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NON-ERGODIC INTERVAL EXCHANGE
TRANSFORMATIONS

BY
MICHAEL KEANE

ABSTRACT

We construct interval exchange transformations on four intervals satisfying a
strong irrationality condition and having exactly two ergodic invariant probabil-
ity measures. This shows that although Kronecker’s theorem remains true for
interval exchange transformations, the Weyl equidistribution theorem is false
even under the strongest irrationality assumptions.

Given a probability vector a = (a,,"'*,a,) and a permutation = of the
integers 1, - - -, n, a transformation T of the unit interval is obtained by cutting
the interval up into n pieces of lengths @ and then interchanging the pieces using
the permutation 7. This transformation T is called the (a, 7) interval exchange
transformation. Interval exchange transformations were introduced in [1] and
the following results were shown:

1) The transformation T is minimal (i.e. for every x, the orbit of x is dense in
the unit interval) if and only if no finite union of intervals is T-invariant (except
of course the empty union and the whole interval).

2) If the orbits of the discontinuity points of T are infinite and distinct, then T
is minimal.

3) If 7 does not map any segment {1,2, - - -, k} to itself (except for k = n) and
if @y, * + -, @, are rationally independent, then the condition in (2) is satisfied and
T is minimal.

If we take n =2 and 7(1) = 2, 7(2) = 1, then T is easily recognized as the map
Tx =x+a,mod1, i.e. T is a “rotation on the circle”’. Hence the above results
generalize the well-known Kronecker theorem on irrational rotations of the
circle. Another interesting result in the case of rotations is the Weyl equidistribu-
tion theorem, which says that any orbit of an irrational rotation on the circle is
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uniformly distributed. Its proof can be found in any book on elementary number
theory. It was conjectured in [1] that the generalization of the Weyl theorem to
interval exchange transformations is valid. The question was, more precisely: If
an interval exchange transformation is minimal, are then all orbits uniformly
distributed in the unit interval? The answer is positive in the cases n =2 (Weyl
theorem) and n = 3, the latter since it can be reduced to n = 2 by looking at the
induced transformation on a suitable subinterval.

More recently, H. B. Keynes and D. Newton [2] found a counter-example to
the conjecture. In [2] they construct an interval exchange transformation with
n =5 which has precisely two ergodic invariant probability measures and which
satisfies the condition in (2). Their idea consists of constructing an interval
exchange on three intervals satisfying (2) but having an eigenvalue —1. Its
square is then an interval exchange on five intervals which still satisfies (2) but
which is not ergodic. The two ergodic measures thus obtained are both
absolutely continuous with respect to Lebesgue measure. (Note that Lebesgue
measure is always invariant for an interval exchange transformation and must be
a convex combination of the ergodic measures. It was also shown in [1] that there
are at most n ergodic measures for an interval exchange transformation on n
intervals.) This class of examples does not satisfy the irrationality condition (3),
since it is a square of an interval exchange on three intervals.

In the following, the study of counterexamples is continued, using methods
basically different from those of [2]. We construct for n = 4 interval exchange
transformations satisfying the irrationality condition (3) and having exactly two
ergodic invariant probability measures. Moreover, either both ergodic measures
are absolutely continuous with respect to Lebesgue measure, or one is Lebesgue
measure and the other is singular, and we show that both possibilities can occur.
The first is in some sense more frequent than the second.

These results close the gaps concerning the counterexamples. A question
remaining to be answered is the following: Do almost all interval exchange
transformations have the equidistribution property?

1. Induced transformations for an interval exchange transformation

Define 7 on {1,2,3,4} by setting 7(1)=3, 712)=2, 7(3)=4, 7(4)=1. Let m
and n be fixed integers greater than one. We imagine an interval exchange
transformation as shown in the following diagram:
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We require that the lengths a,, a», as, as be chosen so that the following
conditions are satisfied:

1) The interval a, is larger than the interval a,, so that a part of a, (the left
part) is mapped onto a, by T, and the right part is mapped onto the beginning of
a;. Denote by P, and P, the left and right end points of a4, and choose P; in the
interval a, such that PP, is mapped to a, and PP, to the beginning of a,.

2) Consider the interval P;P,. It is mapped onto the beginning of «,, and then,
under successive applications of T, is mapped into consecutive intervals of length
a,— a, contained in «, until at some point a part (right part) is mapped into aj,
while the left part remains in a,. Let P; denote the point of P,P, corresponding to
this division. We require that the intervals T(P,P,), T(PP.), - -+, T™'(P,P,) be
the successive intervals entirely in a,, whereas T™(P,Ps) is at the right end of a,
and T™(P;P,) is at the left end of a;. Here m is the integer fixed at the beginning.

3) Notice now that under the conditions (1) and (2), a beginning (left) part of
the interval a; is formed by the successive intervals T™ (P;P;), T™"'(P,P;) and
T?(P,P,). Call this union of intervals I I is an interval of length a,, which is
mapped under successive applications of T into consecutive intervals of length
a, contained in «;, until at some point a right part is mapped into a, while the
remaining left part stays in a;. If we denote by P, the point of a, corresponding
to this division, then we require that P, lies between P, and P,, and that the
intervals I, TL--+, T"'I be the consecutive intervals lying entirely in as,
whereas T"I is cut up as above by the division point between a; and a,. Here n
is the integer fixed originally.

Under conditions (1), (2) and (3) we may recognize the form of the induced
transformation on the interval a,. Let 4, ys, vz, v: denote the lengths of the
subinterval P,P,, P,P,, P,P;, P;P, of a, respectively (the reason for the order
inversion will become clear presently). Then the induced transformation has the
following picture:

| Y4 | Y3 | Y2 N £ S

| i v ! iy

P() Pl P2 J P3 P4
l Tind

Y3 . Y i Y2 1 Y4 |

-

T**(P,P,) " T (BP) TT\BP) T(RP)
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If the reader now turns this journal upside down, he will recognize from the
diagram that the induced transformation, when conjugated with this isomorph-
ism, has the same permutation r as the interval exchange we started out with
(this is the reason for the order inversion, and will permit us to iterate the
procedure we are now describing).

Assuming that it is possible to find numbers with the above properties, we now
calculate the a;’s from the vy;,’s. We have

[ Qa, ] [ 0 0 1 1 ] r Y1 ]
as m-1 m 0 0 Y2
*) =
a; n n n-1 n Y3
| as ] L 1 1 1 1 ] L Y4 |

since the interval P;P,, of length vy,, spends time m — 1 in «; and n in a, before
returning to a,, etc. Denote now the matrix in (*) by A..., and the open positive
cone in R* by P. Then A,, maps P into P, and it is easy to see that
det(Anm.)=1. Thus for any a = (a,, - -, as) € A,..(P) there is a unique solution
Y =(y1,* ' *, v+) Which belongs to P. It is then trivial to check that conditions (1),
(2) and (3) are satisfied for & with the given values of m and n.

Suppose now that we are given an infinite sequence (mu, ni )c-, of pairs of
integers each greater than one. Define

Qk = Am,,nlAmz.nz ot 'A"u(."k (P)

Then A, (P)C P implies that ), C (l« and a compactness argument (note
that any product of two successive A’s has all positive entries) shows that
Q=0MN;,Q, is non-empty. In fact, ) = Mo A, - - * Amyn (P) which is an
infinite intersection of decreasing compact sets in projective space. Let a® =
a = (@, az, a;, as) € (Q be any element of this set with a, + ax + a3+ a. =1, and
let T = T, denote the interval exchange transformation based on a and 7. For
any m,n =2 denote by A,.,. the mapping on I:’, with

4
P={x = (X1, X2, X3, %4): X >0, 1 =i =4, Z X; =1},
i=1

defined by

1

Ann ) =2 5]

. A"‘," (x)7

where |y| = Zi., y. By the construction of €, for each k >1 the point



192 M. KEANE Israel J. Math.

* R k) — A -1 A -t &)
( ) a =A mi k-1 A myn &

belongs to P, and defines an interval exchange transformation T based on a®’
and 7. We thus obtain the following theorem.

THEOREM 1. Let (my, ni)c-1 be an infinite sequence of pairs of integers each
greater than one. Then there exists an a € P and a decreasing sequence I, I, : - -
of subintervals of the unit interval such that if T is the (a, 7) interval exchange,
then the transformation T, = T, induced on I, by Tis an (a™, 7)-interval exchange
(with order reversed for even k), where a® is given by the formula (**) for each
kz2.

2. Properties of products of the mappings A,,.k,,.k

We set A, = A, for k=1. In order to prove non-ergodicity of the
transformations defined in §1 we shall need some estimates on the products
ék = AlAz . 'Ak.

LemMma 2. For any x € I=’, (Ax)i =1/(n.+1) fori=1and i =4.
Proor. If i =1 or i =4, then (Axx); =1 and
[Awx | = n + 1+ mx+ (me — Dxy+ x.Z e + 1.

LEMMA 3. Suppose that for all k =1 we have mi/(n...+1)=1/2. Let es=
(0,0,1,0). Then for each k 21 we have

~ 3
Bies)s=1-— .
(Bies)s n+1
Proor. Fix k =1 and define
x® = Aes, x V= A, x®, o xO= Ax 0D x D= 4 x®,

Then x® = B,e; and we prove the inequality by induction on j. It suffices to show
for each j that x¥’=1/(n; + 1), in view of Lemma 1. This is certainly true for
x**V = ¢,. Suppose it is true for j +1: x¥*P=1/(n;,, + 1). Then

9= (m;— 1)x{™"+ mx g™ _ - 2m, <1
T 1+ mx T+ (m = Dx 0+ 19 T (ma+ D) +1) T o+

A

as required.

LeEMMA 4. Suppose that for all k = 1 we have my/(m + 1) = 3. Then for each k
and for e; = (0,1,0,0) we have
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5 1
==
(Bkez)z =3 .
Proor. We follow the same line as in the proof of Lemma 3, with the x*

defined analogously. The induction hypothesis is x¢*" = 1/3. It follows that
mix$*P - 1

1
) 1
2mx P+ n+1 — 1 3

Iv

x§

3. Ergodicity and irrationality
It is now possible to prove the following result.

THEOREM 5. Let (mu, ni)i-1 be a sequence satisfying the conditions

) 3m+D)=m =1/2(ma+ 1) for all k =1, and

i) n,=9.
Then for any a € QN P, the interval exchange transformation described in
Theorem 1 is not uniquely ergodic.

Proor. Let {I.};-; be the sequence of intervals described in Theorem 1. For
each k, let I (1 = j = 4) denote the partition of I into the intervals defining the
transformation T,. Then for j=2 or 3, the vector Bie; is easily seen to be the
relative frequency of visits of any point x € I to the original partition into
intervals of lengths (a,, @,, as, @) up to the first return time of x to L. Condition
(1) insures the applicability of Lemmas 3 and 4. Thus for x € I the relative
frequency of visits to the interval «; is at least 1—3/(9+1)=7/10, and for
x € Ithe relative frequency of visits to the interval a, is at least 1/3. These
estimates hold for all k = 1. By choosing a sequence x, € I as k — » and using
a well-known technique, we may obtain an invariant probability measure A; on
the unit interval with A;(a;) = 7/10, and similarly obtain another measure A, with
Ax(az) = 1/3. Since 7/10 + 1/3 > 1, we have A, # A; and T is not uniquely ergodic.

We now conclude our arguments by showing that there exist vectors a =
(a1, az, a3, a,) which are rationally independent in the sense of [1] and whose
sequences (my, n) satisfy the conditions of Theorem 5.

THEOREM 6. There exists an a € P such that the (a-7) interval exchange is
not uniquely ergodic and such that if 0= 2}_, ki, then 0=k, = - - -k,.

Proor. We show that there exists a sequence (m, n.) satisfying the condi-
tions of Theorem 5 such that all « €  are independent in the above sense. Each
4-tuple of integers (k, ko, ks, k,) defines a hyperplane {x: 2i_, kix; = 0}, if k, are
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not all equal to zero. Let H,, H,,--- be an enumeration of all of these
hyperplanes in R*. The number a must then lie outside of all of these
hyperplanes. Suppose that for any hyperplane H, and any integer N we could
find a finite sequence A,;.;, ", Am,.; of matrices such that the (m/, n’) satisfy
the conditions of Theorem 5 with n{= N, and such that

{A"n n; e '"rn,(P)} n Hk = {0}

We then claim that we may choose (my, ni) such that O N H, = {0} for all k. To
see this, start with choosing a sequence (m1, ni),- - -, (m}, n},) which works for
H, and with ni=9. Set (m;, n;)=(mi, n}) for 1 =i =j,. Define N,=2m,, and
consider

H;=A :":1,"i1 U "'l "1(H2)

This is again a hyperplane and we can choose a sequence (m/, nf), - -, (m/,, n’,
with n} = N, which avoids H;. Setting
— " 1
(mi1+1’ nilﬂ) - (m 1 nl’ (mll+12’ n’/l*lz) (m j2y nlz

we see that by our construction A ., * * *A m,n,(P) avoids both H; and H,, and
so forth. The theorem thus follows from the result for one hyperplane. Let H be
therefore a hyperplane defined by ki, - - -, k.. We distinguish three cases.

Case 1. k, is non-zero. Here we choose n;= N, and then
miz k| + ks + niks.

Then choose (n}, m3) much larger than m |, with say m; = 4n;. Consider for any
x € P the vector A~,,.;‘,.éx. It is close to a vector of the form (0, 1 — «, @, 0) where a
may be any number between 1/5 and 1. Thus A,.; .;Am;n;x looks approximately
like (a,mi— 1+ a,ni— 1), and

kia + ka(m|— 1+ a)+ ko(ni— a) + ki

has for all possible @ the same sign, namely that of k., because of the choice of
mj. Thus A, AmnP N H ={0}.

Case 2. k,=0 but k;#0. This case is handled like Case 1, this time
choosing n{Z= max(N,|ks|+ |k:|), mi=3(ni+1) and (m3, n;) very large.

Case 3. k,=0= k,. Suppose that k, and k, are fixed. Choose any admissi-
ble matrix A,;.;; .. n1= N and m{Z 3(n;+ 1). To say that k,x, + ksx, = 0 for
a vector x = A, .;y means that
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ki(ys+ yo) + k(yi+ y2+ ys+y) =0
for the vector y. This yields the hyperplane
k4y1 + k4yz + (k] + k4)y3 + (kl + k4))’4 = 0

which falls into Case 1 or Case 2 unless k; = k,=0. This ends the proof of
Theorem 6.

Our next goal is to show that, in the transformations constructed above, there
are exactly two ergodic measures, and that by a suitable choice of a we may
force Lebesgue measure to be one of these.

THEOREM 7. Suppose that the conditions of Theorem S hold. Then the set
QN Pisan interval in P. If a is chosen in the interior of this interval, then there are
exactly two ergodic probability measures, both absolutely continuous with respect to
Lebesgue measure. If a is chosen to be an endpoint of this interval, then there are
exactly two ergodic probability measures, one of which is Lebesgue measure and
the other singular with respect to Lebesgue measure.

Proor. Let e, =(1,0,0,0) and e, = (0,0,0,1). We shall show that lim,_... Bie;
exists for 1 =j =4 and that the limits are the same for e, and e,, and for e, and
e,. For any norm |-| on R* and any two vectors 0 # x, y € R*, we have

2m1n ) x—vl
H ml W) ey

Choose a subsequence k, — © such that e = lim,_.. B.¢; exists for each j. Then
since each B/P is a simplex with extremal points B.e, we have that Q is the
simplex spanned by the e7, 1 = =4. Now the simplexes B, P and B,_, P are
close to each other, and for any k with k, <k <k,.. we have é,‘"ﬁ DB/PD
B...,P. This is impossible unless each Bye; is close to B.e and B....e; Thus
lim, ... Bie; exists for 1 =j=4. Next we show that limi_.. Bie; = lim,_.. Bie,
using the norm |x|= ¢, |x|.
We have

Bke;; _ Bke4 = [B,ie,,—e;)l
lBkegl ’Bk84l ~ " min (‘ Bkegl, ’Bke4l) ’

'Bkeg - B~ke4] = ’

Now B, = Bi_1 A, and Ay (es— e;) = e3, so that By (e, — es) = B,_,es. Moreover,
B,‘e,, = Bk_l(l, 0, ny, 1) = Bk_l(o, 0, ny, O) = nkBkAle;;,

so that
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jBkeg—Bke4|§M—l—>O

Ny |Bk—1e3l B ny

as k-—>w. This shows that lim_.Bes=limy..Bies, and limi_.B.e, =
lim, ... Bye, is proved in the same manner. It follows that Q is the interval in P
with endpoints B = eT= e and y = e5 = e%. Let a be chosen in this interval and
let o be an invariant probability measure for the interval exchange transforma-
tion based on a. Let A; and A, be the probability measures defined in the proof of
Theorem 5. Define

(1) €2y 3) 4y
ak:[t!lk UIk? and bk=&!Ik Ulk’
(L) (L)

for each k = 1. Then it is easy to see that
llnl akAz + bk)\:; =M

in the weak topology. Choosing subsequences of a. and b, which converge, we
obtain x as a convex combination of A; and A;. This implies that A, and A, are
the only ergodic measures (and that they are ergodic). Moreover, the A,-measure
of the original partition into 4 intervals is given by 8, and the A;-measure of this
partition by y. Thus A, is Lebesgue measure iff « = 8 and A; is Lebesgue
measure iff a = y. This completes the proof.
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