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k-OUT-OF-n-SYSTEM WITH REPAIR : T–POLICY

A. KRISHNAMOORTHY AND A. REKHA

Abstract. We consider a k-out-of-n system with repair under T -policy.
Life time of each component is exponentially distributed with parameter
λ. Server is called to the system after the elapse of T time units since his
departure after completion of repair of all failed units in the previous cycle
or until accumulation of n−k failed units, whichever occurs first. Service
time is assumed to be exponential with rate µ. T is also exponentially
distributed with parameter α. System state probabilities in finite time
and long run are derived for (i) cold (ii) warm (iii) hot systems. Several
characteristics of these systems are obtained. A control problem is also
investigated and numerical illustrations are provided. It is proved that the
expected profit to the system is concave in α and hence global maximum
exists.

AMS Mathematics Subject Classification : 60 K 25, 90 B 22
Key words and phrases : k-out-of-n system, T -policy.

1. Introduction

In this paper we consider a k-out-of-n system with repair. The repair is
according to T -policy. Server is called to the system after the elapse of T
time units where T is exponentially distributed with parameter α since his
departure after completion of repair of all failed units in the previous cycle or
the moment n−k failed units accumulate whichever occurs first. Thus server
is brought to the system at the moment which is min {T , epoch of faliure
of n − k units} after his previous departure. He continues to remain in the
system until all the failed units are repaired, once he arrives. The process
continues in this fashion. The repaired units are assumed to be as good
as new. Life time of each unit is assumed to have independent exponential
distributions with parameter λi, when i units are functioning. Repair time is
also assumed to be exponentially distributed with rate µ. We consider three
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different situations (a) cold system (b) warm system and (c) hot system which
are defined in Section 2. In all these cases we derive the time dependent and
steady state system probabilities. Control problems are investigated in all
cases.

We aim at finding out optimal T to maximize the profit that is to minimize
the running cost and maximize the system reliability. N -policy for repair
of the k-out-of-n system has been studied extensively in Krishnamoorthy,
Ushakumari and Lakshmi [2] and Ushakumari and Krishnamoorthy [4]. In
these, the optimal number of components to fail before repairman is called
in order to minimize the running cost and maximize the system reliability
is investigated. Under suitable conditions they established convexity of the
cost functions.

Waiting until a large number of units (very close to n− k) fail in order for
the server to be called may lead to the system being down for longer duration
thereby decreasing its uptime and hence the reliability. Calling the server
frequently results in high fixed cost. Hence we go for T -policy and determine
its optimal parameter value that maximizes the profit and system reliability.

T -policy in the queueing set up has been extensively studied (See Ar-
talejo [1] for some references). However this has not been brought to investi-
gation of the reliability of k-out-of-n system with repair in order to minimize
the system running cost (maximize profit) simultaneously increasing system
reliability.

This paper is presented as follows. Section 2 gives some preliminaries,
notations, modelling and analysis of the problem under investigation. We
outline the system state distribution in the finite time and in the long run for
all the three models. Section 3 is devoted to some measures of performance
and section 4 discusses the control problem. It also provides some numerical
illustrations.

2. Mathematical Preliminaries

Definition 1. The k-out-of-n system is called a cold system if once the
system is down (that is exactly k − 1 functional units) there is no further
failure of units that are not in failed state, until system starts functioning.

Definition 2. The system is called a warm system if functional units con-
tinue to deteriorate and so fail even when the system is down, but now at a
lesser rate.

Definition 3. A hot system is one whose components deteriorate at the
same rate during the system down state as they deteriorate when the system
is up.
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We discuss these three situations separately. First we introduce some nota-
tions.
X(t) : number of functional components at time t.
Y (t) : server state at time t.

Write Y (t) =

{

1 if the server is available at time t

0 otherwise

under assumptions made on the distribution of repair time, lifetime of com-
ponents and on T , we see that {(X(t), Y (t)), t ∈ R+} is a Markov chain
on E1 = {k + 1, . . . , n} × {0, 1} ∪ {(k − 1, 1)} ∪ {(k, 1)} for model a (De-
finition 1) and E2 = {k + 1, . . . , n} × {0, 1} ∪ {(0, 1), (1, 1), . . . , (k − 1, 1)}
for models b and c (Definitions 2 and 3, respectively). Denote by Pij(t)
the system state probability at time t given X(0) = n, Y (0) = 0 that is
Pij(t) = P ((X(t), Y (t)) = (i, j)/(X(0), Y (0)) = (n, 0)) for (i, j) ∈ E1(E2).

Model a

Transient Solution.

Here the functioning units do not deteriorate while the system is down.
The Kolmogorov forward differential difference equations satisfied by Pij(t)
are

P ′

k1(t) = −(kλk + µ)Pk1(t) + (k + 1)λk+1Pk+1,0(t)

+ (k + 1)λk+1Pk+1,1(t) + µPk−1,1(t)

P ′

m0(t) = −(mλm + α)Pm0(t) + (m + 1)λm+1Pm+1,0(t), k + 1 ≤ m < n

P ′

n0(t) = −(nλn + α)Pn0(t) + µPn−1,1(t)

P ′

m1(t) = −(mλm + µ)Pm1(t) + (m + 1)λm+1Pm+1,1(t)

+ µPm−1,1(t) + αPm0(t), k + 1 ≤ m < n

P ′

n1(t) = −nλnPn1(t) + αPn0(t)

P ′

k−1,1(t) = kλkPk1(t) − µPk−1,1(t)

whose solution is given by P(t) = etAP(0), where P(0) is the initial proba-
bility vector which has 1 corresponding to state (n, 0) and rest zeros. A is
the matrix of coefficients on the right side of the systems of equations.

Steady State Probabilities.

From the above equations by setting qij = limt→∞ Pij(t), (i, j) ∈ E1 we get
steady state probabilities
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qn1 =
α

nλn
qn0, qn−1,1 =

(nλn + α)

µ
qn0,

qr0 =
n−1
∏

l=r

(l + 1)λl+1

lλl
qn0, k + 1 ≤ r ≤ n − 1,

qn−r,1 =
(n − r + 1)λn−r+1 + µ

µ
qn−r+1,1 −

α

µ
qn−r+1,0

−
(n − r + 2)λn−r+2

µ
qn−r+2,1, 2 ≤ r ≤ n − k,

where qn−l,1, l = 1, 2, . . . , n − k and qn−l,0, l = 1, 2, . . . , n − k − 1 can be
expressed in terms of qn0, qk−1,1 = kλk

µ
qk1. qn0 can be determined from the

relation
∑n

i=k+1 qi0 +
∑n

i=k−1 qi1 = 1. However the expressions for qn−i,1 for

different i values is unwieldy and so we consider the particular case of λi = λ
i

in further developments.

Model b

In this model, when the number of functioning components reduce to k−1,
the units that have not failed start deteriorating at a rate δi < λi. Then life
times of functioning components are exponential with parameter δi. The
Kolmogorov forward differential equations are

P ′

k1(t) = −(kλk + µ)Pk1(t) + (k + 1)λk+1Pk+1,0(t) + (k + 1)λk+1Pk+1,1(t)

+ µPk−1,1(t)

P ′

m0(t) = −(mλm + α)Pm0(t) + (m + 1)λm+1Pm+1,0(t), k + 1 ≤ m < n

P ′

n0(t) = −(nλn + α)Pn0(t) + µPn−1,1(t)

P ′

m1(t) = −(mλm + µ)Pm1(t) + αPm0(t)

+ (m + 1)λm+1Pm+1,1(t) + µPm−1,1(t), k + 1 ≤ m < n

P ′

n1(t) = −nλnPn1(t) + αPn0(t)

P ′

k−1,1(t) = −((k − 1)δk−1 + µ)Pk−1,1(t) + kλkPk1(t) + µPk−2,1(t)

P ′

m1(t) = −((k − 1)δk−1 + µ)Pm1(t) + (m + 1)δm+1Pm+1,1(t)

+ µPm−1,1(t), 0 < m < k − 1

P ′

01(t) = −µP01(t) + δP11(t)
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These lead to the system state probabilities in steady state

qk−l,1 =
(k − l + 1)δk−l+1 + µ

µ
qk−l+1,1 −

(k − l + 2)δk−l+2

µ
qk−l+2,1, 2 ≤ l ≤ k.

The rest of the system state probabilities are as in model a. qk−l+1,1 and
qk−l+2,1, l = 2, 3, . . . , k are available in terms of qn0 and qn0 can be obtained
from the relation

∑n
i=k+1 qi0 +

∑n
i=0 qi1 = 1.

Model c

Here the functional components, when the system is down start to deteri-
orate at the same rate as that when the system is up. The time dependent
system state distribution can be obtained as in model a. The long run system
state probabilities are given by

qk−l,1 =
(k − l + 1)λk−l+1 + µ

µ
qk−l+1,1 −

(k − l + 2)λk−l+2

µ
qk−l+2,1, 2 ≤ l ≤ k

and the rest of the system state probabilities are as in model a with the
normalizing condition

∑

(ij)∈E2
qij = 1.

3. Some performance measures

We compute the optimal α for the three models. To do this we need
to compute the distribution of time during which the server is continuosly
available. We assume λi = λ

i
for i = k, . . . , n for model a, λi = λ

i
, i = k, . . . , n

and δi = δ
i

for i = 1, 2, . . . , k − 1 for model b and λi = λ
i
, i = 1, 2, . . . , n for

model c. This assumption states that failure rate decreases with increasing
number of functioning units, which is quite reasonable.

Model a. The system state probabilities are given by

qn1 =
α

λ
qn0, qn−1,1 =

λ + α

µ
qn0.

qn−r,1 =
[

λr−1(λ + α)n−r + λrµ((λ + α)r−2 + µr−3(λ + α + µ)

+ . . . + µ(λ + α)r−3 + . . . + µr−4(λ + α)2)
]

qn0

/

µr(λ + α)r−1,

2 ≤ r ≤ n − k.

qk−1,1 =
λ

µ
qk1, qr0 = (

λ

λ + α
)n−r qn0, k + 1 ≤ r ≤ n − 1.
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The system availability at any epoch is given by 1 − qk−1,1. Hence the
fraction of time the system is not available is qk−1,1. Under the normalizing
condition, we get qn0.

Distribution of the server availability.

Consider the Markov chain on the state space {(k − 1, 1), . . . (n, 0)} with
state (n, 0) absorbing. We have to compute the distribution of time until
reaching (n, 0) starting from one of the transient states (corresponding to
server arrival). The infinitesimal generator of this chain is























(k − 1, 1) (k, 1) . . . . . . (n − 1, 1) (n, 1) (n, 0)

(k − 1, 1) −µ µ . . . 0 0 0
(k, 1) λ −(λ + µ) µ . . .
...

...
(n − 1, 1) 0 . . . λ −(λ + µ) 0 µ
(n, 1) 0 . . . 0 λ −λ 0
(n, 0) 0 . . . 0 0 0 0























=

[

M1 eµ

0 0

]

where M1 is the matrix obtained by deleting the last row and last column of the
generator and eµ is the column vector with last entry µ and all others zero. 0 is

a row vector of zeros. The distribution of time till absorption is of Phase type
given by F1(x) = 1 − α1 exp(M1x)e1 for x ≥ 0, where α1 is the row vector of
initial probability with entries αk−1, αk, . . . , αn where αk−1 = 0, αk = 1− (αk−1 +
. . . + αn); αi = P (Sn−i < T < Sn−i+1) where the random variable Si is the time
till i failures take place starting from the instant at which all units function write
S0 = 0, then we have S0 < S1 < . . . < Sn−k and e1 = (1, 1, . . .1)′.

Expected duration of time the server is busy in a cycle.

Expected time the server is busy is the time to reach (n, 0) starting from
(i, 1) , i = k . . . n − 1 Let Ti denote the time to reach (i + 1, 1) starting from
(i, 1), i ≥ k − 1 we can recursively compute E(Ti), i ≥ k − 1 from the relation
E(Ti) = 1

µ + λ
µE(Ti−1) starting from E(Tk−1) = 1

µ then

E(Tj) =
1 − (λ/µ)j−k+2

(µ − λ)

The expected time to reach (n, 0) conditional on server arrival between (n−i)th

and (n − i + 1)th component failures is
∑n−1

j=i E(Tj/Si < T < Si+1)P (Si < T <

Si+1), where the random variable Si is the time till i failures take place starting
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from the instant at which all units function. Write S0 = 0 then we have S0 < S1 <
. . . < Sn−k. With this the expected time to reach (n, 0) is

n−2
∑

i=k

1

(µ − λ)

(

(n − i) − (
λ

µ
)i−k+2µ

1 − (λ/µ)n−i

µ − λ

)

P (Sn−i−1 < T < Sn−i) +
1

(µ − λ)
(1 − (

λ

µ
)n−k+1)

α

α + λ

where P (Sn−i−1 < T < Sn−i) = α λn−i−1

(λ+α)n−i , k ≤ i ≤ n − 1

Expected time the server is not in the system in a cycle.

From the state (n, 0) the system can move either to (n, 1) or (n − 1, 0) . If it
goes to (n−1, 0) then from this the system further moves to (n−2, 0) or (n−1, 1).
Thus process goes on for all the states till (k + 1, 0). From (k + 1, 0) it can either
go to (k + 1, 1) or (k, 1). At (k + 1, 1) on failure of one unit the system goes to
(k, 1). Thus expected amount of time the server is not in the system in a cycle is

1

α
P (T < S1) + (

1

α
+

1

λ
)P (S1 < T < S2) + . . .

+ (
1

α
+

n − k − 1

λ
)P (Sn−k−1 < T < Sn−k) + P (T > Sn−k)

n − k

λ

=
2

α

(

1 − (
λ

λ + α
)n−k

)

Expected duration of time the system is down in a cycle.

It is well known that
qk−1,1

qn0
gives the expected number of visits to (k − 1, 1)

before first return to (n, 0) (starting from (n, 0)) (see Tijms (1994) [3]). Further
1
µ is the expected amount of time system remains in (k− 1, 1) during each visit to

that state .
Hence expected duration of time system is down is qk−1,1/(µqn0) which is equal

to

(

(
λ

µ
)n−k 1

µ2
(λ + α) + (

λ

µ
)n−k+1µn−k−3 (λ + α + µ)

(λ + α)n−k−1

+ (
λ

µ
)n−k+1

1 − ( µ
λ+α)n−k−3

λ + α − µ

)

Model b

System state probabilities in the long run are the same as in model a for states
((k − 1, 1), . . . , (n − 1, 1), (k + 1, 0), . . . , (n, 0)). Further since the functional units
deteriorate even when the system is down, we have for l = 2, . . . , k, qk−l,1 =
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(δ/µ)l−1qk−1,1, 2 ≤ l ≤ k. The system is down for the fraction of time
∑k−1

i=0 qi1.
So the system reliability is

1 −

k−1
∑

i=0

qi1 = 1 −
(1− (δ/µ)k)

(1 − δ/µ)
qk−1,1

.

Distribution of server availability.

Consider the Markov chain on the state space {(0, 1), (1, 1), . . . , (k, 1), . . . , (n−
1, 1), (n, 0)} with state (n, 0) absorbing. This distribution is Phase type; F2(x) =
1 − α2 exp(M2(x))e2, where M2 is the matrix











(0, 1) (1, 1) . . . . . . (n − 1, 1)

(0, 1) −µ µ . . . 0 0 0
(1, 1) 0 −(µ + δ) µ . . .
...

...
(n − 1, 1) 0 . . . 0 λ −(λ + µ)











α2 is the row vector of initial probabilities with first k entries zero, the rest of
the entries are αk+1, αk+2, . . . , αn, αn+1 where αk+1 = 1 − (αk+2 + . . . + αn+1)
and αi = P (Sn−i+1 < T < Sn−i+2), i = k + 2, . . . , n, αn+1 = P (T < S1),
e2 = (1, 1, . . . , 1)′

Expected duration of time the server is continuously busy.

As in the earlier model, Ti denote the time to enter state (i+1, 1) starting from

(i, 1). Here E(T0) = 1
µ , E(T1) = 1

µ(1 + λ
µ),

E(Tk−1) =
1

µ

1 − (δ/µ)k

1 − δ/µ
, E(Tk) =

1

µ
+

λ

µ

1

µ

1 − (δ/µ)k

1 − δ/µ
.

We can recursively compute E(Ti), i ≥ 0 from the relation E(Ti) = 1
µ + λ

µE(Ti−1)

starting from E(Tk−1) = 1
µ

1−(δ/µ)k

1−δ/µ .

Thus

E(Tj) =
1

µ
[
1 − (λ/µ)j+1−k

1 − (λ/µ)
+ (

λ

µ
)j+1−k 1 − (δ/µ)k

1 − (δ/µ)
].

The expected time to reach (n, 0) conditional on server reaches between (n − i)th

and (n − i + 1)th component failures is
∑n−1

j=i E(Tj/Si < T < Si+1)P (Si < T <

Si+1) which is equal to

n−1
∑

i=0

n−1
∑

j=i

1

µ
[
1− (λ/µ)j+1−k

1− (λ/µ)
+ (

λ

µ
)j+1−k 1 − (δ/µ)k

1 − (δ/µ)
]P (Sn−i−1 < T < Sn−i),

where P (Sn−i−1 < T < Sn−i) = αλn−i−1

(λ+α)n−i , k ≤ i ≤ n − 1.
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P (T < S1) =
α

λ + α
.

Expected time the server is not in the system during a cycle is same as in model
a.

Expected duration of time the system is down in a cycle.
qk−1,1

qn0
gives the expected number of visits to (k − 1, 1) before first return to

(n, 0).
Consider the class {(0, 1), (1, 1), . . . , (k − 1, 1)}. The process spends on the

average 1
µ

1−(δ/µ)k

1−(δ/µ) amount of time in this class during each visit before returning

to state (k, 1). Hence expected duration of time the system is down in a cycle is

1

µ

1− (δ/µ)k

1 − (δ/µ)

qk−1,1

qn0
=

1

µ

1 − (δ/µ)k

1 − δ/µ

(

(
λ

µ
)n−k 1

µ2
(λ + α) + (

λ

µ
)n−k+1

µn−k−3 λ + α + µ

(λ + α)n−k−1
+ (

λ

µ
)n−k+1

1 − ( µ
λ+α)n−k−3

λ + α − µ

)

Model c

System state probabilities in the long run are the same as in model a for states
(k − 1, 1) . . . , (n − 1, 1), (k + 1, 0), . . . , (n, 0). Further since the functional units
deteriorate even when the system is down at the same rate, we have for l = 2, . . . , k
qk−l,1 = (λ

µ)l−1qk−1,1 can be expressed in terms of q(n, 0) . System reliability is

computed as earlier. q(n, 0) can be obtained using the normalizing condition,
∑

(i,j)∈E2
qi,j = 1.

The distribution of the duration of time the server continuously remains in the
system is given by F3(x) = 1 − α3exp(M3x)e3 where α3 is a (n + 1) component
row vector with first k entries zero the rest of the entries are αk+1, αk+2, . . . , αn,
αn+1 where αk+1 = 1 − (αk+2 + . . . + αn) and αi = P (Sn−i+1 < T < Sn−i+2), i =
k +2, . . .n, αn+1 = P (T < S1). e3 is also of the same dimension with all entries,1.
M3 is a non singular matrix of order n given by first n rows and n columns of the
matrix I −P where I is of order (n+1) and P is the transition probability matrix
of the chain on the set {(0, 1), (1, 1), . . . , (n− 1, 1)(n, 0)}.

Expected amount of time the server is continuously busy.

In this case E(Tj) = 1
µ

(1−(λ/µ)j+1)
(1−λ/µ)

, j ≥ 0, starting with E(T0) = 1
µ . As in model

b, we get

E(Ti) =

n−1
∑

j=i

E(Tj/Si < T < Si+1)P (Si < T < Si+1)
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=

n−1
∑

i=0

n−1
∑

j=i

1

µ

[1 − (λ/µ)j+1

1− (λ/µ)

]

P (Sn−i−1 < T < Sn−i),

where P (Sn−i−1 < T < Sn−i) = α λn−i−1

(λ+α)n−i , k ≤ i ≤ n − 1. Thus

E(Ti) =

n−2
∑

i=0

(n − i) − (
λ

µ
)i+1 (1 − (λ/µ)n−i)

(1 − λ/µ)
α

λn−i−1

(λ + α)n−i
+ (1 − (λ/µ)n)

α

λ + α
.

Here also the expected time the server is not in the system is the same as in the
above two models.

Expected amount of time the system is non functional.

The process spends on the average 1
µ

(1−(λ/µ)k)
(1−λ/µ) amount of time in the class

{(0, 1)(1, 1), . . . , (k−1, 1)} . Expected amount of time the system is non functional

in a cycle is 1
µ

1−(λ/µ)k

(1−λ/µ)
qk−1,1

qn0
.

4. Control Problem

Here we attempt to find the optimal value of α by maximizing the profit and
the system reliability. The following costs are considered :

(1) Cost per unit time due to the machine remaining non functional.
(2) Profit per unit time when the server is not in the system.

Let C denote the cost per unit time due to the machine remaining non functional
and w denote the wages given to the server.

Model a

Profit per unit time when the server is not in the system = w
(

2
α(1−( λ

λ+α )n−k)
)

Expected cost per unit time due to idleness is

C(
1

µ
)
qk−1,1

qn0
= C(

λ

µ
)n−k+1

(

(
µ

λ
)

1

µ2
(λ + α) + µn−k−3 (λ + α + µ)

(λ + α)n−k−1

+
(1− ( µ

λ+α)n−k−3)

(λ + α − µ)

)

Therefore the total expected profit per unit time (TEP )a is

w
( 2

α
(1− (

λ

λ + α
)n−k)

)

− C(
λ

µ
)n−k+1

(

(
µ

λ
)

1

µ2
(λ + α) + µn−k−3 λ + α − µ

(λ + α)n−k−1
+

1 − (µ/(λ + α))n−k−3

λ + α − µ

)

The above function is concave in α as can be seen by differentiating the profit
function twice with respect to α. However it is difficult to find optimal α value
from the first derivative equated to zero.
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Model b

In model b the total expected profit per unit time (TEP )b is

(TEP )b = w
( 2

α
(1 − (

λ

λ + α
)n−k)

)

− C
(

(
λ

µ
)n−k 1

µ2
(λ + α) + (

λ

µ
)n−k+1µn−k−3 λ + α + µ

(λ + α)n−k−1

+ (
λ

µ
)n−k+1 1 − (µ/(λ + α))n−k−3

λ + α − µ

)1 − (δ/µ)k

µ − δ

(TEP )b is a concave function in α. It can also be seen by differentiating the profit
function twice with respect to α.

Model c

In this case the total expected profit per unit time (TEP )c is

(TEP )c = w
( 2

α
(1− (

λ

λ + α
)n−k)

)

− C
(

(
λ

µ
)n−k 1

µ2
(λ + α) + (

λ

µ
)n−k+1µn−k−3 λ + α + µ

(λ + α)n−k−1

+ (
λ

µ
)n−k+1 1 − (µ/(λ + α))n−k−3

λ + α − µ

)1 − (λ/µ)k

µ − λ

Numerical illustration.

For illustration we calculate the total expected profit per unit time for given
parameters for the three models and for various values of α. On comparing the
three models for different set of parameters, we can see that total expected profit
is maximum for model b.

Comparison of three models

n = 12, λ = 7.5, µ = 13, k = 6, w = 70, C = 80, δ = 5

Total expected profit/unit time
α (TEP )a (TEP )b (TEP )c

3 38.986 40.284 40.209
3.1 38.052 39.315 39.242
3.2 37.156 38.386 38.315
3.3 36.296 37.495 37.426
3.4 35.471 36.64 36.573
3.5 34.679 35.819 35.753
3.6 33.917 35.03 34.966
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Total expected profit/unit time
α (TEP )a (TEP )b (TEP )c

3.7 33.184 34.271 34.209
3.8 32.479 33.541 33.48
3.9 31.8 32.839 32.779
4 31.146 32.162 32.104

4.1 30.516 31.51 31.453
4.2 29.908 30.882 30.826
4.3 29.322 30.276 30.221
4.4 28.756 29.691 29.637
4.5 28.21 29.126 29.073
4.6 27.682 28.581 28.529
4.7 27.171 28.054 28.003
4.8 26.678 27.544 27.494
4.9 26.2 27.051 27.002
5 25.738 26.575 26.526

n = 18, k = 7, λ = 9.5, µ = 14, w = 80, C = 110, δ = 4

Total expected profit/unit time
α (TEP )a (TEP )b (TEP )c

2 49.157 50.57 50.402
2.1 47.805 49.153 48.992
2.2 46.518 47.805 47.652
2.3 45.292 46.523 46.376
2.4 44.124 45.302 45.161
2.5 43.01 44.138 44.003
2.6 41.946 43.028 42.898
2.7 40.929 41.968 41.844
2.8 39.957 40.955 40.835
2.9 39.027 39.986 39.871
3 38.136 39.059 38.949

3.1 37.282 38.172 38.065
3.2 36.463 37.321 37.218
3.3 35.677 36.505 36.406
3.4 34.922 35.722 35.627
3.5 34.796 35.03 35.002
3.6 33.499 34.248 34.158

Total expected profit/unit time
α (TEP )a (TEP )b (TEP )c

3.7 32.828 33.553 33.466
3.8 32.182 32.885 32.806
3.9 31.56 32.241 32.216
4 30.96 31.621 31.542
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n = 10, K = 5, λ = 5.5, µ = 10, w = 50, C = 100, δ = 3

Total expected profit/unit time
α (TEP )a (TEP )b (TEP )c

3 27.435 29.251 29.106
3.1 26.737 28.512 28.37
3.2 26.069 27.806 27.667
3.3 25.43 27.131 26.995
3.4 24.819 26.484 26.351
3.5 24.232 24.865 25.734
3.6 23.67 25.271 25.143
3.7 23.13 24.702 24.576
3.8 22.612 24.156 24.032
3.9 22.114 23.631 23.509
4 21.635 23.126 23.007

4.1 21.174 22.641 22.524
4.2 20.73 22.174 22.059
4.3 20.303 21.725 21.611
4.4 19.891 21.292 21.18
4.5 20.047 20.953 20.88
4.6 19.11 20.472 20.363
4.7 18.739 20.083 19.976
4.8 18.382 19.708 19.602
4.9 18.036 19.346 19.241
5 17.701 18.996 18.893
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