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1. Introduct ion  

The Pompeiu problem can be formulated as follows [BZ]. Let X be a locally 
compact topological space, dm a non-negative measure, G a Lie group acting 
transitively on X, leaving dm invariant and K a compact subset of X (or/C a family 
of compact subsets of X) then the Pompeiu transform P = PK (or P = Pie) is the 

map 
P: C(X) --, C(G), 

P(f)(cr) : =  [ f dm. 
Joy (K) 

T h e  P o m p e i u  p r o b l e m  is to  d e c i d e  w h e t h e r  P is  i n j e c t i v e  for  a g i v e n  K (or  f a m i l y  

E ) .  C lea r ly ,  w e  c a n  p o s e  th i s  p r o b l e m  for  o t h e r  spaces  o f  f u n c t i o n s  in  X, e.g. 

Le,  1 < p  < ~ .  A t y p i c a l  e x a m p l e  is X = R n, G = I ~  n ( ac t ing  a s a g r o u p o f  

t r a n s l a t i o n s ) ,  dm = L e b e s g u e  m e a s u r e .  T h e n  

Pf (o )  = (~K , f ) ( - - c r ) ,  
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where Xr is the characteristic function of  K, ~r(x)  = X r ( - x ) .  I f f  E L P, 1 < p < 2, 

and P f  = 0 almost everywhere,  then 

5 r ( f )  �9 ~'()~r) = O, 

where ~" denotes the Fourier transform. I f  m(K) > 0, then ~ ( ~ r )  is an entire 

function which does not vanish identically. It follows that ~ r ( f )  = 0 almost 

everywhere, so f = 0 almost everywhere.  Hence P is injective, when acting in 

L p(~n), 1 < p < 2, for  any compact set o f  positive measure. This reasoning fails 

for LP(Rn), p > 2, since we do not have the Fourier transform at our disposal. 

It is easy to see that there are always exponential  solutions f (x )  = exp{i(alXl + 

�9 " "  -4- t ~ n X n ) }  = e ia'x so that convolution equation ~K * f  = 0. Namely,  a E C n 

such that 2"(~r) (a)  = 0. This shows that PK cannot be injective in C(/R ~) when 

G = R ~. Moreover,  if  one can find a E /R ~ as above then P r  is not injective 

in L ~ ( R  ~). An instance of  this occurs when K a ball of  radius r, then every 

solution a of  a �9 a = ~ ,  x~ a non-zero root  of  the Bessel function Jn-__~ provides 

a counterexample to the injectivity. These examples explain why it is customary 

to consider the larger group of  Euclidean motions G = Mn in the case of  ]I~ ~ for 

the Pompeiu problem. There is presently a substantial lore of  knowledge on the 

Pompeiu problem for  symmetric spaces o f  rank 1, X = G/K,  and we refer the 

reader to the delightful survey [Z2] for references and applications. More  recently, 

some interesting variations of  the Pompeiu problem have been posed, for instance 

a local version [BG1], [BG2], [BGY1], [BGY2],  [Z1], i.e., only an open subset of  

a Lie group acts on X. The need of  considering an invariant measure is challenged 

in the recent result [BP], Badertscher [B], Quinto [Q] and in many lectures by 

the second author. In Carey-Kaniu th -Moran  [CKM] a different version of  the 

Pompeiu problem is considered (Actually it can be reduced to the one above for 

special choice of  X and G.) The present article is a natural continuation of  our work 

about the Heisenberg group H ~. This group can be represented as the boundary 

o f  Siegel domain in C n+l, and as such, it makes sense to try to find out which 

functions in H n are boundary values of  holomorphic functions (CR functions). In 

[ABCP] we characterized which elements o f  L2(H n) f3 C 1 (H ~) are CR functions 

in terms of  vanishing integrals over spheres. We found out that a single radius 

suffices for the Morera  theorem in L2(H ~). To explain what this means in a simple 

way let us restrict ourselves to n = 1, then/HI 1 can be identified as a set with C x IR. 

Let r > O, S = S(r) = {(z, 0 ) :  Izl = r } , f  E L2(H 1 ) f'l C 1 (]HI 1 ), then if  

fsf( a .  (z, O) )dz = 0 

for all a E H 1 , f is a CR function. This condition is also necessary. The reader 

can easily supply the n-dimensional version o f  this result. This theorem holds for 
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LP(H n), 1 < p < 2, instead ofL2(H n), and it is definitely false for L~176 ~). The 

proof depended very strongly on having a good Fourier decomposition of functions 
in L 2 (H "), due to Gindikin, and that the equation (0.1) is U(n) invariant. 

In this paper we consider Pompeiu problems in L~176 n) which are either U(n)- 

invariant or T "-invariant, that is for collections /C of spheres or polydisks, and 

characterize exactly the conditions on the radii that are necessary and sufficient for 

the injectivity of Pie in L~(H ") and, a fortiori, in LP(H n), 1 < p < oo. The Wiener 

Tauberian theorem of Hulanicki and Ricci [HR] plays an essential part in our 

proof. The lack of a supple version of the Paley-Weiner theorem for distributions 

of compact support in H n is what prevents us for the moment from extending 

our investigation to the space C(H n). We conclude this paper showing that the 

theorems obtained can be thought of as a quantized version of the corresponding 

results in R n. We would like to thank Fulvio Ricci, Yitzhak Weit, and Lawrence 

Zalcman for stimulating comments. We would also like to thank the referee 

for his careful reading of the manuscript, which detected several errata, and for 

pointing out to us the references in the Remark after Corollary 4.5. Agranovsky 

and Pascuas would like to thank the National Science Foundation, which through 

the grant DMS-9000619, made our collaboration possible. 

2. Prel iminaries  

In this paper, we shall use the usual notations Z+ = {0, 1,...}, P~+ -- (0, ~ ) ,  and 

R* = R \ {0}. Consider the Heisenberg group H ~, n > 1, as the set {(z, t) : z = 

(Zl, . . .  ,z~) ~ C ~, t ~ R} with the group operation 

(z, t) .  (w, s) = (z + w, t + s + 2Imz- ~) 

where z - ~  = ~ l  zj~j. 
It is well-known (see Folland-Stein [FS]) that a basis of the left-invariant vector 

fields (the Lie algebra ~n) on H n is formed by the vector fields Zj, Zj, where 

a a 
Zj=-~jzj+i2j-~, for j = 1 , . . . , n ,  

0 0 Zj = tzj-~,, for j = 1 , . . . ,  n, 

and a T=~. 
Let a E H n be given, we denote by La the operator of left translation: 

(Laf)(b) =f(a -1. b). 
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For nice functions f ,  g on H n, the convo lu t ion f  �9 g is defined by 

( f  . g)(a) = f f ( a  . b-a)g(b)dm(b) 
JH n 

where dm(b) is the Haar measure on H n with dm(b) = dV(w)ds,  b = (w, s) and dV 
is the Lebesgue measure in C n. It is clear that f ,  g E L l (H ~) when f ,  g E L l (H  n). 

For m E Z we define the mapping Xm : C ~ C by 

f z m, i fm > 0 
Xm(Z) 

1 2 -m i fm < 0. 

(Note that X0 = 1.) 
Now let m E Z ' ,  m = (ml , . . .  ,mn). Define X,, : C n ~ C n by 

Xm(Z) := f I  xmj(Zj). 
j= l  

We now introduce the rotation operator by 

I~f(z, t) ---- ( f  o e)(z, t) = f ( e l z l , . . . ,  ErnZn, t), e E T n, 

"11" " is the n-dimensional torus. Then the following relation between operators of  

rotations and translations is true 

l~La = Lcr-lal~r for every a E H n,  every e E 'IF" 

A func t ion f  on H n is said to be m-homogeneous  if it satisfies 

f o e = x m ( e ) . f ,  for every e E q F "  

Similarly, a distribution T on H "  is said to be m-homogeneous  if it satisfies 

( T , :  o e -1) = Xm(e)" (T, 

for every ~ E C ~  (H "), the space of  smooth functions with compact  support and 

e E T ". Denote by 7~m the class of  all m-homogeneous  functions in H n. Then the 

formula 

P m f = . ~ . X  = ( e ) ( f o e ) d e  

/o'I' . . . .  f ( a l Z l , . . . ,  CrnZn, t)e-2'~i(mt~'+"+m"~")d~ol "'" d~on 

gives the projection onto Pro. Here de  is the Haar measure on "it" 
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L e m m a  2.1 

Then f �9 g E 79m+m'. 

P r o o f  We need to compute /~ ( f  �9 g) for cr ~ "IF n .  

l , , ( f  * g)(a) = ( f  * g)(cra) 

= f n ,  (I~Rb-lf)(a)g(b)dm(b) 

= fM, (R~-'b-'l~f)(a)g(b)dm(b) 

= Xm (~r) . ~ .  (R~-, o-'f)(a)g(b)dm(b) 

= Xm (er) . ~ .  (Ro-,f)(a)g(ab)dm(b) 

= X.,(cr)x,., (~) f (Ro-'f)(a)g(b)dm(b) = Xm+m, (~r)(f * g)(a). JH n 

This completes the proof. 

L e m m a  2.2 Let f be m-homogeneous and f �9 g is well-defined. Then 

Let f E 79m, g E 79m', and the convolution f , g is well defined. 

[] 

P,., ( f  * g) = f  * p.,,_m (g). 

According to the definition of the projection operator Pro', we know P r o o f  
that 

P"' ( f  * g)(~) = fT .  X_=, (a ) ( f  , g)(a~)dcr 

= 

---- j~T X_m,(o" ) ~n(R~r-,~-llof)(e)g(r dO" 

= f~x-m,(er)~Xm(O)(R,7- ,r  

= ~ ,  X-m'(a) f ~ ,  Xm(cr)(R~ - ' f )(e)g(a()d(da 

---- ~ ,, (R~-'f)(e) ~,, X-m'+m (O')g(O'c)dO'dc 

= f  * P.,,-m (g)(~)" 

This completes the proof. [] 

Def ini t ion 2.3 We define 790 as the class of all locally integrable functions in 
H ", invariant under the unitary group U(n): 

Po = {f(U(a)) =f (a ) ,  a E IHI ", U E U(n)}. 
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Similarly we may  define the operator P0 the projection operator onto P0 by 

P 0 f = f  ( f  oU)dU. 
gu (n) 

3. The group algebras L,I(H n) and L~(H n) 

3.1 Let us denote by L~(H ~) (respectively L 1 (H n)) the set of  all 0-homogeneous 

integrable functions on H n, i.e. 

L I ( H  n) = t 1 (H n) f"l ~[3 0 (respectively L I (H  n) = Z 1 (H n) N ~0)- 

Obviously, L~(/HI n) (respectively L,I(H n)) is a closed subspace of  Ll (H n) and, 

moreover, it is a closed subalgebra by Lemma 2.1. Furthermore, we have the 

following lemma: 

L e m m a  3.1 The algebras LI (H n) and L1, (H n) are commutative. 

P r o o f  We only need to prove the lemma for L~(H "). Let us introduce the 

mapping of  complex conjugation of the variable z: 

(z, t) + (7 , t ) .  

L e t f  be a function defined on H n, we  set f "  = f  o w. 
For two elements a = (z, t), b = (w, s) in H n, we  have 

w(a)w(b) = (f + ~, t + s + 2Im_2 �9 w) 

= (~  + 2, s + t + 2Irrff �9 w) = w(b. a). 

Since ~v preserves the Haar measure of  H n, for any two functions f ,  g E LI(H n), 

we can write 

(f~ * g)'(a) = s f~ b-1)g(b)dm(b) 

= ~ f(w(b-1) �9 w(a))g(b)dm(b) 

= f~ f (b  -1. w(a))g(w(b))dm(b) 

= f~ f(b-1)g(w(oa(a)b))dm(b) = (gW ,f)O,(a). 

Thus we have 
g = ( g '  
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Now if f ,  g E P0, then f "  = f ,  g,O = g,and (g~ . f ) ~  = g . f .  Hence we obtain 

f * g  = g * f  

and therefore complete the proof of the lemma. [] 

3.2 We now deal with the commutative Banach algebra L~(IHI n) (respectively 
L.1 (IHI n)). The first goal of  this section is to describe the maximal ideal space of 
this algebra. We start by observing that L~(H n) (respectively LI(H n)) is actually 
the L 1 space of H n/T n (respectively H n/U(n)), which is not a group. Otherwise 

everything will be a consequence of general theory of L 1 (G) for G locally compact 

Abelian (see Loomis [Lo]). 
Recall that the maximal ideal space .h4(.4) of  a commutative Banach algebra .4 

is the set 
.M(A) = Horn(`4, C) 

of  nonzero continuous homomorphisms (characters) of the algebra `4 into the 
complex number field C. In other words, .M(`4) consists of all bounded linear 

multiplicative functionals on .4. 
The Gelfand transformation 1-' is the mapping 

r :  .4 --, c (M( .4 ) ,  c) ,  

I ~ : a ~ fi, where ~(m) = m(a) 

for all m E .M(`4). The topology on A4(`4) is the weak topology of  the dual 

space `4", i.e. the weakest topology with respect which all functions fi, a G `4, are 
continuous. The topological space .M(`4) is locally compact Hausdorff space and 
is compact if .4 is an algebra with the unit. In the case .4 does not have a unit, the 

functionals fi lie in C0(A4(.4)), the space of continuous functions vanishing at c~. 
Following the general theory of algebras on homogeneous spaces of groups 

(see e.g., Helgason [H, Chapter 4]) one can obtain the description of  the space 
A4(L~(I~ n)) in terms of spherical functions. A nonzero function ~b on/I~ n is said 

to be T n-spherical, if ~b(0) = 1 and the following identity holds 

fT ~b(a . crb)dcr = ~b(a)~b(b), 
n 

a, b E H  n 

One can prove that ~b ~ C ~ ( H  n) (see [H]). Similarly, a nonzero function r on/I~ n 

is said to be U(n)-spherical, if r = 1 and the following identity holds: 

fu r  U(b))do = r162 
(n) 

a, b E H  n 
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The spherical functions can be also described as eigenfunctions of  all left- 
invariant differential operators, acting on C~176 ~/'IF n) or C~176 n/U(n)) .  Thus, 
if we denote by D or 79* the set of  all such operators, then ~b E C~176 n) is ql" n_ 

spherical function (respectively ~b E C~176 n) is U(n)-spherical function), if ~p is 

0-homogeneous,  ~b(0) = 1 and 

D~b = )~D~, D r 79; 

or respectively ~b is 0-homogeneous,  ~b(0) = 1 and 

D 0  = )~D~, D r 79*. 

Theorem 3.2 All characters of the algebra L~(H n) are functionals of the 
form: 

m(f )  = JH f(afip(a)dm(a), 

where ~b is a bounded qr n-spherical function on H n 

Theorem 3.3 All characters of the algebra LI,(H ") are functionals of the 
form: 

I )  

re(f) = J~ nf (a)qb(a)dm(a)~ 

where f5 is a bounded U(n)-spherical function on H n 

The proofs of  these theorems are given in a more general form in [H, Theorem 
3.3, Chapter 4]; we omit  the details here. 

4. Description o f  U(n) and qr n-spherical functions and the spaces A4* 
and A4 

4.1 In order to compute  the "IF n-spherical functions on H n, we have to recall the 
basic properties of  the Fourier transform in the Heisenberg group. 

F o r f  E L 1 (H n) denote by 

the Fourier transform o f f  in the real variable t: 

fX(z) = f ( z ,  A) --- f / 5  e-2~rixtf(z' t)dt. 

The func t ion f  x is well-defined for almost all z r C n and belongs to Ll (C n). 
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We denote by ~'2n+1 ( f)(~1,-  --, ~n, A) the full Fourier transform of  the function 

f as a function defined on C n • R = R e" • 11~; 

~2n+l ( f )Qh, . . . , r /n ,A)  = f f(z,t)e-Z~iRe~'-%-2~i;~tdV(z)dt. 
jR2 n + l  

I f f  ~ L 1 (H ~) n L2(]I-]I ~), then the Plancherel formula shows that 

JlflIL2(H "/ = f~o~ IlY~IfL2(c o>d;~, 

and then, as usual the Fourier transform can be extended to a Hilbert space iso- 

morphism from L2(IHI ~) onto itself. 

For  A ~ ~* -- 1~ \ {0}, we define the A-convolution (twisted convolution) by 

(f~*g)(z) = ( f  *g)(z) - f e-4~riMmz'wf(2- w)g(w)dV(w), 
Jc n 

where we use only the s y m b o l ,  when the index o f  A is clear from the context. 

Then we have 

L e m m a  4.1 For all f, g E Ll(H ~), 

A ( i ,  g/ -- i  = l  * 

P r o o f  For f ,  g E L 1 (H n) we have 

A 
( f *  g) (z) 

---- . / / 5  e-Z~iXt(f * g)(z, t)dt 
i 

= ~ .  f / 5  (f/Sf(z-w,t-s-2Imz'w)g(w,s)e-2~i~tdt)dsdV(w) 

= ~ .  (f/~f(z-w,t)e-2'~i~tdt) (f+_~g(w,s)e-2~iX~ds)e-4~i;~Imz'wdV(w) 

= ~ .  ~ (z). 

[] 
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4.2 In this sub-section we describe the construction of the Fock representation, 

which is our basic tool. Let us introduce the operator r~(b), b = (w,s) E H n, of  

)~-translations as follows: 

(rX(b) f)(z) = e -21r iAs -47r iMmz 'w f ( z  --  W ) .  

These operators are unitary operators in L2(H ~) and the mapping 

r ~ : b E H n __, r~(b) 

gives a unitary representation of  the Heisenberg group H n. 

Now we are going to define a basis of  LZ(H n) adapted to the action of the group 
"l~ n o n  H n. 

For a > - 1  and v E Z+, let L(~ ~) be the generalized Laguerre polynomial defined 

by 

x -~  d~, (e_Xx~+~). 
L(v~)(x) = e x -~. dx ~ 

For #, v E Z+, we define the function w~,~ on C by 

A > 0 wXu,~(z) = { zU-~e-2~lZ12L(~O-")(47rAIzl 2) if # > v, 
2~-Ue-Z~XlzlZL(~-')(47rAlzlZ) if  # < v; 

< o = 

For #, v E (Z+)n, we define the function wuX,~ on C n by 

n 

j= l  

The function wu, ~,x is sgn(A)(/z - v)-homogeneous. We also introduce the nor- 

malized function: 

Wu~,~(z) ~ = 

where the constants ~ ct,,~, are positive and chosen so that = IIWL IIL2(c.) 1. In fact 

c.,.~ i-i 7r (max{l~j, uj})I } -�89 
j=l (47rlNl)luJ-~Jl +1 (min{#j, uj})! 

Moreover, we have the following theorem (see Ogden-V~igi [OV]): 



INJECTIVITY OF THE POMPEIU TRANSFORM IN THE HEISENBERG GROUP 141 

T h e o r e m  For any A E N*, the family  {W~,v}u,~,e(z+), is an orthonormal basis 
o f  L2(C ~), which is well related to A-convolution: 

(4.1) W~,v * W~,,,, 4- = 6~,u,W~,,~,. 

The Fock representation is realized in the space 

�9 c w L  u~(z+)" 

by means of  the operators 
a ~ H "  ~ rX(a)  

and any representation (r T ~) is irreducible, i.e., the space cI,~ is the minimal 
closed invariant subspace for the operators 7 -x (a). 

It is worth mentioning that all representations ( ~ , 7  -x) are equivalent. The 
intertwinning operators are the operators of  A-convolution with elements of  the 
A-basis: 

f E cI,~ ~ f .  w~,~, E q'~,. 

4.3 L e t f  E L n (H ~) and A E R*. We define the following transform: 

](A; It, .) = fc ,,]~(z)w~'"(z)dr(z), fo r# ,v  E (Z+)". 

We can express those values in terms of integration over the whole group H n: 

3~(A; It, v) = f~  ,,f(a)~u'~(a ) dm(a), for u, v ~ (x+)" ,  

and 

fi(A;it, v ) = 0 ,  if # - v r  A > 0 ;  

f (A;  It, v) = 0, if  # - u # - m ,  A < 0. 

In particular, i f  f is a O-homogeneous integrable function,  i .e . , f  E L~(H n), then 
)7(A; It, v) = 0 unless It = v. 

L e m m a  4 . 2  

Then 

where 
~u,v( z ' t  ) = e2~riAtwAu,~"tZ~J' for It, v E (Z+)". 

The relationj~(-A; It, u) = ] (A;  u, It) follows from the definition of  wuX,~. 

L e t f  E Ll(H n) o f  homogeneity degree m E (Z+)", i . e . , f  E "Pro. 
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Propos i t i on  4.3 The fol lowing relation for  elements o f  A-basis is true: 

(4.2) Po(r~'(z, 0)w~,.)(w) a = wv,v(z)wv,v(w ). 

P r o o f  Since the space r is invariant under the operator r~(a), the function 

r~(z,O)w~,~ belongs to the space r and therefore it can be decomposed into a 
series: 

~(X+)" 

where 

= (r (z, O)w.,. ,  w ; , . ) . ( c  o). 

On the other hand, 

(Po(~(z ,~  ~ / o = O)w., . ,  PoW;, . )  = t -Mz) 

Therefore, 

if # -#v ,  
if # = v .  

(4.3) Po(~(z,O)w.~ . )  = "Mz)W;,.. 

In order to finish the proof we have to compute the coefficient 7v(z). By definition 
and the 0-homogeneity of W~',~, we have 

1 fc (~ffz, O)W~,.)(w)W),.(w)dV(w) n.(z) = c~---S ,, 

1 f )~ Z e -4~ri)dmw'T A w - c G  Jc,, w.,.(w- ) w.,.( )dr(w) 

1 f ~ z e 4~ri)dm~'z A w w = c~,. J c , , W ; ' ~ ( w -  ) W.,~( )dV( ) 

1 fc  "I~v'uA(W 4~riMm~.z -3~ -- - z)e W~,~ (w)dV(w) 
C~,v n 

__ - A  - A  - A  

C~,v 

Thus, by formula (4.1), we have 

1 _;~ 1 
"Y'(~) - (cY,9  w . , .  (~) = 7x-w., .(z) .  

Using this relation in the formula (4.3) we obtained the desired result. [] 
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Now we are able to come to the description o f  the bounded U(n)-spherical  

functions on H n, and, as a consequence, we obtain that of  the bounded T n_ 

spherical functions on IHI" 

T h e o r e m  4.4 The bounded U(n)-sphericalfunct ions on H "are the fo l lowing 
functions: 

f f~u(z, t )  = ( v  + ~, 

,Y~_l(Z,t) = ( n -  lV2 " - l J ' - l (p l z [ )  

(),, v) ~ ~* x N, 

p E It~.+ , 

J n -  1 being the Bessel funct ion o f  the first kind o f  order n - 1. (Note that ff~n- 1 (Z, t) = 

1.) 

P r o o f  P a r t  I. First we show that, if  ~b is a bounded U(n)-spherical function 

on H n, it coincides with either some function 9~,~ or some function ,Y'nP_l. 

Recall that a U(n)-spherical function ~b on IHI n is an eigenfunction of  every 

left-invariant differential operator D E I)(H " /U(n)  ): 

D~b = AD ~b. 

Taking D = ~ ,  we obtain that ~b is of  the form 

~b(z, t) = eX~ 

Since ~b is bounded, we conclude that AD = 2zriA for some A E R. 

Let  us now consider D as the Kohn Laplacian: 

s = Z n j  
j=l 

where oj is the j- th subLaplacian in H n, i.e. 

oj = z j z j  + z jz j .  

Then 
Lo~b -~ )~oe2~ri;~t ~bo, with Ao = ALo. 

B u t  
i9 2 

b y = 2  2~ 0(Z,  
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and, since ~b is 0-homogeneous ,  it is easy to see that 

Thus 

0 

n ( ~  izjl2_~) Eo~b = 2 Z 02 + 02 e2*riAt~)~ 

j=l  

= e2~ri;~t ( 1 / k  ~bo - 2(27rA[z,)2~bo) . 

Therefore  the function ~b0 satisfies the equation 

(4.4) A~bo - (47rA)21zlZ~bo = 2Ao~Po. 

We distinguish two cases for the parameter A: 
Case 1: A ~ 0. Then we can make the following change of  variable in the 

equation (4.4): 

z ' =  (4zrlAl)�89 

and we obtain the equation 

(4.5) 

where 

ZX6o -Iz'126o = u6o, 

A0 
CPo(z') = ~P0((47rlAl)-�89 and # - 2*rlA[" 

If we use polar coordinates, z' = r(', I~'1 = 1, (4.5) becomes 

02~o 2 n -  1 0~o 
Or 2 + - - - -  (r 2 + # ) C 0 = 0  r Or 

and, if we let u(r 2) =. (bo(r), then we get 

t u " ( t ) + n u ' ( t ) -  # + t u ( t ) = 0  (t > 0). --T- 

By considering the change v( t )  = e t /2u( t ) ,  it turns out that this equation is equivalent 
to the following confluent hypergeometric equation: 

(4.6) tv"(t) + (n - t)v'(t) # + 2n v(t) = O. 
4 
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When a = ~ does not coincide with any nonpositive integer, the equation (4.6) 

has two linearly independent solutions, vl and v2, with the following asymptotic 

behaviour: 

( n -  1)! t . , , - , ,  
v,(t) , ,~ ~-~-) e r- , v2(t) " t -a,  as t ~ +oo; 

_ lo~t i f  n = 1 } 
Vl(t) '~ 1, V2(t) "~ r (a ) ,  as t --* 0 +, 

t-~-r-,, i f n  _> 2 

where c = c(a ,n)  is a nonzero constant. (See Olver [O, pp. 254-259];  in his 
r 2 

notations, Vl (t) = M(a ,  n, t) and v2(t) = U(a,  n, t).) Therefore u(r 2) = e - - r  v(r  2) 

is unbounded for every non-identically zero solution v of  equation (4.6). Hence a 

must  be equal to some nonpositive integer - u ,  that is, # = - ( 4 u  + 2), for some 

u E N. Then there are two linearly independent solutions, vl and v2, o f  (4.6) such 

that 
Vl(t) = L~n-1)(t) and Vz(t) "~ e t ( - t )  - " - n  as t ~ +oo. 

(See [O, pp.256-259];  in Olver 's notations, v l ( t )  = U ( - u , n , t )  and v2(t) = 

V ( - u ,  n, t).) It follows that the only solutions v of  (4.6) which make u(r  2) = 

e -~ -v ( r  2) bounded are v = c-  vl, where c is an arbitrary constant. 

Returning to the old function ~b0, it turns out that 

-27rlXl.lzl 2 (n-l) ~0(z) = C" e L ,  (47rlA I �9 Iz12), 

i~ 

~b(z, t) = c . e2~i(xt+ilXl'lz12)L~"-l)(47rlAl �9 Izl2). 

Finally, the condition ! = ~b(0) = c .  L(~ ~- 1)(0) implies that 

and therefore ~b = ~ , , , .  

Case  2: 

u + n -  1) -1 
C ~ 

//  

)~ = 0. In this case the equation (4.4) has the form 

Aj~b0 = 2A0~b0. 

It is well known that the radial solutions of  this equation are 

 o(Z) = c .  
J . - l ( p l z l )  

( P l z l ) . - I  ' 

where r/E C satisfies ~12 = _)10, [ arg~/[ < {, and c is an arbitrary constant. 
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Since 

1 = ~b(z) = ~b0(z) = c r f  -1 l im  Jn-1 (~lzl) 
z-~0 ( ~ l z l )  "-~  

7in-- 1 
- - C  ( n -  1)!2 n - l '  

it is clear that 

C : -  
( n -  1)!2 "-1 

~]n-- 1 

On the other hand the boundedness of 

~P0(z) = (n - 1))2 "-lJ"-l(nlzl) 
�9 

implies that r/coincides with a nonnegative real number p. 
In fact, taking into account that 

(4.7) 

Jn- ' (z)"~(~-~--~) �89176 4(n-1)2-18z  s i n ( z  2n -31 r )}4  

as [z I ~ +oo, [argz[ < ~ (see [O, p.133 (9.09)]), a straighforward (and tedious) 
calculation shows that 

IJ~_l(re+i~)l 1 e ~ 
as r ~ + c ~ ,  ev 

r,-  I V/-2-~ r n -  �89 ' 

and, for every 0 E ~ 0 < 10l < 3, 

IJ._l(rkeiO)[ 1 / cos 0 ~"- �89 e2k,~l tan 01, 
~ - ,  ~ ~ \ 2--ff-~ / 

as k ~ +oo, 

where rk = ~--6~,2k'~ k > 1. Thus J,-~(~fzl)~ is unbounded i f 0  < largo[ -< 3, so r/must 

be equal to some p E R+. Hence we conclude that ~P = ~P0 = 3,_l-P 
P a r t  II .  To complete the proof of  the theorem we are going to show that the 

functions ~ , ~  and ,7ff_l are bounded U(n)-spherical functions on H ". 
It is clear that ~I,~,,, is bounded, and, by (4.7), it is also clear that fir-1 is bounded. 

Moreover, g,~,v(0) = ffff-I (0) = 1. 
Thus we only have to show that ~b = ~ , fir-1 satisfy the functional equation /.I~V 

Iv  ~p(a. U(b))dU = r ~b(b) 
(n) 

for every a, b E H n. 

Let a = (z, t) and b = (w, s). We distinguish two cases depending on the form of 
r  
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Case 1: ~b = gl~,~. 
Since ~_~ = $~,~ we may assume that A > 0. Then observe that, for every 

U E U(n), we have 

kv~(a.  U(b)) = e2'~i(t+S)e-4'~(U(w)"i)L("-l)(47rAlz + U(w)12). 

Thus, after changing z and w by z and w respectively, it turns out that we - ~ S  - ~ S '  
have to prove 

(4.8) 
fU -U(w).'i (n-l) ( P + n - - ] ) - I  (.-1) 2 (.-1) 2 e L ,  (Iz + U(w)l z)dU = t ~  (Izl)t~ (Iwl), 

9') u 

for every z, w E C "  
By the bi-invariance of  the Haar measure dU on U(n), the value of  the integral 

In,~ in (4.8) only depends on Izl and Iwt, so 

where ~r is the normalized surface measure on the unit sphere S of C n. By Lemma 

1.4.2 and 1.4.5(2) of  Rudin [R] we obtain 

where 

I~,~ -- fse-lZl'lwl'w'L(~-~)(lizle, + Iwlbl2)&r(b) 

[e-lzl'lwl'w,L(n-1) z 2 21zllwlRew 1 Iwl2)da(w) =Js ~, (11 + + 

{ Kt,v(1), if n = 1, 

= ( n -  1)fo(1 -r2)n-2jn,~(r)2rdr, ifn>__2, 

fo 2'~ dO Kn#(r) = e-lzl'lwle'~ + 2[zl" Iwl. r cos0  + Iwl 2) 27" 

By using the formula 

o o  

y~L(~n-1)(x)y ~ = (1 -y)-ne~-~, lYl < 1 

(see Erd61yi-Magnus-Oberhettinger-Tricomi [El ,  p. 189, 10.12(17)]) we have 

o o  

ZKn,~(r)y~ = (1 -y)-ne;  2-r-(iz12+l~12) fo 2~ elzl ' iwJ '~(~-d~ dO 
2~r" 
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Integrating term by term the exponential series we get 

fo 2~r ,2;,cos0 iO\ dO ~ r 2v ,zl2~lwl2Vy~" 
eZ.W.rt y_~ -e )2---~ =~=0 " " vWvl (1 -y )2~  

Thus 

(4.9) 
O 0  O 0  

Z Kn,~(r)y~ = ey~-~(Izl2+lwl~) Z r 2~ Izl2~lwl2~y. 
"!"! ( / - -  

For n = 1 and r = 1 we obtain that 

O D  OO 

Z Kl,v(1)yU = ey~_l(Izl2+lwl z) Z Izl2~lw[2" 
v[v! 

v=O v=O 
O 0  

= y~t(f l )(IzlE)L~~ ", 

where the last identity follows from the formula 
(4.10) 

y~ 

(1 - y ) 2 v + l  

oo v! (~-]) (n-l) ~ ~+' ~ s~t~ Y~ 
)!L~ (s)L~ (t)y ~--- e y y - I  

Z ( v + n -  1 v ! ( v + n -  1)! (1 -y )2~  + n '  
v=O v=O 

that holds for s, t E R and y E C, lYl < 1 (see [El, p.189, 10.12(20)]). Therefore 

11,, = gl,~(1) = t(fl)(Izl2)t(fl)(lwl2), 

which proves (4.8) for n = 1. 
Now let n > 2. Then integrating term by term the series in (4.9) we have that 

oo oo 2v 2v v 

Z l n , ~ y  ~ = (n - 1)ey~_,(izl2+lwl2) 2-"a"'~v!v---'~(1----Y~ " x ' '  Izl Iwl Y 
~ = 0  t.,=0 x 

where 

fo fo x (n - 2)!v! an,v = (1 -rZ)"-=r2~2rdr= (1 - r ) n - 2 r V d r -  ( v + n -  1)!" 

(See Gradshteyn-Ryzhik [GR, p.284, 3.191.1].) Therefore, by (4.10), 

y ~  l~,~,y ~" = ( n -  1)'e~ --'br(Izl2+l'l~) Izl2~'lw]2~ Y~' 
�9 v!(v + n - 1)! (1 _y)2v+n 

v=O v=O 

v=O 
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Hence 
in,v= ( v + n - - 1 )  - 1 / \  (n-,) 2 (n-,) 2 v L,. (Izl)L,. ( lwl) ,  

and we have proved (4.8) for n > 2. 

Case 2: ~b = ,77_ l" 
For n = 1 the functional equation easily follows from a simple addition theorem 

for the Bessel functions of  the first kind of order 0 (see Lebedev [L, p. 124, 

5.12.2]): 

fU fO 2~r dO (l)ff~(a'U(b))dU= J o ( p l l z l - e ' ~  

= Jo(plzl)Jo(plwl) = ..7~(a).7~(b). 

Let n > 2. Then, reasoning as in case 1, we have: 

I = ft l  , J n ~  �9 V(b))  (.) 

dU 
( n -  1)!2 n-I 

= fo 1 (1 - r2)n-2Q(r)2rdr, 

where 

Z 2. j . _ , ( p x / i z l  2 + 21zl-Iwl" rcos0  + Iwl 2) dO Q(r) = ~ 
(p,/izl 2 + 21zl- l 

By using the so-called Lommel ' s  expansion 

(t + s ) - .~ j~  ( v/T-~-~ ) = ~--~ ( _ 2 ) m t -  e-~ --~-~., J~+m(~) 
m=O 

(see Watson [W, p.140]), integrating term by term we obtain that 

O O  

Q(r)  = Z (--1)m 2m'z'm'w'mrmc J " - l +~ (Px / I z l 2+  Iw12) 
m---o m! p I I I I m (p~/iz[2 + Iw12)._~+,., 

where 
fo 2~" m dO { O, if  m is odd, Cm = cos 0~-2_ = 1.3...(m-- l) i f m  is even. ,g . , ' / I  

2.4...m 

(See [GR, 3.621.3, p.369].) Thus 

Q(r) = ~ 1-23... (2g - 1)Jn_l+2t(px/lzl 2 + Iwl 2) p4elzl2'lwl2tr2t 
~=0 4 -7(-~) (Px/Izl 2 + [ wl2)"-l+2l (2g)! ' 

SO 
X~,b J.-l+2t(px/Izl 2 + Iwl 2) p4tlzl2elwl2er2l 

I , t  . . . . . .  
= Z . . ~  2 2 n l + 2 t  2g t ' t--0 ' (px/Izl + l w l ) -  ( )" 
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where 

bn,g 
1.3.." (m - [1  

2.~-.77m 1)(n-- 1) a0 (1 -r2)n-2r2e2rdr 

1 .3- . . (m-  1) (n -  1)if! 
2.4-. .m (n + g -  1)!(2g)! 

( n -  1)! 
22gg!(n + g - 1)! 

And using again Lommel's expansion we get 

/ = ( n - l ) ,  ~ (P2~[Z) m _  Jn-l+2g+m(plz]) paglgl2g'wl2g 
*.m=0 mt(Plzl)n-l+2e+m 22eg!(n + g - 1)!" 

Then taking into account the Taylor's expansion of J~, i.e. 

=X~-' (-1)m (X~ 2m+v 
J~(x) ~ m!(u + m)! [2} ' 

we have that 

/ _ ( n - l ) !  ~ (-1))+e(~ 2(m+') 

2 "-1 m~!(n - 1 + 2g + m + j ) ! g ! ( n  + g - 1)! j,g,m=O 

(n-l)' ( ( p ~ _ . ] )  2/z) ( ~ )  
~,=o u=o ~ - -  ~)'T M ( u - ~ -  1)! 

2u 

where 

min{/~,u} /.'!(U + n - 1)!/~!(/~ + n - 1)! 
c(~,~,,g) = ~ (~ , -g)! (~-g)! (~+~,+n-  ~)~e~(,,+e- 1)~ g=O 

(#+u-k-n--1) - l u - t - n -  1 min{u'~'}(~)(#-k-n--;)E \ g + n  1. 
g=0 
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A simple proof  of  the last identity can be done using the binomial expansion in 

the following way: 

min{#'v} ( ~ ) f #  q - n -  ~ ) f 0  2~r Z \ s  - = (1 -{-eit)Ve-i(n-1)t(1 q-eit) t~+n-ldt 
t=0 27r 

Hence we conclude that 

fO 21r eit)v ei(n-1)t(1 e-it t,+n-1 dt = ( 1 +  + ) - -  
27r 

fo 2~ = (1 +eit)Ve-iW(1 welt) u+n-ldt 
27r 

fO 2~r eit)l~+v+n_l e_il~t dt 
= ( 1 +  2--~ 

= ( # + v + n - 1 ) = ( # + v + n - 1 )  
k v + n -  1 " 

I = ( n -  1)!Jn-l(Plzl)Jn-l(plwl) 

which ends the proof  of  the desired functional equation. 

C o r o l l a r y  4.5 The bounded'IF n-spherical functions on H n are the following 
functions: 

~p~,~(z, t) e27ri~tw )~ (Z~ •* = v,g~, 1, ()H//) E X (Z_ t_)n 

J0"(z, t) =/0(pl lz~l) ' - ' /0(pnlz,  l), p E •7-. 

P r o o f  By induction on n. 

For n = 1, T n = U(n) = U(1) so, in this case, the statement of  the corollary is 

just  that of  the above theorem. 

Assume n >_ 2. Let  ~b be a bounded T n-spherical function on H n. The first 

argument used in the proof  of  the theorem shows that ~b has the form: 

~b(z, t) = ~b(a) = e2~riXt~bo(z), 

for  some )~ E R. 

Case 1: A ~t O. 

Let  us fix zn E C. Then the function 

z '  ~ Oo(z ' , z~ ) ,  z '  = ( z l , . . . , z ~ - l )  
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is an e igenfunc t ion  o f  operators  D1, . . . ,nn_ 1 and by  the induct ion  hypothes is  we 

have 

~/)o(Z t, Zn) = C(Zn) " W~t,u, (Z t) 

On the other  hand,  ~bo(z',Zn) is an e igenfunc t ion  o f  the for some u' E ( ~ + ) n - 1 .  

opera tor  tin, SO 

Consider  the fo l lowing  set: 

C(Zn) = C" W~n,Un(Zn). 

n A t D = {z E C : w~,,,,(z ) r O and w),,~,(Zn) r O}. 

Thus for  z E D we  have 

C o ( z )  = c . 

where  u = (u', u~) E (z+)n.  Hence ,  s ince D is dense in C n, ~o(z) = c .  w~,~(z) for  

all z E C n. F r o m  the condi t ion ~b0(O) = 1 w e  have c = 1. 

Case 2: ~ = O. 

The  same reasoning  by  induct ion gives us 

n 

Co(z) = 1-I Jo(pk{zkl). 
k = l  

Conversely,  we  have to show that the funct ions  ~b~,~ and 3~ are bounded  'I~ n_ 

spherical funct ions  on H n, that is, they are bounded  funct ions on  n which  satisfy 

the identi ty ~b(0) = 1 and the funct ional  equa t ion  

~ ~b(a. ab)  d a  = •(a) ~b(b), 
n 

for  every  a, b E H n 

Since 
n 

J ~ ( z , t ) =  l-I  ff~J(zj, t), 
j = l  

and every  3"0 p~ is a bounded  7 " l - funct ion on  H 1 , it is clear  that  if0 ~ is a bounded  
n "~" -spherical  func t ion  on H n. 

It is also c lear  that  ~b~,~ is bounded  and ~b~,,(0) = 1, so let us check  that ~b~X,=, 

satisfies the above  funct ional  equat ion.  

Le t  a = (z, t) and b = (w, s) be arbi t rary points  in H n. Then  

n 
~b~,~(a �9 ab) = e 2~ix(t+s) II~b~j,v~(aj.X ajbj) for  every  cr E ql' n 

j = l  
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where aj and bj are the following points in ]HI1; 

aj = (zj, 0), bj = (wj, 0), j = 1 , . . . ,  n. 

Since every ~b.,,v j satisfies the above functional equation for n = 1, so does 

f ~b~,~(a ab)da e 2~riA(t+s) f l  ~ ,x �9 = ~b~,,,~ (aj. ~rjbj) do'j 
n 

j= l  
n 

A a x = e 2~i~'+s) i-I %,~,(9%,~(bj) 
j=l 

A A = ~b,,,~,(a)~b~,,~,(b). 

[] 

R e m a r k  In a recent paper, Benson-Jenkins-Ratcliff [B JR] have also identified 
qr(n) and U(n) spherical functions using a different method. The U(n) spherical 
functions have also been studied by Thangavelu [Thl]. 

4.4. Now we are in a position to describe the maximal ideal spaces A/I = 
.M(L~(H n)) and A4* = A4(LI.(H n)) of the group algebras LoI(H n) and LI.(H "), 

respectively. 
According to Theorem 3.2 and Corollary 4.5, .M is the union of the disjoint sets 

.M1 = {ma#:  (A,u) �9 R* x (Z+) n } 

and 

where 

./V12 = { mo : p �9 (IR+ )n }, 

mz,~,(f)  = I f(()~b~,~({)d~, forT �9 L~(H n), 
,/H n 

rap(T) = f f({)3~({)d{, forT �9 L~(H "). 
aN n 

Thus identifying .M with the disjoint union (R* x (Z+)") tO (/R+)% the Gelfand 
transformj ~ o f f  �9 L~(H ") is defined by 

3~(A, u) := ma,v(f), for (A, u) c R* x (Z+)", 

)~(p) := m p ( f ) ,  for p E (IR+)". 

Similarly, Theorems 3.2 and 4.4 show that A4* is the union of the disjoint sets 

* = m* (A, u) �9 R* MI { ~,~: • 
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and 
A4~ = {m~: p �9 R+ }, 

where 

= / f ( f ) ~ , v ( ~ ) d G  f o r f  �9 L~(H n), m *~,v( f )  
JH n 

= fH. f(f)JnCl(~)dL f o r f  �9 L~(H "). m*p( f )  

Thus identifying A4* with the disjoint union (R* x 7Z+ ) UIKv, the Gelfand transform 
f* o f f  �9 LI(H n) is defined by 

f*(A, u) := m*~,v(f) , for (A, u) �9 R* x Z+, 

f*(p) := mp(f),  for p �9 R+. 

Hulanicki and Ricci show ([HR], see Faraut-Harzallah [FI-I] for detailed proof) 
that the Wiener Tauberian theorem holds for the algebras L, I (H ") and L~(H "), i.e., 
every proper closed ideal in these algebras contained in some maximal regular ideal. 
Taking into account the concrete realization of the Gelfand spectrum described 
above the Tauberian theorem takes the following forms: 

T h e o r e m  4.6 Let J be a closed ideal in L~(H ") and suppose that 

(1) For any (A, u) �9 R* x (Z+)" there exists some f �9 J such that 

# o. 

(2) For any p E (~+ )" there exists some f E J such that 

?(p) # o. 

Then J = L~(H n). 

T h e o r e m  4.7 Let J be a closed ideal in L1, (H ") and suppose that 

(1) For any (A, u) E R* x Z+ there exists some f E J such that 

if(A, u) # 0. 

(2) For any p E R+ there exists s o m e f  E J such that 

i f ( p )  # O. 

Then J = LI.(H n). 
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5. Convolu t ion  e q u a t i o n s  sys tems wi th  0 a n d  0 - h o m o g e n e o u s  
c o m p a c t l y  s u p p o r t e d  R a d o n  m e a s u r e s  as coefficients 

In this section we shall apply the results of the previous sections to the problem 
of uniqueness of bounded solutions of convolution equations systems on H n which 
have 0 or 0-homogeneous compactly supported Radon measures as coefficients. 

First we need some auxiliary results. 

L e m m a  5.1 Let ~/9 E C2(][-~ n) ALI(N n) such that 

02q9 ELI (Hn) ,  
Ot 2 

and ~o(z, .) is compactly supported on IR, for  every z E C n 
Consider the funct ion ~b defined by 

I/ ~(z, t) = e2"i;~t~(z, ,X) d,~, f o r  a.e. (z, t) E N n. 
O 0  

Then ~ E LI(IHI ") and ~ = ~. 

P r o o f  Observe that ~(z,  t) = ~(z, - t ) ,  for every (z, t) E It~ ". Thus the fact that 
~b E LI(N ") is equivalent to ~ E LI(N n). To prove that we integrate two times by 

parts and we obtain 

s 2 F -21fiAt 0 qQz t )d t  (-27ri)~) 2 e-2~ri:~t~(z,t)dt -(27r/k)2~b(z,/k), e Ot---- ff (z, = = 

SO 
f /  02~0" t) (27r'X)219~( z, &)l <-- co --O-~-(z, dt, for every (z,)~) E N"  

Therefore 

/ f oo ,~ ( z , )O ld~  < 2  { / 2  ,qg(z,t)ldt+ ( f l  ~176 ( 2 ~ - - ~ ) 2 ) ( / 2  02~p _ - - ~  , 

and hence 

Finally, since ~o and ~ are integrable on H n, the inversion formula shows that 

// /? ~(Z, A) = e2~ri;~t~(z, t) dt = e21ri)~t~9(z, t) dt = qo(z, A), 

for every (z,)~) 6 IHI n [] 
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The Gelfand transform T of  a O-homogeneous compactly supported Radon 

measure T on H n is defined by 

~'(A, ~.) = (T, r 

T(p) = (T, floP), 

for every ()~, ~,) ~ R* x (Z+)n, 

for every p E (R+)n. 

L e m m a  5.2 Let  T be a O-homogeneous compactly supported Radon measure 

on ~ n, and let rl ~ L~(H n). Then T �9 77 ~ L~(H ~) and T-'-~ 7 = 7". ~. 

P r o o f  It is clear that T �9 r /6  L~(IFI ~), so let us see it is O-homogeneous. In 

fact, since T and 77 are O-homogeneous we have that 

(T �9 r/)(a() = L ~  r/(r aft) dT(r 

= L ~ '7(("r ,,r dT(r 

= fH. '7(~(r r aT(C) 

= (T �9 ~/)((), 

for every a E "IF n and ~ E H ~. 

Now observe that the identity T--~r/= ? ' .  ~ means that 

(5.1) fxo (T, r/)(ff)~b(() d( = (T, ~). fH. r/(~) �9 ~(~) a~, 

for every bounded "IF n-spherical function ~b of H n. So let ~b be such a function, 

and observe that 

= f~ n('7 * ~)(r ar(~)" 

(Here we use the following notation: i f  ~ is a function on H n, then ~ denotes the 

function on H n defined by ~(() = ~((-1) ,  for every ( E H ~.) 

But, since ~ is O-homogeneous, we have that 
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for every ( E H n and cr E qF n. Therefore,  using the characteristic functional 

equation of  the qr n-spherical functions, we obtain that 

Hence  we conclude that equation (5.1) holds, and we have finished the proof  of 

the lemma. [] 

Similarly, the Gelfand transform T* of  a 0-homogeneous compactly supported 

Radon measure T on N n is defined by 

. )  = ( r ,  

r*(p) = (r ,  JL ), 

for every (A, u) E I~* x N, 

for every p E ~+. 

Then  we have the following lemma, whose proof  we omit since it is just  a copy of 

the above one in the U context. 

L e m m a  5.3 Let T be a O-homogeneous compactly supported Radon measure 

on H n, and let ~ E L I (N  n). Then T * ~7 E L~(H n) and (T * 77)* = T* �9 rl*. 

Now we may state the main results of  this section. 

T h e o r e m  5.4 Let 7"r be a family of  O-homogeneous compactly supported 

Radon measures on H n. Assume that R satisfies the fol lowing two conditions: 

(1) For any (A, u) E R* • (Z+) n, there exists some T E TZ such that T(A, u) r 0. 

(2) For any p E (I~+ )n, there exists some T E 7"r such that T(p) ~ O. 

Let  f be a bounded continuous function on H n such that 

(5.2) f * T = 0, for  every T E R.  

Then f =- O. 
I f  one of  the conditions (1), (2)fails to hold, then there exists a bounded contin- 

uous function f ~ 0 satisfying (5.2). 

P r o o f  Condition (5.2) clearly implies that 

f * (T * r/) = 0, for every T E Tr and ~ E L~(H n). 
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So the closed ideal J in L~(H n) generated by the set 

T~ * L~(H n) = { T * rI : T E T~, rl E L I (H n) }, 

which is contained in L~(H n) by Lemma 5.2, sa t is f iesf  , J  = 0. Thus to show 
t h a t f  = 0 it is sufficient to prove that J = L~(H n). Hence we want to verify the 

conditions of  the Tauberian theorems 4.7 and 4.8. 
By Lemma 5.2, it is clear that our hypothesis (1) and (2) above are equivalent to 

the corresponding conditions in Theorem 4.7 if we show that: 
(1') For any (A',u') E R* x (Z+)% there exists some ~7 E L~(H n) such that 

,~(;~', ~') r 0. 
(2') For any p E (~.+)% there exists some r/E L~ such that O(p) # 0. 
Let (A',v') E R* • (Z+)", and take ~ E C~(R)  with compact  support in the 

interval (~2  't , 21A'I) and verifying ~(IA'I) # 0. Then, by Lemma 5.1, the function r/ 

defined by 

F ,(z, t) = e2'W~t~(lAl)w),,,,, (z) dA, 
o o  

belongs to L~(H n), and 

~ ~(IAI) = �9 W l )  t ~V  t ) 

for a.e. (z, t) E ]HI n, 

for every A E IR. 

Therefore 

A~ ~(,~', V') n ~ ) ~ ' ( 2 ) . w u , , u , ( z ) d V ( z  ) = A 2 = ~(I;~ I)llw~,,~,llL2(c .~ r 0, 

and we have just  shown (1'). 
In order to prove (2') we only have to note that the function 

~(z, t) = e -Ir(Izl2 +t2), 

which obviously belongs to L~(H n), satisfies: 

O(p) -- e-'~lz, l' Jo(pjlzil) dV  (zj) 
n 

io  = I I  27=, Jo(2~ 0 )e-'~4odo 
j= l  

= I l  f c  e-'~l~J'~e-2'~iRe(~)dV(zj) 
j=l  

= e - ~ 0 j  r 0, 
j=l  
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for every p E (R+)n. 
Now assume that (1) or (2) fails. That means there is a bounded qF n-spherical 

functionf on H" (e.g. ,f  = ~'~,v o r f  = ,7o ~ such that 

(T,f) = 0, for every T E R. 

Then, since every T G R is 0-homogeneous, we have: 

(f  * T)(~) = ~ f ( r  (or{) -1) dT({) 

= ~ ,f(~" crr dT({), 

for every ~ E H n, Cr E ql" n and T E 7~. Hence, using the characteristic functional 
equation of the ql" n-spherical functions, we conclude that 

( f . T ) ( ( ) = f ~ ,  ( f ~ , f ( ~ . c r ~ - : ) d T ( ~ ) ) d a  

=f(~') fH f ( ~ - l )  dT(~) 

=f ( r  ~ f({) dT({) 

= f ( r  = O, 

for every T E 7~, and the proof of the theorem is complete. [] 

T h e o r e m  5.5 Let ~ be a family of  O-homogeneous compactly supported 

Radon measures on H n. Suppose that ~ satisfies the following two conditions: 

(1) For any (A, v) G R* • Z+, there exists some T E 7~ such that T*(A, u) # 0. 
(2) for any p E (~_ )n, there exists some T E ~ such that T*(p) # O. 

Let f be a bounded continuous function on H n such that 

(5.3) f * T = O, for every T E ~.  

Then f = O. 

I f  one of the conditions (1), (2)fails to hold, then there exists a bounded contin- 

uous function f ~ 0 with the property (5.3). 
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P r o o f  Arguing as in the proof of  Theorem 5.4 (now we use Theorem 4.8 
instead of Theorem 4.7) it turns out that to prove the first part o f  Theorem 5.5 we 

only have to check that: 
(1') For any (A', v') E R* xZ+,  there exists some~ E LI(H n) suchthat~7*(A', u') # 

0. 
(2') For any p E ~ - ,  there exists some r/E LI(H n) such that r/*(p) # 0. 
Let (A', v') E I~* x Z+, and take ~ E C~(II~) with compact support in the interval 

(l~_A'l, 21A'[) and verifying ~(IA'[) # 0. Then, by Lemma 5.1, the function ~ defined 

by 

// 71(z,t) = e2'~i;~t~(lAl)v~,,,(z)dA, for a.e. (z,/') E ]~n, 
OO 

belongs to L.I(H n),  and 

= ~(l~[) �9 for every ,~ E ]~. 

Therefore 

r/*(.V,u') = (u'+n-u, 1 ) - l  f t .  7) ~'(z). Vo.,,,)" (z)dV(z) 

C+n ) -1 = �9 IIv0, ,llL2(c r 0 ,  
2 

and we have just shown (1'). 
In order to prove (2') we only have to note that the function 

r/(z, t) = e -'~(Iz12+?), 

which obviously belongs to L. 1 (H n), satisfies: 

rl*(P) = (n -1)!2n-l ( f_~oo e-~rtZ dt) f c , -a-Trlzl2Jn-l (PlZl) 1 

= 27r Jn--1 (2 r r  )e-'~r2rndr 

= fc ,  e-~rlzl2e-2~riRe(~~)dV(z) 

_e?_ =e 4~ #0,  

for every p E IR+. 
The proof of  the second part is just a copy of that one in Theorem 5.4, where 

now the group U plays the role played by qF n in the cited proof. [] 
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6. Pompeiu type theorems in IHI n 

We are going to prove four Pompeiu type theorems in this section. We shall 
discuss the proofs of these results in two sub-sections. First of all, let us introduce 
some notation that will be useful in the present theorem and the next one. 

If~- is a family of functions which are defined on the interval (0, +co), we denote 

by Q(~') the following set: 

s 
Q ( ~ ) = { t  : s , t>O,  f ( s ) = g ( t ) = O ,  f o r s o m e f ,  g E ~ } .  

When ~" is composed of only one function, i.e. ~- = {f}, we denote Q(Y) simply 

by Q(f) .  

6.1. Integration over tori and spheres 
Let r > 0. We denote by T(r) the square-type tori in C n centered at the origin: 

T(r) = { (z l , . . . ,  z,) e C n :  Izil = r, j = 1 . . . ,  n }. 

Then we have the following theorem: 

Theorem 6.1 Let f be a bounded continuous function on N n which satisfies 

t "  
(6.1) I (Laf)(z,O)d~rk(z) = 0 ,  

JT (~) 
for every a E H n and k = 1, . . .  ,N, 

for N square-type tori. Here ar is the area measure ofT(r). 

Suppose that the following conditions hold: For 1 < k < N, 

(1) the functions 
n 

e~~ u ) =  IIL(~O)(47rlAlr~), 
i=1 

have no common zero for (A; u) E fIG x (Z+)"; 

(2) the functions 

j~O)(p) = IIJo(pirk) 
i=1 

have no common zero p E (R+ )n. 

Then f = O. 
Conversely, if one of the conditions (1) or (2)fails to hold, then there is a 

bounded continuous function f ~ 0 on H n satisfying (6.1). 
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P r o o f  
H ~ defined by 

M .  A G R A N O V S K Y  E T  A L .  

Let T be the compactly supported 0-homogeneous Radon measure on 

1 fT ~o(Z, 0) dcrr(Z), for every ~ E C(H "). (6.2) (T'~P)- (27r) nrn (r) 

Then (6.1) can be written as the convolution equat ionsf  �9 Tk = 0, k = 1 , . . . ,  N. On 

the other hand, 

n 

(o) 2 (6.3) Tk(A, u) = e 21r)~nr~ 1-'~L~i (47flAirs), for every (A, u) E IR* x (Z+) n. 
i = 1  

n 

(6.4) Tk(P) = 1-IJo(pirk) for every p E (IR+)n. 
i = 0  

So it is evident that the f rs t  assertion of  the theorem is just a consequence of  

Theorem 5.4. In fact, from (6.3) and (6.4), hypotheses (1) and (2) are equivalent 

to the corresponding conditions of Theorem 5.4 for the family of  0-homogeneous 

compactly supported Radon measures R = {T1, . . . ,  TN}. 

Conversely, suppose that the functions g(k ~ k = 1 , . . . , N  have a common zero 
(A; u) E R+ x (Z+)n. We can take 

e27riM. )~ IZ~ f(z,  t) = ~b~,~,(z, t) = w~,,~ ). 

T h e n f  ~ 0 but, by (6.3), sat isf iesf  * Tk = 0 for k = 1 , . . .  ,N. 
If  the functions ,7~ (~ k = 1 , . . . ,  N have a common zero p E (IR+)n, we can take 

n 

f(z,  t) = 1-I Jo(pi[zi]). 
i = 1  

Taking into account (6.4), we know that f �9 Tk = 0 for k = 1 , . . . , N  but f ~ 0. 
Hence we prove the second assertion of  the theroem and the proof of the theorem 

is therefore complete. [] 

R e m a r k s  (1) The condition (2) of  Theorem 6.1 requires that N > n. Indeed, 

i f n  < N let us take s~, . . .  ,sN > 0 such that J0(s~) = 0. Put pi = s-t for 1 < i < N 
- -  r i  

and define pi arbitrarily for N < i < n. Then 

j o)(p) . . . . .  j o)(p) = o 
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and we can see that for N < n the condition (2) is never satisfied. 

(2) One can give elementary necessary and sufficient conditions for the radii 

rj so that the conditions (1) and (2) of  Theorem 6.1 hold in case N = n + 1. 

These  conditions are directly in terms of  quotients of  the radii rj. They involve 

avoiding certain quotients of  zeroes of  Laguerre polynomials and Bessel functions. 

We restrict ourselves to write them down in the simplest case n = 1, N = 2. 

(1') 

(2') 

r2 qt ~ t-Jz+Q(L(~~ 
r~ 

r/  ~ Q(J0). 
rj 

(3) Let r l , . . . ,  rn > 0. The conclusions for Theorem 6.1 and Theorem 6.4 below 

hold for tori in C n centered at the origin and with polyradius ? = (r l , .  �9 rn), i.e. 

T(~) = { (z1 , . . .  , Zn) E C n l Izjl = rj ,  j --- 1 , . . . ,  n}. 

Using square-type tori here just simplifies the notations 

For r > 0 we denote by Sn(r) the sphere in C n centered at the origin and with 

radius r, i.e. 

Sn( r )  = {z  E c n :  Izl = r} .  

We have the following result: 

T h e o r e m  6.2 Let f be a bounded continuous function on H n which satisfies 

f 
(6.5) [ (Laf)(z,O)dtzr(z) =O, f o r  every a E H n, 

Js .(r) 

for  two radii r l , r2.  Here err is the area measure o f  Sn(r). 
Assume that the above radii rl and rE, satisfy the fol lowing two conditions: 

( l )  (r-l"~ 2 ~ U ~(L(n-1))  �9 
k r2 j uEZ+ 

(2) a r Q ( ~ )  �9 r2 

Then f - O. 
Conversely, i f  one o f  the conditions (1) or (2 ) fa i l s  to hold, then there is a 

bounded continuous funct ion f ~ 0 on H n satisfying (6.5). 

P r o o f  Let T be the compactly supported 0-homogeneous Radon measure on 

H n defined by 

f d~r(Z) 
(6.6) (T,~o) = ] ~o(z, 0) 

(r) ~2n-1  r2n-1 Js 
for  every ~ E C(H n), 



164 M. AGRANOVSKY ET AL. 

where •2n-I  is the area of  the unit sphere S 2"-1 o f C  n ~ R2". 

Let  Tk be the Radon measure on ]E n defined by (6.6) with r -- rk, for k = 1,2. 

Then our conditions on f can be written as the following system of  convolution 

equations: 

f , T 1  = f * T 2 = 0 .  

According to Theorem 4.4, for k = 1,2, 

(6.7) 

T~'(A'u)= ( u + n - 1 )  for every (A, u) E R* x N. 

(6.8) ]w2n-lJn-l(prk) T ~ ( p ) = ( n - l j .  ~ , for e v e r y p E R + .  

It is easy to see f rom (6.7) and (6.8), that the conditions (1) and (2) are exactly 

equivalent to the absence of  common zeroes of  the functions T~ (A, u), k = 1,2 and 

T~ (p), k = 1,2. So, the first assertion is the consequence of  Theorem 5.5. 

Conversely, if  one of  the conditions (1) or (2) fails to hold, the functions then 

have common zeroes and we can construct a function f ~ 0, satisfying (6.5) by 

means of  spherical functions, like in Theorem 6.1. Thus the proof  o f  the theorem 

is complete. [] 

6.2. Integration over balls and polydisks 
For r > 0 denote by Bn(r) the ball in C ~ centered at the origin and with radius 

r, i.e. 

nn(r) = { z E C n :  Izl < r }. 

For u E (Z+)n we consider the function s 1) defined by 

fo x s = e-�89 -1)(t)d t for every x > 0. 

Note that by integrating by parts it is possible to compute explicitly the function 

E (n-l). It has the following form: 

s ) = (_l)v2n(n+u)! x u------f--. + e-: ev,n(x), 

where Pv,n(x) is a polynomial  of  degree u + n - 1. 

Then we obtain the following theorem: 
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T h e o r e m  6.3 Let f be a bounded continuous function on ~ ~ which satisfies 

t 
(6.9) I (Lof) (z, O) dV(z) = O, f o r  every a E H ", 

dB .(rk) 

fo r  two radii rk = rl, r2. Here dV is the volume element o f  B~(r). 

Assume that those radii rl and r2, satisfy the fol lowing two conditions: 

(1) (~)2!~ U Q(/~(n- 1)). 

vEZ+ 

(2) rl r Q(~nt)) " r 2  
Then f =- O. 

Conversely, i f  one o f  the conditions (1) or (2 ) fa i l s  to hold, then there is a 

bounded continuous funct ion f ~ 0 on H n satisfying (6.9). 

(n-l)  R e m a r k  The set u~cr~Q(s ) is non-empty since, at least when u E N is 

odd, the function s has some positive zero. 

In order to show that, recall that the u zeroes of  the generalized Laguerre 

polynomial  L(~ n-l) are positive and simple (see [El ,  p.204, w Let  0 < Xl < 

. . .  < x~ be such zeroes. Since the coefficient o f x  ~ in L(~-X)(x) is (-~)------~, we have v. 
that 

u! 

Thus it is clear that L (~- 1 ) is positive on the interval (0, xl ), ~u ~..~ is also positive 

on that interval. On the other hand, by [El ,  p.191(32)1, 

f0 1) 2.(n + /./)[ 
lim s = e-~t"-tL~"-U(t)dt = ( -  

x---,+oo u! 

which is negative if u is odd, and therefore, by continuity, we conclude that s  

must  have some positive zero. 

P r o o f  Let  T be the compactly supported 0-homogeneous Radon measure on 

H n defined by 

f 
(6.10) (T,~o) = / ~(z ,0)dV(z) ,  

JB ,(r) 
for  every ~ E C(/HI "). 

Then  (6.9) can be written as the convolution e q u a t i o n f  �9 T = 0. In order to apply 

Theorem 5.5 let us compute the Gelfand transform T* of  T. 
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For (A, u) E I~* x 1~ we have: 

T*(A,u)  ( u + n -  1) -1 fo r (n = WZn-1 e-Z~lXltZL -1)(47r[Alt2)t2n-ldt 
l} 

(uq -n  1) -1 f 47r')~lr2 = -- ~02n_ 1 e-~L(n-1)(t2)tn-ldt. 
u 2(47rlAl)n J0 

(Here as usual w2n- 1 denotes the area of the unit sphere of C n.) 
Therefore 

(6.11) 

T*(A'v)= ( v + n - 1 )  - i v  W2n-1 ,~(n_l)(A,rrl)~lr2, I for every ()~,u) E R* x N. 
2 ( 4 7 r l ~ l ) n  ~ ~ - - , . . , -  j ,  

On the other side, for p > 0 w e  have that 

T*(p) = (n - 1)[2n-lw2n_l .~r Jn-1 (pt) t2n- l dt 
(pt) n-1 

----(n-- 1)!2n-lW~--~ 1 foCrtnJn-l(t) dt. 

So, taking into account that 

cl ( t " J n ( t ) )  = tnJ.- l ( t )  
dt 

(see [E2, p.11(50)]), we obtain that 

(6.12) T*(p) = (n - 1)!2"-1w2,_1rZnJ~ ) for every p > 0. 

The remainder of  the proof is the same as the previous one. [] 

Let r > 0. We denote by A(r) the (open) polydisk in C n centered at the origin: 

A(r) = { (zl,.. ., Zn) E C n: [Zj[ < r, j = 1 . . . ,  n }. 

Let Tk, 1 < k < N, be the compactly supported 0-homogeneous Radon measure 
on H" defined by 

(Tk, ~) = f ~(z, 0) dV(z), for every ~o E C(H n). (6. 14) 
.//x (r~) 

Then the condition 

(6.15) f (Lof)(z,O)dV(z)=O, for every a E H",  
JA (rk) 



INJECTIVITY OF THE POMPEIU TRANSFORM IN THE HEISENBERG GROUP 167 

can be written as the convolution e q u a t i o n s f .  Tk = 0. On the other hand, observe 

that 
n 

~uA, u ( Z , 0 )  = H~:~,,u,(zi, O) fo r  every z E C n, 
i=1 

SO 
n 

.) = I-[ (.x, .i), for every .) e R* • (z+)n 
i=I 

~"(p) = f i  ~1 (Pi), for every p e (~ ,+)n.  

i=1 

But T~ is just the Radon measure on H 1 considered in the proof of  Theorem 6.5 

for n = 1, so its Gelfand transform T~ = (T~)* was calculated there. Thus we 

conclude that for 

n 

(6.16) Tk(A, . )  = (4--~)n/__I~l ~(0) (47rl A[rZ), 

for every (A, u) E R* x (Z+)n, and 

n 
( 6 . 1 7 )  Tk(P) = (271") n I X  r2J1 (pirk)' 

i=1 pirk 

for every p E (R+)n. (Here we use the usual convention that the value of  Jl(Z) - -7 -  at 
z = 0 is equal to 1.) 

Using the same argument as Theorem 6.3, we have the following theorem: 

Theorem 6.4 Let f be a bounded continuous function on H n which satisfies 

(6.15)for N polydisks D(rl ) , . . . ,  D(rlv) with N > n. 

Suppose that the following conditions hold: For 1 < k < N,  

(1) the functions 
n 

(o) 2 
()~,v) ~ 1-Is (4~rlAIrk), 

i=1 

have no common zero for  (A; v) E ~ • (Z+)n; 

(2) the functions 
n J1 (pirk) 

p~-+ 1-Ir~ 
i=1 pirk 

have no common zero p E (~ -  )n. . 

Then f = O. 

Conversely, i f  one o f  the conditions (1) or (2 ) fa i l s  to hold, then there is a 

bounded continuous function f ~ 0 on H n satisfying (6.14). 
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Remark The Theorems 6.1 to 6.4 hold with the conditionf E L ~ (H n) replaced 
b y f  E LP(H n), 1 _< p _< o~. l e t  us prove this statement. 

Let ~b E C ~ ( H  n) be a positive radial function such that fM, ~b(z, t)dV(z)dt = 1 
and {~bk}~l the corresponding approximation of the identity. Then ~bk E Lq(]HI n), 

1 : l ,  hence l < q < o o , ~ + ~  

f *~k = A  E LP(IE ") nL~(H n). 

Asfk will integrate to zero along the same sets a s f  does. We derivefk =- 0 from 
the corresponding theorems in section 6 for all k. Then, letting k --* ~ ,  we obtain 

f=0 .  

7. The interpretation from the point of  view of  the Weyl functional 
calculus 

In this section we shall show that the uniqueness conditions in section 6 (the 

Pompeiu type theorems for the case of  spheres) can be formulated in terms of"ze-  
roes" of operator-valued Bessel functions, considered as functions of the position 
and impulse operators in the Heisenberg group. 

7.1 Let us recall some basic facts, concerning the Weyl representation and Weyl 
calculus (see Taylor [T, section 1] or Geller [G, Chapter 6]). 

Denote by X = (X1,... ,  Xn) the usual position operator: 

X j u ( x )  ~- x j u ( x ) ,  x = ( X l , . . .  ,Xn)  , 

and by D = (D1,. . .  ,Dn) the impulse operator: 

l O u ,  , 
Oju(x) = 7 ~ x ) ,  

i.e., infinitesimal generators of the group 

u(x) u(x + p), p 

of translations and group of multiplications 

u(x) ~ eiX'pu(x), p E l~ n, 

respectively. These operators are defined in L2(R n) and connected by the well- 
known Weyl commutator relations: 

[Xk, Dj] = i6kyl. 
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For a point (z, t) E H ~ we introduce x, y E ]R ~ by 

z=x+iy .  

The Weyl representation of  the Heisenberg group includes two parts: 

(1) 

(2) 

1 1 

7r~:;~(x,y,t) = e 2~ri(•177 A > O, 

7r(e,n) (x, y, t) = e 27ri(x'r (~, r/) 6 R n x R n . 

The Fourier transform generated by these representations, is the following map- 

ping which transform functions on H " in operators: 

(1) 

(2) 

7r+x(f) = f~2.+, f(x,y,t)Tr+x(x,y,t)dxdydt, 

7r(~m)( f )  = f~2. f (x, y, t)Tr(~,n)(x, y, t) dxdydt. 

In case (2) we have the Euclidean inverse Fourier transform of the function f ,  

computed at the point 
( r  �9 ~t~2n+l , 

or, in our notations, 

7r(em)(f) ---- ~'2n+~ ( f ) ( - ~ ,  -r/, 0). 

This function is considered as operator of multiplication. 

Now we concentrate on the case (1). By definition 

7r• = ~2.+ f(x,y , t)Tr+a(x,y, t) dxdydt 

fRz f ( x , y ,  t)e 2~ri(•189189 
nq-I 

A>O.  

According to the functional operator calculus, this is 

(7.1) 
1 I 

7r+;~(f) = -~-2n+ 1 (f)(qz~=X, - A I D ,  +A). 

The operator a(X, D) is defined by the Weyl calculus as: 

a(X, D) = f~2. ~-2n+ 1 a(x, y) e 27ri(x'X+y'D) dxdy. 
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We can apply the construction above to compactly supported Radon measures, not 
only to functions. So, l e t f  E L 1 (H n) or compactly supported Radon measure on 
H ". Let us also assume t h a t f  is U(n)-invariant, i.e. 

f (U(z) ,  t) = f ( z ,  t), for all U E U(n).  

Then the Weyl-Four ier  transform 

I 1 
�9 -~2n+ 1 ( f ) (4 - ,~X ,  + ,~D,  4-)Q 

is a function Fa  (H) of  harmonic oscillator Hamiltonian H (see [T, Chapter 1, Prop. 
7.7]): 

H = - / X  +lxl 2. 

The function U2 ,+ l ( f ) ( ( ,  r], )~) is the Fourier transform in I~ 2" of  the functionj  7:~, 
which is the Fourier transform by t-variable only. Then the connection between 

5c2,+1(f) and F~,(H) is as follows (see IT, Chapter 1, Prop. 7.9] and [Thl]): 

7r• = .T'2n+I ( f )  
(7.2) o~ , 

= c Z F ; ~ ( 2 j +  1)~j(I;q~X, IAI�89 
j=0 

where 
�9 j(x,y) = (-1)Je-E~(Ixl2+lY[2)L}"-l) (47r(Ixl 2 + ly12)), 

the constant c depends on n only. Note  that at this point Laguerre functions come 
into play. 

Let us apply this construction to our concrete case. The Euclidean Fourier 
transform of  the area measure (7 r on the sphere S(r) is the Bessel function 

1 J,_l(27rr(Ixl 2 + lYlZ)�89 
( " ~ 2 n + l ( C r r ) ) ( x ' y ' t )  - -  (27r)" ( r ( l x l 2  + lyl2)�89 

=L_l (z~r ( rx ]  2 + ly12) �89 

wherejk(x) = ~ .  Therefore, we have by (7.1): 

(7.3) 7r• = j n - ,  (47triAl�89 (X 2 + oa )  �89 

What is the function F~ in the decomposit ion (7.2)? We can recognize it, for 
instance, from the Fourier-Laguerre expansion 

2 
: x - ~ -  " - l - ( n - 1 ) .  x (7.4) J , - l ( xy )  = 2_. "~ktx)e y 2 L k ~y). 

k = l  
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The coefficients "yk(x) can be obtained from the following formula (see [L, p. 83 
(4.20.3)]): 

s o  t h a t  

f 0  ~ 1 7 6  

x n I - ( n - l )  ( - - 1 )  k _ z  . - ,  ( n - l )  
e ~x-FL k ( x ) -  2 Jn_ l (x /~ )e  2y~-L~ (y)dy, 

k! x n 1 n - -  
7 k ( x ) = 2 ( - - 1 ) k ( n + k  _ l ) ! e  ~x r L~ 1)(x). 

Now, substituting 7k(x) in (7.4), letting x = t 2, y = s 2 and dividing both sides by 
(ts) n-1 , we finally obtain: 

(7.5) 
OO 

jn- l ( tS)  ---- 2 Z(-1)Je- '~L~n-1) ( t  2) �9 e - ~ "  ( n - l ) 2  L) ($2). 

j=l 

Comparing formulas (7.2), (7.3) with (7.5) where we set t 2 -- 47r(lx[ 2 § [y[2) and 

s 2 = r21AI,  we conclude that one can take as Fa any (nice) function taking at the 

odd integers the values 

Fa(2j  + 1) - 2j! c(n + j  - 1) (e-~r2L~n 1)(lAir2)" 

Obviously, the operator F(H) has the spectrum sp(F(H))  = F(sp(H)) .  Since 
sp(H) = { 2 j +  1 , j  E Z+}, then sp(F(H))  = { F ( 2 j +  1) , j  E Z+}. Thus, we 

conclude that eigenvalues of  the operator 7r• (err) are 

2j! 1)]L}n_l)(4~lAlr:), cj(A,r) - c(n §  - j =  1 ,2 , . . . .  

As for eigenfunctions, they coincide with the eigenfunctions of  the Hamiltonian H 

(Hermite functions). 
Now we can see that condition (1) for radii in the Theorem 6.2 simply means 

that the operator Bessel functions 

7r• 1 (4~rklAI�89 +O2)�89 k= 1,2, 

have eigenvalues cj(A, rl ), Cj(/~, r2) (corresponding the same eigenfunctions), which 
do not vanish simultaneously at the same point A ~ 0. This is equivalent to the 

following: the intersection of  the kernels 

(7.3) 

ker {j~_l (47rrl[A[�89189 (47rrz[A[�89189 = {0} 
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for all A ~ 0. In the limit case A ~ 0 we come to the classical scalar-valued Bessel 
/ 2 i functions j n - l  ~rk(x 2 + Y )~), k = 1,2, and the condition (2) in Theorem 6.2 says 

that operators of  multiplication, corresponding to these functions, also have no 

common nontrivial kernel. Thus, both condition (1) and (2) can be unified in the 

condition (7.3) satisfied for all real A. Thus the condition (1) is "quantization" of  

the condition (2) and the condition (2) is a particular (limit) case of  the condition 

(1) as A ~ 0. The parameter A plays role of  Planck constant. This may not be so 

surprising, since the Heisenberg group itself can be considered as "quantization" 

of  the Euclidean space. 

R e m a r k  After we finished this paper, we received a preprint from 

S. Thangavelu [Th2]. Inspired by a result of  Strichartz [S], he has shown that 

one radius condition is enough to prove the injectivity of  the Pompeiu transform 

f o r f  E LP(H n), 1 < p < c~, i .e . , f  �9 err = 0 impl ies f  = 0. However, we are mainly 

interested in L ~ (H n) functions in this paper. As we pointed out in our earlier paper 

[ABCP], one radius condition is not enough to prove the injectivity of  the Pompeiu 

transform for this class. To handle the L ~ ( H  ~) class, the one-dimensional repre- 

sentation plays an essential role. In fact, we can also obtain a one radius theorem 

for/_Y(H ~) functions, 1 < p < ~ ,  by  a careful analysis of  our proof. We refer the 

reader to our recent paper [ABC]. 

REFERENCES 

[A] M. Agranovsky, lnvariantfunction spaces on Heisenberg group, Siberian Math. J. 28 (1987), 
6-27. 

[ABC] M" Agran~ C" Berenstein and D" C" Chang'M~ the~ f~  h~176176 HP spaces 
in the Heisenberg group, preprint (1992). 

[ABCP] M. Agranovsky, C. Berenstein, D. C. Chang and D. Pascuas, A Morera type theorem for 
L 2 functions in the Heisenberg group, J. Analyse Math. 57 (1991), 282-296. 

[B ] E. B adertscher, The Pompeiu problem on locally symmetric spaces, J. Analyse Math. 57 ( 1991), 
250-28 h 

[BG1] C. Berenstein and R. Gay, A local version of the two-circles theorem, Israel J. Math. 55 
(1986), 267-288. 

[BG2] C. Berenstein and R. Gay, Le probldme de Pompieu local, J. Analyse Math. 52 (1988), 
133-166. 

[BGY1] C. Berenstein, R. Gay and A. Yger, The three-square theorem, a local version, Analysis 
and Partial Differential Equauations (C. Sadosky, ed.), Marcel Dekker Inc., 1990, pp.35-50. 

[BGY2] C. Berenstein, R. Gay and A. Yger, Inversion of the local Pompeiu transform, 
J. Analyse Math. 54 (1990), 259-287. 

[B JR] C. Benson, J. Jenkins and G. Ratcliff, Bounded K-spherical functions on the Heisenberg 
groups, J. Funct. Anal. 105 (1992), 409-443. 

[BP] C. Berenstein and D. Pascuas, Morera and mean value type theorems in the hyperbolic disc 
(in preparation) (1992). 

[BZ] C. Berenstein and L. Zalcman, Pompeiu's problem on spaces of constant curvature, 
J. Analyse Math. 30 (1976), t 13-130. 

[CKM] A. Carey, E. Kaniuth and W. Moran, The Pompeiu problem for groups, Math. Proc. Camb. 
Phil. Soc. 109 (1991). 45-58. 

[El] A. Erd61yi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, 
Vol. 2, McGraw-Hill, New York, 1953. 



INJECTIVITY OF THE POMPEIU TRANSFORM IN THE HEISENBERG GROUP 173 

[E2] A. Erd61yi, W. Magnus, E Oberhettinger and F. G. Tricomi, Tables oflntegral Transforms, 
Vol. 2, McGraw-Hill, New York, 1954. 

[FH] J. Faraut and K. Harzallah, Deux Cours d I Analyse Harmonique, Birkhauser, Boston, 1987. 
[FS] G. B. Folland and E. M. Stein, Estimates for the -Oh complex and analysis on the Heisenberg 

group, Comm. Pure Appl. Math. 27 (1974), 429-522. 
[G] D. Geller, Analytic Pseudodifferential Operators for the Heisenberg Group and Local Solv- 

ability, Princeton University Press, Princeton, New Jersey, 1990. 
[GR] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, Academic Press, 

San Diego, 1980. 
[HI S. Helgason, Groups and Geometric Analysis, Academic Press, New York-London-Toronto, 

1984. 
[HR] A. Hulanicki and E Ricci, A Tauberian theorem and tangential convergence for boundary 

harmonic functions on balls in C n, Invent. Math. 62 (1980), 325-331. 
[L] N. N. Lebedev, Special Functions and Their Applications, Dover Publications, New York, 

1965. 
[Lo] L. H. Loomis, An Introduction to Abstract Harmonic Analysis, D. Van Nostrand, Princeton, 

New Jersey, 1953. 
[O] E W. J. Olver, Asymptotics and Special Functions, Computer Science and Applied Mathemat- 

ics, Academic Press, New York, 1974. 
[OV] R. Ogden and S. V~igi, Harmonic analysis on a nilpotent group and function theory on Siegel 

domains of type 2, Adv. Math. 33 (1979), 31-92. 
IQ] E. T. Quinto, Pompeiu transform on geodesic spheres in real analytic manifolds, preprint 

(1991). 
[R] W. Rudin, Function Theory in the Unit Ball of C, n, Springer-Verlag, New York-Heidelberg- 

London, 1980. 
IS] R. Strichartz, LP harmonic analysis and Radon transforms on the Heisenberg group, 

J. Funct. Anal. 96 (1991), 350-406. 
[ T ] M .  E. Taylor, Noncommutative Harmonic Analysis, Amer. Math. Soc., Providence, Rhode 

Island, 1986. 
[Thl] S. Thangavelu, Spherical means on the Heisenberg group and a restriction theorem for the 

symplectic Fourier transform, Revist. Mat. Ibero. 7 ( 1991 ), 135-155. 
[Th2] S. Thangavelu, Spherical means and CR functions on the Heisenberg group, preprint (1992). 
[ W ] G .  N. Watson, A Treatise on the Theory of Bessel Functions, second edition, Cambridge 

University Press, Cambridge, 1966. 
[Z1] L. Zalcman, Analyticity and the Pompeiu problem, Arch. Rational Mech. Anal. 47 (1972), 

237-254. 
[Z2] L. Zalcman, Offbeat integral geometry, Amer. Math. Monthly 87 (1980), 161-175. 

Mark Agranovsky 
DEPARTMENT OF MATHEMATICS 

BAR-lEAN UNIVERSITY 
52 900 RAMAT CAN, ISRAEL 

Carlos Berenstein 
MATHEMATICS DEPARTMENT AND SYSTEMS RESEARCH CENTER 

UNIVERSITY OF MARYLAND 
COLLEGE PARK, MD 20742, USA 

Der-Chen Chang 
MATHEMATICS DEPARTMENT AND SYSTEMS RESEARCH CENTER 

UNIVERSITY OF MARYLAND 
COLLEGE PARK, MD 20742, USA 

Daniel Pascuas 
DEPARTMENT DE MATEM,~TICA APL1CADA I AN.2kLISI 

FACCULTAT DE MATEM,~TIQUES 
UNIVERSTAT DE BARCELONA, SPAIN 

(Received March 1, 1992) 


