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THE T- IDEAL G E N E R A T E D  BY THE 
S T A N D A R D  IDENTITY s3[xl, x2, x3] 

BY 

A M I T A I  R E G E V  

ABSTRACT 

Let K = To(s3), {c.} its codimensions,  {/.} its colengths and {X.} its sequence  of 
co-characters.  For  9 -  < n ,  c . = 2 n - 1  or  c . = n ( n + l ) / 2 - 1 ,  3 -  < 1 . - < 4  and 
X. = [n]  + 2[n - 1, 1] + a [n - 2, 2] + /3[2  2, 1"- ']  where  a + fl _-< 1. 

Introduction 

In [2], [3] and [4], J. Olsson and the present author demonstrated that the 

representation theory of the symmetric group can be used for studying certain 

problems concerning algebras satisfying a polynomial identity (P.I. algebras) 

over a field F of characteristic zero. This is done by identifying the space Vn of 

multilinear polynomials in x l , . " , x ,  with the group algebra F[S,]  of the 

symmetric group. The intersection K,  = K n V. of a T-ideal K with V~ =- F[S ,]  

is then a left ideal in V, (see [2]), and we can write V~ = K, E)J~, where 3". is a 

left ideal. Although J~ is not unique, its character X- is, and h', is "the n-th 

co-character of K " .  {X.} form the sequence of co-characters of K. The 

codimension c, = dim J. and the length I. of 3", can be recovered from {h',} (see 

[3], [6]). We saw in [3] that {/~} is closely related to the question of whether or not 

a T-ideal is T-finitely generated. 

This paper continues [4]: we study the To-ideal K = To(s3[xl, x2, x3]), gener- 

ated by s3 = E~s~ ( - 1)~x~,xo~xo~, and find estimates on its sequences {c,}, {/n} and 

{X,}. In w we prove a general "cancellation" theorem 1.1, and use it in w to 

estimate c, = cn(K).  In w we find three components of X, = x , ( K ) .  The 

information obtained in w167 3 is combined in w to give a close estimate of X, 

(for n => 9). 

We feel that some parts of the paper (for instance, w can be generalized so as 

to enable us to study the T-ideals generated by polynomials of higher degrees. 
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w A cancellation theorem 

THEOREM 1.1. Let K = To(S.). I f  f ( x l , " . ,  x,)x,+l E K.+,, then 

f ( x , , . . . , x . ) E  K,  (i.e. f ( x , , . . . , x , ) =  a . S , [ X l , . . . , x , ]  for some a ~ F). 

Here we shall use the same notation that was used in [2], [3], [4]. In particular, 

we assume that char F = 0 and shall currently use the identification of V, and the 

group algebra F[S,]. 

The proof of Theorem 1 is divided into two major steps. We first show that if 

f ( x l , " ' ,  x,)" Xrt+l ~ K.+I and f ( x ~ , . . . ,  x . )  ~ K,, then 

Xn " S n - l [ X l ,  " ~ 1 7 6  , Xn--1] ~ Xn+l ~ Krt+l, 

Next we show that 

Xn  " S n - - I [ X l ,  ~ 1 7 6  , Xn--1] " X n + l  ~ Krt+l, 

DEFINITION. Let M be a T-ideal (To or T~). We say that M has the "right 

cancellation proper ty"  (r.c.p.) if M satisfies the following condition: 

For any n, if g(xl, �9 �9  x , ) .  x.+~ E mn+l, then g ( x , , . . . ,  x , )  E M,. 

If M is any set of polynomials, M has r.c.p, if To(M) has it. 

"Left  cancellation proper ty"  (l.c.p.) is similarly defined. 

REMARK. Any 7"1 ideal has both l.c.p, and r.c.p. ([3], prop. 1.1), and therefore 

Theorem 1 holds trivially when n is even, since then To(S,) = TI(S,) ([3], lemma 

2.8). We shall therefore assume throughout the rest of this section that n is odd. 

THEOREM 1.2. Let M be a set of polynomials and let x be a variable which does 

not occur in M. Let N = To(xM). If  M has r.c.p., then N also has r.c.p. (Similarly 

for Mx and l.c.p.) 

PROOF. We need the following characterization of the elements of 

N: g ( x ~ , . . . , x , ) ~  N if and only if 

n 
g ( x , , .  . . ,  x , )  = ~ x,p, ( x , , .  . . ,  ~, , .  . . ,  x . ) ,  

i= l  

where p, ~ To(M), 1 =< i =< n. 

The proof of the above statement was given in [3, theor. 3.1]. It now follows 

easily that 

g (x l , "  " , x , )  " x,+l E To(xM) 

if and only if 
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n 

g ( x , , "  ", x . ) "  x.+, = ~ x,p,(2,)" x,+,, 

where pi(i ,)  �9 x,§ = p i ( x ~ , . . . ,  ~ , . . . ,  x , ) .  x,§ ~ To(M).  

Since M has r.c.p., this implies that p, ~ To(M),  1 <- i <- n, and therefore 

g ( x ~ , . . . ,  x , )  = ~ x,p, (2,) ~ To(M),  

as was to be proved. 

COROLLARY 1.3. Since To(S2k) = T~(Szk) and  n - 1 is even, it fol lows that 

To(x . .  S , _ a [ x l , . . . , x , - l ] )  has r.c.p. 

We can now complete the first step by proving 

LEMMA 1.4. Let  K = T o ( S , [ x ~ , ' " , x . ] ) .  I f  

f (x , , . . . , x . ) . x . .~K.+,  and f(x~,. . . ,x.)~K.,  

then 

x. �9 S . _ , [ x , , . . . ,  x . _ , ]  �9 x .+ ,  ~ K . + , .  

PROOF. Let R = To(x, �9 S ._~[x~ , . . . ,  x._~]), then R _~ K so that 

f ( x ~ , . . . , x , ) . x , + i E R . + ~ .  By Corollary 1.3, R has r.c.p, and therefore 

f ( x , ,  �9 �9 �9  x . )  ~ R . .  

It follows from [3, theor. 3.3] that 

R .  = V . ( x .  . S . _ , [ x , , . . . ,  x . _ , ] )  = I q , ~ H 2 ,  

where H , , H z  are minimal left ideals (with character, s [A1], [A2], A1 = (1"), 

A2 = (2, 1"-2)). Let V . f  + V .S .  = L ,  denote the left ideal generated by S. and f in 

V.. If f ~  a �9 S. for any a E F, then V,S ,  E L ,  C_ R .  = H I ~  1"12, so that L,  = 

HI E~)H2 by the minimality of H~,/-/2. 

In particular, x.  . S,_~[Xl, . . . , x._,] E L..  We therefore have: 

x,  �9 S , - l [ x , , . . . ,  x._,] �9 X.+l E V,+,L.  = V,+,S.  + V.+, f  

= v . , , ( S .  [x , ,  �9 �9 �9  x .  ] .  x .+ , )  + v . + , f f ( x , ,  �9 � 9  x .  ) .  X.+l)  c_ K . §  

which completes the proof of the lemma. 

The proof of Theorem 1.1 will he completed once we show that, in fact, 

x , .  S . _ , [ x l , . . . ,  x,_~] �9 X,+l ~ K,+I. To this end we compare the characters of K.+, 

and of 
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D.+I = V .+, (x ,  " S , - , [ x l , "  ", x.-1] " x.+0. 

For ~ E P a r ( n ) ,  we denote by L C_V ,  the minimal 2-si~ed ideal that 

corresponds to ;~ (see [1, chap. IV]). Consider the following partitions of n + 1: 

A, = (1"+'), A2 = (2, 1"-'), A3 = (2 z, 1"-3), A, = (3, 1"-2). 

It was proved in [4] that 

K.+I = J , ~ ) L E ~ ) L ~ L ,  

where J, _C L,, 1 =< i _-< 4, are left ideals, and J1, J3, J~ are minimal. 

The character of D,+I is [A,] + 2[A2] + [A3] + [A4], a fact that follows by twice 

applying [3, theor. 3.3]. Therefore 

D,, + , = J l ~)  J ; ~ )  J ; ~ )  J '4, J'~ C I~,, 1 <= i <-_ 4, J ~, J ;, J '4 

being minimal. 

It follows that if 

x .  �9 s._,[x,,..., x . -1 ]  �9 x . + ,  ~ K . §  

then Jl = J~, ./3 = J~ and J4 = J~. We shall derive the contradiction by showing 

that ./3 ~ J~. For this purpose we invoke the theory of Young diagrams (see [1]). 

The two minimal left ideals J~ and J~ can be computed as follows: 

To the partition A3 = (2 z, 1 "-3) corresponds the Young diagram 

n-1 t 
Consider the two tableaux T1, T2 based on the above diagram: 

1 n + l  2 1 
2 n 3 n + l  

3 T~ = and 7"2 = 
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Let e, be the "essentially idempotent" ([1], Ch. IV, w defined by the tableau T, 

i = 1,2. Note that Tz= k,+~T~, where 

k,+l = (1 ,2 , . - . ,  n + 1)E S.+,. 

It follows that 

and, in the same way, 

- 1  - -  e 2 = k . + l e l k . + l -  k.+lelk ~+1 

e~ = k:l+,e2k.+l. 

LEMMA 1.5. With the above notations 

I) J~ = V.+,e2, 

II) 33 = V,+lelv.+,, where v,.~ = 1 + k.§ + " �9 + k".~. 

PROOF. I) By definition, e2 = a �9 b where 

a = (1 + (1, 2)) (1 + (3, n + 1)) 

and, under the identification of V.+~ and F[S.+~] ([2]), 

= ~] �9 or) (1-(1 ,  + b (~s._,r (sgn tr) n 1)) 

= x ,  . S . _ , [ x 2 , .  . . , x . l  . x . + , -  x . §  S . _ , [ x 2 ,  . . . , x . ]  . x , .  

Obviously, b ~ D,+~; hence e2 = ab E D.+~, so that V.+~ez C_ D,+~. But V.+le2 

is a minimal left ideal in /*3, hence V.+~e2 = J~. 

II) A similar computation for el yields that 

e l = C ' d  where c = ( l + ( 1 ,  n + l ) ) ( l + ( 2 ,  n)) 

and 

a = s ._ , [Xl , - . - ,  x._,].  [x., x.+,]. 

Following [4, lemma 3], one can easily show that 

S . [ x , , . . .  , x . - , , [ x , , x . + , ] ]  = s . _ , [ x , , . . . ,  x._,] .  [x., x.+,] ,,., 

and therefore 

V.+lc .  S . [ x , , . . .  ,X._l,[X.,X.+,]] = V.+,elv.+,. 

By assumption, n is odd, hence it follows [4, lemma 4] that v.+l is invertible. 

But this implies that right multiplication by v.+l in V.§ maps a minimal left ideal 
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in I~ to a minimal left ideal in I,, for any A E Par  (n + 1). In particular,  since 

V.+lel is such an ideal in I,,, so is V,+~elv~+l. Since V.+lelun+~ C_ K~+l, it follows 

f rom what  we know about  the charac ter  of K,+, that  ./3 = V,+lelu,+,. 

We shall later need  

LEMMA 1.6. Leta,  bethecoefficientofk~,§ T h e n a o = a 2 = l  

and a, = 0 if i ~ O, 2. 

PROOF. Assume  5 =< n, and write explicitly 

e , = ( l + ( 1 ,  n +  l))(l+(2, n))(~,~_,(sgno').tT)(1-(n,n+ 1)). 

Let p E &+l be a permutation whose coefficient in el is ~ 0. Direct computation 

shows that  the following are the only possibilities: 

p(n)  = p(n  + 1 ) =  
2 

1 

Since k~+l(n + 1) = i, a, = 0 for  3 _--< i _-- n - 1. Since k~+l(n) = n - 1, an = 0 also. 

No te  also that if p(n)  = n + 1 in the above,  then p(n + 1 ) ~  1, hence  al  = 0 .  

Obviously,  ao = 1, so that  the l emma will be p roved  once  we show that a2 = 1. 

Let  tr = (1, n + 1)(2, n)k~+l(n, n + 1). It is easy to verify that t r (n)  = n, 

t r(n + 1) = n + 1; therefore  tr E &_l. Since k~+l is an even permuta t ion ,  tr is 

odd:  sgn tr = - 1. Wri te  

k~+, = (1, n + 1) (2, n)tr(n, n + 1); 

then obviously,  k~+l appears  in e~, and a2 = (sgn o ' ) ( sgn  (n, n + 1 ) )=  1. 

The  case n = 3 can be done  by similar arguments ,  and is left for the reader.  

COROLLARY 1.7. el(1 + k.+l + " ' "  + k ~+,) ~ 0. 

PROOF. C o m p u t e  the coefficient fll of 1 on the left side. If p E S.+l has a 

non-zero  coefficient in el and pkJ,+~ = 1 for  some 0 = i _-< n, then p = k~++I -~ and 

by L e m m a  1.6, p = 1 or  p = k2,+,--whose coefficients in el are equal  to 1. It 

follows that fl~ = 2 ~ 0. 

THEOREM 1.8. x,S,-l[X~,'" ", Xn-1]" Xn+l ~- K.+l. 

PROOF. By previous  remarks,  the t heo rem will be p roved  if we show that 

A #  J;. 
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Assume that ./3 = J~. Since e2 = k,,+le~kT,+l, we have that ./3 = J~ = V,,+~e2 = 

V,+lelk ~+1. Therefore  

0 ~ J~ = V,+le~(1 + k,+, + . . .  + k."+l) C V.+xel(1 + . . .  + k 7,T~) + V, , . le lk  ~,+, 

= J 3 + J 3 = J 3 .  

SO 

Since ./3 is a minimal left ideal and 0 ~ J~ C Jr3 is obviously a left ideal, J~ = Ja. 

Now, V,§247 = J3 implies that 

V . + l e l ( k , , + ,  + " "  + k2+l) = V . + l e l v , , + l k . + l  = J3k . + ,  

J~k,+~ -1 _ = = V,+l(k ,+le2k ,+,) -  V,+le~, 

pr n J 3 -  V.+~el(1 + . . .  + kT,+,)_C V.+,el+ V.§ . . .  + k.+,)  

Vn+lel~ 

and again we conclude that J g =  V.+~e~. The assumption J3= J~ therefore 

implies that V,+xel = V.+le2. But this is impossible, since e,, e2 are orthogonal 

"essential" idempotents; {1, n + 1} appears in the same row in T~ and the same 

column in T:, while {1, 2} appears in the same row of T2 and the same column in 

T~ ([1], Ch. IV). The proof of Theorem 1.8, hence also of Theorem 1.1 is now 

completed. 

REMARK. Since K = To(s3) is invariant under left-right reflection, it follows 

that if x , + ~ f ( x ~ , . . . , x . ) E K , + l ,  then f ( x ~ , . . . , x , ) E K , .  It is this form of 

Theorem 1.1 that we are going to use later. 

w Let Q be a T-ideal, Q. = Q fq V., then 

Q ' , I  = V.+,Q.x.§ + V.§ c_ Q.+I. 

Our aim in this section is to obtain some information about Q'+,. It can be 

shown that 

V,+IQ,,x,,+I ~ V,,+,x,,§ 

unless Q, = (0) or Q. = V.. Also, we assume throughout this section that 

Q _c C = T([x,, x2]). The notations in this section can be found in [3, w The set 

of partitions Pa r (n )  is well-ordered by the lexicographic order 

(1" )<  (2, 1 " - 2 ) < - - .  < ( n -  1 , 1 ) < ( n ) .  
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Note that if O C_ C and Ix n Q , # ( 0 ) ,  then A < (n). We shall show that if 

A'EPar(n  + 1) is of maximal order such that Ix, fq V, .~Q,x,+t#(0) ,  then 

Ix, n v .+ ,O.x . . ,  # Ix, n v . . ,x .+ ,O. .  

DEFINITION. Let A ( a , , . . . , a , ) ~ P a r ( n ) ,  a~ >- . . .  >-_a, T =  T(A)=  Tx a 

Young tableau for A, A ' = ( a l + l , a = , " ' , a , ) ~ P a r ( n + l )  and denote by 
T(A') = ~ T ~ =  7"(A) the tableau obtained from T(A) by adjoining an additional 

box, with n + 1 in it, to the right upper corner of T(A). For example, let 

)t = (2 ~) E Par (4), 

1 2 
T(A) = 3 4 

then 

If e r~x) is the corresponding idempotent, denote ~r~x)= et~x). Finally, define 

LEMMA 2.1. 

ideal, then 

Let A E Par(n), A'• Par(n + 1) as above and let J, C h be a left 

v . + , J . x . + l  n ~x, c_ L 

PROOF. Note first that for any set of left ideals {Lj} in V.+~, (X~Lj)nlx ,=  

Ej(Lj n Ix,). Now J. _c Ix = XT(x) V.eTtx), hence 

V, .d ,x .+ ,  C_ ~ (W,+,e T~x)x..l n h,). 
T(A) 

By [3, theor. 3.3], M.+1 = V,+ler~x)X,+~ n Ix, is a minimal left ideal, and we show 
that M.+t C ix. In fact, M.+l = V.+l~rCx). TO see this, let 

T(;~) = 

bit 
/ 

/ 
/ then 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

~ ( ~ )  = 

and it follows from basic definitions that 

bl I I ]n+ll 
/ 

I 
/ 

I 
/ 

I 
I 

I 
I 

I 
i 
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j + l  

~r(~) = ~ (b,, n + 1)eT(a) �9 X,~+l (bi+l = n + 1), 
i = l  

so that  V.+lir(~) C_ V.+leT<~)X.+~ fq I~, = M.+1. Since the two sides are min imal  left 

ideals, M~+1 = V,+1~T~). Q . E . D .  

LEMMA 2.2 Let 2<-n, ( n ) # A  = ( a l , . . . , a , ) E P a r ( n ) ,  T ~ ( A ) , . . . , T k ( A )  k 

tableaux for A and g~ = ~ T,(~) the idempotents that correspond to the tableaux ~ (A), 

1 <- i <= k. Finally, let cr E S.+~ be any n + 1 cycle. Then for each 1 <= i <- k there 

exists m = r e ( i )  such that e'~=~rm6~o "-" is "orthogonal" to ~ , " ' , ~ k ,  i.e., 

~e'~ . . . . .  g~e; . . . . .  e~e; = 0. 

PROOF. Since 2--_< n and A # (n),  each tableau T~(A) has more  than one  row, 

so we can write 

,ln+ll 

N 
/ 

/ 
/ 

/ 

Assume ,  wi thout  loss of general i ty ,  that  i = 1, and let d, = j (in T~(A)). Trivially,  

there  exists m = r e ( l )  such that  o'm(/') = n + 1, and the re fore  

l 
/ 

/ 
/ 

/ "  

/ 
/ 

f 

D e n o t e  now by T* the tab leau  ob ta ined  f rom o-mT"~(A) by removing  the box 

[ ~ ,  and write T* = T ( A  *). Clearly,  A* ~ Pa r (n )  and A * > A. Hence ,  for  each 

1 _-< s _-< k there  exist two number s  that  occur  in one  row of T* and one  co lumn 

of T,(A) (see [1]).This is still t rue when we re-adjoin  the box ~ - ] ' ] b a c k  to the 
i i 

above  tableaux,  so that  es .e~--O for  all l < s < = k ,  where  el--e~-~,~)--  

o"~e~l(~)o "-m = o'meltr -m. Q . E . D .  
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THEOREM 2.3. Let 2<=n, ( n ) ~ A  E P a r ( n ) ,  (O)~ J,+lC_i~ a left ideal and 

cr E Sn+l an n + 1 cycle, then J.+lO'~ J,+l. 

PROOF. Let k be minimal and T 1 ( A ) , . . . ,  Tk (A) s tandard  tableaux such that 

Jn+! k C X~=l Vn+ler,~). No te  that  the tableaux ~ ( A )  are also s tandard,  so we may 

assume e'~i = 0 for  2 =< i = k. 

Suppose  J, . lo" = J , . l .  Hence  J,+lO-" = J,§ for all m. By L e m m a  2.2 there 

= = ' = 0 ,  l < i < k ,  so that exists m re( l )  such that e'l c r ' ~ o  "-m satisfies ~el  = = 

J,+le '1 = (0). There fore  

L + l e l  Oe-m = Jn+lO'mel  O'-m = J .+ le~  = (0)  

which implies J ,+~l  = (0). 

Let  a E J . + ~ ,  then a = a l ~ l + . . . + a ~  and a ~ l = 0 .  Since ~ = e ~ ,  e2e~= 

. . . .  ~k~l = 0, we have alex = 0 so that a = a:~2 + �9 �9 �9 + akek which implies that 

J.+~ C_ E,k=2 V,+I~,, a contradict ion to the minimali ty of k. Q .E .D .  

COROLLARY 2.4.. Let 0 be a T-ideal,  O.  = V.  N Q, 

Q _o I Z ~ , ' ' ' , A k  } 2<--n (see [3]) 
l m l ,  �9 �9 mk 

and  assume that (n)  ~ AI = (a~, �9 �9  a,) is max ima l  among  ~ , .  �9  ;t~, ml  >= 1 

Then 

O.+1-o (m;, . - .  

where )t ~ = (al + 1, a 2 , ' " ,  a,) and m '1 >= ml + 1. 

PROOF. By [3, theor.  3.3] 

V~+,O,x,+~--o I ~ ~".'.'. '} 
L m l ,  

(and the same for  V~+lX~+lO.), so that I~, f3 V.+~O.X~+l has length ml as a left 

V~+1 module .  By L e m m a  2.1, I~, fl V.+~O~x~+~ C_ i~. If  o" = (n + 1 , - - . ,  1) E S., 

then (V.+lO.x.+l fl I~,)cr = V.§ fl I~,, and by the last theorem,  

V.+lQnXn+l N IA,~ V.+1x.+~Q~ M I~,, so that 

Ix, f"l Qn+l ~ Ix, N (V,,+lO.Xn+l + V n + l X n + l O n ) ~ I a  , n Vn+lOnXn+l 

as was to be shown. O .E .D .  

APPtaCATIONS. Let  R = To([X~, x2]x3), L = To(xl[xz, x3]), 0 = L A R, O.  = 

V. fq O = L .  fl R.. The  s tructure of  O., n => 3, can be de te rmined  as follows: 
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The structure of R . ( ~  L . )  is given by [3, theor. 3.3], which implies that 

a) A = (n - 1, 1 )E  Par (n )  is maximal such that R.  n I ~  (0), 

b) the length of R.  n It.-1,1) is n - 2 ,  

c) if A > / z  E Par(n) ,  then R. _D I.. 

The same is true also for L., hence, if )t > / z  E Par(n) ,  Q. = R.  n L.  _D I.. By 

Lemma 2.1 and Theorem 2.3, L . ~  R., so that L. n It.-1,1)# R.  n It.-1,1) and by 

(b), L. + R. _D I~.-1,~). It follows from that, by an easy dimensions argument, that 

Q. n It._l,~ has length n - 3. In other words, the n-th co-character of Q. is 

[ n ] + 2 [ n -  1,1]. 

Next consider K = To(s3). Since s3[xl, x=, x3] E L, R, it follows that K C_ Q. 

PROPOSITION 2.5. With the above notations, K. n I~.-,,1)= Q. n I~.-1.o. 

PROOF. By induction on n => 3. If n = 3, K3 = Q3, so assume the equation 

holds for n and show that it holds for n + 1. Since K.+I _C Q.+I, it is enough to 

show that K.+I O It~l) has length => n - 2, which is the length of Q.+1 n It,~l). By 

induction, K.AIt._,1) has length n - 3 .  Apply Corollary 2.4 to the T-ideal K to 

deduce that the length of K.§ n It,~l) is => n - 2. Q.E.D. 

w Theorem 1.1 is applied now to study the codimensions {c.} of K = To(s3). 
The notations can be found in [6]. It was shown there that c. = E~,=l ck.., where 

V~)+ U~)+  K. 
ck,. = dim 

U~'  + K. ' 

and that q , .  =< �9 �9 �9 =< c,,. =< c.-1. 

The relation between cancellation and codimensions is revealed in 

PROPOSmON 3.1. Let O be any T-ideal and {cJ  its codimensions, then 
c.,. = c.-1 if and only if O. has the following "n-left cancellation property": 

x . g ( x l , . . . , x . _ l )E  O. implies g ( x l , " ' , x . - 1 ) ~  O.-l. 

PROOF. Left multiplication by x. induces an isomorphism of V.-1 onto V~ "~ 

which implies that 

V~. "~ + x .O . - i  V~ "~ + O. c.-1 = dim V.-1 + 0.-1 _ dim _-> dim = c,~ 
O.-1 x.O.-1 O. "" 

Therefore,  c,~. = c.-1 if and only if any linear dependence modulo O. among the 

monomials of V~ "~ implies the same dependence modulo x.O.-l. But that is 

exactly n-left cancellation, which is therefore equivalent to the condition 

c,~. = c.-1. Q.E.D. 
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LEMMA 3.2. Let  {&} be the codimensions  o f  L = To(x~[x2, x3]). Then  for  all 

l<-_k<-_n, dk,. = 1. 

PROOF. Let C = To([X, x2]) be the c o m m u t a t o r  ideal. It is well-known that its 

codimensions  are all equal to 1. Since x,C._~ C_ Ln we have 

v t'> + L.  
l = d i m  V, ~+ C._~_ dim V(2) + x,C._~ >= di m . ~ = d~, .  

C,,-I x~C~_l L~ 

Hence,  dn, n =< 1. On the o ther  hand,  dn = n;  hence dk, n = 1 for all 1 =< k =< n. 

Q .E .D .  

COROLLARY 3.3. Let  {c,} be the codimensions  o f  K = T0(s3). Then 1 <= ck.. for 

all l <=k <=n. 

PROOF. Since K C _ L  we have c.->_d~ as well as c k . . = > & . . = l  for all 

l < k <__ n. Q.E .D.  

The  key result that will enable us to carry on the computa t ion  of {cn} is 

COROLLARY 3.4. With the above notations (K = To(sa)), Cl,a = c2,4 = 1, c3,4 = 

2 a n d c 4 , a = 5 .  

PROOF. It follows f rom [4] that c4 = 9. Trivially, c3 = 5, so T h e o r e m  1.1 and 

Proposi t ion 3.1 imply that Ca = c4.4 = 5. Hence  cL4+ c2,4+ c3,4 = 9 - 5  = 4 and 

since 1-<_ ci.4 -< _ c2.4 -< c3,, are integers, the only possibility is cl,4 = c2,~ = 1 and 

c3.4 = 2. Q .E .D .  

REMARK. Let p, = x l x , ~ ' ' ' x ~ n  ~ V~ ) and assume that /z E U~)+  K.. By 

applying any permuta t ion  0 on {2,. � 9  n} we still have p, (xl, x~,.  � 9  x0.) ~ U~)+  

K., and therefore  V~ ) C_ U~ ) + K.. But  this implies that c~,. = 0, a contradict ion.  

In o ther  words,  for any single monomia l  p, E V~ ), we have tz ~ U~)+  K.. This 

can easily be extended to a more  general  s ta tement :  Let  /x ~ V~ ) be a 

monomial ,  1 =< k =< n. T h e n / x  E U ~ ) +  K, (to p rove  this, t ranspose the indices 1 

and k). As a result we have the following s ta tement :  Let  / ~ , . . . , / z ,  E V~ ) 

(1 =< k =< n)  be a set of monomials  such that each two are linearly dependen t  

modulo  U~>+ K.. Then  each monomiaI  among  { /z , -  � 9  ~,} spans all the o thers  

modulo  U ~ ) +  K.. We will find it convenient  to write " d e p ( U ~ ) +  K , ) "  instead 

of "l inearly dependent  modulo  U~  )+ K , " .  

PROPOSITION 3.5. Let  3 <-- n and  1 <- k <- n - 2. Then c~, ~ = 1. 

PROOF. For  n -- 3 this is trivial, while Corol lary  3.4 implies it for  n = 4. By 
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the prev ious  remarks ,  it is enough  to show that  ca-2.. =< 1, and we show it by 

induct ion on n, assuming that  c._~,._1 = 1. 

Let  /z~ = x n _ 2 a ( x ~ x O b ,  /z2 = x , _ 2 c ( x ~ x O d  be two monomia l s  in V~ "-2) that  

" c o n t a i n "  x~x~. T h e  subst i tut ion x, ~ x , x l  and x / ~  xj§ j #  1, induces a one- to-  

one  l inear  m a p  ~ :  V ~ _ ~  V~ satisfying: 

1) /z , , /z2E ~0(V~%-~3'), 

2) ,~ ( U~_-~ ~)) c_ U~; -2~, 
3) ~ ( K . - 0  c_ K.. 

This, toge the r  with c,-3, .-~ = 1 implies that  tz~, ~2 are d e p ( U ~ - 2 ) +  K, ) .  

By a previous  r e m a r k  we can choose  arbi t rary  monomia l  f rom the set of 

monomia l s  {tz = x , _ : . .  �9 x~x~. �9 �9 } such that  

~ 1  ~ X n - 2 X 1  " " " 

d~r = X n - 2 " ' "  X 2 X I  

J • f f n - I  ~ X n - 2  " " " X n X l  

span V~ "-2) modu lo  U~n-2~+ K.. 

Now,  the subst i tut ion xj ~ x~+l, 1 -< j =< n - 1, fo l lowed by right mult ipl icat ion 

by xl induces a one - to -one  l inear  m a p  ~:  V~_I ~ V. which has p roper t i es  1', 2', 3' 

similar to 1, 2, 3 above.  In part icular :  

1') N2,-.. ,N,_, ~ ~(v'~"-?) 
so that  again we conclude that  each two f rom X2,"" ", g ' .-~ are dep  (U~"-2)+ Kn). 

H e n c e  ,A/'~ = x , _ ~ x ~ a  and • .-3 = x~_2ax l  span V~ "-2) modu lo  U~"-2~+ K., and a 

can be chosen convenient ly .  Choose  a = b �9 c where  b = x, ~, c = x , x 2 .  �9 �9 x , - 3 .  

The  subst i tut ion x~---~x~, x 2 - - ~ x . _ 2 ,  x3---~ b, x , - - ~ c  induces a one - to -one  l inear 

m a p  0: V4---~ V,, such that  

~") x , , N . _ ~  o(v',2~), 
2") o(u~, 2)) c_ u~ "-~, 
3") 0 (K4) C K.. 

This implies that  J~l , ,~f fn-3  a r e  dep(U~"-2)+  K. ) ,  and the re fore  c._2.. < 1. 

Q . E . D .  

PROPOSITION 3.6. L e t  n >-" 3, t h e n  c ~-~,,  <= 2. 

T o  p rove  this propos i t ion ,  one  needs  a fur ther  knowledge  abou t  the l inear  

relations,  modu lo  U~3~+ K4, a m o n g  the monomia l s  of V~, 3). Le t  us begin with 

DEFINITION 3.7. Let  )t ~ P a r ( n ) ,  I ,  C_ V. the co r respond ing  2-sided minimal  
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ideal with u. ff/~ its unit element,  and let g ~ V.. Then gu. is called " the 

component  of g in L "  and g has a trivial A-component if gu. = O. 

LE~MA 3.8. The components o/x~[x~, X4]X 1 and x=[x,, x~]x3 in I(~.~) are linearly 

independent. 

PROOF. Let u = u(2,2) be the unit element in Ir and suppose there is an 

a U F such that: 

o = x, lxOu + (x [x4, x, lx,)u = x4]x, + x,]x,)u. 

Hence ./4 = V4" x2([x3, x4]xl + a[x4, xl]x3) intersect I(2,2) trivially. Since 3"4 

V4 @v3 V3([x2, x3]xl + a [x3, xl]x2), theorem 3.3 in [3] implies: 3"3 = 

V3([x2, x3]x~ + a[x3, xl]x2) intersect I(2,, trivially and is therefore contained in 

F .  s3. This would imply that 33 = F .  s3, an obvious contradiction. 

As in w let O = L N R and let P, = V4(x~[x2, x3]x4). The character x(P4) is 

[14] + 2[2, 12] + [2, 2] + [3, 1]. Since P4 C Q, we have P4 f3 1(3,1) = Q,* f'] lo. 1) = 

K4 A Io ,  1). Also, by [4], K4 _~ P4 A I(2,12), P4 f3 I,,).  We can now prove 

LEMMA 3.9. Let g E V4 and suppose that g �9 ut4) = 0 and g �9 u(3.1) E K4, then 

there exist a, fl ~ F such that 

g +  x2[x , x,Jx, + [3x2[x,, x,lx  K,. 

PROOF. Denote  A4 = / ( 4  fq I(2.2) and B4 = P4 N I(2,2). It was shown in w that 

A 4 g B 4 .  Since A4, B4 are minimal and 1(2.2) has length 2, I(2,2) = A4~]~B4. If 

u=u(2.2), then g . u E A 4 ~ B 4 ,  so that g . u  = a 4 + b 4 ,  a 4 ~ A 4  and b4EB4. 

Since d i m B 4 = 2 ,  it is spanned over F by h4.u =x2[x3, x4]xl" u and h~u = 

xz[x,, xl]x3" u. Therefore,  there are - a, - / 3  E F such that b, = - ah4u - ghIu 

and gu = a 4  - ah4u - flh~u. Hence 

(g + ah4 + flh ~)u = a4 E K4 f3 I~2.2), 

which implies that g + oth4+ f l h ~  K,. Q.E.D. 

LEMMA 3.10. [Xl, X2] [X3, X4] has no component in I~3,1) (and in/(4)). 

PROOF. Let D,  = V4([xl, x:]x3x4), D'4 = V4(xlx2[x3, x4]) and E4 = 

V4([x,, x2] [x3, x4]). Clearly, E4 C D4 N D~, so that E4 A 1~3.1) C 

(D4 (] 1t3,1)) f"l ( D ~  (-'1 Io,1)). The character of D4 (and of D~) can be computed by 

twice applying [3, theor. 3.3], and it is [1'] +2[2, 1"] + [2,2] + [3, 1], so that 

9 4  A I(3,1) and D~ ~ I(3.1) are minimal. This implies that D ,  f3 Ir is generated 

over V4 by the idempotent that corresponds to 
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and D~ n Io . ,  by 

A T - I D E A L  

1 3 14  
2 

31ll214 
Obviously, these two idempotents are orthogonal, which implies that 

(D4 n ;o,,)) n (D~ n/(3,1)) = (0). 

H e n c e  E4 n [(3,1) = (0). 

We can now prove our main lemma: 

LEMMA 3.11. The fol lowing monomials  in V~ 3~ are dep(Ut,3)+ K4): 
1) x3x,xlx2 and x3x,x2x~ are dep(Ut43)+ K4), 

2) X3XIX4X2 and x3x2x,x~ are dep(U[3)+ K4), 
3) x3x,x~x2 and x3xlx,x2 are dep(UC43)+ K,). 

119 

Q.E.D. 

PROOF. 

1) By Lemmas 3.9 and 3.10 there are a,/3 E F such that 

[Xl,  X2] [X3, X41 + 101~X2[X3, X4]X' "~ /3X2[X4, Xl]X3 ~ K4 

~--" XlX2X3X 4 -- XlX2X4X 3 "Jr- V2 

where v2 E V~ 2). Hence XIX2X3X4, XlX2XaX3 are dep (V~2)+ K,). The permutation 
(1,3)(2,4) applied to the ind ices iand  mapping V~ 2} isomorphically onto 
UC43)= V~4~ithen implies (1). 

2) Let 

g : X l X 2 X 3 X 4 -  XlX4X3X2 "dl- X 3 X 4 X l X 2 -  X3X2XlX4. 

Conjugation by the transposition (2, 3) induces an automorphism in each I,. By a 
direct computation, (2,3)g(2,3)= [x,x2] [x3, x,] so we conclude that g has no 
components in It4) and I o ,  1 ). Therefore there are a,/3 E F such that g + 

O/X3[X2, X4]Xl + /3X3[Xa, XI]X2 ~ g4, hence xlx2x3x, and XlX4X3X2 are dep (V~3) + K4). 
Apply the permutation 

(132314 ~) 

to the last statement to conclude that x3x~x,x2 and x3xzx4x~ are dep (U~ 3) + K,). 
3) Lemma 3.9 implies that there are a,/3 ~ F such that 
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XI[X2, X3]X4 ~- O~X2[X3, X4Ixl + [3X2[X4, Xl]X3 E g4, 

which shows that XlX2X3X4 and x~x3x2x4 are dep(V~2~+K4]. By applying the 

permutat ion (1, 3)(2, 4) to the indices we obtain (3). Q.E.D.  

NOTE. It can be shown that X3XlX2X~ and x3x2x~x4 are indep(Ut,3)+K4). 

However ,  this is unnecessary for the later discussion. 

COROLLARY 3.12. Let  

m = {x3x4x~x2, x3x4x2x~, x3xzx4x2, xax2x4xl} 

and 

B = {X3XlX2X4,  X3X2XlX4}. 

Then, for any lzl E A and/z2 E B, {/zl,/x2} is a basis for V~ 3~ modulo U~ 3~ + K4. 

PROOF. We know that c3.a = 2 so there are at most two monomials  in such a 

basis. Also, by the previous lemma, every two monomials  in A are dep (U~ 3~ + 

K4). Let /x t  E A, /x2E B and assume they are dep (U~3)+ K4). Then (1, 2)/x~ and 

(1,2)p.2 are also dep(U~3)+K4). But (1 ,2 ) /x IEA,  hence /zi and (1,2)/x~ are 

dep (U~3) + K4), while {/z2, (1, 2)/x2} = B. It now follows that every two monomials  

in V~ 3) are dep (U~43) + K4) which would imply c3.4 -< 1, a contradiction. Q.E.D.  

We can now turn to the 

PROOF OF PROPOSITION 3.6, namely: C ,_ l . ,_  <- 2. We use induction on n = 3 to 

show that the two monomials  p.~= x,_~x~(x2. . .x ,_2x~)  and /x2= 

X,_l(X2. �9 �9 xn-2x2)x~ span V~, "-~) modulo (Ut,"-1~ + K,).  If n = 3, there is nothing to 

prove, and the case n = 4 is implied by Corollary 3.12. 

[NOTE. We shall use, several times, the "substitution argument" ,  similar to 

that used in the proof  of Proposition 3.5; namely, the one-to-one linear map that 

is induced by some substitution. The reader should check the corresponding 

properties 1, 2, 3 of such a map.] 

Assume that 

Nl = x , -2Xl (X2""  x,-3x~-l) 

and 

N 2  = Xn_2(X2 "~  Xn--3Xn--1)X 1 

~7(n-2) span - - , - i  mod (U~."-lZ)+ K,_~), s <- n. For a given 2_- < i -< n consider the set of 

(n - 2)! monomials  

M ~'~= { M  = x . - l " ' x i x l " ' } .  



VOI. 26, 1977 A T- IDEAL 121 

As in the beginning of the proof of Proposition 3.5, the same substitution 

argument--together with the induction hypothesis--imply that 

x . _ i x 2 x 3 . . "  x, I (X ,X , )X ,+I ' ' '  X.-2X.  and x , - 2 x 3 " ' ' ( x , x l ) " "  x .  2x.x2 

span M "~ mod (U~.~-" + K,). The following set of 2(n - 1) monomials therefore 

span V ~ - ' m o d ( U ~ - ' ~ + K . ) :  

SI = (Xn__lXl)X2(X3 " ' ~  Xn-2Xn) 

S~ = x . _ , ( x ~ x 3 ( x ~ . "  x ._~x . )  

$3 = Xn- lX2(X3Xl )X4" ' "  Xn-2Xn 

T, = ( x ~  xn_:x.  )x:  

T~ = x ._ , ( x~ .  " x . _ ~ x . ) ( x ~ x , )  

T3 = X, , - I (XaXI)X,*"  " " X,,-2X,,X2 

Sn-, = x . - , x 2 . . ,  x n - d x . x , )  T._, = x . _ , x 3 . . "  x~-dxoxOx~ 

T h e  case  n = 5. Here the 8 monomials are 

S1 = X4XlX2X3X5 

$2 = x 4 x 2 x l x 3 x 5  

$3 = x a x 2 x 3 x ~ x 5  

$4 = x4x2x3x5x l  

T ,  = x 4 x , x 3 x s x 2  

T2 = x n x 3 x l x 5 x 2  

T3  = x 4 x 3 x s x l x 2  

T4 = x 4 x 3 x 5 x 2 x t  

The monomials $2, $3, $4 "contain" x4x 2. The substitution (check the "substitu- 

tion argument") x~ ~ x l ,  x2---~ x3, x3--~ XnX2, x4----~ x5 maps: 

$2 = x 3 x 1 x 2 x 4  "--~ $2,  

$3 = x3x2x~x,---~ $3 and 

$4 = X3X2X4Xl--"~ $4" 

By Corollary 3.12, $3 and S, span $2 rood (U~3~+ K4), so that $3 and S, span $2 

mod (U~ 4~ + Ks). 

The remaining S~, $3, S~ contain x2x3, and a similar substitution argument, 

based on the substitution x~---~x~, x2---~x2x3, x3---~ x4, x,---~x~, yields that $3 is 

spanned, mod(U~'~+ Ks), by S~ and S,. 

The substitution x ,  ~ x , ,  x2---~ x2, x3----~ x4x3, x4---~ x5 maps three monomials 

from A (see Corollary 3.12) to /'2, T3, T4. Hence T4 spans the other two 

mod(U~*~+ K4). Write M ~  N if M and N are dep(U~'~+Ks). We are now 

constantly using Corollary 3.12 and substitution arguments: 
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T1 = X4(XlX3)XsX 2 ~ X4X5X2(XlX3) = T (by the substitution argument  x~---> x~xs, 

X2""~X2, X 3 " " ~ X 4 ,  X4""--> Xs), and 

T4 = X a X 3 X s ( X 2 X l )  ~ X 4 X s ( X 2 X l ) X 3  = T (by the substitution x~---> x2xl ~ x2---> x3, 

X3 "'> X4, X4 ~ Xs). 

Finally, S 4 :  x 4 ( x 2 x 3 ) x s x I ~  x 4 x s ( x 2 x 3 ) x I :  S (by x~---> x~, x2---> x2x3, x3---~ x,, 

x4---> xs) and 

S ~ x4(xsx2)x~xs = T (xl---> x~, x:---> xs, x3---> xs, x4---> xsx2). The conclusion is 

that $4 spans T, and 7"4 mod(U~4>+ Ks); hence S~ and S, span V~ 4> mod(U~4)+ 

Ks), as was to be shown. 

The case 6<=n. Again, consider the 2 n - 2  monomials  S ~ , . . . , S , _ ~ ,  

T , , . . . , T , _ , .  

Induction and the substitution xl-->xl,  x2--*x2xs, x~--->xi+~ if 3=<i-< n -  1 

imply that $3 is spanned m o d ( U ~ , " - ' +  K,) by S~ and S._~. 

Induction and the substitution x~ ---> x~, xj ---> xj+~ if 2 < j <= n - 2, x,_~ ---> x.x2 

imply that 7"3 is spanned by T~ and T2 mod(U~."-~)+ K.) .  

We can thus erase $3 and T3 and the remaining 2n - 4 monomials  span V<. " -"  

mod (U<, "-~) + K.) .  Moreover,  each of these contain xsx4. Since 4 < n - 1, we can 

use the substitution x~--->x~, x2--->x2, x3--.->x3x4, xi -->Xi+l if 4_- < i --< n - 1 which, 

together  with the induction hypothesis imply that S, and S._, span the other  

monomials,  and therefore span V~, " -"  mod (U~,"-~)+ K,) .  The proof  of Proposi- 

tion 3.6 is now completed.  Q.E.D.  

THEOREM 3.13. Let  {c.} be the codimensions of  K = To(s3); then c, <= 

n (n  + 1)/2 - 1 for n >- 2. 

PROOF. By induction on n. If n = 2, 3, 4, equality holds. By Propositions 3.5 

and 3.6, c . - - - l +  . . .  + 1 + 2 + c , . , _ - < 1 +  . . .  + l + 2 + c , _ l = n + c , _ l < - _ n +  

(n - 1 ) n / 2 -  1 = n(n  + 1) /2 -  1. Q.E.D.  

w The structure of K = To(s3). 

We combine now the results of w167 3 together with an unpublished result by 

R. Rasala, [5], to obtain a close estimate of the structure of K = To(s3). 

LEMMA 4.1. Let  n >- 4, then 

a) K._D I.-) ,  

b) K.  D_ Ia,,.-~). 
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PROOF. Part  (a) is trivial since I~,.~ = F .  s,[x], where  s, = s,[x~, �9 � 9  x,]  is the 

s tandard  po lynomia l  of  degree  n. 

Part  (b) is p roved  by induction on n _-> 4. If n = 4, this is shown in [4]. Let  

n + 1 = 5 and assume K, D_ 1~.)01~,~.-,). By [3, theor.  3.3], V,+~K,x,.I n I~2,~.-,) 

has length at least (n - 1)+  1 = n. Since n is the length of It2,l--,), it follows that  

K,+~ D_ V,+IK, X,+~ D_ 1~2,1"-'). Q . E . D .  

COROLLARY 4.2. Let n ->4, /z ~ P a r ( n )  and suppose L n K,~I~  n Q., then 

(2, 1 "-z) < /x < (n - 1, 1). 

PROOF. Follows direct ly f rom Propos i t ion  2.5, L e m m a  4.1 and  the fact that  

A = (n)  does  not  occur  in K ,  nor  in Q,. 

DEFINITION. For  a given n, consider  the d imens ions  of the min imal  left ideals 

in V, = F[S,] and write t hem in an ascending order :  a ~ <  a ~ ) <  . . .  , thus 

obta ining the infinite sequences  {a~)}7=1, {a~}7=1, . . .  . 

NOTE. Obvious ly ,  a~) = 1 for  all n. It was shown in [2] that,  except  for  n = 4, 

a~) = n - 1. Moreove r ,  if n => 7, the only par t i t ions  that  yield d imens ion  n - 1 

are ( n -  1, 1) and (2, 1"-2). Recent ly ,  the following result,  a m o n g  others ,  was 

ob ta ined  by R. Rasa la  [5]. 

THEOREM 4.3 (Rasala) .  Let n >= 9, then a~ ) = n(n - 3)/2 and the only parti- 

tions that yield this dimension are ( n -  2, 2) and (22, 1"-4). 

We  can now p rove  our  main  result,  namely:  

THEOREM 4.4. Let X, be the n-th co-character of K and let n >= 9; then 

X , = [ n ] + 2 [ n - 1 , 1 ] + a [ n - 2 , 2 ] + / 3 1 2 2 , 1 " - 4 ] ,  a + f l < = l .  

PROOF. We  have  a l ready found  three  c o m p o n e n t s  in the co-charac te r  X. : one  

in It ,)  and exact ly two in It,-1,1). If K ,  = Q,, we are done:  a = /3  = 0. A s s u m e  

K , ~ Q , .  H e n c e  there  is a /x E P a r ( n )  such that  I~ A K , ~ L  O Q,, and by 

Corol la ry  4.2, ( 2 , 1 " - 2 ) < / x  < ( n - 1 , 1 ) .  T h e o r e m  4.3 then implies  that  

d i m ( Q ,  n I , ) -  d im (K,  n I~)-> n(n  - 3)/2, so that  d i m Q .  - d i m / ( .  _-> 

n(n - 3)/2. Since K ,  C Q.  and n! - d im Q.  = 2n - 1 it follows that  

n!  - d i m / ( ,  -> 2n - 1 + n(n  - 3)/2 = n(n  + 1)/2 - 1. 

In o the r  words,  c, = c o d i m K ,  => n(n + 1 ) / 2 - 1 .  By T h e o r e m  3.13, c, = 

n(n + 1 ) / 2 -  1. 
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Moreover,  by applying Theorem 4.3 again, we obtain the statement about the 

co-character X,. Q.E.D. 

COROLLARY 4.5.,  Let {1,} be the co-lengths, {c,} the codimensions of K and let 

n >-_ 9. Then l, = 3 or l. =4,  c . = 2 n - 1  or c, = n(n + l ) / 2 - 1 .  

PROOF. IS obviously included in that of Theorem 4.4: If K, = Q., then I, = 3 

and c, = 2n - 1. If K , ~ Q . ,  then I, = 4 and c, = n(n + 1) /2 -  1. 

We end this paper with two conjectures. 

CONJECTURE 1. For n => 4 

X- = x - (K)  = In] + 2[n - 1, 11 + [n -2 ,21  

(which implies that c . (K)  = n(n  + 1) /2 -  1 and I. --- 4). 

NOTE. It can be shown that c. (K)  = n(n  + 1)/2 - 1 for n _-> 4 if and Only if a 

generalized form of the cancellation theorem (Theorem 1.1) holds. We therefore 

make 

then 

CONJECTURE 2. Let d_-> 2 be any integer and n => d. If 

f ( x , ,  . . . , x ,  ) . x . , ,  ~ To(s,[x,,-.., x,]) 

f ( x , , . . . ,  x , )  ~ T o ( s d [ x , , . . . ,  xd]). 

The same holds for x .§  . . . ,  x.) .  

Added  in proof. Recently we obtained the following results: Call 

dh[x; y] = dh[xl , ' '  ", xa ; y , , ' "  ", ya-~] = ~_, ( -  1)"X,,,y,xo~y2"''yh-lX~ 
o r E S  h 

the "Capelli" polynomial of (x) degree h. 

If A = ( a , , ' " , a h ) ~ P a r ( n )  and al>=. . .>=a,~O,  then h = h ( A )  is the 

"height"  of A (and D(A)). 

THEOREM 1. Assume the T-ideal Q contains & [ x ; y ] .  Then for every n, 

Q, D L for all ,~ E Par(n)  such that h(A)>= h. 

THEOREM 2. Indeed: d3[x; y ] E  To(s3[x])= K (and similar results were ob- 

tained for To(st[x1) , 2 <- i _-<7). 

As a result, [22, 1" '] is eliminated from X. (K) for n _-> 5, since h (25, 1"-') = 

n - 2 .  

Details will appear elsewhere. 
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