two of the maximum 
radii of curvature of an oval are not shorter than L/2 ~, and at least two of the mini- 
mum radii of curvature of an oval are not longer than L/2 ~, L being the perimeter of 

the oval. 
Similarly we get the following theorems on the perpendicular dropped from the 

curvature-centroid on the tangent. 
The distance of the tangent to an oval from its curvature-centroid takes the value 

equal to L/2 ~ even times, and at least four times, L being the perimeter of the oval. 
At least two of the maximum distances of the tangents from the c:wvature-centroid 

are not shorter than L/2 ~, and at least two of the minimum distances of the tangents 
from the curvature-centroid are not longer than L/2 w, L being the perimeter df the oval. 

III. 

Now 

p ( ~ ) -  t~(~? + ~ ) - -  s 2{a,,+, c o s ( 2 n - I - I ) ?  + b,,+ sin (2n + i )~  t. 

4) I have given another proof for this theorem. See T. HAYASm, The extremal chords of an oval 
[T6hoku Mathematical Journal, vol. 22 (I923), pp. 387-393], p. 393. 
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Hence for at least three values of q~ in the interval o . /~? <[ 2 ~, 

P (~) = P (~ + ,0. 

Therefore: On an oval there are at least three pairs of points, such that the 

tangents at each pair are parallel and the radii of curvature are equal. This is also 

due to BI~ASCmtE and proved by SZEGO s). 

Similarly: On an oval there are at least tbree pairs o[ points, sucb that the tangents 
at each pair are parallel and the distances of the tangents from the curvature-centroid 
are equal. 

For a central oval, i. e. an oval having a point, all the chords through which 

are bisected at that point, the radius vector r drawn from the point, called the centre 

of the oval, to a point on the oval, expanded in FoumER's series, has the form 

oo 

r - -  ~- ( a  cos 2 n ? -t- b2. sin 2 n 9), 
n ~ o  

and therefore the perpendicular p from the centre on the tangent to the oval, and 

therefore the radius of curvature p, expanded in FOURIER's series have similar forms. 

Hence for all values of qb 
p (~) = p(~ + ~), 

p C.~p) = p(~p + ,~), 

and the centre coincides with the curvature-centroid. 

Conversely, if for all values of 9 

i .  e~  

we find 

P(9) = ,~(9 + ,0, 

p (~) + p"(~) = p (~ + =) + p" (~ + =), 

P (9) - -  P (9 + ~) - -  a cos ~ n t- b sin ?, 

where a and b are some constants of integration. Solving this functional equation, 

we find 

ao p(~?)--  ( a c o s ~ ? + b s i n ~ ? ) + ~ - +  ~ ( a 2  cosun~-JTb=,sin2n~).  

Transferring the origin of coordinates from which the perpendicular is dropped 

on the tangent to the oval, to the curvature-centroid of the oval, a and b vanishes, 

S) BLASCtIKE: Archiv d. Math. und Physik, vol. 26 (I917) Aufgabe 540, p. 65; and SZEG6: 
Archiv, vol. 28 (I92O), L6sung, p. I83. W. SOss gave another proof which is to be published in a 
near future issue of T6hoku Math. Jour. 
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and the series for p(~) takes the form 

a o P(~) = T + 2 (a2ocos 2n~ + b, sin 2 n~), 
so that 

Hence 

Therefore 

p(~) = p(r + =). 

p' (~) = p, (~ + ~). 

r (~) = r (~ + ~) 

and the radii vectores r(?) and r(q~ 2 I- ~) are on the same straight line. 
Therefore: The necessary and sufficient condition that an oval is central is, that 

for all pairs of points on it, where the tangents are parallel, the radii of curvature are 

equal. 
Since for a curve of constant breadth 

P 07) dr" P (~ + ~) -- const., 

the FOURIER series for p(~) takes the form 

L oe~ 

~o a' (2n + I)~ + bL+, P (~) = 2~ + { 2~+, cos sin (2 n + ~) ~}. 

Therefore: The distance of the tangent to a curve of constant breadth from any 
point within it becomes equal even times to L/2w. 

Let the point from which the distance is measured be the curvature-centroid. 
Then: The distance of tbe tangent to a curve of constant breadtb from its curvature- 
centroid becomes extremum even times, and at least six times, one balf maximum and 
tbe other half minimum. 

The distance of the tangent to a curve of constant breadth from its curvature-centroid 
becomes equal even times, and at leas(six times, to L/2 z. 

At least three of the maximum distances of the tangents from tbe curvature-centroid 
are not shorter than L/2 ~ and at least three of the minimum distances of the tangents 
from the curvattwe-centroid are not longer than L/2 ~. 

Finally, for any oval 

2 p(~) + p(~ + =) = L a' bL - ~ -  - k  ( 2,, COS 2 n ~ - ~  sin 2 n ~p). 
t t = l  

Therefore: The breadth of an oval becomes equal even times, and at least twice, 
to L/~. 

January 1924 . 

TSURUICHI HAYASHL 


