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ABSTRACT 

It is proved that some conjectures concerning non-separable reflexive Banaeh 
spaces are true for reflexive spaces having the metr~ approximation property. 

Let F be an abstract set and let co(F) be the Banach space consisting of the real 
(or complex) valued functions on F which vanish at infinity, i.e., those functions 
f :  F ~ scalars such that {V; ) ,eF,  < ~} is finite for every e > 0. In the 

paper [2] H. H. Corson and the author study the properties of w compact subsets 
of c0(F). It is conjectured there that every w compact subset of a Banach space 
is homeomorphic to a w compact subset of  co(F) for a suitable F, and thus that 
the results proved in [2] (and also in [1] for w compact subsets of co(F) are valid 
for an arbitrary w compact subset ofa  Banach space. 

The purpose of  this note is to prove a result which gives a further reason to 
believe that the above mentioned conjecture is true. Our result here connects 
this conjecture with a conjecture of Grothendieck.(~) 

In [6] Grothendieck introduced and studied the notion of the metric approxi- 
mation property (M.A.P.). A Banach space X is said to have the M.A.P. if for 
every finite subset {xi}~. = 1 of X and every 8 > 0 there is an operator T of norm 1 
from X into a finite dimensional subspace of  X such that II Tx, - x, II for 
every i. Grothendieck showed that the common Banaeh spaces have the M.A.P. 
and raised the question whether every Banach spacee has the M.A.P. He conjec- 
tures (el. problem 1 at the end of the Memoir [6]) that there are Banach spaces 
which do not have M.A.P. but that every reflexive Banach space has the~M.A.P. 
He showed [6, pp. 178-185] that for reflexive spaces the M.A.P. is equivalent 
to the formally weaker topological approximation property and thus, for example, 
every separable reflexive space with a basis has the M.A.P. As far as we 

know no progress has been made toward the solution of these problems of  
Grothendieck. 

The main result of  the present note is the 
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Research (OAR) United States Air Force. 

(i) See the note added in proof at the end of the paper. 
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THEOREM. Let X be a reflexive Banach space having the M.A.P. Then there 
exists a set F and a bounded linear operator T :X ~ Co(F) such that Tx  = 0 
(if  and) only i f  x = O. 

It follows immediately from this theorem that every w compact subset of a 
reflexive Banach space having the M.A.P. is allinely homeomorphic to a w compact 
subset of c0(F ) for a suitable F. We state here some further results which follow 
from the theorem. 

COROLLARY 1. Let X be a reflexive Banach space having the M.A.P. Then 
X has an equivalent norm which is strictly convex. 

g norm I1" II in a Banach space is called strictly convex if l[ x + y I[ = [[ x II + II Y II 
implies that 2 x =/1 y for some 2, # > 0. For the known results concerning the 
existence of strictly convex norms in Banach spaces we refer to I-3] and I-4]. It 
is stated in I-4] that Klee has conjectured that every reflexive Banach space has 
an equivalent strictly convex norm. Thus Corollary 1 gives a partial answer to 
the conjecture of  Ktee. Corollary 1 follows from the theorem by using the result 
of  Day [4] that co(F) admits an equivalent strictly convex norm for every F. 
By passing to the dual we get 

COROLLARY 2. Let X be a reflexive Banach space having the M.A.P. Then 
X has an equivalent norm which is smooth. 

A norm �9 is called smooth if for every x with ]1 x [1 = 1 there is a unique 
f e X *  with f = f ( x )  = 1. For reflexive spaces it is known [el. 4] that X is 
strictly convex if and only if X* is smooth. Since X has the M.A.P. if and only 
if X* has the M.A.P. (cf. [6] and also Lemma 1 below which is a somewhat 
stronger assertion) Corollary 2 is a consequence of  Corollary 1. 

COROLLARY 3. Let X be a reflexive Banach space having the M.A.P. Then 
every closed convex and bounded subset of X is the closed convex hull of its 

exposed points. 
A point x of  a subset K of X is called an exposed point of  K if there is a n f e  X* 

such thatf(x)  > f ( y )  for every y ~ x in K. Corollary 3 is an immediate consequence 
of  the theorem and the results of [2] and [7]. In this connection cf. also [9]. 

COROLLARY 4. Let X be a reflexive Banach space having the M.A.P. Then 
every w compact subset of X has a dense subset consisting of G~ points (in the 

w topology). 
A point x of  a set K c X is called a G6 point in the w topology if there is a 

sequence {On}~=l of  w open subsets of  X such that (x} = ( ' ~ = 1  On n K.Again, 
Corollary 4 follows immediately from the theorem and the results of [2]. 

COROLLARY 5. Let X be a reflexive Banach space having the M.A.P. Then 

the norm is Gateaux differentiable at the norm dense subset of   x;llxll--1 
The norm is said to be Gateaux differentiable at a point x if for every y e X, 



1965] ON REFLEXIVE SPACES 201 

limh~0([I x + hy  II - II x [I)/h exists. Corollary 5 is a consequence of Corollary 2 
and the results of 1-7]. 

Further consequences of  the theorem proved here can be obtained by combining 
it with the results of [1]. We omit the details. 

The proof of the theorem is based on some lemmas. 

LEMMA 1. Let X be a reflexive Banach space having the M.A.P. Let 
{x~}7=1 and {fjJfl=l be finite sets in X and X* respectively. Then for every 
e > 0 there exists an operator T from X into itself having a finite dimensional 
range such that 

II r II :< 1, II Tx, - x, II <=~ i = 1, 2 , ,  n, and II T*fj - f ,  II <--~ J = 1 , ,  m. 

Proof, The assumption that X has the M.A.P. can be expressed also by saying 
that there is a net {T~}~ a of operators with norm < 1, each having a finite 
dimensional range, from X into itself such that {T~} converges in the strong 
operator topology to the identity operator (i.e. lim~ T~ x = x for every x e X). 
Since for every f e X *  and x ~ X  l i m ~ f ( T , x ) = f ( x ) i t  follows that the net 
{T*~ } converges in the weak operator topology to the identity operator of X*. 
Hence (see e.g. [5, page 477]), there is a net {T~}p ~n of operators in X* converging 
to the identity operator in the strong operator topology such that 

(i) Every Tp*is a convex combination of  a finite number of  members of  the 
net {T~*}. 

(ii) For every % e A there is a flo E B such that if fl >- flo then in the represen- 
tation of T~ given by (i) appear only T~* with ~ > ~o. 

It follows that the nets {Tp}p ~n and {T~}p ~n converge in the strong operator 
topology to the respective identity operators and this proves the lemma. 

Before we state the next lemma we would like to recall the definition of  density 
character. The density character of a Banach space X is the smallest cardinal 
number m for which there is a dense subset of  X whose cardinality is m �9 

LEMMA 2. Let X be a reflexive space having the M.A.P. and let in be a 
cardinal number. Let Yand Z be subspaces of X and X* respectively having density 
character < in. Then there is a subspace W of X and a projection P from X 
onto Wsuch that 

(i) W = Y. 

(ii) The density character of W < in. 

(iii) II P II -- 1. 
(iv) P * f  = f for every f e Z .  

Proof. Assume first that m = No, i.e. that Y and Z are separable. Let {Yl}t~l 
be a dense set in Y and {fi}~ 1 be dense in Z. By Lemma 1 we can construct 

T. ~ of  operators from X into itself such that inductively a sequence { ~}~=l 
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1. Every T n has a finite-dimensional range. 

2. IIT,, II =<11, for every n. 

3. l[ r y,- y, ll l / n ,  i - -  1 , 2 , . . . ,  n. 

4. lIT*A-All,l/n, i=1,2,...,,. 
n - - I  

5. if Ilxll___ land O r x. 
k = l  

By a well known and simple consequence of Tychonoff's theorem the Unit cell 
of the space of all operators from X into itself is compact in the weak operators 

Too topology. Hence the sequence { ,},= 1 has a limiting point P. It is easily seen 

that P is a projection on W = U~=IT, X and that ( i ) -  (v) are satisfied. This 
proves the lemma for m = No. 

We continue by transfinite induction. Assume that the lemma holds for all 
cardinals < m .  Let I~ be the well ordered set of all ordinal numbers whose 
cardinality is < m .  Then we can find subspaces {Y,},~a of Y and{Z~},,n of Z 
~., 

such that Y, = Yp, Z, c Zp for 0t < f l ,Y = [,.J,mY~, Z = [.J,mz, and such that 
density character of every Y, and Z, is at most the cardinality of ~ for infinite 0t. 
By the induction hypothesis we can construct inductively for every ct e ~  a pro- 
jection P~ of norm < 1 from X on a subspace W~ containing Y~ U [,,Jp<~ wp 
such that the restriction of P ' t o  Z~ is the identity and such that the density 
character of W, is at most cardinality of ~t for infinite ct. Let P be the limit (in the 
w operator topology) of a converging subnet of {P,}~m. Then P is a projection 

from X onto W = [..J~nw~ which has the required properties. 
The next lemma is well known and goes back to Lorch [8]. We include a 

proof for the sake of completeness. 

LErat, lA 3. Let X be a reflexive space, let Uo be an ordinal number and 
let f~ be the well ordered set of all the ordinals <= ~o. Assume that for every 
ote~ thereis a projection operator P~from X into itself such that ][P~][ _-< 1, 
and P~ P~ = Pmi~(~,p) for every o~ and fl.Then for every x e X and every e > 0 
the set {~;11P,+ i x -  P~x 11 >= e,} is finite. 

Proof. Assume that there is a sequence of ordinals {~}~o= 1 such that u~+ ~ > cq + 1 

and I IP , ,+lxo-P, ,xo l l>e  for some e > 0  and some xoeX .  Put P2,_1 =P~,, 
and P2, = P~,+~, i = 1,2, . . . , .  Clearly P~Pj = Pmlat~d) for every i and j.  Let Poo 

p o~ in the weak operator topology. P~o be a limiting point of the sequence { s}i= 1 

is a projection from X onto Y = I,,J~ 1PiX, and Pi P| = Pi for every i. Hence, 
s i n c e l l P j x - x H = O i f  x e P , X  and j > i ,  we get that l imj_,o~[IPjx-xll=o 
for every x e Y. Hence 
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lim II PjXo - P~Xo II = lim II'PJ P~Xo - P~Xo II -- 0 
/--,oo j~ao 

and this contradicts the assumption that II P2,xo - e 2 , - ,  Xo II >--~ for every i. 

Proof of the Theorem. The proof is by transfinite induction. The theorem 
is trivial if X is separable. Let m be a cardinal number and assume that the 
theorem holds for all reflexive Banach spaces having the M.A.P. whose density is 
< m. Let X be a reflexive space having the M.A.P. whose density cha- 
racter is m .  Let Y be a subspace of  X whose density character is n < m ,  
and assume that there is a projection P of norm 1 from X onto u Letyo e X ~ u 
By Lemma 2 there is a subspace }'1 of X containing Y u {Yo} and a projection P1 
of norm 1 from X onto Yx such that the density character of Yx is rt and P*f = f  
for every f e  P 'X* .  It follows that P* P* = P* and thus PIP = PP1 = P. 

Let f~ be the well ordered set of all ordinal numbers whose cardinality is smaller 
than m.  By the remark we just made we can construct inductively for every 

e f~ a subspace Y~ of X and a projection P~ from X onto Y, such that 

1. II P, II = 1 for every 0t. 
2. P,Pp = Pmi, (,.B) for every ~ and/L 
3. For every limiting ordinal a, P~ is the limit in the w operator topology of 

a subnet of the net {Pp}p<~. 

4. X =  U,,,nY,,. 
5. The density character of Y is at most the cardinality of ~ for infinite ~t. 
Since there is a projection from X onto Y~ it follows that the Y~ have the M.A.P. 

By the induction hypothesis there is for every ~ e f~ a set F~ and a one to one 
linear operator T~ from Y, into co(F~) with II z~lt --< 1 Let r = U , ~ F , §  and 
define the operator T from X into co(F) by putting 

Tx(~) = T~+I(P,,+lx - P,,x) (?) if ~,eF,+ I . 

That Tx e Co (F) follows from Lemma 3. That Tis one to one follows from require- 
ments 3 and 4 above (we assume here, as we clearly can, that P1 = P2). This 
concludes the proof of the theorem. 

The present note is devoted to questions concerning non-separable reflexive 
spaces. For separable spaces the theorem and its corollaries are well known and 
hold also if we do not assume that the spaces have the M.A.P. One of the conse- 
quences of the results proved here is that the question of the validity of the theorem 
and its corollaries for every reflexive space can be reduced to a question con- 
cerning separable spaces: "Does every separable reflexive space have the M.A.P."? 
Indeed, we have the following simple 

PROPOSITION. Let X be a reflexive Banach space and assume that every 
separable subspace of X has the M.A.P. Then X has the M.A.P. 
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Proof. Let {Xi}/n=l be a finite subset of X and let e > 0. It follows easily 
from the asssumptions that there is an integer k, a set { Y~} directed by inclusion 
of  separable subspace of X, and operators T~ : Y~ ~ Y, such that: 

(i) X = U , Y , .  

(ii) Y, n {xi},=l �9 

(iii) [I T ~ x , -  x, II < e,  i =  1,2, . . . ,  n. 

(iv) dim (T, Y~) = k, II II --- 1, for every ~. 
By a simple compactness argument we deduce that there is an operator T : X ~ X 

such that II z II Z 1, dim (TX)  < k, and II Tx,- x, II for 1 < i < n. Hence 
X has the M.A.P. 

Added in proof. The theorem of the present note can be proved without 
assuming the M.A.P.Thus the theorem and its corollaries hold for ever reflexive 

Banach space. The proof of this fact is based on the proof presented in this paper 
and is given in the note "On non-separable reflexive spaces", which will appear 
in the Bulletin of the American Mahtematical Society. 
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