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A B S T R A C T  

We construct interval exchange transformations on four intervals satisfying a 
strong irrationality condition and having exactly two ergodic invariant probabil- 
ity measures. This shows that although Kronecker's theorem remains true for 
interval exchange transformations, the Weyl equidistribution theorem is false 
even under the strongest irrationality assumptions. 

Given a probability vector a = ( a ~ , . . . , a , )  and a permutation ~- of the 

integers 1 , . . . ,  n, a transformation T of the unit interval is obtained by cutting 

the interval up into n pieces of lengths a and then interchanging the pieces using 

the permutation ~-. This transformation T is called the (a, z) interval exchange 

transformation. Interval exchange transformations were introduced in [1] and 

the following results were shown: 

1) The transformation T is minimal (i.e. for every x, the orbit of x is dense in 

the unit interval) if and only if no finite union of intervals is T-invariant (except 

of course the empty union and the whole interval). 

2) If the orbits of the discontinuity points of T are infinite and distinct, then T 

is minimal. 

3) If r does not map any segment {1, 2,.  �9 k} to itself (except for k = n) and 

if a l ,"  �9 ", a,_l are rationally independent,  then the condition in (2) is satisfied and 

T is minimal. 

If we take n = 2 and r(1) = 2, r(2) = 1, then T is easily recognized as the map 

T x  = x + a2mod 1, i.e. T is a "rotat ion on the circle". Hence the above results 

generalize the well-known Kronecker  theorem on irrational rotations of the 

circle. Another  interesting result in the case of rotations is the Weyl equidistribu- 

tion theorem, which says that any orbit of an irrational rotation on the circle is 
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uniformly distributed. Its proof can be found in any book on elementary number 

theory. It was conjectured in [1] that the generalization of the Weyl theorem to 

interval exchange transformations is valid. The question was, more precisely: If 

an interval exchange transformation is minimal, are then all orbits uniformly 

distributed in the unit interval? The answer is positive in the cases n = 2 (Weyl 

theorem) and n = 3, the latter since it can be reduced to n = 2 by looking at the 

induced transformation on a suitable subinterval. 

More recently, H. B. Keynes and D. Newton [2] found a counter-example to 

the conjecture. In [2] they construct an interval exchange transformation with 

n = 5 which has precisely two ergodic invariant probability measures and which 

satisfies the condition in (2). Their  idea consists of constructing an interval 

exchange on three intervals satisfying (2) but having an eigenvalue - 1 .  Its 

square is then an interval exchange on five intervals which still satisfies (2) but 

which is not ergodic. The two ergodic measures thus obtained are both 

absolutely continuous with respect to Lebesgue measure. (Note that Lebesgue 

measure is always invariant for an interval exchange transformation and must be 

a convex combination of the ergodic measures. It was also shown in [1] that there 

are at most n ergodic measures for an interval exchange transformation on n 

intervals.) This class of examples does not satisfy the irrationality condition (3), 

since it is a square of an interval exchange on three intervals. 

In the following, the study of counterexamples is continued, using methods 

basically different from those of [2]. We construct for n = 4 interval exchange 

transformations satisfying the irrationality condition (3) and having exactly two 

ergodic invariant probability measures. Moreover,  either both ergodic measures 

are absolutely continuous with respect to Lebesgue measure, or one is Lebesgue 

measure and the other  is singular, and we show that both possibilities can occur. 

The first is in some sense more frequent than the second. 

These results close the gaps concerning the counterexamples. A question 

remaining to be answered is the following: Do almost all interval exchange 

transformations have the equidistribution property? 

1. Induced transformations for an interval exchange transformation 

Define ~" on {1,2,3,4} by setting r(1) = 3, z(2) = 2, r(3) = 4, I-(4)= 1. Let m 

and n be fixed integers greater than one. We imagine an interval exchange 

transformation as shown in the following diagram: 



190 M. K E A N E  Israel J. Math .  

l a l  l te2 [ te3 I te4 I 

0 $ T $ 1 

I ~4  I te2 I tel I te3 I 

We require that the lengths tel, te2, te3, te, be chosen so that the following 

conditions are satisfied: 

1) The interval te4 is larger than the interval tel, so that a part of te4 (the left 

part) is mapped onto al by T, and the right part is mapped onto the beginning of 

tez. Denote by Po and P4 the left and right end points of te4, and choose P2 in the 

interval te4 such that PoP: is mapped to te~ and P2P4 to the beginning of te2. 

2) Consider the interval P2P4. It is mapped onto the beginning of te2, and then, 

under successive applications of T, is mapped into consecutive intervals of length 

01~4- tel contained in te2 until at some point a part (right part) is mapped into tea, 

while the left part remains in te2. Let P3 denote the point of P2P4 corresponding to 

this division. We require that the intervals T(P2P4), T2(P2P4), "" ", T"-I(p2P4) be 

the successive intervals entirely in te2, whereas T"  (P2P3) is at the right end of te2 

and T"  (PzP4) is at the left end of te3. Here m is the integer fixed at the beginning. 

3) Notice now that under the conditions (1) and (2), a beginning (left) part of 

the interval te3 is formed by the successive intervals T"(P3PO, T"+~(P2P3) and 

T2(PoP2). Call this union of intervals L I is an interval of length te4, which is 

mapped under successive applications of T into consecutive intervals of length 

te4 contained in te3, until at some point a right part is mapped into te4 while the 

remaining left part stays in te3. If we denote by P~ the point of te4 corresponding 

to this division, then we require that P~ lies between P0 and P2, and that the 

intervals L TI , . . . ,  T"-~I be the consecutive intervals lying entirely in a3, 

whereas T"I is cut up as above by the division point between te3 and te4. Here n 

is the integer fixed originally. 

Under conditions (1), (2) and (3) we may recognize the form of the induced 

transformation on the interval te4. Let 3'4, 3'3, 3'2, 3'1 denote the lengths of the 

subinterval PoP~, PIP2, P2P3, P3P4 of a4 respectively (the reason for the order 

inversion will become clear presently). Then the induced transformation has the 

following picture: 

I 3'4 I 3'3 1 3'2 I 3'1 1 

Po P, P2 P3 P, 
$ T,.~ J 

3'3 3't 3'2 3'4 
[ T.+Z(p,p:) I T..+.(ij3p 0 I I [ T . . . .  l(P2P3) T"+3(PoP,) 
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If the r eade r  now turns this journa l  upside down,  he will recognize  f rom the 

d iag ram that  the induced t rans format ion ,  when con juga ted  with this i somorph-  

ism, has the s ame  p e r m u t a t i o n  r as the interval  exchange  we s tar ted  out  with 

(this is the reason  for  the o rde r  inversion,  and will pe rmi t  us to i tera te  the 

p rocedure  we are now describing).  

Assuming  that  it is possible  to find number s  with the above  proper t ies ,  we now 

calculate the a~'s f rom the 7~'s. We  have  

0 l  1 

Ot2 

01~3 

014 

0 0 1 1 

m - 1  m 0 0 

n n 

1 1 

(*) 

"Yl 

72 

n - 1 n 73 

1 ] 74 

since the interval  P3P4, of  length 74, spends t ime m - 1 in 0~2 and n in a3 before  

re turning to a4, etc. D e n o t e  now the matr ix  in (*) by A . . . .  and the open  posi t ive 

cone in R 4 by P. Then  Am., maps  P into P, and it is easy to see that  

det (A,. , .)  = 1. Thus  for  any a = (a , ,  �9 �9 a4) E Am,.(P) there  is a unique solution 

7 = (7~, "" ", 3'4) which be longs  to P. It is then trivial to check that  condi t ions  (1), 

(2) and (3) are satisfied for  a with the given values of  m and n. 

Suppose  now that  we are given an infinite sequence  (ink, n~)~=, of  pairs of 

integers  each g rea te r  than one.  Def ine  

l~k = A ..... Am~.,~.. .A . . . . .  (P).  

Then  A .. . . .  (P)_C P implies that  fl~_, C_ ~k and a compac tness  a rgumen t  (note 

that  any p roduc t  of two successive A ' s  has all posi t ive entr ies)  shows that  

f ~ =  I " 1 ~ = , ~  is non-empty .  In fact, f / =  ("I~=,A ..... . . . A  . . . . .  (/5) which is an 

infinite intersect ion of decreas ing compac t  sets in pro jec t ive  space.  Let  a t') = 

at = (a , ,  a : ,  a3, an) E 1-/be any e l emen t  of this set with a ,  + a2 + a3 + a4 = 1, and 

let T = T, deno te  the interval  exchange  t r ans fo rmat ion  based  on a ") and r. For  

any m, n -> 2 deno te  by ft.,.,, the mapp ing  on /g, with 

/ 5 =  x = ( x , , x 2 ,  x3, x 4 ) : x i > O ,  1 _ - < i < 4 ,  x ~ = l  , 

defined by 

A.m.(x)  = 1 
, IAm,.(x)  I �9 A,.,. (x) ,  

= Ei=, y~. By the cons t ruc t ion  of 1"~, for  each k > 1 the point  where  l Yl ' 
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(**) 

belongs  to P, and defines an interval  exchange  t r ans fo rmat ion  Tk based  on ct tk) 

and ~-. W e  thus obta in  the fol lowing theo rem.  

THEOREM 1. Let  (ink, nk)k=l be an infinite sequence o f  pairs o f  integers each 

greater than one. Then there exists an a ~ P and a decreasing sequence I2, I3, :" �9 

o f  subintervals o f  the unit interval such that i f  T is the (ct, ~') interval exchange,  

then the transformation Tk = T,~ induced on Ik by T is an (atk), ~')-interval exchange 

(with order reversed for even k) ,  where atk) is given by the formula  (**) for each 

k>_2.  

2. Properties of products of the mappings A . . . . .  

W e  set ,4k = . 4  . . . . .  for  k_-> 1. In o rder  to p rove  non-ergodic i ty  of  the 

t r ans fo rma t ions  def ined in w we shall need  some  es t imates  on the p roduc t s  
= 

LEMMA 2. For any x ~ ~, (fi~kx)~ <= 1/(n~ + 1) for i = 1 and i = 4. 

PROOF. If i = l  or  i = 4 ,  then  (A~x)~_--<l and 

fAkx l  = nk + 1 + m~x2+ (m~ - 1)x, + x4_-- > n~ + 1. 

LEMMA 3. Suppose that for all k >- 1 we have mk/(nk+~ + 1) =< 1/2. Let  e3 = 

(0, O, 1,0). Then for each k >- 1 we have 

(Bke3)3 >= 1 - - -  

PROOF. Fix k => 1 and define 

n ~ + l "  

x ~ = A~e3, x ~-1~ = A~_,xr . .  ., x ~ = Aix~ ' '  ", x "~ = A , x  ~2~. 

Then  x ~ =/3~e3 and we p rove  the inequal i ty  by induct ion on j. It suffices to show 

for  each j that  x~ )< - 1/(ns + 1), in view of L e m m a  1. This  is cer tainly t rue  for  

x Ck§ = e3. Suppose  it is t rue  for  j + 1:x~ +~)<- l/(ns+t + 1). Then  

x~ ~ = (m i - 1)x~+l)+ mix~ +') < 2m~ < 
"~+') • (nj+~ + 1)(n s + 1) n s + 1' n j + l + m s x z  T(mj -1 )x~~  "~ = = 

as required.  

LEMMA 4. S u p p o s e t h a t f o r a l l k  >- 1 w e h a v e m k / ( n k  +1)---->3. T h e n f o r e a c h k  

and  for ez = (0, 1, O, O) we have 
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- > 1  
( B ~ e 2 ) 2  = - j  . 

PROOF. We fol low the same line as in the proof of Lemma 3, with the x (k) 

defined analogously.  The induction hypothesis is x2~ > 1/3. It fol lows that 

xO2) >_ mix~ +~ > 1 _ 1 
(j+l) 

mix2 + n s + l 2 +. 1__~ 3" 
3.~ 

3. Ergodicity and irrationality 

It is now possible to prove the following result. 

THEOREM 5. Let (mk, n~)~=l be a sequence satis[ying the conditions 

i) 3(nk + 1) -<_ mk =< 1/2(nk+l + 1) [or all k >= 1, and 

ii) n1=>9. 

Then for any ~ ~ f~ A fi, the interval exchange trans[ormation described in 

Theorem 1 is not uniquely ergodic. 

PROOF. Let {Ik}~=2 be the sequence of intervals described in Theorem 1. For 

each k, let I~ ) (1 =< j < 4) denote the partition of I~ into the intervals defining the 

transformation Tk. Then for j = 2  or 3, the vector Bke s is easily seen to be the 

relative frequency of visits of any point x E I~ ) to the original partition into 

intervals of lengths (al, a2, a3, a4) up to the first return time of x to h. Condition 

(1) insures the applicability of Lemmas 3 and 4. Thus for x ~ I~ 3) the relative 

frequency of visits to the interval a3 is at least 1 - 3 / ( 9 +  1)= 7/10, and for 

x E I~2)the relative frequency of visits to the interval a2 is at least 1/3. These 

estimates hold for all k => 1. By choosing a sequence xk ~ I~ 3) as k ~ oo and using 

a well-known technique, we may obtain an invariant probability measure A3 on 

the unit interval with /~3(O/3) ~ 7/10, and similarly obtain another  measure A2 with 

A2(az) => 1/3. Since 7/10 + 1/3 > 1, we have A2 ~ A3 and T is not uniquely ergodic. 

We now conclude our  arguments by showing that there exist vectors a = 

(al, a2, a3, a ,)  which are rationally independent in the sense of [1] and whose 

sequences (mk, nk) satisfy the conditions of Theorem 5. 

THEOREM 6. There exists an a E P such that the (a-r )  interval exchange is 

not uniquely ergodic and such that if 0 = ~4= 1 k,a,, then 0 = k~ . . . .  k4.  

PROOF. We show that there exists a sequence (mE, nk) satisfying the condi- 

tions of Theorem 5 such that all a E lq are independent in the above sense. Each 

4-tuple of integers (kl, k2, k3, k4) defines a hyperplane {x : E~=, k~x, = 0}, if k, are 



194 M. KEANE Israel J. Math. 

not all equal to zero. Let  H1, H 2 , - "  be an enumera t ion  of all of these 

hyperplanes  in R 4. The  number  a must then lie outside of all of these 

hyperplanes.  Suppose that for  any hyperp lane  Hk and any integer  N we could 

find a finite sequence  Ami , , i , . . . ,  A,,;,.; of  matrices such that the (m',, n',) satisfy 

the condit ions of T h e o r e m  5 with n'l _-> N, and such that 

{A,,, , , ;- . .Am~,;(P)} f3 Hk = {0}. 

We then claim that we may choose (rnk, nk) such that [1 f3 Hk = {0} for  all k. T o  

see this, start with choosing a sequence  (m ~, n~ ) , . . . ,  (m~l, n~,) which works for  

H1 and with n~ _-> 9. Set (m,, n , ) =  (m'~, n',) for  1 <=i<=jl. Define N1 = 2mj,, and 

consider  

H ;  = A ~,~jl,.,," " . A  -11,,,~(H2). 

This is again a hyperp lane  and we can choose a sequence  (m[,  n ~ ) , . . . ,  (mj~, n'~2) 

with n~'-> N1 which avoids H~. Setting 

(m,1+1, n,,+,) = (m ;', n~),-.., (m j,+j~, n,,+,~) = (m';2, n~), 

we see that by our  construct ion A .. . . .  �9 �9 .A m=,,=(P) avoids both  H~ and/-/2, and 

so forth.  The  theo rem thus follows f rom the result for  one  hyperplane .  Let  H be 

the re fore  a hyperp lane  defined by k l , "  ", k4. We distinguish three  cases. 

Case 1. k: is non-zero.  He re  we choose n~= N, and then 

m',>=Jkl[+lk4[+n~lk3l. 

Then  choose (n ~, m ~') much larger than m ~, with say m'2 = 4n~. Cons ider  for  any 

x E 15 the vector  , ~ . , ~ x .  It is close to a vector  of the form (0, 1 - a, a, 0) where  a 

may be any number  be tween  1/5 and 1. Thus  A,,,;..',A,,~.,,~x looks approximate ly  

like (a, m '~ - 1 + a, n ] - a, 1), and 

k~a + k2(m'~- 1 + a ) +  k3(n~- a ) +  k4 

has for all possible a the same sign, namely that of k2, because of the choice of 

m~. Thus  A,,;.,,A,,~,.'~P f~ H = {0}. 

Case 2. k 2 = 0  but  k 3 # 0 .  This case is handled  like Case 1, this t ime 

choosing n ] _-> max (N, I k4] + [ k~ [), m ~ = 3(n~ + 1) and (m ;, n ;) very large. 

Case 3. k2 = 0 = k3. Suppose  that kl and k~ are fixed. Choose  any admissi- 

ble matr ix A,,;.,; ; i.e. n~ => N and m~ => 3(n~ + 1). T o  say that k,x~ + k4x4 = 0 for 

a vector  x = A,,; , , iy means  that  
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kl(y3 + y4)+ k4(y, + y2+ y3+ y4) = 0 

for the vector y. This yields the hyperplane 

k,y~+ k4y2+ (k~+ k4)y3+ (k~+ k4)y, = 0 

which falls into Case 1 or Case 2 unless k~ = k4 = 0. This ends the proof of 

Theorem 6. 

Our next goal is to show that, in the transformations constructed above, there 

are exactly two ergodic measures, and that by a suitable choice of a we may 

force Lebesgue measure to be one of these. 

THEOREM 7. Suppose that the conditions of Theorem 5 hold. Then the set 

fl fq P is an interval in 6. Ira is chosen in the interior of this interval, then there are 

exactly two ergodic probability measures, both absolutely continuous with respect to 

Lebesgue measure. If  a is chosen to be an endpoint of this interval, then there are 
exactly two ergodic probability measures, one of which is Lebesgue measure and 

the other singular with respect to Lebesgue measure. 

PROOF. Let el = (1, 0, 0, 0) and e4 = (0, 0, 0, 1). We shall show that limE_| 

exists for 1 <= j _--< 4 and that the limits are the same for e~ and e2, and for e3 and 

e4. For any norm I'[ on R 4 and any two vectors 0 #  x, y E R 4, we have 

[--~ - --Y--- I --- 2 "min (~-~-f~ [-~-[[) " I x - y [ "  lyl 

Choose a subsequence k. ~ oo such that e7 = lim._| exists for each ]. Then 

since each /3EP is a simplex with extremal points Bkes, we have that fl is the 

simplex spanned by the eT, 1 =<] <=4. Now the simplexes/3knP and/3k . . ,P  are 

close to each other, and for any k with k, < k < k~247 we have /~ /5  _D/3kP _D 

/~n.,/5. This is impossible unless each Bkej is close to /3~e~ and /3k..,ej. Thus 

lim~_| exists for 1 <=/" =< 4. Next we show that lim~| = limk~| 

using the norm Ix I= X~=lIx, I. 

We have 

Bke3 Bke4 I I  e3-  e4l: rn, e,J <=2 IB~(e4-e3)[ 
min (I Bke3 I, [ B~e4 I)" 

Now Bk = Bk-lAk and Ak (e, - e3) = e3, so that Bk (e, - e3) = B~-le3. Moreover, 

Bke, = B~_I(1,0, nk, 1) => Bk-~(O, O, nk, O) = nkBk-~e3, 

so that 
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as k---}oo. This shows that limk~/~ke3=limk_| and limk~/~kel = 

l imk~/~e2  is proved in the same manner. It follows that 1"1 is the interval in t3 

with endpoints/3 = e7 = e2 and 3' = e3 = e4. Let a be chosen in this interval and 

let/~ be an invariant probability measure for the interval exchange transforma- 

tion based on c~. Let Az and A3 be the probability measures defined in the proof of 

Theorem 5. Define 

ak = I t ( I ~ ) U I ~ ) )  and b~ = / ' t (ICk3'UI~4)) 
~(i~) ~(i~) 

for each k _-> 1. Then it is easy to see that 

lim akA2 + bkA3 = tx 
k~oo 

in the weak topology. Choosing subsequences of ak and b~ which converge, we 

obta in /z  as a convex combination of )t2 and A3. This implies that A2 and A3 are 

the only ergodic measures (and that they are ergodic). Moreover,  the A2-measure 

of the original partition into 4 intervals is given by/3, and the A3-measure of this 

partition by 3'. Thus A2 is Lebesgue measure iff a = 13 and A3 is Lebesgue 

measure iff a = 3'. This completes the proof. 
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