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Abstrac t .  Let U be an open set and b E bdy(U). Let 0 < a < 1. Let A(U) 
denote the space of Lipa functions that are analytic on U, and a(U) the subspace 
lipc~ n A(U). The space a(U U {b}), consisting of the functions that are analytic 
near b, is dense in a(U). Let k be a natural number. We say that a(U) admits a 
k-th order continuous point derivation (cpd) at b if the functional f ~ f(k) (b) is 
continuous on a(U U {b}), with respect to the Lipc~ norm. 

T h e o r e m  a(u) admits a k-th order cpd at b if and only if 

~-~ 2(k+l)nMl+a(An(b) ",, U) < +oo. 

n=l 

Here M, ~ denotes/~-dimensional lower Hausdorff content, and An(b) denotes the 
annulus 

{ z E C : l z - b  I E [ 2 - n - l , 2 - n ] } .  

There is a weak-star topology on A(U), and the space A(U U {b}) is weak-star 
dense in A(U). We say that A(U) admits a k-th order weak-star cpd at b if the 
functionalf ~ f(k)(b) is weak-star continuous on A(U U {b}). 

T h e o r e m  A(u) admits a k-th order weak-star cpd at b if and only if 
o o  

Z 2(k+l)nMl+a(An(b) ,,~ U) < +oo. 

n=l 

This time, M/~ denotes ordinary/~-dimensional Hausdorff content. 

1. I n t r o d u c t i o n  

Let 0 < a < 1. For E C C a n d f  : E ~ C let 

II fl lLipc,(E) : sup { [f(Z)lz --f(W)lwl '~ :z#w}. 
We call II fillips(E) the Lipa(E) seminorm off.  We denote 

Lipa(E) = { f  E cE :  IlflJ~ip,~ < +oo}. 
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104 D.J. LORD AND A. G. O'FARRELL 

This is a Banach space when endowed with the norm 

! 

II filLips = I f(b)l + II fllLip,~, 

where b is any fixed point of E. We abbreviate Lipa(C) to Lipa. The subspace 

lipa c Lipa consists of thosef  E Lipa such that 

lira sup I f ( z ) - f ( w ) l  _ 0 .  
~00<lz_wr<6 ]z-w]  '~ 

For open sets U C C we denote 

A(U) = { f  E L ipa :  ~ = 0on  U}, 

a(U) = { f  E l ipa :  0f = 0 on U}. 

Here ~ denotes the distributional/~-xlerivative 

 +.of 

In view of Weyl's Lemma, "~Sf = 0 on U" is a way of saying that the restriction 

f lu  is an analytic function. 
This paper is about the extent to which the functions belonging m A(U) or a(U) 

may be better-behaved at points of bdyU than are typical elements of Lipa or 

lipa. Specifically, we consider the question of the existence of bounded point 

derivations. We will explain this concept shortly. First, we review some classical 

facts. 
Suppose b is an isolated point of bdyU. Then, since the elements f E A(U) are 

bounded and analytic on a deleted neighbourhood of b, it follows that they extend 

analytically across b, and since they are continuous, they are already analytic on 

U U {b}. 
Similarly, if a line segment I forms a relatively-open subset of C ,,~ U, then each 

functionf E A(U) extends analytically across I. 

These facts may be rephrased in terms of the concept of 0-Lipa-null set: 

A compact K c C is said to be O-Lipa-null if 

A(U ~K)=A(U) 

whenever U C C is open. 
Singletons and line segments are cg-Lipa-null. 



ANALYTIC FUNCTIONS 105 

Not  every compact  set K having no interior is 0-Lip-null. For instance, if K has 

positive area, then the function 

f ( z )  = __- 1 f x  d{drl 
7r z - (r + i~7) 

(the Cauchy transform of  area restricted to K) belongs to each L ipa  (a  < 1), and 

is analytic on C ,,~ K, and nonconstant. Dol~enko characterised the c~-Lipa-null 

compact  sets in terms o f  Hausdorff  contents. 

A measure function is a monotone nondecreasing function h : [0, +c~) ---, 

[0, +oo).  The Hausdorff  content Mh associated to a measure function h is de- 

lined by 

Mh(E) = inf ~ h(diamB), 
BES 

whenever  E C C, where S runs over all countable coverings of  E by balls (or, 

equivalently, open balls, or  closed balls, or arbitrary sets). When h(r) = r E, we 

denote  Mh = M ~. 
Dol~enko's result is that a compact set K is 0-Lipa-null  if and only if  M 1 +~ (K) = 

0 [31. 
A similar result holds for  lipa. The lower/3-dimensional Hausdorff  content of  

E is 

M~, (E) = supMh(e)  
h 

where h runs over all measure functions such that h(r) < r ~ and r-~h(r)  ~ 0 as 

r I 0. We say that K is c~-lipa-null if 

a(U ,,~ K) = a(U), VU open. 

The  result [11] is that K is tg-lipa-null if  and only if  M,1+'~(K) = 0. 

For  example, if C is the usual middle-thirds Cantor set, then the square Cantor 

set C • C has 
MI+a(C x C) = 0 r162 a > log3 4 /3  , 

M~+a(C x C) = 0 r a > log3 4 /3  , 

so C x C is 0-Lipa-null  if  and only if  a > log 3 4 /3  and 0-1ipa-null i f  and only if 

ot > log 3 4/3.  

Obviously, if  all f unc t ions f  E A(U) extend analytically across a boundary point 

a, then they are as smooth as can be. But it may happen that limited smoothness 

occurs even at points which are not of  this type. 
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For an arbitrary set E C C, let 

A(E) = U ( A ( U )  : u open ,E c U}, 

a(E) = U ( a ( U )  : U open ,E c U) .  

The spaces A(E), a(E) are closed subspaces of  Lipa  in case E is open. 

L e m m a  1.1 Let b E C and U C C be open. Then a( U u {b}) is dense in 

a(U). 

Accepting this for  the moment,  we note that for k E N the maps 

6~ : f ~-~ f(k)(b) 

are well-defined linear functionals on A(U U {b}). 

D e f i n i t i o n  We say that a(U) admits a k-th order continuous point derivation 
(cpd) at b if  6b ~ extends to a continuous linear functional on a(U). 

Equivalently, a(U) admits a k-th order  cpd at b if  and only if  there exists a 

constant n > 0 such that 

be(~(b)l < ~ltfllLip,~ 

w h e n e v e r f  E a(U U {b}). 

We denote 
An(b) = {z E C :  2 -n < [ z -  b] _< 2 -n - l } .  

Fig. 1. 

Our first main result is: 
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T h e o r e m  1.2 L e t O < a <  1, U c C b e o p e n ,  b E C ,  a n d k E N .  Thena(U) 
admits a k-th order cpd at b if  and only if  

+oo  

Z 2(k+|)"Ml*+~(a"(b)~" U) < +0o. 
n ~ |  

The second main result is a similar theorem for A(U). It involves weak-star 
continuous cpd's. 

Let b be a point of the interior of some (large) closed disk D. The restriction 

space 

Lipa(D) = {f[D : f  E Lipa} 

is a Banach space (indeed, a Banach algebra) with the quotient norm. Similarly, 

for lipa(D). De Leeuw showed that 

lipa(D)** 

is isometrically isomorphic to Lipa(D). Thus Lipa(D) acquires a weak-star topol- 

ogy, as the dual of lipa(D)*. When we refer to weak-star topological concepts in 

the sequel, we intend that the topology be of this kind, for some suitably large D. 

L e m m a  1.3 Let b E C and U c C be open. Then A(U U {b}) is weak-star 
dense in A(U). 

We say that A(U) admits a k-th order weak-star cpd at b if 6~ extends to a 

weak-star continuous linear functional on Lipa(D). Whether this happens or not 

does not depend on the choice of D (with b E int(D)). The condition may be 

expressed in terms of the De Leeuw representation (see 2.7 below): A(U) admits 

a k-th order weak-star continuous point derivation at b if and only if there exists 

a finite-total-variation Borel-regular measure p on C x C, having no mass on the 

diagonal, such that 

f(k)(b) = fc (f(z) - f (w))dp(z ,  w) 
• Iz - wl 

wheneverf  E A(U U {b}). 

T h e o r e m  1.4 L e t O < a <  1, U c C b e o p e n ,  b E C ,  a n d k E N .  ThenA(U) 
admits a k-th order weak-star continuous point derivation at b if and only if  

q-oo 

Z 2(k+l)nMl+'~(An(b) '~ U) < +0o. 
n-----1 
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These results are in a line of development which goes back to Wiener's work 

[16] on the problem of regular boundary points for the Dirichlet problem. Series 

involving capacities of intersections with annuli are called Wiener series. Wiener 

series have been used a lot, to characterise various kinds of thinness, and in 

connection with analytic functions, for instance in Melnikov's characterisation 

of peak points for the algebra R ( X )  [7], and in [6], [5], [8-10,12], [15]. Like 

most Wiener series characterizations, the present results are quite concrete, and 

allow us to determine whether or not a cpd exists at any boundary point of a 

sufficiently-precisely described set U. 
We prove the results in Section 2, and give a few illustrative examples in Section 

3. 

2. Proof  o f  Results 

2.1. We begin by recalling extension theorems for Lipschitz functions. Each 

real-valued Lipl function on a subset of a metric space may be extended to the 

whole space, so that it remains Lipl with the same constant. This is Kirszbraun's 

theorem [4]. Applying this to C, with the metric 

p(x ,y )  = Ix - yl a 

(remember that 0 < a < 1), we see that each real-valued Lipa function on a subset 

of C has an extension having the same Lipa seminorm. Applying this to the real 

and imaginary parts, we see that each complex-valued Lipa funct ionf  on a subset 

X of C has a Lipa extensionf to C having at most twice the seminorm: 

II-fllLip~(C) ~ 2 .  II filLips(X). 

There is a similar result for lipa functions. Given a lipa function on a subset E c 

C, we may choose a nondecreasing concave function w(r) such that w dominates 

the modulus of continuity o f f  and has r -%~(r )  --* 0 as r J, 0. Moreover, we can 

arrange that r-Ocv(r) is bounded by the Lipa seminorm off .  Applying Kirszbraun's 

theorem to C with the metric 

p(x,y) = ~(Ix  - yl),  

we find tha t f  has an extension in lipa that has at most double the Lipa seminorm 

of f .  

2.2. Next, we recall F r o s t m a n ' s  L e m m a .  According to this, if a Borel set 

E C ~ has positive Mh content, for some measure function h, then it is possible to 



ANALYTIC FUNCTIONS 109 

find a positive measure v, with compact support contained in E, such that the total 

mass of v exceeds Mh(E), and such that v has growth h(r), in the sense that 

t,B (b, r) <_ nh(r) 

wheneverb  E C and r > 0. Here, the constant n may be taken to depend only on 

the dimension d. See [ 1]. 

I f  M~.(E) > 0, then the measure v may be chosen to have compact support in E, 

with 

v(C) > M~,(E), 

v (~(b, r)) _< ~. r #, Vb E C and r > O, 

and 
SUPb v(• (b,r)) ~ 0 as r ~ 0. 

2.3. The Lipa seminorm of  a product is controlled by the Lipa  seminorm and 

the sup norm of  the factors: 

Ilfgll[ip~ < llfll~ip~- IlgllL~ + Ilgll[,ip~- IlfllLoo. 

Also, the Lipa seminorm of  a differentiable function on a bounded set is con- 

trolled by the sup norm of  the derivative: 

IlgllLip(,~,x) < IlOgllL ~ "  diam(X) 1-~. 

Putting these facts together, we obtain the following estimate for the Lipa  

seminorm o f f ( z ) / ( z  - b) ~ on annuli about the point b: 

L e m m a  2.3 Let f belong to Lipa  and let b E C. There is a constant ~ ,  

independent o f  n E N, such that 

z ~ f(z_) I' < ~'2kn"  IlfllLip,~(A~(b))" 
(z - b) k Lips(An(b)) 

(Note t h a t f  may be assumed to have a zero on An, without loss in generality.) 

2.4. We recall the Decay Estimates for Lipschitz holomorphic functions. 

D e c a y  L e m m a  Let  0 < a < 1, let K C C be compact and let f E Lipa(C) 

be analytic off K and vanish at oo. Then there are constants ~ > 0 and ~;k > O, 

depending on a but not on K or f ,  such that the fol lowing estimates hold for  z ([ K: 

(1) IIfIIL~ < '~" Ilfll~ip,~ "MI+'~(K) r-~ , 

(2) I f(z)l  < m " Ilfll~ip~ Ml+~(K) 
- dist(z, K) ' 



110 D.J .  LORD AND A. G. O'FARRELL 

and if k E N then 

,~k" II fl[Lipa" Ml+~(K)  
(3) [ f(k/(z)l < dist(z,K)k+l 

See [11, section 12] and [13, section 7] (The argument for (3) is a routine 
extension of the argument for (1) that is given in the former paper.) 

2.5. We recall the T-invariance properties of Lipa. 
The Vitushkin localisation operator, T~, is defined by 

(T~) f = C(~ . Of), 

for all distributions f and all test functions r where C denotes the Cauchy trans- 

form: - 1 
Cg = - -  . g ,  

71"Z 

for all distributions g having compact support. In view of the fact that C inverts c~ on 
the compactly-supported distributions, we see that T~ f is analytic off the support 
of ~b and off the support of 0f. The spaces Lipa and lipa (like all translation- 
symmetric concrete spaces) are mapped into themselves by the action of T~ [14]. 
But they also have the additional property of nice T-invariance. This means that 
they are mapped equicontinuously by the sequence of operators {T~, } whenever 
{~bn) is a standard pincher. To be precise: 

L e m m a  Let  ~)n (n = 1,2, 3 , . . . )  be a C ~ funct ion having compact  support, and 

be such that 

(1) spt~n is a subset  o f  the ball B(0, I / n ), 

(2) SUPn II~.IIL= --< ~ ,  where tq < +cr is a constant independent o f  n. 

(3) IIV~nlIL~ <-- ~ 2  " n ,  where hE < +oo is a constant independent o f  n. 

Let 0 < a < 1. Then there is a constant to(hi, tr a) > 0 such that 

[[T~, f[[Lip~(C) < tcllfllLip,~(B(0,1/n)), Vn. 

This follows from Lemma (4.1) in [13] (see (2.2) of that paper for the definition 
of the quantity N(~b) there referred to). 

2.6. We now prove a Quantitative Cauchy Theorem for Lipschitz functions. 

T h e o r e m  (a) Let  F be a p iecewise  analytic curve bounding a region f~ E C, 

and suppose that F is f ree  o f  outward-pointing cusps. Let  0 < a < 1. Then there 

exists a constant to(F, a) > 0 such that 

frf( z)dz <_ ~ .  Ml+'~(fl n S) 
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whenever II f[l'~,c <- 1, S is closed, and f is analytic on f~ ,,~ S. 
(b) The constant ~(F, a) depends only on the equivalence class o f f  under the 

action of  the conformal group of C. In other words, it is the same for  any curve 
obtained from F by rigid motion and dilation. 

(c) A similar result holds with Lipa replaced by lipa and M l+~ replaced by 
MI.+ ,~. 

Versions of this theorem have appeared previously. For the case when F is a 

circle, it was essentially proven by Dolzhenko (cf. [Garnett 1972, p.65, Lemma 

2.2]). As we shall see, the general case is not far from the circle case. 

Proof .  1. It is enough to prove the result for the case when F is a simple closed 

Jordan curve, i.e. bdyF is connected. Once this case is proven, the general case 

follows on cutting up ~2 into a finite number of pieces and using the subadditivity 

of Ml+,L 

2. For the same reason, it is enough to prove the case in which F consists of 

three analytic arcs, making a curvilinear triangle in which none of the vertices is 

an outward-pointing cusp. We may also assume that S is a subset of ~ U P. 

a b 
Fig. 2. 

3. Using a mixture of rectilinear triangles and curvilinear triangles partly 

bounded by pieces of F, we can cover S by a finite number of patches P,  such that 

(1) each P,  is bounded by a piecewise-analytic curvilinear triangle, 

(2) Ml+~(S) > const. ~--~(diamP,) 1+~, 
n 

and (3) perimeter(Pn)< const- diam(Pn). This depends upon the fact that there are 

no outward cusps in P. The constants depend on the shape of F but do not change 

if F is rescaled, translated, or rotated. 
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4. Then, using Cauchy's Theorem, and denoting by c, any chosen point of pn, 

we get 

fv f(z)dz < ~ L , , .  (f(z)-f(cn))dz 

< const ~ diam(P,) �9 diam(P,) ~' 
n 

< ~. MI+'~(S). 

D 

2.7. We recall the De Leeuw representation of lips* [2]. If T E lips(B)*, then it 

can be represented as follows. There is a Borel-regular measure p on B • B, having 
no mass on the diagonal, having finite total variation, and such that 

Tf = f (f(z)-f(w)dp(z,w) 

whenever f E lips(B). The proof is a simple application of  the Hahn-Banaeh 
theorem and the E Riesz representation theorem. Using this representation the 

double-dual action of a funct ionf  E Lips(B) on T is given by the same formula. 
(In essence, that is De Leeuw's proof that Lips  is the double dual of lips.) 

2.8. We now prove Lemma 1.1 and Lemma 1.3. 

F i x f  E A(U). 
Choose C ~ functions 4~, having compact support, such that q~, = 1 near b, 

0 < ~b, < 1, spt~bn C ~ (0, 1/n) = Bn, and 

IIV~b.llL~o ~ 8n. 

Form g~ = TO, f .  Then g, belongs to A(U), and is also analytic on the complement 

of Bn. Moreover, by Lemma 2.5, Ilg. IlLip,~ <const. 
By the Decay Lemma, 

Ig"(z)l < nl+~lz- b[ 

whenever Iz - b[ > l/n, and thus by a simple argument 

Ig,(z)l ~/n ~, Vz E C. 

Since IlgnllLip,~ is bounded, we deduce from the De Leeuw representation and the 
Lebesgue dominated convergence theorem that gn ---) 0 weak-star in Lips.  Thus 

f - gn "-')f weak-star, and f  - gn E A(U U {b}). This proves Lemma 1.3. 
I f f  E a(U), we may use the fact that T01 = 0 to get the estimate 

lIT0, fl[Lip~ < const �9 11 f -f(b)llLip~(B.) ~ 0, 
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and so conclude that in that case gn --+ 0 in Lipc~ norm. Thus we obtain Lemma 

1.1. [] 

2.9. Now we prove the first part of Theorem 1.2: If the series converges, then 

there is a k-th order cpd on a(U) at the point b. 

We may suppose that b = 0. 

Let 7, = Ml+'~(An(b) "~ U). Suppose that 

Z2(k+l)n'y n < +CX~. 

n 

Letf  E A(U t3 {0}). Choose N such tha t f  is analytic on B(0, 2-N). Then by the 

Cauchy integral formula, 

1 flz f(z)dz f(~)(O) = ~ t=z -u zk+l 

l f l  z f(z)dz N - 1 1 / b  d f(z)dz 
= 27ri l= 1 zk+l Z ~ zk+l 

n = l  yAh 

1 /z f(z)dz ~176 1 L f(z)dz 
=27ri I=1 z k + l  Y ~ - ~  zk+l ' n= 1 yAh 

and hence, using the quantitative Cauchy theorem, and Lemma 2.3, we get 

1/z If(z)l . ldzl ~-~ l /b ~ f(z)dz 
f(k)(o) < ~ i=1 ~ $ f  + ~ Z k+l  

n = l  yAh 

OO 

< sup [f(z)[ + Z c o n s t .  2(k+l)nTnllf[lLipa. 
B(0,1) n = l  

This shows that there is a k-th order cpd at b on a(U), as required. [] 

2.10. Next, we prove the other direction of Theorem 1.2. 

Let % be as in the last subsection, and suppose that 

Z 2(k+l)nTn = +00. 

Choose ~n J. 0 such that 

OO 

Z 2(k+l)ncnTn = + O O ,  

n = l  

and 2(k+0%nT, < 1 for all n. 
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Applying Fros tman ' s  Lemma,  we obtain,  for each n, a posit ive measure vn on 

An ~ U such that 

v.]~(z, r) _< en �9 r l+~, Vz E C, Vr > O, 

and 

vn•(z,r) - - .0  a s r l 0 ,  
sup r l+a  

z 

II"nll = '~'.'l." 

Let 

{ du.(~) 
L ( z )  : _ 

ff - z d 

Then IlfnllLip~ ~ ~e. ,fn E a(U), f~ is analytic of-fAn, and 

f2~(0)  = k! [ d~.(r 
J Ir k+l 

lies between fixed constant multiples o f  2 (k+l)n~.n~ n. 

For each n, choose  p > n such that 

P 

Z2(k+l )me" ' ) ' "  E [1,21. 
n 

Let 
P 

g.(z) = ~ f " ( z )  

From the Decay  Lemma,  we get 

If"(z)l ~ c o n s t .  E " .  2 -~",  
const  �9 ~ m ~ "  

I f"(z)l  < dist(z, Am) ' 
const  �9 s 

If '(z) l  _< dist( z, A "  ) 2" 

Fix z, w E C with z # w. Fix m with n < m < p. The fol lowing five cases cover  

all the possibilities: 

Case 1: z or  w belongs to Am-1 or Am or Am+l. 
Case 2: Izl > 2 -m+l and Iwl > 2-re+l,  and [z - w[ < 2 -m. 

Case 3: Izl < 2 -m-2  and Iw[ < 2 -m-2.  

Case 4: Iz] > 2 - "+1  and [w[ > 2 -re+l, and ]z - wl _> 2 - " .  

Case 5: [z[ < 2 -m-2  and [w[ > 2 - ' + 1 .  
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In Case 1, we have 

I L ( z )  - f ~ ( w ) l  
IZ - -  WI c~ IlfmllLip~ ~ c o n s t -  c . .  

In Case 2 or Case 3, we may connect z to w using an arc F of  length at most 

7rlz - w I such that 

l (  - tl >_ 2 -m-2, ~/( E F Vt E Am. 

Thus integrating the decay estimate for fro' (() gives 

I f , .(z) - f , . (w) l  < , ~ .  22mern,.Ym. 2(c~_l)n. 
IZ -- wt ~ 

In Case 4 or Case 5, we get 

If,.(z) --fr.(W)l < Ifm(z)l + If,.(W)I 
]Z - -  W[ c' - -  2 - a ( m + 2 )  

c o n s t  �9 22ms �9 2 (c*- l)n.  

Thus we have 

p 
Ig"(z) - g"(w)l < 6n.  e,, + n .  2 ('~-1}" ~ 22me,,,"/m 

Iz - -  w l ~  - -  m=n 

_< ~.  (~. + 2(~-l)n). 

Thus the functions gn have Lipa  norms tending to zero, and yet g~) (0) is bounded 

away from zero, whence there is no cpd at 0. 

This completes the proof  of  Theorem 1.2. [] 

2 .11.  There is a weak-star continous point derivation on A(U) at b if and only 

if there is an estimate 

If<*)(0)l ~ const.  IlfllLip~, 

valid f o r f  E A(U u {b}). Thus the argument just given needs practically no 

change to prove Theorem 1.4. t2 
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3. Examples 

3.1.  If  bdyU is smooth near b, then there is no cpd at b. More  generally, if there 

is a sector 

Fig. 3. 

S = {z e C :  0 <_ Iz - b[ _< 6, 1r - argz[ < e} 

with 6 > 0 and e > 0, that lies outside U, then there is no cpd at b. For, given such 

a sector, and n > log 2 8, the set At/(b) ,,~ U will contain a disk o f  radius ~72-t/for 

some r />  0, independent of  n. Then 

Ml+,~ca U) > (/12-n) l+a ,  , ~L a ? l  ~ , a  - -  

so the series 
n 1+o~ E g  M. (An,,~U) 

t~ 

diverges. 

3.2.  Let w : [0, +oo) ~ [0, +c~) be a monotone increasing function, and let U 

be the set 
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Fig. 4. 

U = {z : x + i y :  lYl -< ~(x) i f x >  0}. 

I f  w(r) /r  ~ 0 as r ~ 0, then C ,,~ U has a cusp at 0. In this situation, there are 

posit ive constants nl and n2 such that An(0) ~ U contains a ball o f  radius ~qw(2 -n) 

and is contained in a ball o f  radius ~2w(2-n). Thus  there is a cpd o f  order k on 

a(U) at 0 if  and only if  

~--~2(~+1~(2-") 1+~ < +oo. 
n 

For  instance, i f  the region is that outside the cubic cusp 

U : {x + iy:  lyl > x3/2}, 

then there is a first-order cpd on a(U) as soon as a > 1/3, but there is a second-order  

cpd for  no a < 1. 

For an exponential  cusp, there are cpd 's  o f  every order for every a > 0. 

For  this kind of  set the same condition characterises the existence o f  weak-star  

continuous cpd 's  on A(U). 



3.3.  Let  U = C ~ F, where F is the von Koch snowflake curve, and let b be any 

point of  F. We have M~(P) = 0 if and only if/3 > log 3 4 and M,~(F) = 0 if and 

only if/3 _> log 3 4. Moreover, because o f  the self-similarity properties of  I', there 

are positive constants nl and n2 such that (letting d = log 3 4) 

t~l rd < Md(B(7.,r) 71 •) < t~2 rd, 

3.4.  Let  U be a road-runner set 

whenever z E F and 0 < r < diamF. Using these facts and the theorems proved 

above, we readily see that the following are equivalent: 

(1) A(U) admits a weak-star continuous first-order cpd at b; 

(2) F is O-Lipa-null; 

(3) a > log 3 4. 

Also, the following are equivalent: 

(1') a(U) admits a continuous first-order cpd at b; 

(2') F is 0-1ipa-null; 

(3') a _> log 3 4. 

U 
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Fig. 5. 

OO 

U = U(0, 1) ~ U B(an,rn), 
n=l  
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where an > 0, rn > O, and 0 < an+l + rn+l < a n  - -  rn < 1, for each n. Then 
application of  the above theorems shows that a(U)  admits a k-th order cpd at 0 if 

and only i fA(U)  admits a k-th order weak-star cpd, and that both happen if and 

only if 
oo Fn 

~-~ = ~  < + ~ .  
n=l --n 
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