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Statistics 

Study design in clinical 
research: sample size 
estimation and power 
analysis Jerrold Lerman BASc MD FRCPC 

The purpose of  this review is to describe the statistical meth- 

ods available to determine sample size and power analysis in 

clinical trials. The information was obtained from standard 
textbooks" and personal experience. Equations are provided for 

the calculations and suggestions are made for the use of  

power tables, it is concluded that sample size calculations and 

power analysis can be performed with the information provid- 

ed and that the validity of  clinical investigation would be 

improved by greater use of  such analyses. 

Cet article de revue ddcrit les mdthodes statistiques utilisdes 
au cours des dpreuves cliniques pour d~terminer la taille d'un 

dchantillon et l'analyse de sa puissance. L'information 

provient des manuels standards et de l'expdrience de I'auteur. 
Des dquations sont fournies avec des suggestions sur l'usage 
des tables de puissance. En conclusion, avec cette #zforma- 

tion, il est possible d'effectuer les calculs de la mille d'un 
dchantillon et l'analyse de sa puissance; ces analyses amdliore- 

raient la validitd d'une dtude clinique si on les utilisaient 

plus. 

Although study design is an integral component of clini- 
cal research, it appears infrequently in the anaesthesia 
literature, t-3 This is evidenced by the absence of both 
sample size calculations in prospective studies and 
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power analysis in studies with negative results, t-5 Two 
possible explanations may account for this omission 
from clinical anaesthesia research. First, sample size 
estimation and power analysis are subjects that are 
rarely taught to trainees and almost totally omitted from 
the anaesthesia literature. 6 Second, the mathematical 
expressions that are used often appear complex and 
overwhelming. To address similar concerns in the 
behavioural sciences, 7 Cohen developed a user-friendly 
approach to sample size calculation and power analysis 
that appears to be as accurate as the more complex 
mathematical expressions, s In this synopsis, the con- 
cepts of and approaches to sample size estimation and 
power analysis in the design and reporting of clinical 
research studies in anaesthesia are reviewed. 

Study design is a process in which methodology and 
statistical analysis are organized to ensure that the null 
hypothesis can be accepted or rejected and that the con- 
clusion reached reflects the truth. The null hypothesis 
states at the outset that the treatments under investiga- 
tion have equipoise (i.e., are equal). If the study is prop- 
erly designed (i.e., appropriate sample size) and the 
treatments differ, then the investigators are likely to 
conclude from their results that the treatments do indeed 
differ and that the null hypothesis is false and should be 
rejected. On the other hand, if the study is properly 
designed and the treatments do not differ, then the 
investigators are likely to conclude that the treatments 
do not differ and that the null hypothesis is true and 
should be accepted. In the second case, power analysis 
will clarify whether the null hypothesis was accepted 
correctly, on the basis of equipoise of the treatments, or 
incorrectly because of inadequate power. 

1 Sample size estimation 
Before undertaking a study, the investigator should first 
determine the minimum number of subjects (i.e., sample 
size estimation) that must be enrolled in each group in 
order that the null hypothesis can be rejected if it is 
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false. Sample size estimations are warranted in all clini- 
cal studies for both ethical and scientific reasons. The 
ethical, reasons pertain to the risks of  enrolling either an 
inadequate number of  subjects or more subject's than the 
minimum necessary to reject the null hypothesis. In both 
instances, the risks include randomizing the care of  sub- 
jects a n d / o r  exposing them to unnecessary risk/harm. 
Consequently, the Research Ethics Boards at The 
Hospital for Sick Children and others require that all 
investigators justify the proposed sample size. The sci- 
entific reasons pertain to the enrollment of  more sub- 
jects than necessary because it extends the duration of 
and increases the costs of  clinical research studies. 
Thus, sample size estimation is essential to achieve 
excellence in clinical research. 

Study design depends on four interdependent vari- 
ables: (i) alpha (o0, (ii) beta (~), (iii) effect size (ES) 
and (iv) sample size (n). s 

(i) Alpha (or the P-value) is the probability of  finding a 
difference between the treatments when a difference 
does not exist (i.e., the difference is attributable to the 
random selection of the subjects). This is usually 
expressed as a 5% chance (i.e., P < 0.05) that the null 
hypothesis is falsely rejected. The alpha value is usually 
two-tailed (o~2), ie., the treatment may be greater or less 
than the control value. A type I statistical error, an error 
that occurs when groups are repeatedly compared, refers 
to the false claim that P < 0.05 (Table). Each time 
another variable is compared, there is a 5% chance that 
the treatments will differ because of random selection of 
the data. After comparing several of  these variables, the 
probability that at least one variable will differ between 
the treatments is approximately the product of  the num- 
ber of  variables compared and the P-value (the 
Bonferroni inequality): i.e., if ten comparisons were per- 
formed and the P-value is 0.05, then the probability is 
=0.5 or 50%.* 

Three techniques have been used to minimize or 
account for a type I error. First, the number of compar- 
isons should be restricted to those that are essential to 
address the null hypothesis. Second, the value may be 
corrected by decreasing it in proportion to the number of 
variables that are compared. 9 This is known as the 

*The Bonferroni inequality may overestimate the probability 
of making a Type I statistical error, particularly when a large 
number of comparisons are performed. The actual probability 
of obtaining at least one difference that is significant at a P < 
0.05 is: ~'r = 1- (1 - r k, where ot~. is the total probability of 
making a Type I error, ~ is the significance level and K is the 
number of comparisons. In the case of ot = 0.05 and k = 10, the 
actual o~ T is 0.4. 9 

TABLE The relationship between the null hypothesis (the premise 
of the study that the treatments have equipoise) and the true effects of 
the treatments. Two statistical errors are identified: a type I (or 0t 
error) and a type II (or ~ error). 

Reality 

Treatment has no Treatment has an 

Observation effect effect 

Treatment is effective Type I or ct error Correct conclusion 
Ho is rejected (falsely reject Ho) (reject Ho) 

e 1-13 
Treatment has no effect Correct conclusion Type 11 or 13 error 
Ho is accepted (accept Ho) (falsely accept Ho) 

I-ct 13 

Bonferroni correction. However,  in the presence of a 
large numbers of  comparisons, this correction may 
decrease the ~ value to the extent that it causes a type 1I 
statistical error. Third, a within-group measure of  the 
variance of  the data may be used, which reduces the 
probability of  a type 1I error that is associated with the 
Bonferroni correction. 9 Thus, type I statistical errors are 
easy to identify and can be minimized using several 
techniques. 

(ii) Beta is the probability of  failing to find a difference 
between the treatments when a difference exists. The 
maximum value of  ~ that is accepted in the biostatistical 
literature is 0.20 or a 20% chance that the null hypothe- 
sis is falsely accepted. This value is based on conven- 
tion rather than any mathematical derivation. However,  
it is interesting that we accept a four-fold greater risk of  
falsely accepting the null hypothesis than we do of  
falsely rejecting the null hypothesis or. The 13 value is 
usually one-tailed, 13t. A type II statistical error, an error 
that occurs .when the null hypothesis is falsely accepted, 
occurs when the l~ error exceeds 0.2. This is usually 
expressed in terms of the power of  the study; that is, the 
probability that the null hypothesis can be rejected if the 
treatments differ. Power is defined as I-fl. For a 13 of  
0.2, the power is 0.8, which is the minimum power 
required to accept the null hypothesis. Type II statistical 
errors occur when the power of  the study is <0.8. 
Calculation of the power of  a study uses the actual 
results of  the study as described below. 

(iii) "The effect size (ES) is a measure of  the smallest 
clinically acceptable difference between treatments nor- 
malized by the standard deviation of  the data (equation 
1). In the design of clinical research studies, investiga- 
tors define ~t and 13, estimate the ES using one of the 
three techniques (a pilot study, published data or an edu- 
cated guess based on clinical experience) and then cal- 
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culate the sample size. The first two techniques to esti- 
mate the ES are preferable to the third since they are 
based on real measurements. 

Calculation of the ES is specific for the type of data 
under consideration. In the case of parametric dat/l 
(defined as data that are continuous and whose distribu- 
tion can be described by a measure of central tendency 
and a measure of the scatter) for two unrelated groups, 
ES is represented by d: 8 

d - ~i _ IF, - ~21 (Eq. I) 
o g 

where ~~ and ~-2 are the mean values of the two treat- 
ments and • is the standard deviation of the treatments. 
These data are based on either pilot data or the litera- 
ture. In this equation, the standard deviations of the two 
treatments are similar. (When the standard deviations 
differ, a mean o for the two treatments is used, see Case 
2 below). Because the ES does not carry a sign, absolute 
value brackets are included in the numerator. It is 
important that the values used in the calculation of the 
ES be clinically relevant if the interpretation of the 
results is to have meaning in clinical practice. 

For nominal or proportional data (defined as data 
based on the presence or absence of a quality or 
attribute such as the presence or absence of vomiting), 
the ES is the absolute value of the difference between 
the incidence of these qualities, (expressed as two pro- 
portions, PI and P2) after transformation of the propor- 
tions (see below). This difference is represented by "h": 8 

h = I~l - ~21 (Eq. 2) 

where ~ is the arcsine transformation of PI and q~2 is the 
arcsine transformation of P2. Proportions which consist 
of only two categories (presence or absence of a quality) 
form a binomial distribution (rather than a normal distri- 
bution). The square root of each proportion is trans- 
formed to its arcsine value (also known as the angular 
transformation or inverse sine (sin-~)) by determining the 
angle whose sine is ~/P. The transformed values will 
have a distribution that approximates a normal distribu- 
tion and these values can then undergo simple mathe- 
matical operations. Arcsine transformation tables for 
proportions are available in most statistical texts, a.l~ 

Thus, the ES can be estimated for most of the com- 
mon types of data used in clinical studies in anaesthesia, 
parametric and nominal data. In the case of ordinal data, 
which is defined as data that are discontinuous, for 
which sequential values have no mathematical relation- 
ship; i.e., cannot be described by a measure of central 
tendency and scatter, these data must be transformed to 
a normal distribution to apply a sample size calculation 

based on parametric data or represented as categorical 
data. Sample size calculations can also be performed for 
more complex study designs including ANOVA, as 
described elsewhere.l~ 

Estimation of the sample size can be based on any 
one of several variables being measured in a study. The 
most appropriate variable is the one that most closely 
addresses the null hypothesis of the study. However, 
some investigators may be tempted to use another vari- 
able to estimate the sample size, one that yields a larger 
ES and a correspondingly smaller sample size than 
would the appropriate variable! Although the smaller 
sample size may facilitate earlier completion of the 
study, it may also prevent achieving a statistically sig- 
nificant difference in the appropriate variable, a type lI 
statistical error. In such a case, a power analysis should 
be performed (using the data generated in the study) to 
verify that the sample size was sufficient to reject a false 
null hypothesis. 

Example 1: A study is planned to compare the anxiolyt- 
ic effects of a new premedication with a placebo with 
the outcome variable being stress at induction of anaes- 
thesia. The investigators planned to quantitate stress at 
induction using the plasma adrenaline concentration, 
heart rate or systolic blood pressure. Any of these three 
variables may be used to calculate the sample size, 
although the investigators based their null hypothesis on 
the adrenaline concentration. To obtain estimates of the 
mean and standard deviation of the adrenaline concen- 
tration for a sample size calculation, a literature search 
is performed. The published mean concentration of 
adrenaline at induction in the premedication group 
was ~~ = 50 pg, the concentration in the placebo group 
was -~2 = 75 pg, and the standard deviation (o') of the 
concentrations for both groups was 50 pg. Using equa- 
tion 1, d is (75-50)/50 or 0.5. This value is then used to 
calculate the sample size as tbllows. 

(iv) Sample size calculation 

(a) PARAMETRIC DATA -- tWO unpaired samples 
Several approaches may be used to estimate the sample 
size for two groups of parametric data. These are based 
on an iterative approach ~~ which is detailed in Appendix 
A. The approach that I prefer however, is based on the 
ES after Cohen 8 because it is accurate and simple to per- 
form. All approaches yield similar estimates of the sam- 
ple size for a given set of conditions. 

To estimate the sample size using the ES approach, 
either a simple mathematical expression is solved or 
tables are consulted. 8-~~ Because the tables do not 
address all possible combinations of the variables, it is 
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preferable to solve the mathematical expression. Three 
common case scenarios are discussed. 

CASE I" nl=n2,01=o.2 

In this case, both the sample size (n) and the standard 
deviation (o) of the data in each of the two groups are 
equal. Here, sample size estimation is related to the ES 
by the expression: 8 

no.i (Eq. 3) n - - -  F I  :; 
I00 ES 2 

where n0.1 is the sample size for an ES of 0.1, ~2 of 0.05 
and ~1 is 0.2. Equation 3 accurately predicts the sample 
size for the conditions; (~z = 0.05, 13~:-< 0.3 and ES 
between 0.2 and 1.0." For ES values outside this range, 
equation 3 must be modified, s'Equation 3 may be sim- 
plified for the common set of conditions, (x2 = 0.05 and 
I~1 = 0.2 by substituting no. ~ = t570: s 

15.7 + 
n = I (Eq. 4) 

ES z 

The sample size is calculated by substituting the value 
for ES into equation 4. For 13 values between 0.2 and 
0.05, the relationships between n and ES are illustrated 
in Figure 1. For each ~ value, there is a corresponding 
value for n0. I based on Table 2.4.1 in reference 8: for I~ 
of 0.1, the numerator of equation 4 is 21.0 and for 13 of 
0.05, it is 26.0. By substituting these values into equa- 
tion 4, the sample size can be calculated for a range of 
values of ES. In addition, sample size may be calculated 
using either of two small but user-friendly statistics 
packages (Primer of Biostatistics (McGraw-Hill, New 
York, 1992: version 3.0) and InStat TM (GraphPad. Soft- 
ware, San Diego, CA, 1993: version 2.03)). 

Example 2: Continuing the example of the new pre- 
medicant, the sample size required for an ES of 0.5, ~2 
of 0.05 and a ~l of 0.2 is 64 subjects in each group 
(equation 4). However, suppose the investigators found 
a more recent study in which the adrenaline concentra- 
tion after the placebo was only 25 pg, one-half that pre- 
viously published. Using ~2 = 25 pg, then ES increases 
100% (to a value of 1.0) and the sample size decreases 
from 64 to 17 subjects in each group (Figure 1). 

When several values for the ES exist (based on the 
results from different studies), the ES that best approxi- 
mates the clinical study assumptions should be used to 
estimate the sample size. If the best approximate is not 
obvious, then the authors are best advised to follow a 
conservative approach and choose the smaller ES (i.e., 
the one that yields a larger sample size), in the final 
analysis, if the investigators overestimate the ES and use 
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FIGURE I The relationship between sample size and ES for the 
unpaired t test for I] values between 0.05 (power is 0.95) and 0.20 
(power is 0.80) based on equation 3. s As the ES decreases, the sample 
size, as well as the difference in/he sample size among the three 
values, increase (Figure 1 ). By d()ubling the ES, the sample size 
decreases by four-fold as predicted by equation 3. 

a small sample size, they risk falsely accepting the null 
hypothesis (or a Type I1 error). 

CASE 2: nl = n2 ' a l  :;6 O.2 

When the standard deviations of the two groups differ, a 
hybrid of the two standard deviations known as the root 
mean square (a'), should be used to estimate the ES as 
follows: 8 

2 + o 2 
O ' ~  2 

(Eq. 5) 

where o~ and o'2 are the standard deviations of the two 
treatments and o" is the root mean square of the stan- 
dard deviations. The value, o' ,  is substituted for o. in 
equation I to calculate the ES. 

CASE 3" Paired data 

For paired data, the ES is first calculated assuming the 
data are unpaired. Second, the calculated ES is 
increased by a factor of ~ - t o  account for the homogene- 
ity of the paired measurements: 8 

EZpaired = ESunpaired x ~ (Eq. 6) 

The increase in ES for paired data decreases the sample 
size as predicted by equations 3 and 4. Thus, repeated 
measurements in subjects decrease the sample size (and 
increase the power) compared with measurements in 
two different groups of subjects. 
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(b) PROPORTIONAL OR NOMINAL DATA - 
For proportional data, the estimate of the sample size is 
similar to that for parametric data with two exceptions. 
First, proportional data must be transformed (using the 
arcsine transformation) before simple mathematical 
operations can be performed. Second, the constant in 
equations 3 and 4, is omitted. Thus, the expression used 
to estimate the sample size for proportional data is: s 

15.7 
n - (Eq. 7) 

h 2 

for an ct2 = 0.05 and a 13~ = 0.2. The sample size may 
also be calculated using the mathematical expression in 
Appendix B. In addition, both the Primer of Biostatistics 
and Instat TM compute sample sizes for proportional data. 
However, all three of these techniques yield larger sam- 
ple sizes than the equations of Cohen 8 (equation 7) as 
discussed below. 

Example 3: Suppose the incidence of two events under 
consideration are: Pi (control) = 0.45 and P2 = 0.25. 
The arcsine transformation of Pi is 1.471 and of P2 is 
1.0478. Using equation 2, "h" is 0.424. When this value 
is substituted into equation 7 together with an ct 2 of 0.05 
and a 1~ of 0.2, a minimum of 88 subjects are required 
per group. Some statistics packages (Primer of 
Biostatistics and lnstat TM) may overestimate the sample 
size (by approximately 10%) compared with the size 
based on equation 7. However, the sample size esti- 
mates for proportions after Cohen 8 appear to be accu- 
rate, reliable and slightly smaller than values based on 
these other approaches. 

Small differences in the sample size between treat- 
ments do not substantially decrease the power of the 
study, but large differences may. 8 When the size of one 
group is fixed (for example, only a limited number of 
subjects can receive an expensive new treatment) at a 
value that is far less than the sample size calculated for 
same size treatments, the size of the unfixed group must 
be increased disproportionately such that the total sam- 
ple size exceeds the total for equal sized groups. 8,~~ 
Calculation of the sample size for unequal size groups 
uses equation 8 as follows: 

n f X n  
n,, = (Eq. 8) 

2nf - n 

where n, is the unfixed sample size, n/is the fixed sam- 
ple size and n is the sample size estimate for same size 
groups (as per equations 4 or 7). n/must be >0.5n, oth- 
erwise the denominator in equation 8 becomes negative 
or zero, thereby making equation 8 insoluble. If nf can- 
not be increased to solve equation 8, then o~, 13 or the ES 
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FIGURE 2 The sample size (ordinate axis) in a study in which the 
probability of an event in the treatment group (P2) is 50% that in the 
control group (PI). The control proportion (PI) is the probability that 
the event occurs in the control group, shown on the abscissa. The 
sample size estimates were based on oh = 0.05, and 13 = 0.20 and 
equation 7. 

should be adjusted to decrease n. In example 2 with 
equal sample sizes, 64 subjects were required for each 
group or 128 subjects in total. However, if one sample 
size had been fixed (nf) to 35 subjects, then the unfixed 
sample size (nu) would require 375 subjects for the same 
o~, I~ and ES. In this case, the number of subjects 
increases to 410 or 3 fold the number with equal sample 
sizes. 

When summarizing the sample size estimation, all of 
the assumptions used should be reported including the 
and I~ values, and the means and standard deviations or 
the estimated probabilities of the outcome events (i.e., 
proportions) (with the actual data or the sources of the 
data). When incomplete information is provided, it may 
be difficult to determine the assumptions used to calcu- 
late the sample size. For example, when the sample size 
is reported to be based on a 50% decrease in the inci- 
dence of an event in the treatment group compared with 
the control group, there is a whole range of sample sizes 
possible as shown in Figure 2. In this case, the actual 
incidence used in the calculation of the sample size 
should be reported. The summary of this information 
usually involves only a statement or two at the conclu- 
sion of the methods section to outline the details of how 
the sample size was estimated. 
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2 Power analysis 
If, after completion of a study, the null hypothesis is 
accepted, two possible scenarios may exist: (1) that the 
treatments have equipoise (or are similar) or (2) that the 
power of the study was inadequate to prove the treat- 
ments differed (Type II error). Before concluding that 
the treatments have equipoise, it is important to deter- 
mine whether a statistically significant difference 
between the treatments could have been detected if the 
treatments truly differed. 

The power of a study is the probability of correctly 
accepting the null hypothesis (1-13). Biological scien- 
tists have accepted a maximum value for IB of 0.2 or a 
power of 80%. Thus, when treatments are found to 
have equipoise, the null hypothesis may be falsely 
accepted if the power of the study is <80% or correctly 
accepted if the power is >80%. The power of a study is 
determined after completion of the study, using the 
actual sample size and ES and the o~ value. Power may 
be determined, for the same types of data as for the sam- 
ple size calculation. Whenever the null hypothesis is 
accepted, a power analysis is warranted to validate the 
conclusions of the study. Power tables using the sample 
size and ES (calculated from the results of the study) as 
well as the o~ value are available in the standard text- 
books.8 

Example 4: Upon completion of a study in which 20 
subjects were enrolled in each of two groups, the inves- 
tigators concluded that two treatments had equipoise. 
The investigators had not performed a sample size cal- 
culation before undertaking the study. In this example, 
the ES was 0.5, o~ 2 was 0.05 and the sample size was 20. 
Using power tables, s the power of the study was only 
33%, less than the minimum power of 80% required to 
correctly accept the null hypothesis. Based on this low 
power, the investigators could not conclude that the two 
treatments were similar, but rather that they were unable 
to detect a statistically significant difference between 
the treatments. On the basis of the results of this study, 
the investigators would have required 64 subjects in 
each treatment group to accept the null hypothesis with 
a power of 80%. 

Several strategies may be considered in order to max- 
imize the power of a study. 8.~~ First, the sample size in 
each treatment group should be similar. When the sam- 
ple sizes are equal, the power of the study is maximal; 
as the difference between sample sizes increases, the 
power of the study decreases. Other strategies that 
increase the power include repeat measurements in the 
same subjects rather than singular measurements in sev- 
eral cohorts of subjects and measurement techniques 
that minimize the variability in the outcome variable 

(i.e., minimizes the standard deviation of the measured 
variable). These strategies must be considered during 
the design phase of the study to maximize the power of 
the study. 

When the null hypothesis is accepted at the conclu- 
sion of a study, some investigators dismiss the study as 
a failure because a statistically significant difference had 
not been achieved. However, such studies should not be 
dismissed frivolously. If the power of the study was suf- 
ficient to detect a clinically relevant difference between 
the treatments, then the treatments were similar and the 
results relevant to clinical practice. This study would 
merit publication. If the study had insufficient power to 
detect a clinically relevant difference, then the flawed 
study design also merits publication to serve as a guide 
to other investigators for future study designs. As the 
application of power analysis becomes widespread, the 
clinical relevance of studies in which the null hypothesis 
is accepted, will be enhanced. 

Appendix A 

An alternative approach to estimating the sample size 
for parametric data t~ 
Equation 9 may be used to estimate the sample size. 
This equation requires an iterative process as shown in 
example 5. 

> 2St2~ t 2 
n _  82 (t,(21,o+ 13(,.o) (Eq. 9) 

where n is the sample size, st, is the pooled standard 
deviation,* 8 is the difference between the two means 
and ta(2),v and tl~(i)v are the t values I~ that correspond to 
a2, one-tailed IB (or IBl) and v degrees of freedom (in 
this case, the degrees of freedom for two unrelated 
groups = (2 x n) - 2). 

Equation 9 may be may be simplified to equation 3 as 
follows: first, the ratio, $/s~,, is replaced by ES in equa- 
tion 4 (assuming o~ = 02). Second, for large v values, 
tac2) v approaches/a(2).~, which is also the standard nor- 
mal deviate for Gt 2, Za(2). Using the same approach for 
tl~(~), v, equation 9 becomes: 

2(Z~(21 + Z~l~t)2 
n = (Eq. I0) 

ES 2 

*Where s2p -SSI+SS2  Here, SS is the sum of squares of 
O I -F- o 2 

the data in treatments i and 2 and v are the degrees of freedom 
(n-I) in treatments I and 2/0 
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Third, substituting 1.96 for Z0.05(2) and 0.8416 for 
Z0.2tt) into the numerator of equation 10 yields the 
numerator of equation 4, 15.7. t~ Cohen also noted 
that for these (z2 and I~t values, the sample size must be 
adjusted upwards slightly to yield accurate estimates of 
the sample size. He increased the sample size by the 
addition of a constant, in this case, I, to give equa- 
tion 4. 

Example 5: To estimate the sample size (n) using equa- 
tion 9, a series of iterations'(or repeated calculations) is 
required because the sample size estimate is also one of 
the assumptions that determines the t values on the right 
side of the equation. We begin by guessing a sample 
size (any guess is acceptable, although the most efficient 
solution is achieved by overestimating the first sample 
size) and determine the two t values (ta(2) and. tl~o)) that 
correspond to this first sample size using t tables, t~ 
These values, together with the sp and 5 are substituted 
into the right side of equation 9 to yield the first calcu- 
lated sample size. The second estimate of the sample 
size is a value that lies between the first estimated and 
calculated sample sizes. Using this new estimate of n, 
two new t values are generated and substituted into 
equation 9. The second calculated sample size is com- 
pared with the second estimated sample size and the 
process continues until the estimated and calculated 
sample sizes converge. 

Using the data from the premedication example, 5 is 
25, c~ is 50, ~ = 0.05 and I~ = 0.2. Our first estimate 
of the sample size is 20 subjects per group. This corre- 
sponds to a v = 38, t0.05(2),38 = 2.024 and t0.2(t).38 = 
0.851. ~t Substituting these values into equation 9 
yields 

2x(50)2 (2.024 + 0.851) 2 = 63.6. 
n -  (25)--- S -  

Our second estimate of the sample size is 60 subjects 
which corresponds to a v = I 18. In this case, to.05(2),tt 8 = 
1.975 and to.2o),~18 = 0.845. Substituting these values 
yields an n = 63.8. Thus, our sample size should be at 
least 64 subjects. This value is consistent with the 
results of the example for CASE I. 

Appendix B 

An alternative approach to estimating the sample size 
for  proportional data w 

Equation 11 may be used to estimate the sample size for 
proportional data as follows: 

n = 
45h 2 

(Eq. i l) 

where: 

A = [Z~(2, ~ / (p '  +Pg(q,  + q ~  

2 

+ Zp(u ~/Plq] + 

q 

J 

where Za and Zp are the normal standard deviates or 
tat2),** and tp(~), respectively, t~ p~ and P2 are the propor- 
tions of the events and qt and q2 are the complementary 
values, i.e., q~ = l-pi: 

and 5 h = l P l - P z l  

Example 6: Solving the example for proportions, Pt = 
0.45, P2 = 0.25. The corresponding ql and q2 values are 
0.55 and 0.75.5h = 0.45-0.25 = 0.20. Zo.o5(2) = 1.96 and 
Zo.oso) = 0.8416. I I 

Hence: 

A = 
!.96 ~/(0.45 + 0.25)(0.55 + 0.75) 

2 
�9 ] 

+ 0.8416 x/(0.45)(0.55) + (0.25)(0.75) 

= 3.52 

Now: 

+ 4(0.2)]2 
3.52 I + I 3.52 / 

J 97.7 n ~ 
4(0.2) 2 

This result is similar to the estimate in example 3. 

References 
1 Moodie PF, Craig DB. Experimental design and statistical 

analysis. Can Anaesth Soc J 1986; 33: 63-5. 
2 Villeneuve E, Mathieu A. Goldsmith CH. Power and sam- 

ple size calculations in clinical trials from anesthesia jour- 
nals. Anesth Analg 1992; 74: $337. 

3 Mathieu A, Villeneuve E, Goldsmith CH. Critical appraisal 
of methodological reporting in the anaesthesia literature. 
Anesth Analg 1992; 74: S195. 

4 Freiman JA, Chalmers TC, Smith H Jr., Keubler RR. The 
importance of beta, the type I! error and sample size in the 
design and interpretation of the randomized control trial. 



Lerman: STUDY DESIGN 191 

Survey of 71 "negative" trials. N Engl J Med 1978; 299: 
690-4. 

5 Gardner M J, Bond J. An exploratory study of statistical 
assessment of papers published in the British Medical 
Journal. JAMA 1990; 263:1355-7 

6 Fisher DM. Statistics in Anesthesia. In: Anesthesia. Miller 
RD (ed.). 4th ed. New York: Churchill Livingstone, 1994: 
782-5 

7 Cohen J. The statistical power of abnormal social psycho- 

logical research: a review. J Abnorm Soc Psychol 1962; 
65: 145-53. 

8 Cohen J. Statistical Power Analysis for the Behavioural 

Sciences. 2nd ed. Hillsdale, New Jersey: Lawrence 

Erlbaum Associates, 1988: 1-74,179-213 

9 Glantz SA. Primer of Biostatistics. 3rd ed. New York: 
McGraw-Hill, 1992: 91-4, 133-8, 387 

I 0 Zar JH. Biostatistical Analysis. 2nd ed. Englewood Cliffs: 
Prentice-Hall, Inc., 1984: 134-7, 171-6, 397-400, 484-5, 
586-8 

I 1 Snedecor GW, Cochran WG. Statistical Methods. 7th ed. 
Ames, Iowa: The Iowa State University Press, 1980: 469. 


