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DETECTION OF OUTLIERS IN WEIGHTED

LEAST SQUARES REGRESSION

Bang Yong Sohn and Guk Boh Kim

Abstract. In multiple linear regression model, we have presupposed

assumptions (independence, normality, variance homogeneity and so
on) on error term. When case weights are given because of variance

heterogeneity, we can estimate efficiently regression parameter using

weighted least squares estimator. Unfortunately, this estimator is sen-
sitive to outliers like ordinary least squares estimator. Thus, in this

paper, we proposed some statistics for detection of outliers in weighted

least squares regression.
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1. Introduction

Model criticism is called model diagnostics and when we refer to a
regression model, the model criticism is called regression diagnostics.
Regression diagnostics consists of mainly detection of outliers, assess-
ment of influence and examination of muticollinearity. We consider a
mutiple linear regression model:

Y = Xβ + ε (1.1)

where Y is an n×1 vector of dependent observations, X is an n×p′ full
column rank matrix of known explanatory variables possibly including
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a constant predictor, β is a p′ × 1 vector of unknown parameters to be
estimated, and error term ε is an n× 1 vector of independent random
errors with zero mean and unknown variance σ2.

In fitting the multiple linear regression model (1.1) by the method
of ordinary least squares (OLS), Cook and Weisberg [1982, Chapter 2]
explained the method of detection of outliers in the y-direction through
analysis of residuals and various plotting methods. Especially, when
there are several outliers, the usual identification method does not al-
ways find them, because it is based on the sample mean and covari-
ance matrix, which are themselves affected by the outliers. The OLS
approach masks outliers in a similar way. To avoid the masking ef-
fect, Rousseeuw and Zomeren (1990) proposed that outliers may be
unmasked by using a highly robust regression method and classified the
data into regular observations, vertical outliers, good leverage points,
and bad leverage points.

2. Weighted Least Squares Regression

In this section we briefly review the theory of weighted least square
(WLS). The weighted least square model is given by

Y = Xβ + ε, (2.1)

where all quantities are the same as defined in (1.1), except that V ar(ε) =
σ2D−1

w and Dw is a known n× n diagonal matrix with wi > 0. The wi

are often called case weights.
In fitting the multiple linear regression model (2.1) by the method

of WLS, the WLS estimator β̂w is obtained by minimizing
∑
wi(yi −

xT
i β)2, that is,

∑
wi(yi − cβ̂w)2 = min

β

∑
wi(yi − xT

i β)2 (2.2)

= min
β

(Y −Xβ)TDw(Y −Xβ), (2.3)

where xT
i is the row vector of explanatory of ith case. Therefore, we

have
β̂w = (XTDwX)−1XTDwY. (2.4)

The WLS theory provides us the following result:
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(1) The variance of β̂w is

Var(β̂w) = σ2(XTDwX)−1. (2.5)

(2) The n× 1 vector of weighted fitted values is

Ŷw = Xβ̂w = X(XTDwX)−1XTDwY

= HwDwY, (2.6)

where
Hw = X(XTDwX)−1XT . (2.7)

This matrix is symmetric (HT
w = Hw) and idempotent (HwDwHw =

Hw) in a weighted Euclidean space. The variance of Ŷw is

Var(Ŷw) = Var(HwDwY )

= HwDwVar(Y )DwHw

= σ2HwDwHw

= σ2Hw.

(2.8)

(3) The n× 1 vector of residuals is

ew = Y − Ŷw = (D−1
w −Hw)DwY, (2.9)

and we define ew as the weighted residual. The variance of ew is

Var(ew) = Var{(D−1
w −Hw)DwY }

= σ2(D−1
w −Hw)DwD

−1
w Dw(D−1

w −Hw)

= σ2(D−1
w − 2Hw +HwDwHw)

= σ2(D−1
w −Hw).

(2.10)

(4) An unbiased estimator of σ2 is

σ̂2 =
eT
wDwew

n− p′
, (2.11)
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since
E(eT

wDwew) = E · tr(eT
wDwew)

= tr{DwE(ewe
T
w)}

= σ2 · tr{Dw(D−1
w −Hw)}

= σ2(n− p′).

3. Detection of outliers

In WLS regression, we can detect outlier in the y-direction by using
the Studentized weighted residuals and by displaying plots of Studen-
tized weighted residuals versus Ŷ or X. In OLS regression, the stu-
dentized residual has been studied by Srikantan (1961), and Ellenberg
(1973) provides the joint distribution of a set of studentized residu-
als, assuming that (1.1) holds. Also, like OLS regression, Hw identifies
high leverage design points (Chatterjee and Hadi, 1986) in WLS regres-
sion. In this section, we discuss these weighted residuals and the role
of weighted hat matrix.

Theorem 1. Let β̂w(i) denote the WLS estimator computed without
the ith observation. Then

β̂w(i) = β̂w − wi(XTDwX)−1xiew,i

1 − wihw,ii
, (3.1)

where ew,i = yi − xT
i β̂w and hw,ii = xT

i (XTDwX)−1xi.

The proof is omitted to save the space. Readers may refer to author’s
doctoral thesis [Sohn 1994, pp. 31-32].

Theorem 2. Let σ̂2
(i) denote the weighted mean square when the ith

observation is omitted. Then

σ̂2
(i) =

(N − p′)σ̂2 − wie
2
w,i/(1 − wihw,ii)

n− p′ − 1
. (3.5)

Readers may refer to Sohn [1994, pp. 32-33] forn the proof.

Studentized weighted residuals can be defined as follows:
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(1) Internally Studentized weighted residual is defined as

tw,i =
ew,i

σ̂
√
w−1

i − hw,ii

(3.9)

=
√
wiew,i

σ̂
√

1 − wihw,ii

(3.9a)

where ew,i is the element of the n× 1 vector, hw,ii is the ith diagonal
element of Hw (cf. 2.7) and σ̂2 is defined as in (2.11).

(2) Externally Studentized residual is defined as

t∗w,i =
ew,i

σ̂(i)

√
w−1

i − hw,ii

(3.10)

=
√
wiew,i

σ̂(i)

√
1 − wihw,ii

, (3.10a)

where σ̂2
(i) is the weighted mean squares computed without ith obser-

vation.
An outlier in the response-factor space is a point (xT

i , yi) with large
tw,i or t∗w,i. Outlier are usually detected by plotting tw,i and t∗w,i versus
other quantities such as Ŷ or each column of X (i.e. Xj).

(3) The scalar form of weighted fitted value Ŷw, seen as in (2.6) is

ŷw,i = xT
i (XTDwX)−1XTDwY

=
n∑

j=1

xT
i (XTDwX)−1xjwjyj

=
n∑

j=1

wjhw,ijyj (3.11)

= wihw,iiyi +
n∑

j=1
j 6=i

wjhw,ijyj . (3.12)

The elements of Hw, especially the diagonal element hw,ii, play an
important role in the technique of WLS regression diagnostics, which
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aim at discovering whether individual observations have unusually great
influence on the weighted fitted regression model. To illustrate the
interpretation of hw,ii, we examine how the weighted fitted value ŷw,i

changes when yi varies. If we add an increment ∆yi to yi, then yi

become, from equation (3.11),

ŷw,i + ∆ŷw,i =
n∑

j=1

wjhw,ijyj + wihw,ii∆yi. (3.13)

Thus
∆ŷw,i = wihw,ii∆yi. (3.14)

We see that the impact on ŷw,i by the change in yi is that change
multiplied by wi and hw,ii. Therefore, we can interpret wihw,ii as the
amount of leverage of the response value yi on the corresponding value
ŷw,i by yi. Hoaglin and Welsch (1978) suggested a direct use of the
diagnoal elements of the hat matrix as a diagnostic to idetify high
leverage points (outliers in the x-direction).

4. A Numerical Example: Stack Loss Data

We will give a numerical example with Brownlee’s stack loss data
[Atkinson 1986] listed in Table 1, using various diagnostic methods in
section 2 and 3 in order to detect outliers in robust regression based
on M-estimator [Li 1985]. Because we can obtain the M-estimator β̂M

by using internal weights, like WLS estimator β̂w. The fully iterative
estimator β̂M is written as

β̂M = β̂w = (XTDwX)−1XTDwY. (4.1)

Although the β̂w(i) in (3.4) is not equivalent to β̂M(i), we hope the
difference of these estimator is insignificant. If so, we can substitute
β̂w(i) for β̂M(i) for the practical purposes. Therefore, using the updating
formula, the β̂w(i) yields

β̂w(i) = β̂w − wi(XTDwX)xiew,i

1 − wihw,ii
, (4.2)
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where Dw = diag(w1, . . . , wn) and

wi =
ψ′{(yi − xT

i β̂M )/σ̃}
{(yi − xT

i β̂M )/σ̃}
.

The stack loss data is obtained from 21 days of operation of a chemi-
cal plant that oxidizs ammonia [NH3] to nitric acid [HNO3]. This data
consists of three explanatory variables; X1=air flow, X2=temperature
of the cooling water in the coils of the absorbing tower, X3=concentration
of nitric acid in the absorbing liquid, and the response observation
Y=percent of the ingoing ammonia that is lost by escaping in the ab-
sorbed nitric oxides.

Consider the multiple linear regression model

Y = β0 + β1X1 + β2X2 + β3X3 + ε. (4.3)

By OLS fitting to the model, the regression equation is given as

Ŷ = −39.9197 + 0.7156X1 + 1.2953X2 − 0.1521X3, (4.4)

and it is very sensitive to outliers and high leverage design points.
Therefore, to try robust fitting to the model (4.3), let us use Huber’s
ψ-function (with tunning constants k = 2.0),

ψ(t) =
{
t, for |t| ≤ k

k sign(t), for |t| > k.
(4.5)

If we rely on the median of absolute residuals (from the least squares
fit) σ̃ = 0.97 for a resistant estimate of σ, then the robust regression
equation can be obtained as

Ŷ = −39.9898 + 0.8286X1 + 0.7638X2 − 0.1089X3. (4.6)

Internal weights and various residuals are listed in Table 2, and we
detect observations 1, 3, 4, and 21 as being outliers.

An index plot of OLS residuals versus case number given in Figure
1 (a) shows clearly that these observations are outliers. Figure 1 (b),
Figure 1 (c), and Figure 1 (d) are index plots of the robust residuals,
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internally Studentized weighted residuals, and externally Studentized
weighted residuals, respectively, against case number based on Huber’s
ψ-function. From these plots, observations 1, 3, 4, and 21 can be ident-
fied as outliers. Figure 2 is plots of wihii against case number. Obser-
vation 2 is high leverage design point (w2h22 = 0.4656).

5. Conclusion

The WLS esmators are sensitive to outliers and high leverage points.
To solve these problems, we proposed studentized weighted residuals
and weighted hat matrix. Also, we applied WLS regression diagnostics
for identfying outliers and leverage points to the robust regression prob-
lem. In WLS regression, we belived that some our statistics is practical
and effective in identifying outliers and high leverage points.

Table 6.1 Stack Loss Data
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Table 2. Internal weights, OLS residuauals, robust
residuals, two weighted studentized Residuals
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Figure 1. Index Plot of various Residuals: (a) OLS Residuals,
(b) Robust Residuals, (c) Internally Studentized Residuals

(d) Externally Studentized Residuals
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Figure 2 Index Plot of wihii
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