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THE T-IDEAL GENERATED BY THE
STANDARD IDENTITY s3[x1, X2, X3

BY
AMITAI REGEV

ABSTRACT

Let K = To(ss), {c.} its codimensions, {I,} its colengths and {x.} its sequence of
co-characters. For 9=n, ¢,=2n-1 or ¢,=n(n+1)2-1, 3=, =4 and
x-=[n]+2[n-1,1]+ a[n -2,2]+ B[2%,1""*] where a + B =1.

Introduction

In [2], [3] and {4], J. Olsson and the present author demonstrated that the
representation theory of the symmetric group can be used for studying certain
problems concerning algebras satisfying a polynomial identity (P.I. algebras)
over a field F of characteristic zero. This is done by identifying the space V, of
multilinear polynomials in x,,---,x. with the group algebra F[S.] of the
symmetric group. The intersection K, = K NV, of a T-ideal K with V, = F[S,]
is then a left ideal in V, (see [2]), and we can write V,, = K, @ J,, where J, is a
left ideal. Although J, is not unique, its character y. is, and y, is “‘the n-th
co-character of K. {y.} form the sequence of co-characters of K. The
codimension ¢, = dim J, and the length I, of J, can be recovered from {y,} (see
[3], [6])- We saw in [3] that {I.} is closely related to the question of whether or not
a T-ideal is T-finitely generated.

This paper continues [4]: we study the To-ideal K = To(s;[ x4, X, X3]), gener-
ated by s; = Z,e5, (— 1)7X,,X X, and find estimates on its sequences {c.}, {/»} and
{x»}. In §1 we prove a general ‘““cancellation” theorem 1.1, and use it in §3 to
estimate ¢, = ¢.(K). In §2, we find three components of x, = y.(K). The
information obtained in §§2, 3 is combined in §4 to give a close estimate of y,
(for n=9).

We feel that some parts of the paper (for instance, §2) can be generalized so as
to enable us to study the T-ideals generated by polynomials of higher degrees.
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§1. A cancellation theorem

THEOREM 1.1. Let K =TyS,). If f(xi, ", % )%01 € Kouy, then
fxi, -, x)EK, (ie. f(x,"  ,x.)=a*S.[x1,"**,x.] for some a € F).

Here we shall use the same notation that was used in [2], [3], [4]. In particular,
we assume that char F = 0 and shall currently use the identification of V, and the
group algebra F[S,].

The proof of Theorem 1 is divided into two major steps. We first show that if
f(x1, ", %) Xae1 € Koiy and f(xy,+ -+, x.) € K, then

xn * Sn—l[xla Tt xn—l] * xn+1 E Kn+1-
Next we show that
Xn - Sn—l[xly T, xn—l] * Xn+1 E Kn+1-
DEeFINITION. Let M be a T-ideal (T, or T,). We say that M has the “right
cancellation property” (r.c.p.) if M satisfies the following condition:

For any n, if g(x:, "+, X2)* Xns1 € M,sy, then g(xy,- -+, X, ) E M,
If M is any set of polynomials, M has r.c.p. if To(M) has it.
“Left cancellation property” (l.c.p.) is similarly defined.

REMARK. Any T, ideal has both l.c.p. and r.c.p. ([3], prop. 1.1), and therefore
Theorem 1 holds trivially when n is even, since then To(S,) = T)(S.) ([3], lemma
2.8). We shall therefore assume throughout the rest of this section that n is odd.

THEOREM 1.2. Let M be a set of polynomials and let x be a variable which does
not occur in M. Let N = To(xM). If M has r.c.p., then N also has r.c.p. (Similarly
for Mx and lLc.p.)

Proor. We need the following characterization of the elements of
N:g(xi,---,x,)E N if and only if
g(xl,“.9xn)=zxipi(xla'.'yfiy" 'yxn)y
i=1

where p € To(M), 1=i=n.
The proof of the above statement was given in [3, theor. 3.1]. It now follows
easily that

g(xla' Ty xn) *Xns1 € To(XM)

if and only if
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g(xl, fee, xn) Xns1 T 21 xipi(xAi) * Xn+1,

where pi(£) Xpe1 = pi(X1, 0003 %t 00y Xn ) Xu € To(M).
Since M has r.c.p., this implies that p;, € To(M), 1 =i = n, and therefore

g(xy, 0, %)= zx.})i(f:)e To(M),

as was to be proved.

CoroLLary 1.3, Since To(Sa)= Ti(S2) and n — 1 is even, it follows that

To(Xn * Saci[X1, -+, Xa1]) has r.c.p.
We can now complete the first step by proving
Lemma 1.4, Let K = To(S.[xy, -, x.]). If
flxy, -, %) %0 €Ky and  f(xy, -+, x)E K,
then
Xn * Sna[ X1, 0005 Xaca] * Xne1 € Koo

Proor. Let R = To(x, ' Sai[X1,"**,%.1]), then RDIK so that

f(x1,-*+,X)* Xas1 € Rova. By Corollary 1.3, R has r.c.p. and therefore

f(xy, -+, %) € R..
It follows from [3, theor. 3.3] that

Rn = Vn (xn ° Sn—l[xh DY xn—l]) = HI@HZ,

where H, H, are minimal left ideals (with characters [A.], [A2), A1=(1"),
A2=(2,1""%). Let V.f + V,S, = L, denote the left ideal génerated by S. and f in
Vo If f£a-S, for any a €EF, then V,S,SL, CR, = H,@®H,, so that L, =
H,@ H, by the minimality of H,, H,.

In particular, x, * Sp_i[%1, "+ -, x._1] € L.. We therefore have:

Xn * Sn—l[xl, Tt xn—l] *Xur1 € VoL, = VierSa + Vn+1f
= n+1(Sn [xla Y xn] : xn+1) + Vn+l(f(xl, vt ,xn) : xn+l) ; Kn+1

which completes the proof of the lemma.

The proof of Theorem 1.1 will be completed once we show that, in fact,
Xn * Saca[X1,***, Xuo1] * Xns1 & Korr. To this end we compare the characters of K.,
and of
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D,..= Vn+1(xn ‘ Su—l[xl, T, xn—-l] : xn+1)-

For A €Par(n), we denote by I, CV, the minimal 2-sided ideal that
corresponds to A (see [1, chap. IV]). Consider the following partitions of n + 1:

A] = (1"+l), Az = (2, 1"‘1), Ag = (22, 1"—3), AA = (3, 1"_2).
It was proved in [4] that
K,.= -’1@-’2@-’3®J4’

where J; C I,, 1 =i =4, are left ideals, and J,, J5, J, are minimal.
The character of D,., is [A,] +2[A;] +[As] +[A4], a fact that follows by twice
applying [3, theor. 3.3]. Therefore

D,.=11@5L@I:PJ, JICL, 1=i=4, J|,J} J,

being minimal.
It follows that if

Xn ® sn—l[xh T, xn—l] *Xn1 € Kn+l,

then J, =Ji, Js=J; and J, = J;. We shall derive the contradiction by showing
that J; # J;. For this purpose we invoke the theory of Young diagrams (see [1]).
The two minimal left ideals J; and J; can be computed as follows:
To the partition A; = (22,1"7%) corresponds the Young diagram

r

n—lJ

n

Consider the two tableaux T, T, based on the above diagram:

1 |n+1 2 1
2 n 3 in+1
T, = 3 and T,= 4

= ]
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Let ¢; be the “essentially idempotent” ([1], Ch. IV, §1) defined by the tableau T,
i =1,2. Note that T,= k,,,;T;, where

k..=(01,2,---,n+1)ES,...
It follows that

€= kni1€:1K i1 = kniresk i
and, in the same way,

er=kii€zknir.

LemMma 1.5. With the above notations
I) JC; = Vn+leZ7
) Ji= Vaaevnn, where vy =1+ Ko+ <o + kil

Proor. I) By definition, e, = a - b where
=1+1L2)A+@3,n+1)

and, under the identification of V,., and F[S...] ([2]),

b=< > )(sgna)-a-)(l—(l,n+1))

TES,_1(2,---,n

= X1 Sn—l[xz, Y xn] *Xn+1 T Xnar” Su—l[xz, tt xn] * Xy

Obviously, b € D,.,; hence e, = ab € D,.,, so that V,,,e,C D,.,. But V,,,e,
is a minimal left ideal in I,,, hence V,.,e,=J}.
ITI) A similar computation for e, yields that

eer=c-d where ¢c=(1+({1,n+1))(1+(2,n))
and
d=Su X1, Xnca]  [Xny Xusa]-
Following [4, lemma 3], one can easily show that
Salx1, -+ 5 Xnmty [Xns Xnsa]] = Suca[X1, + 5 Xnoa] * [Xny Xnid]
and therefore
Veas1€ = SalXs, -+ Xnct, [Xms Xns1]] = Visr€10nir.

By assumption, n is odd, hence it follows [4, lemma 4] that v,., is invertible.
But this implies that right multiplication by v,., in V,.,; maps a minimal left ideal
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in I, to a minimal left ideal in I,, for any A € Par(n + 1). In particular, since
V,.+1€1 is such an ideal in I, so is V,,1€1V..1. Since V, .11V, C K4y, it follows
from what we know about the character of K., that J;= V,..e:v,.1.

We shall later need

LemMMA 1.6. Let a; be the coefficient of k},., ine;,0=i=n. Thenay=a,=1
and a; =0 if i#0,2.

ProoF. Assume 5= n, and write explicitly
e1=(1+(1,n+1))(1+(2,n))< > (sgno-)-a) (1-(n,n+1)).
aES,_1

Let p € S..: be a permutation whose coefficient in e; is # 0. Direct computation
shows that the following are the only possibilities:

n+1 n+1
n
p(n)= p(n+1)=
2
1 1

Since ki (n+1)=i, i =0for3=i=n-1.Since ki..(n)=n-1,a.=0 also.
Note also that if p(n)=n +1 in the above, then p(n +1)# 1, hence a;, =0.
Obviously, a, = 1, so that the lemma will be proved once we show that a, = 1.
Let o =(1,n+1)(2,n)ki%,(n,n+1). It is easy to verify that o(n)=n,
o(n+1)=n+1; therefore o € S._;. Since k., is an even permutation, o is
odd: sgno = — 1. Write
Za=1,n+1D)2,n)o(nn+1);

then obviously, k2., appears in e;, and a, = (sgno)(sgn(n,n +1))=1.
The case n = 3 can be done by similar arguments, and is left for the reader.

CoroLLARY 1.7. ef(1+ kouy+ -+ + kne) #0.

Proor. Compute the coefficient B8, of 1 on the left side. If p € S,., has a
non-zero coefficient in e, and pk’., =1 for some 0 =i = n, then p = k11" and
by Lemma 1.6, p =1 or p = k%.,—whose coefficients in e, are equal to 1. It

follows that B, =2#0.
THEOREM 1.8.  XuSa-i[X1," ", Xno1] " Xns1 & K1

PrOOF. By previous remarks, the theorem will be proved if we show that
Ji# T
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Assume that J;= Ji. Since e, = k,.,e.kn.i, we have that Js,=J,=V, e, =
Varieiknii. Therefore

0#J5=Viue(l+ knirt+ -+ ki) € Vaies(1+ o+ + kD) + Vanerk

=L+ J=J.
Since J is a minimal left ideal and 0 # J5 C J; is obviously a left ideal, J5 = Js.
Now, V,..eiv..1 = J; implies that
Visiei(kni+ oo + knvi) = Vsl Vniikner = J3knsa
= Jikni1 = Van(k hi€2knir) = Ve,

$O

Ji= Vn+1e1(1 + 0t k.’:H)Q Vi€t Vn+1el(kn+1+ st k:+1)

n+1e1,

and again we conclude that J5= V,.,e;. The assumption J,=J; therefore
implies that V,,,e; = V,..e,. But this is impossible, since e,, e, are orthogonal
“essential” idempotents; {1, n + 1} appears in the same row in T, and the same
column in T, while {1, 2} appears in the same row of T, and the same column in
T: ([1], Ch. IV). The proof of Theorem 1.8, hence also of Theorem 1.1 is now
completed.

ReMark. Since K = Ty(s;) is invariant under left-right reflection, it follows
that if X..if(x1,° ", x.) € Kuss, then f(xy,--+,x,)E K, It is this form of
Theorem 1.1 that we are going to use later.

§2. Let Q be a T-ideal, Q, = Q N V,, then

:Hrl = Vn+lonxn+1 + Vn+1xn+lon g Qn+l-

Our aim in this section is to obtain some information about Q/.;. It can be
shown that

Vn+lonxn+1 # Vn+1xn+lon

unless Q, = (0) or Q.= V.. Also, we assume throughout this section that
Q C C = T([x1, x2]). The notations in this section can be found in [3, §2]. The set
of partitions Par(n) is well-ordered by the lexicographic order

aM<@2,1")< - <(n—1,1)<(n).
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Note that if Q C C and I, N Q,# (0), then A < (n). We shall show that if
A E€Par(n+1) is of maximal order such that I, N V,. Q.x..; # (0), then
LN Vi Quxna ?é LN Va1Xe1 Q.

DeriniTioN.  Let A(ay,---,a,)EPar(n), ;= -+ Za, T=TWA)=T, a
Young tableau for A, A'=(a;+1,a;--+,a)EPar(n+1) and denote by
T(\") = T™'= T(1) the tableau obtained from T()) by adjoining an additional
box, with n+1 in it, to the right upper corner of T(A). For example, let
A =(2*)EPar(4),

T(A)=

then

3 & !
T2,2)= T2,2) =; i 5 |

If e rq, is the corresponding idempotent, denote € rx,= eru). Finally, define
i\ C I by fA =21y Var1€1a)

Lemma 2.1. Let A €EPar(n), A' € Par(n + 1) as above and let J, C I, be a left
ideal, then

Vn+1 nxn+l n IA’ g I'A.
ProoF. Note first that for any set of left ideals {L;} in V,.,, (Z;L;))N I =
(L, N L). Now J, C I, = 21,) Vue 1oy, hence

VasinXar1 C z (Vn+le T(M)Xn+1 n I»\’)-
)

T

By [3, theor. 3.3], M..1 = V..i€ruyXe N L is @ minimal left ideal, and we show
that M,., C I.. In fact, M,.; = V,.,éru,. To see this, let

b1 bj b1 bi n+1

/ /

T(\)= // then T(A)= y

and it follows from basic definitions that
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i+

Erar= 2, (byn+ 1)ern) Xn (bjs1=n+1),
i=1

sothat V,, €14, C Ve ra)Xaa N I, = M,.. Since the two sides are minimal left
idealS, M,,+1 = Vn+1ér(A). QED

LEMMA 2.2 Let 2=n, (n)# A =(a,---,a)EPar(n), TH(A), -+, Tu(A) k
tableaux for X and é, = & 1., the idempotents that correspond to the tableaux T;()),
1=i=k. Finally, let 0 € S,., be any n + 1 cycle. Then for each 1 =i =k there

m

exists m = m(i) such that e;=oméoc™™ is ‘“‘orthogonal” to é,---,é&, I.e.,

ée\=---=¢e'=--=e¢e.=0.

Proor. Since 2 = n and A # (n), each tableau T;(A) has more than one row,
SO we can write

n+1

Assume, without loss of generality, that i = 1, and let d, = j (in T,(A)). Trivially,
there exists m = m(1) such that ¢™(j)= n + 1, and therefore

o"Ty(A)= y

n+1

Denote now by T the tableau obtained from o™T,(A) by removing the box
, and write Tt =T(A*). Clearly, A* € Par(n) and A* > A. Hence, for each
1= s = k there exist two numbers that occur in one row of T¥ and one column
of T,(A) (see [1]).This is still true when we re-adjoin the box back to the
above tableaux, so that e, -e;=0 for all 1=s=k, where e;,=e,myn,=
olernmyo " = ome o™ Q.E.D.
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THEOREM 2.3. Let 2=n, (n)# A €Par(n), (0)# J,.,C I, a left ideal and
0 € S..1 an n+1 cycle, then J...0 # J,...

Proor. Let k be minimal and Ty(A),- - -, T (1) standard tableaux such that
JuCZ Ve r.ay- Note that the tableaux ’f,-()\) are also standard, so we may
assume é€,=0for2=i=k.

Suppose J,.10 = J,.1. Hence Jo, 0™ = J,,, for all m. By Lemma 2.2 there
exists m = m(1) such that e;=o™é,0™ ™ satisfies ée;=0, 1=i=k, so that
Jur1e1=(0). Therefore

JonoT" =JaomeoT" =T el = (O)

which implies J,..,€, = (0).

Let a € J..y, then a =a:é;+ -+ + a.é, and aé,=0. Since éi=¢,, é,é,=
- = é.€,=0, we have a,&, =0 so that a = a,é,+ - - - + ae, which implies that
Jor1 C =¥, V.16, a contradiction to the minimality of k. Q.E.D.

CoRrOLLARY 2.4. Let Q be a T-ideal, Q,=V,NQ,

Qn—>{ A""")“‘} 2=n (see [3))

ml,""mk
and assume that (n)# A= (a,,* -, a,) is maximal among Ay, -+, A, m;=1
Then
)\;,...}
N
Qs [N
where Ai=(a,+1,a5---,a) and miZm,+ 1.

Proor. By [3, theor. 3.3]

A ” S
Vn*lonxn-*l'—) {’7:1, .. _}
(and the same for V,.ix.,1Q,), so that I,: N V,.1Q.x,.: has length m, as a left
V.., module. By Lemma 2.1, LN V,.,QuxonCL. lf o=(n+1,---,)ES,
then (V,:Qux,siN L))o = V,x,.Q. NI, and by the last theorem,
Vn+lonxn*l n IA’ # Vn+1xn+lon n I/\’, SO that

LNQ..2LN (Vn+lonxn+1 + Vor1Xn41Qn )EIA N Vae1QnXpia
as was to be shown. Q.E.D.

AppLIcATIONs. Let R = To([xy, x2]x35), L = To(xi[x2,%5)), Q=L NR, Q, =
V. N Q =L, NR,. The structure of Q., n =3, can be determined as follows:
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The structure of R,(= L,) is given by [3, theor. 3.3], which implies that

a) A =(n—-1,1)€ Par(n) is maximal such that R, N I, # (0),

b) the length of R, N I_11is n —2,

c) if A > @ € Par(n), then R, D L.

The same is true also for L,, hence, if A z u €Par(n), Q. =R, NL,DI. By
Lemma 2.1 and Theorem 2.3, L,# R,, so that L, N I(s_;y # R, N I(n_y1.1) and by
(b), L. + R, 2 In_1 1. It follows from that, by an easy dimensions argument, that
Q. N I-1 1 has length n — 3. In other words, the n-th co-character of Q, is
[n]+2[n—-1,1].

Next consider K = Ty(s;). Since si[x1, x,, x3] € L, R, it follows that K C Q.

ProrosiTiON 2.5.  With the above notations, K, N L-1,1y= Q. N Inoyvy.

Proor. By induction on n = 3. If n =3, K;= Qs, so assume the equation
holds for n and show that it holds for n + 1. Since K,.; C Q,.,, it is enough to
show that K, M I,y has length = n — 2, which is the length of Q,., N I, ). By
induction, K,NI._, 1 has length n—3. Apply Corollary 2.4 to the T-ideal K to
deduce that the length of K,.,N I, is = n—2. Q.E.D.

§3. Theorem 1.1 is applied now to study the codimensions {c, } of K = To(s;).
The notations can be found in [6]. It was shown there that ¢, = 2}, ¢, ., where

VI+UP+K,

¢, » = dim TP K R

and that ¢; ., = > = ¢p 0 = Coo1e
The relation between cancellation and codimensions is revealed in

ProrosiTION 3.1. Let Q be any T-ideal and {c.} its codimensions, then
Cn n = Ca1 if and only if Q. has the following “n-left cancellation property”:

xng (xly MY xnvl) E On lmplles g(xl’ Y xn—l) E Qn—l-

Proor. Left multiplication by x, induces an isomorphism of V,_, onto V{
which implies that

Ve + Q. . VP4 x.0Q.- . V&4 Q,
——'—Q—l=dlm Q = dim Q=cm,..
Qn—l ann—l Qn

Cn-1 = dim

Therefore, ¢, » = ¢,-; if and only if any linear dependence modulo Q. among the
monomials of V{’ implies the same dependence modulo x,Q.-,. But that is
exactly n-left cancellation, which is therefore equivalent to the condition
Cnn = Cn-1. Q.E.D.
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Lemma 3.2. Let {d.} be the codimensions of L = Ty(x:[x2, x5]). Then for all
lékén,dk‘"=1.
Proor. Let C = Ty([x1, x2]) be the commutator ideal. It is well-known that its

codimensions are all equal to 1. Since x.C,-, C L. we have

VP4 L,
Lo_g4. .

— A Vn*l+ Cn—l_ : V(nn)+ x,.C,._1> .
1 - d]m C"'l - dlm xnCn—I = d]m Ln
Hence, d. . =1. On the other hand, d, = n; hence di, . =1forall 1=k =n
Q.E.D.

COROLLARY 3.3. Let {c.} be the codimensions of K = To(ss). Then 1 = c. . for
all 1=k =n

Proor. Since KCL we have ¢, =d, as well as ¢ .= d.,.=1 for all
l=sk=n Q.E.D.
The key result that will enable us to carry on the computation of {c.} is

CoROLLARY 3.4. With the above notations (K = To(s3)), ¢1.a=€24=1, c34=
2 and Caa= 5

Proor. It follows from [4] that ¢, =9. Trivially, ¢; =5, so Theorem 1.1 and
Proposition 3.1 imply that ¢;=css=5. Hence ¢4+ 24t €34=9—-5=4 and
since 1 = ¢,.4= ¢,.4= c3 4 are integers, the only possibility is ¢;,.= ¢, =1 and
C34=2. Q.E.D.

REMARK. Let p = XX, " X,, € V'V and assume that u € UY+ K,.. By
applying any permutation 0 on {2, - - -, n} we still have p (x,, X, ==+, Xo,) E UV +
K., and therefore V¥’ C U+ K.. But this implies that ¢, . = 0, a contradiction.
In other words, for any single monomial u € V¥, we have u & UY + K,.. This
can easily be extended to a more general statement: Let u € Vi be a
monomial, 1 £k = n. Then u & U+ K, (to prove this, transpose the indices 1
and k). As a result we have the following statement: Let -+, € Vi
(1=k =n) be a set of monomials such that each two are linearly dependent
modulo U’ + K,. Then each monomial among {., - - -, i} spans all the others
modulo U%¥’+ K,. We will find it convenient to write “dep (U%’ + K,)” instead
of “linearly dependent modulo U%+ K, ”.

ProrosITiON 3.5. Let 3=nand 1=k=n-2. Thenc. ,=1.

Proor. For n =3 this is trivial, while Corollary 3.4 implies it for n = 4. By
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the previous remarks, it is enough to show that c,_, . =1, and we show it by
induction on n, assuming that ¢,_; .-1 = 1.

Let ;= X.za(xx:)b, w:= X._>c(xix;)d be two monomials in V™ that
‘“contain’ x,x,. The substitution x; = x.x; and x; = x;.,, j# 1, induces a one-to-
one linear map ¢: V,_,— V, satisfying:

1) iy, 42 € @ (VD)

2) (U C U™,

3) o(K.-1) C K.

This, together with ¢,._s ._; = 1 implies that w,, u, are dep (Uy 2+ K,,).

By a previous remark we can choose arbitrary monomial from the set of

monomials {& = x,_2* - Xx;*+} such that

lex"_le...

No= Xz XXy

Nt = Xnozm " * XX,

span V¢ modulo Uy ?+ K.

Now, the substitution x; — x;.,, 1 =j = n — 1, followed by right multiplication
by x, induces a one-to-one linear map ¢: V,_;— V, which has properties 1',2, 3’
similar to 1,2,3 above. In particular:

1) Ny oo, Nt EG(VEY
so that again we conclude that each two from N5, - - -, N,_, are dep (U2 + K.,).
Hence N, = x,_,x;a and N,.; = x,-,ax, span V™ modulo Uy ?+ K, and a
can be chosen conveniently. Choose a = b - ¢ where b = x._,, ¢ = X, X2 * Xn-3.
The substitution x;, — x;, x,— X,—2, x3— b, x,— ¢ induces a one-to-one linear
map §: V,— V,, such that

1) Ny, Nass € (VD),

2" o(UPYCUT™,

3") 8(K.) C K.

This implies that &, N,_; are dep (U$ ™+ K,), and therefore ¢, .= 1.
Q.E.D.

PrOPOSITION 3.6. Let n=3, then -1 .=2.

To prove this proposition, one needs a further knowledge about the linear
relations, modulo U+ K,, among the monomials of V. Let us begin with

DerFiniTioN 3.7. Let A € Par(n), I, C V., the corresponding 2-sided minimal
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ideal with u, € I, its unit element, and let g € V,. Then gu, is called “the
component of g in I,”” and g has a trivial A-component if gu, = 0.

LemMMa 3.8.  The components of xz[xs, xs]x: and x3[ x4, X:]x5 in I 5 2 are linearly
independent.

Proor. Let u = u( , be the unit element in I, and suppose there is an
a € F such that:

0 = (x2[x3, xa]x)u + o (x2[ x4, X1} x3)u = x2([X3, Xa] X1 + @[ X4, X1]23)00.

Hence J.= V,: x,([xs, xs]x: + a[xs, x:]x;) intersect Iz trivially. Since J,=
ViQv, Va([xs, x3]x: + a[x3, x1]x,), theorem 3.3 in [3] implies: J3=
Vs([x2, x3])x1 + @[ x5, x1]x;) intersect I, trivially and is therefore contained in
F - s5;. This would imply that J,= F - 5;, an obvious contradiction.

Asin §2, let Q =L N R and let P, = V(x[x,, x3]x.). The character y(P.) is
[14]+2[2,1%) +[2,2] +[3,1]. Since P,C Q. we have P,NIyy=QiNIpy=
K.N 13, Also, by [4], K.D P.N I3, PiNIg+. We can now prove

LemMa 3.9. Let g € V, and suppose that g - uwsy=0 and g - ug, 1) € K, then
there exist a, B € F such that

I4 + (XX2[X3, x4]x1 + sz[XA, x1]X3 (<3 K4.

Proor. Denote A,= K,N I, and B,= P,N I . It was shown in §1 that
A, # B,. Since A,, B, are minimal and I, has length 2, I, = A, B.. If
U=1Ugpoy then g-u€ A;PB,, so that g-u =as+ by, a,€ A, and b, € B..
Since dim B, =2, it is spanned over F by h.-u = x3[x3, x]x;-u and hiu =
x;[xs, X1]x3 - u. Therefore, there are — a, — B € F such that b, = — ah,u — Bhiu
and gu = a,— ah,u — Bhiu. Hence

(gt ah+ Bhdu = a, € KiN 1,2,
which implies that g + ahs+ Bhi€ K. Q.E.D.
LemMa 3.10. [xi, x2] [x3, x4] has no component in 1, (and in I).

Proor. Let  Di= Vy([x1, x:]x3xs), Di= Vi(xixo[xs5,x]) and E,=
Vi([x1, x2] [x3, x4]).  Clearly, E.CD.NDi; so that ENIs,)C
(D.N Is1)N(DiN Is,y). The character of D, (and of D) can be computed by
twice applying [3, theor. 3.3), and it is [1*]+2[2,1%] +[2,2] +[3,1], so that
D.N 14,y and DN I,y are minimal. This implies that D, N I 5, is generated
over V, by the idempotent that corresponds to
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3 14 ]

and Diﬂ I(3,1) by

3 (1 [2]
4

Obviously, these two idempotents are orthogonal, which implies that
(DsN Iop) N (DN L) = (0).

Hence E4 N I(g‘ n= (0) Q.E.D.
We can now prove our main lemma:

Lemma 3.11. The following monomials in VS are dep(UP + K.):
1) Xa3x.x:x, and xsxsx.x; are dep (U + K.),
2) x3X1X4X2 and x»x:x4x, are dep (U + K.),
3) x3xax1x; and x;x.x.x, are dep (U + K.,).

ProoF.
1) By Lemmas 3.9 and 3.10 there are a, 8 € F such that

[xl, xz] [X3, X4] + Cle[x;;, X4]x1 + sz[x4, X1]X3 (= K4
= X1X2X3X4 ™ X1X2X4X3+ U,

where v, € V. Hence x,X,X3X4, X1X2X4X; are dep (VP + K,). The permutation
(1,3)(2,4) applied to the indices—and mapping V¥ isomorphically onto
U = V{—then implies (1).

2) Let

g = X1X2X3Xs— X1X4X3X2 + X3XaX1X2 — X3X2X1X4.

Conjugation by the transposition (2, 3) induces an automorphism in each I,. By a
direct computation, (2,3)g(2,3) = [x.x,] [x3, xs] so we conclude that g has no
components in I and Ig,. Therefore there are a, 8 € F such that g+
axs[ Xz, x4] X1 + Bxs[xs, X1]x: € K., hence x,x,x3x, and x,x4x5x, are dep (VY + K,).
Apply the permutation

(1 2 3 4)

31 4 2

to the last statement to conclude that x;x;x.x, and x3x2x.x; are dep (U + K,).
3) Lemma 3.9 implies that there are a, 8 € F such that
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xl[XZ’ x3]x4 + axz[x3, x4]x1 + ﬁX2[X4, x1]X3 € K.,

which shows that x,x,x;x, and x,x;x,xs are dep (VP + K,]. By applying the
permutation (1,3)(2,4) to the indices we obtain (3). Q.E.D.

Note. It can be shown that x,x,x.x. and x;x,x;x, are indep (U + K.).
However, this is unnecessary for the later discussion.

CoROLLARY 3.12. Let

A = {X3X4X1X2, X3XaX2X1, X3X1X4X2, X3X2X4X 1}
and

B = {x3X1X2X4, X3X2X1X4}.
Then, for any u, € A and p. € B, {u,, p2} is a basis for VS’ modulo U + K,.

Proor. We know that ¢, .= 2 so there are at most two monomials in such a
basis. Also, by the previous lemma, every two monomials in A are dep (U +
K.). Let u, € A, u, € B and assume they are dep (U + K.). Then (1,2)u, and
(1,2)u, are also dep (U + K.,). But (1,2)u: € A, hence u; and (1,2)u, are
dep (U + K.), while {u,, (1,2)u,} = B. It now follows that every two monomials
in V9 are dep (U$ + K,) which would imply c; =1, a contradiction. Q.E.D.

We can now turn to the

PrOOF OF PropoOSITION 3.6, namely: c.-; ,=2. We use induction on n =3 to
show that the two monomials ;=X X(x2-"-%.,2X.) and pu,=
Xn-1(X2* *  Xn-2X2)x; span V™Y modulo (U™ + K,). If n = 3, there is nothing to
prove, and the case n =4 is implied by Corollary 3.12.

[Note. We shall use, several times, the ‘“‘substitution argument”, similar to
that used in the proof of Proposition 3.5; namely, the one-to-one linear map that
is induced by some substitution. The reader should check the corresponding
properties 1,2,3 of such a map.]

Assume that

N, = xn—le(xZ T xn—3xn-l)
and

N, = xn—Z(x2 v xn—3xn—1)xl

span V{52 mod (US? + K.._1), s = n. For a given 2= i = n consider the set of

(n —2)! monomials

MO={M=x,,  xx: -}
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As in the beginning of the proof of Proposition 3.5, the same substitution
argument—together with the induction hypothesis—imply that

Xno1X2Xs o Xiog(XiX1)Xivr * Xao2Xe  and  Xp_oXsc ot (XX1) c 0t Xa_aXaX2

span M mod (U¢™" + K,). The following set of 2(n — 1) monomials therefore
span VI mod (UL "+ K.):

Sl = (X,.-[X{)X:(Xj; e x,.v2Xn) TI = (xn—lxl(x3 C Xn-2Xn )Xz

S = xnﬂ(xle) (x3 et xn—an) T,= xn-l(x:s T xn—an)(xlxl)

83 = X1 Xa(X3X1)Xa "+ Xn2Xn T5= Xuo1(X3X1)Xa "+ Xn2XaX2
Snc1 = Xpo1Xz0 xn-Z(xnxl) Tooi= XuoiX3- - xn—Z(xnxl)xz

The case n = 5. Here the 8 monomials are

S| = XaX1X2X3X5 T, = x4X1X3X5X2
Sy = X4X2X1X3Xs T, = XaX3X1XsX2
S3= X4X2X3X1 X5 T3 = X4X3X5X1X2
Si= X4X2X3Xs5X, Ts= XsX3X5X2X,

The monomials S,, S5, S, ““‘contain’ x.x.. The substitution (check the ““‘substitu-
tion argument”) x, — x;, X;—> X3, X3—> X4X3, X,—> X5 maps:

S, = xax1x:x,— Sz,
S3 = x3x2x,x,— S; and
Ss= X3X2X4X,— S..

By Corollary 3.12, §; and S. span S, mod (U’ + K.), so that S; and S, span S,
mod (U + K;).

The remaining S, S;, S4 contain x.x,;, and a similar substitution argument,
based on the substitution x;,— X, X;— X;X3, X3—> X, Xa—> Xs, yields that S, is
spanned, mod (U’ + K;), by S, and S..

The substitution x,— Xx;, X;—> X3, X3—> X4X3, Xs—> X; maps three monomials
from A (see Corollary 3.12) to T, T5, T.. Hence T, spans the other two
mod (U$ + K,). Write M ~ N if M and N are dep (U + K;). We are now
constantly using Corollary 3.12 and substitution arguments:
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Ty = x4(X1X3)XsX2 ~ XaXsX2(x1x3) = T (by the substitution argument x;— x,xs,
X2—> X3, X3—> X4, Xs— X5), and

T = xaX3xs(x2X1) ~ XsXs(x2x:)xs = T (by the substitution x,— x,x, —> x,— X3,
X3—> X4y X4—> X5).
Finally, S;= x,(x2x3)x5x; ~ xaXs(x2x3)x:= 8 (by x1—> X1, X2 X2x3, X3—> X4,
X:— x5) and

S ~ xa(xsx2)x1x3="T (x;—> X1, X;— X3, X3—> Xs, Xs— XsX,). The conclusion is
that S, spans T, and T, mod(U$”+ K5); hence S, and S, span V¥ mod(U¥ +
K;s), as was to be shown.

The case 6=n. Again, consider the 2n—2 monomials S ---,S,.,
Ty, To.

Induction and the substitution x;— x;, Xo—> X;%3, X; = X;., if 3=is=n-—1
imply that S is spanned mod (UY ™"+ K,) by S, and S,_..

Induction and the substitution x;—=>x;, x; > x5, f 2=S7=n -2, x,-, > x.x;
imply that T; is spanned by T, and T, mod (U7 "+ K,,).

We can thus erase S; and T; and the remaining 2n — 4 monomials span V™"
mod (U ™"+ K,,). Moreover, each of these contain x;x.. Since 4 <n- 1, we can

use the substitution x;— x;, X2— X5, X3 X3X4, X; = Xy if 4 =i = n — 1 which,
together with the induction hypothesis imply that S, and S,_, span the other
monomials, and therefore span V™" mod (U ™" + K,). The proof of Proposi-
tion 3.6 is now completed. Q.E.D.

THEOREM 3.13. Let {c.} be the codimensions of K = Ty(ss); then c, =
n(n+1)2-1 for n= 2.

Proor. By induction on n. If n = 2,3, 4, equality holds. By Propositions 3.5
and 36, ¢ =1+ -+142+4+c¢c, . =1+ - +1+24+cooi=n+c,..=n+
(n—Dn/2-1=n(n+1)2-1. Q.E.D.

§4. The structure of K = Ty(s.).

We combine now the results of §§2,3 together with an unpublished result by
R. Rasala, [5], to obtain a close estimate of the structure of K = Ty(ss).

LEMMA 4.1. Let n = 4, then
a) K.D I(l")9
b) K,, 2 I(z‘l"‘z).
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ProoOE. Part (a) is trivial since I 4 = F - s.[x], where s, = s,[x1, - -, x,] is the
standard polynomial of degree n.

Part (b) is proved by induction on n = 4. If n = 4, this is shown in [4]. Let
n+1=5and assume K, D I;n,@ Iy By [3, theor. 3.3], Ve Kuxnii N I 1my
has length at least (n — 1)+ 1 = n. Since n is the length of I; =, it follows that
K...2 Vo1 KiXni 2 I(z.l"“)- Q.E.D.

COROLLARY 4.2. Let nz 4, u €EPar(n) and suppose I, N K, S1. N Q,, then
2,177 f p< (n—1,1).

Proor. Follows directly from Proposition 2.5, Lemma 4.1 and the fact that
A = (n) does not occur in K, nor in Q..

DernttioN.  For a given n, consider the dimensions of the minimal left ideals
in V, = F[S,] and write them in an ascending order: a’<aP < --- , thus
obtaining the infinite sequences {a$}r-1, {aP}n-r, - - .

Note. Obviously, a'’ =1 for all n. It was shown in [2] that, except for n = 4,

® = n — 1. Moreover, if n =7, the only partitions that yield dimension n — 1
are (n—1,1) and (2,1"7%). Recently, the following result, among others, was
obtained by R. Rasala [5].

THEOREM 4.3 (Rasala). Let n =9, then a? = n(n —3)/2 and the only parti-
tions that yield this dimension are (n—2,2) and (2°,1"7%).

We can now prove our main result, namely:
THEOREM 4.4, Let x, be the n-th co-character of K and let n Z9; then
x-=[n]+2[n-1,1]+a[n-2,2]+8[2°,1"], a+B=1.

Proor. We have already found three components in the co-character x.: one
in I, and exactly two in I_; . If K, = Q,, we are done: a = 8 =0. Assume
K.# Q.. Hence there is a u € Par(n) such that I, N K.ZI. N Q, and by
Corollary 4.2, (2,1"*) < u <(n-—1,1). Theorem 4.3 then implies that
dim(Q. N I,)— dim (K, ﬂﬂlp)gn(n —3)2, so that dimQ,-dimK,=
n(n —3)/2. Since K, CQ. and n!—-dimQ, =2n —1 it follows that

n!l—=dimK,z2n-1+n(n-3)2=nn+1)/72-1.

In other words, ¢, =codimK,=n(n+1)2—1. By Theorem 3.13, ¢, =
n(n+1)2-1.
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Moreover, by applying Theorem 4.3 again, we obtain the statement about the
co-character y.. Q.E.D.

CoRrOLLARY 4.5, . Let {l.} be the co-lengths, {c.} the codimensions of K and let
nz9 Thenl, =3 o0rl,=4,c.,=2n-1orc,=n(n+1)2-1.

Proor. Is obviously included in that of Theorem 4.4: If K, = Q,, then [, = 3
and ¢, =2n-1. If K,$Q,, then [, =4 and ¢, = n(n+1)/2-1.
We end this paper with two conjectures.

ConJECcTURE 1. For n=4
X- = X-(K)=[n]+2[n-1,1]+[n - 2,2]
(which implies that ¢,(K)=n(n+1)/2—1 and [, = 4).

Note. It can be shown that ¢,(K)=n(n+1)/2—1for n Z 4 if and only if a
generalized form of the cancellation theorem (Theorem 1.1) holds. We therefore
make

CoNJECTURE 2. Let d =2 be any integer and n = d. If

fG, oy %) - Xne1 € Tolsalx1, -+, xa])
then

f(xh Tt ,xn)e To(sd[xl, e ,xd])-
The same holds for x...f(x;, ", X.).

Added in proof. Recently we obtained the following results: Call
dulxiyl=dulxy sy ] = 2 (= D e YiXa2 * Yaoiken
TES)
the “Capelli” polynomial of (x) degree h.
If A=(a, -, a)€EPar(n) and a,=---=a,#0, then h=h(A) is the
“height” of A (and D(A)).

THEOREM 1. Assume the T-ideal Q contains du[x;y]. Then for every n,
Q. D I, for all A € Par(n) such that h(A) = h.

THEOREM 2. Indeed: di[x;y] € Ty(ss[x])= K (and similar results were ob-
tained for Ty(s:[x]), 2= i =7).

As a result, [2°,1"] is eliminated from y,(K) for n = 5, since h(2*,1"*) =
n-2.

Details will appear elsewhere.
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