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A CLASS OF FINITARY CODES 

BY 

M. KEANE AND M. SMORODINSKY 

ABSTRACT 

It is shown that for any two Bernoulli schemes with a finite number of states and 
unequal entropies, there exists a finitary homomorphism from the scheme with 
larger entropy to the one with smaller entropy. 

w Introduction 

In recent work on the classification of dynamical systems in ergodic theory, the 

construction of codes has played an important  role. The reason for this is that 

every ergodic dynamical system (on a Lebesgue space) has a representat ion as a 

shift t ransformation on a sequence space whose underlying alphabet  is finite or 

countable,  and hence it has become important  to construct codes (i.e. shift 

invariant and measure preserving maps) from one sequence space to another.  

In the important  special case of Bernoulli schemes, the efforts culminated in a 

complete  classification by Ornstein [5]. His methods are in fact more general and 

apply to a much wider class of sequence spaces, but they have the disadvantage 

of not having a continuity property which would seem to be necessary for 

applications. Moreover ,  Ornstein has shown in a yet unpublished result (see also 

[7]) that the desired continuity proper ty  cannot be true for the wider class of 

sequence spaces. 

The continuity property in question can be briefly described as follows. Any 

sequence space over  a finite or countable number  of symbols is endowed with a 

natural product topology. A code from one sequence space to another  is called 

]initary or almost continuous if after removing sets of measure zero from the 

spaces, the code is continuous on the remaining sets. This definition is of course 

valid for any spaces, but takes a special equivalent form in the case of sequence 
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spaces whose exact definition is given in w Loosely speaking, finitary codes 

between sequence spaces are those for which a finite number of image 

coordinates can be decided by looking at only a finite, but possibly larger, 

number of original coodinates. For further discussion of this concept see [2]. 

The special examples of codings between Bernoulli schemes given by Meshal- 

kin [3] and Blum-Hanson [1] enjoyed the property of being finitary. More 

recently, Monroy-Russo [4] have constructed finitary isomorphisms between 

special Markov chains and Bernoulli shifts. In this paper we show how to 

construct finitary codes from any Bernoulli scheme to any other Bernoulli 

scheme of lower entropy. Our construction is based on an idea of Monroy and 

Russo. It differs from the Meshalkin and Blum-Hanson codes (see [9]) in that 

the average number of coodinates needed to decide one coordinate in the image 

point is finite, and this means that our process can be effectively carried out (e.g. 

by a computer). 

A special case of this result is the following. Consider a three-sided coin with 

equal probabilities, and produce using this coin a sequence of independent trials 

at times t E Z. This yields, say, a sequence of symbols 0, 1, 2. Now unless we were 

very unlucky (with probability one) the procedure defined below can be applied 

to the 0, 1, 2 sequence to write down a sequence on two symbols a, b which is 

typical sequence for the flipping of a two-sided coin with equal probabilities (or 

with any preassigned probabilities, the procedure of course depending on the 

probabilities desired). The point is that we can determine individual elements of 

the a ,b  sequence by looking at a finite number of elements of the 0,1,2 

sequence, so that the whole sequences need not be known in order to effect the 

mapping step by step, and also that on the average the number of elements we 

need to know in the first sequence to determine one element in the second one is 

finite. 

Let us now try to describe briefly the procedure which will be used. The first 

step consists of reducing the problem to the case where there exist two blocks 

(finite sequences) of the same length and same frequency of appearance, one in 

each scheme. These blocks are called markers. The code will have the property 

that the appearances of markers in a point and in its image coincide. The rest of 

the construction is then concerned with what happens with blocks occurring 

between two marker blocks. Here it is necessary to define a procedure 

independent of the indices of the point, since the code must commute with the 

shift. If M denotes a marker, then we define a skeleton as a sequence of the form 

M "~ M"' . . . .  M"-- '  M "~ 
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where M " =  M - . . M  (n times), - -  denotes "holes" of fixed positive 

lengths (where the block M is not supposed to appear) and n, < min (n0,m,,) for 

1 < t =< m - 1 .  It is shown that for almost all points of the first scheme there 

exists a sequence of increasing skeletons whose lengths tend to infinity which 

"appear"  in the points and cover every coordinate eventually. Given a skeleton, 

there are many possibilities to fill in the holes to obtain blocks occurring in the 

schemes. Each of these possibilities is called a filler. Using a marriage lemma 

which we prove in w we construct in w by an inductive procedure, partial 

mappings from the set of fillers for a given skeleton in the larger entropy scheme 

to the set of fillers for the same skeleton in the smaller entropy scheme. These 

mappings are called partial assignments; the idea is that whenever we see a 

skeleton in a point of the first scheme filled with a filler which is assigned to some 

filler in the second scheme, then this defines the image of the point in the 

coordinates covered by the skeleton. A compatibility condition ensures us that 

the definition is not changed at some later stage of the construction. In the final 

paragraph, we then formally define the code and prove that it is a finitary code. 

The use of the marriage lemma in w to construct assignments is not necessary. 

We could have defined an assignment as a matrix a satisfying the conditions 1), 

3) and 4) of Corollary 8 and obtained the estimate of Lemma 14 in a more direct, 

although somewhat less obvious, manner. In fact, our first proof of the theorem 

was constructed along these lines. Here we have used the marriage lemma 

because it gives a somewhat better estimate with less difficulty in the case where 

all the elements of ~ ( s )  are good, and also because we think it is new and may 

be of independent interest. 

w M a r k e r s  

We begin by defining the notations we shall use for Bernoulli schemes. Then 

we state the main theorem of this paper and effect a reduction of the problem. 

Finally we study markers and define the marker process, and make the relation 

between the marker process and the Bernoulli schemes explicit. 

Let 

A = { 1 , 2 , . . . , a }  

be a finite alphabet, a > 2, and let 

t3 = (pl,"" ",pa) 

be a probability vector with p, _-> 0 for 1 =< t < a. The Bernoulli  scheme B ( p )  = 

(X, ~,/~, T) is defined by 
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X = A  z 

= product c-algebra on X 

Ix = p Z  

T = left shift on X. 

Its entropy is given by 

h = - ~ p ,  logp, ;  
t = l  

all logarithms will be taken to the base 2. If x G X and if q =< r are integers, then 

we set 

x[q, r] = X q X q + l  " " " X r  ~ A r-q+l . 

A second Bernoulli scheme with alphabet fi, = {1,. �9 ti}, probability vector/5 

and entropy ff is denoted by B(O) = (X, sg,/2, T). 

A homomorphism 4, from B ( p )  to B(/~) is a measurable map 4' from a subset 

of measure one of X to 2( which takes/x to/2 and commutes with T and T. The 

homomorphism 4' is finitary if for almost every x E X there exist integers q <= r 

such that if y E X with x[q, r] = y[q, r] and if 4 '(y) is defined, then 4'(x)[0,0] = 

4'(y)[0, 0]. 
Our main result is the following theorem. 

THEOREM 1. If  h < h, then there exists a finitary homomorphism from B (p ) to 

B(p). 

The following simple reduction of the problem permits us to introduce 

markers and starts the proof, which will continue throughout the paper. 

LEMMA 2. Let ko be any positive integer, and let h < h. Suppose that Theorem 

1 is true under the following additional hypothesis: there exists an integer k >= ko 

such that 
k 1 - -  p, p : -p t  '~. 

Then Theorem 1 is true. 

PROOF. Since /~ < h, one of the elements of /~ is larger than one of the 

elements of p, so that by rearranging we may assume pl < Pl. Consider the 

Bernoulli scheme B(p )  based on the alphabet ,4 = { 1 , 2 , . . . , a  + 1} and the 

probability vector/5 = (/51,'-',/Sa+l), where 
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#3 = P 2 -  
/5, =p,_~ for 4_-<t=<a+l ,  

with 0 <  8 <P2- There exists a finitary homomorphism from B y )  to B(/~), 

obtained by identifying the symbols 2 and 3 of ,'{. If 8 is small enough, we have 

g<l~<h, 

where/~ is the entropy of B(#). Moreover, for any k _-> ko there is a value of 
for which 

namely 

- -  - k - 1  - p~-Ip~-pl p2, 

8 = p2 \ p l /  " 

Because pl </~,, 8 tends to zero as k tends to infinity. Now choose k _-> k0 and 

8 = 8 ( k )  such that ~5 </~2 and/~ < h. Then the additional hypothesis holds for 

B ( p )  and B(/~), and composing the finitary homomorphism from B ( p )  to B(#)  

with the one from B(#) to B(p), we obtain the desired result. 

Now we fix the integer k for the rest of our argument, and we assume in the 

following that 

p~- '  p2 = p ~ - '  ff2. 

A m a r k e r  (for either scheme) is the block 

M = lk-12 = 1 . . .  1 2. 
6 - 1  
time* 

In general, if y = y l ' " y ,  E A' ,  then we set 

~(y)  = N py,, 
t = l  

and similarly we extend /2 to finite sequences. The m a r k e r  m e a s u r e  ~7 is then 

given by 

7"1 = I - t (M)  = 12 (M)  = p~ - lp2  = p~;-lp2. 

Consider the sequence space X defined by 

X" -- {5, ~}z. 
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Define a map from X to ,,~ by the following procedure. Take a point x E X and 

replace all markers M occurring in x by ] ] ' . "  1 (k times). Then replace all 

other symbols in x by 2.. This map commutes with the shift and sends the 

measure /z to a measure /2 on .~. We call ()(,/2) the marker process of B(p). 
Similarly we can define the marker process of B(iO). 

LEMMA 3. The marker processes of B(p) and B(~) coincide. 

PROOF. First consider the marker process of B(p). For almost all ~ E ) (  

(w.r.t. /2), ~ contains infinitely many ], and the 1 in ~ appear in groups whose 

length is a multiple of k. This is true since markers in a point x E X appear 

infinitely often (a.e.) and cannot overlap. Now consider a block of the form 

= i-o  i ' ,  i ' ,  2', i ' : ,  

where t.->_l, l,=>l, m~=>l (0_--< i =< t). Let q < r  be integers with r - q + l =  

E (l~ + re,k), and consider the cylinder set 

and its inverse image 

Z = { x E X : ~ 2 }  

in X. We wish to calculate/2 for each such cylinder Z. For 1 -> 1 denote by A 0 ~ 

the set of blocks of length 1 over the alphabet A which contain no markers. Then 

Z = { x ( F _ X . x [ q , r ] ~ M " o x A I i x M " l X  . . .  xA[IxMm,} 

and 

I 

,7  " o  . . . . . .  ' H 
i = l  

The same calculation is valid for the marker process for B(~),  and/2 is certainly 

determined by t2 (,~,) for all cylinders ,~ of the above type. Thus it is sufficient for 

the proof of the lemma to show that for each l ~ 1, ~(A0 ~ ) depends only on l and 

r/, and not otherwise on p~, . - . ,  pa. 

Now consider the finite space A t provided with the measure /z, and let E, 

denote the event that a marker occurs at place t, 1 <= t =< l -  k + 1. Then 

(' 51 ) I - -  m . ~ ( A o ) - l - / z  E, = I  ~,Iz(E,)+~tL(E, NE,.) . . . .  
\ t = I r | , t '  
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If E, M 17.,, # ~, then I t - t '  I --> k since markers cannot overlap. Therefore 

, f0  if there exist v,w with [ to- twl  < k  
(E,,,, E,~ ) i 

lJ~ll/~ (E,o) otherwise, 

and the last product is just 7/". It follows that #(A0 ~) can be written as a 

polynomial in 7/ whose coefficients depend only on l and k, and the lemma is 

proved. 

The notation Ao~(,'~o ~ ) will be used in the following for the set of sequences of 

length l over A(,,~) which contain no markers. We also use repeatedly the 

formula 

(A~) =/2 (Ao'). 

Consider now the projection 7r : X--->X" from B(p) to the marker process 

(X,/2 ). For each ~ E Jf let 

x ( i )  =  r-l(i) 

denote the fiber of X above 1. Almost all i ~ .~" have the following form: 

1 = ( ' ' '  i "*-lk ~o ],,,o k ~' . . . .  ), 

where {m,} and {l,} are sequences of positive integers. In this case, we identify 

the fiber above ~ by setting 

X(1)  = I-I a ~ .  
t E Z  

Denote for any l => 1 the normalization of the measure/x on Ao t by/zo. That is, 

IZo(F) = /x (F) = ~ (F E A o~). 
 (ao) (G) 

(Elements F of Ao ~ will later be called fillers.) By taking the product measure of 
the/Xo on the A~, t E Z, we obtain a normalized measure/z~ on almost all fibers 

X(~). The next lemma shows that the tt~ are actually the conditional prob- 

abilities of ~ on the fibers X(~). 

LEMMA 4. For every non-negative measurable function ~ on X, 

fx ~dtx = f x (fx<~) Odtz~)dt2 (i). 
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Let y E A "  be of the form 

y = M "~ F1M "'  F2" �9 �9 M "' ' F ,M", ,  

where  F~ C All for 1 =< i =< t, and the m, and l~ are positive integers. Let  q =< r 

such that r -  q + 1 = E l~ + m~k, and set 

Z = { x  E X : x [ q , r ]  = y}. 

It is sufficient to prove the l emma for tO = lz  for any such Z. Now if 

Z f3 X ( ~ ) / ~ ,  then 

~ ( z )  = ~ ( z  n x(~))= 12I to(F,). 
i = 1  

This is the same n u m b e r  for all such x. Moreover ,  

t2 ({2 ~ X : Z N X ( d )  # Q~}) = "q mo . . . . . .  ' ~ / z  (A~) 
i - 1  

and hence  

as required.  

For  any x E X which belongs to a fiber 

X ( ~ )  = 1-I AI;, 
t ~ Z  

If 
deno te  by F , ( x ) E  Ao, t ~ Z, the sequence of e lements  of AI; which determine 

x. To  fix our  notat ion,  let us require that the 0-th coord ina te  of x belong either 

to an index of A[~' or to the marker  string which immediate ly  precedes  A~I '. We 

shall need the following version of the S h a n n o n - M c M i l l a n - B r e i m a n  Theorem.  

LEMMA 5. For almost  all x ~ X. 

lZ I 1 lira ~ 1  log ~,,(F, (x)) - 1 - k'r/ - - ( h  -e) ,  

where e denotes the entropy of  the marker  process. 

PROOF. Let x E X be such that the S h a n n o n - M c M i l l a n - B r e i m a n  T h e o r e m  

[6] holds for x and for .f = 7r(x) E ~'. This is true for almost  all x E X. Then as 

q - - * - ~  and r---~ + zc, 
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1 
r - - q  

1 
r - q  
- - l o g / z  (x[q, r])--~- h, 

- -  l o g / 2  ({9 E . ~  : )~ [q, r I = ~ [q, r]})  ~ - e ,  

'~-' ~ 1 - kT/, 
r - q  

where in the last limit we have supposed the sequence (q, r) "compatible"  with 

the marker  structure. The last limit is valid by applying the ergodic theorem to 

the characteristic function of the marker  block in X. Since for (q,r) 

"compatible",  

tz(x[q, r])  
= l~I ~o(F,(x)), 

/2({9 :P[q ,  r] = ~[q, r]}) ,=_, 

the lemma is proved. 

The above results are all valid also for B(p) ,  and we shall use them as well as 

the notation freely in the sequel. We set 

1 
g - 1 - kn (h - e) 

and 

1 ( h - e ) .  
g ' = l - k n  

The quantities g and g are called the filler entropies of the schemes B(p )  and 

B(p).  

w A m a r r i a g e  l e m m a  

We digress for a moment  to prove a lemma which will be useful for our 

construction in w Some parts of the following proof are known (e.g. [8]), but we 

insert everything for completeness. 

Let (U ,p )  and (V,~r) be two finite measure spaces. We also assume that 

U = {1, 2,. �9 u} is a finite set, the set of boys, V is called the set of girls and is 

not necessarily finite. 

A society S is a map which assigns to each b E U a measurable set S(b) C V 
such that for all subsets B of U, 

p(B) ~ ~(S(B)) ,  

where we have set S ( B ) =  Ub~sS(b) .  
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We say that the society R is less promiscuous than the society S iff 

R ( b ) C S ( b )  for all b E  U. 

LEMMA 6. Let S be a society. Suppose that there exist measurable disjoint 

subsets G~ and G2 of V and distinct elements b,, b2G U with the following 

properties : 

G, U O2CS(b~)N S(b2). 

For i = 1 or i = 2, denote by S~ the map obtained by setting 

S,(b) = S(b)  ( b~  b,), 

S,(b,)= S(b,) \O, .  

Then either S, or $2 is a society. 

PROOF. Assume that S~ is not a society. Then there exists B~ C U such that 

p(B,) > o'(S,(B,)). 

Obviously b, E B~ and b2 ~ B~, since otherwise we would have SI(B,) = S(BI), 

Let B be any subset of U. We show that 

o(B)  <= ~(S2(B)). 

If b~ ~ B or if b, C B this relation follows because then SdB ) = S(B). Suppose 
b, ~ B E) b2. Then 

S(B  U B,) = S,(B,)  U S2(B) = S,(B,) U [S2(B\B,) \S,(B n B,)] 

and 

B, U B = B, U (B\B,) .  

Since S is a society, we have that 

p(B,)  + p ( B \ B , )  <= o'(S,(B,)) + ~ ( S f f B \ B , ) \ S , ( B  n B,)),  

and since B~ violates $1 it follows that 

p ( B \ B , )  < o-(Sf fB\B,) \S , (B n B,)).  

Moreover  B N B, contains neither b~ nor b2. Therefore  

S(B  N S,)  = S,(B N B , )=  SffB N B,) 

and 
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p(B n B,) <= n B,)). 

Adding the last two inequalities yields 

p(B  ) = p (BIB , )  + p (B  n B,) <= o'(S2(BIB,)IS,(BIB,))  + cr(S,(B N B,)) 

= o'(S2(B\B,) U S,(B n B,)) 

= 

and the lemma is proved. 

COROLLARY 7. I f  (V, or) is a continuous measure space, and if S is a society, 

then there exists a society R less promiscuous than S such that R (bl) n R (b2) = 0 

if b1~ b> 

PROOF. It is obviously sufficient to attain ~r(R(bl)N R(b2))= 0 for b, ~ b, 

since removing a set of measure 0 does not change the society property. By 

Lemma 6, if o-(R (b0 n R (b2)) = 6 > 0, then we can reduce the measure of the 

intersection to 6/2, since (V, o-) is continuous. Iterating this procedure yields the 

desired result. 

COROLLARY 8. Suppose now that V = {1 , . . . ,  v} is finite. Given a society S, 

there exists a matrix o~(b,g) (b E U and g E V) such that: 

1) a(b,g)>-_O for all b ~ U and g E V, 
2) or(b, g) = 0 if g ~  S(b),  

3) Eg~va(b, g) = p(b)  for all b ~ U, 
4) Yb~ua(b,g)<=~r(g) for all g E V. 

PROOF. Let V be a continuous measure space with disjoint subsets 

{V , , . . . ,  V~} and measure 6" such that V = U L ,  V, and such that 6"(V,)= 6"(i), 

i E V. Define the continuous analog S of S on Q by setting 

S(b)  = U vg ( b E  U).  
gE.S(b) 

By Corollary 7 there exist disjoint subsets R ( b ) C S ( b ) ,  b E U which form a 

society. We may assume that e(b)  = 6.(R(b))  for each b E U, simply by making 

R ( b )  smaller if necessary. Now set 

o~(b, g) = 5-(R(b) N V,). 

The four conditions above are easily seen to be true for this a, and we leave the 

details to the reader. 
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LEMMA 9. Let V be finite. Suppose that a (b, g) (b E U and g E V) is a matrix 

satisfying conditions 1), 3) and 4) above. Define for each b E U 

S ( b ) = { g G  V:a(b ,g )>O} .  

Then S is a society. 

PROOF. Let B be any subset of U. Then  

p(B)= ~ p(b)= ~ ~ a(b,g)= ~ ~ a(b,g) 
b E B  hE/~ g E V  b ~ B  g ~ S ( b )  

--< E E 
g E S ( B )  b r  [i  g ~ ' S ( B )  

COROLLARY 10. If S is as in Corollary 8 and if there exists a pair (b, g) with 
g ~ S(b) and a(b, g) = O, then the map obtained by deleting g from S(b) is still a 

society. 

Now we come to the main result of this paragraph.  If S is a society and if V is 

finite, we set 

7 r ( S ) = c a r d { g ~  V : b , ~ b :  with g ~ S ( b l )  NS(b2)}. 

The number  7r(S) is called the promiscuity number of the society S. 

THEOREM 11. Let V be a finite set. To every society R there exists a less 
promiscuous society S such that 7r(S)<= u - 1, where u = card (U) .  

PROOF. Since there are only finitely many societies, we may choose  a society 

S less promiscuous  than R which is minimal w.r.t, this proper ty .  That  is, no 

o ther  society is less p romiscuous  than S. Let S be any such society. 

A cycle is a sequence b~, �9 �9 .. b, of different boys in U(t >= 2) together  with girls 

g . .  �9 g,, who are all different, such that for each 1 <_- i _-< t, 

g, ES(b, )~S(b,~, )  

(where we have set b,~ = b,). We show that S has no cycles. Note  that L e m m a  6 

says for finite V that S has no cycles of length t = 2. 

Suppose there is a cycle as above.  Let a be a matrix for S as in Corol lary  8. 

Define a matrix a '  by setting 

a' (b , ,g , )=ot(b .g , ) -e  ( l = i = < t )  

a'(b,+,,g,)= a(b~,,g,)+ e 

and 
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a'(b,g)= a(b,g) for all other (b ,g) .  

Now set e = minz~=~=,a(b~, g,). It is easy to check that a '  satisfies conditions 1)-4) 

of Corollary 8. Moreover  c~'(b,,g~)---0 for at least one value of i. This is a 

contradict ion. to the minimality of S by Corollary 10. 

Next we may consider a graph whose vertices are the elements  of U and 

whose edges are the pairs (b, b') for which S(b) N S(b') # ~. By the above, this 

graph has no cycles and is therefore a tree, with at most u - 1 edges. But the 

number  of edges is equal to the promiscuity number  rr(S). 

Finally, we note that if S, is a society on (U,, e~) and (V,, tr,), i = 1,2, then the 

product S~ x $2 is a society on (U~ x U2, ej • e2) and (V~ x V2, o"1 x or2), where 

S, • S2(b, • b2) = S,(b,) x S2(b2). 

This follows from Corollary 8 and L e m m a  9, by setting 

a(b, x b2, g, x g2) = a,(b,, g,)" a2(b2, g2) 

and by noting that the society S of L e m m a  9 is less promiscuous than $1 x $2, so 

that S, x $2 must be a society. 

w Skeletons, fillers and assignments 

In the construction of the homomorph i sm of Theorem 1 which we produce in 

the next paragraph,  fibers X(.~) will be mapped  to fibers .~(s  in the barred 

scheme for almost all s E )~. The purpose of this paragraph is to prepare  the 

definition of the map on each fiber in a way which is shift invariant. 

By a skeleton we mean a non-indexed finite sequence of M ' s  and blanks (of 

different positive lengths) of the following form: 

M "~ M "' " "  M " - '  M "  
I1 12 Im 

where m_->l, n,>-l(O<-_t<-_m), l,>-_l(l<-t<=m), and where 

n, < rain (no, n,. ) (1 _-< t _- m - 1). 

The numbers  l~, . . . ,  l,, are called the filler lengths of the skeleton. We set 

I = L + " ' +  

Skeletons will be denoted by the symbol s, 

If s, s '  ~ 6e, then s '  is a subskeleton of s if 

exist integers t and t '  such that 

m .  

and the set of skeletons by ~. 

(in the above notation for s) there 
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s ' = M " '  M"' . . . . . . .  M"". 
1~ ~ ~ If, 

Two subske le tons  are said to be disjoint  (in s) if the indices of the l ' s  

co r responding  to t hem are disjoint.  Since the r equ i r emen t  for ske le tons  specifies 

that  the m a r k e r  sequences  M '~, and M " -  at the ends are longer  than those  in the 

middle,  it follows that  if s '  and s" are subske le tons  of s, e i ther  s '  and s" are 

disjoint or one  of t hem conta ins  the o ther  as a subskele ton .  

A m a x i m a l  subske le ton  s '  of s is a skele ton s '  ~ s such that  it is con ta ined  in 

no o ther  subskele ton  s" ~ s. F rom the above  it follows that  e i ther  s contains  no 

maximal  subske le tons  or  that  the maximal  subske le tons  s , , . . . , s j  of s are 

disjoint and cover  s. 

We define the order of ske le tons  inductively in the following manner .  A 

one-skeleton (skeleton of o rder  1) is a skele ton with no maximal  subskele tons .  

These  are just all ske le tons  of the fo rm 

M ~  M n l  

with no, n, _-> 1. If n _-> 2, an n-skeleton (skeleton of o rder  m )  is a skele ton which 

is not of o rder  less than n, but all of whose subske le tons  s' ,~ s have  o rder  less " 

than n. If s is a skele ton,  then by b reak ing  up s into maximal  disjoint 

subskele tons ,  b reak ing  these each up again,  etc., it is easy to see that  the o rder  of 

s is well-defined. We  omit  these details. 

If s E 5e and x E X, we say that s occurs in x at (q, r) if (denot ing by .f the 

image of x in the m a r k e r  process)  s r] can be ob ta ined  f rom s by replacing 

each M by ]~ and each blank of length l by 2', and if x[q,r]  is ne i ther  

immedia te ly  p receded  nor  immedia te ly  fol lowed by the symbol  J. in ~. We use a 

similar definition for the occur rence  of a skele ton in a point  of X. The  following 

l emma  is obvious.  

LEMMA 12. For almost every x E X there exists a sequence of  skeletons s,, 

t >= 1, and sequences o f  integers q, and r, such that 

1) q,<=O<=r,, 

2) s, occurs in x at (q,, r,), 

3) q , ~ - ~  and r , ~ + ~ c .  

PROOF. Let x G X be such that  for  each integer  u > 0 ,  the m a r k e r  sequence  

M"  occurs at least once to the left of zero and to the right of zero and is nei ther  

p receded  nor  fol lowed by M. This is obviously a set of measu re  one (by the 

ergodic  theo rem,  for  instance).  Now we may  take  for  st the skele ton 
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M ~ M", which occurs in x and contains the zero coordinate .  To  obtain s2, 

look to the left and to the right for the first occurrence  of an M"  with n > no, 

n > hi, etc. 

If x E X satisfies L e m m a  12, we may define the sequence of skeletons s,(x) of x 

as the maximal  sequence such that s,(x) occurs in x at (q,, r,) and such that s,(x) 

is a (maximal) subskeleton of s,+,(x). To  remove  ambiguity at the beginning,  we 

should not only assume that q, <= 0 <- r, but also that the zero coord ina te  of x 

appears  in the " in te r io r"  of the skeleton s,, i.e. it does not cor respond  to an 

e lement  of  one  of the end marke r  sequences of  s,. Then s,(x) is uniquely defined 

for  almost  all x. Moreover ,  the sequences  s,(x) and s,(Tx) coincide for large t 

(after shifting indices if necessary),  s ince  q, ~ - m and r, ~ + oo. 

The  above  results are also valid for the scheme B(p) .  The  sequence  s,(x) 
obviously depends  only on i ,  and not on x ~ X(.~). 

Next we define fillers. Let  s be a skeleton as above.  A filler F for s is an 

e lement  of the set 

I 1 I 
~T(s) = Ao  x . . .  x A o ' .  

If F = FI •  • F , . ,  then we set 

~*o(F) = l~I ~*o(F,), 
t = l  

where /*o  is the normal ized measure  on A0 ~ (l _-> 1) defined in {}2. We  call this >o 

the filler measure on 3:(s).  ~ ( s )  and /20 are defined similarly. 

We shall need to distinguish between good  (typical) fillers and bad fillers. The  

definition most  convenient  for our  purpose  is not the same for B (p) and B (p). If 

g and g are the filler entropies  for  B(p)  and B(p) ,  then /7  < h implies g < g. We 

fix an e w i t h O < e < ~ ( q - g ) .  

A n  e lement  

F = F l x  . . . x F m  

is good if 

A~ " ' x  ..% xAo 

t*o(F) <= 2 -~s-')l, 

where  1 = 11 + �9 �9 �9 + l,.. A n  e lement  

P = # ,  x . . .  x. . 'g.  

is good if 

~o(#) >- 2 -'~+~''. 

• A'o" 
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Elements which are not good are said to be bad. We shall need to subdivide the 

bad elements of 3~(s) a bit more. This is done by the following definition. If 

P E ~(s )  and if s' is a subskeleton of s, then by restricting P to s' we obtain an 

element of ~(s ' )  which we shall denote by F(s'). Now set 

~(P,  s) = {s': s' subskeleton of s, F(s ')  good, and 

s' maximal w.r.t these properties}. 

For instance, if/~ was good to begin with, then ~(P, s) = {s}. If s', s " E  cg(p, s), 

then s' and s" are disjoint, since if one were contained in the other then it 

wouldn't be maximal. We say that P C  # ( s )  and G, E .~(s) are equivalent 

( P -  (~) iff 

and 

~q(P, s) = ~ ( &  s) 

P(s')  = d ( s )  

for aH s ' E  qJ(F, s). If P is good, then no other element is equivalent to it. 

LEMMA 13. Let s be a skeleton with filler lengths l , . . . ,  l,,. The number of 

equivalence classes in ~ ( s )  is at most 

where l = l~ + . . .  + Ira. 

PROOF. The number of possibilities for (F, s) is at most 2 =, the number of 

subsets of { 1 , " . ,  m}. If s' is any subskeleton of length l', the number of good 

elements of ~(s ' )  is at most 

since each one has measure at least 2 -<~+~w. Since the skeletons of (l e, s) are 

disjoint, the number of possibilities for F(s'), s' ~ ~(P, s), F(s ' )  good, is at most 

I-I 2<~*'~c--< 2{~+~>t. 
s ' E . ~  

Next we define partial assignments. Let s be any skeleton. A partial 

assignment P~ for s is a society (see w on the sets 

U = o~(s) (boys), p = t2o 

and 

V = o~(s) (girls), o" =/z0. 
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The partial assignment P~ is good iff 

P -  t~ f f  P , ( P ) =  P~(t~). 

Note that a good partial assignment is the same thing as a society with V as 

above and U the set of equivalence classes of ~(s) ,  e being the measure rio of 

each equivalence class. 

LEMMA 14. I f  Q~ is a good partial assignment for s, then there exists a good 

partial assigment P, less promiscuous than Q, and such that 

/Zo({F E ~(s) :  F belongs to more than one Ps(F)})_-- < 

2 "-"*-~'/3'` +/*o({F E ~ ( s ) :  Fbad})  + fi0({F E ~ ( s ) :  #bad}).  

PROOF. Applying Theorem 11 to Os with U equal to the set of equivalence 

classes of boys, we obtain a good partial assignment it', such that the number of 

elements in the set on the left hand side of the inequality is at most 

2,,+(~+,)t, 

if we discount the F belonging to only one equivalence class with more than one 

element. Since our measures are normalized, this latter set cannot have measure 

greater than 

ti0({F E ~(s) :  P bad}); 

otherwise this would violate the societal condition. Each of the 2 "+(t§ elements 

mentioned above is either good or bad (in (s)). Therefore their total measure is 

at most 

2 "+~g+')' �9 2-(s-')'+/z0({F ~ ~(s) :  F bad}). 

Finally, 

m + (g + e ) l - ( g -  e ) l  = m - ( g - ~ ,  - 2e ) l  <- m - ( ~ 3  -) l 

and the lemma is proved. 

The last task of this paragraph is to define and construct global assignments. 

Let s be a skeleton, and suppose that the order of s is greater than one. Let 

s , . . . ,  st denote the maximal subskeletons of s. They are disjoint and cover s. 

Let P1,'" ",Pj be partial assignments for s l , ' " , s j .  We define the product 

assignment PI = P x . . .  x P~ on s in the following manner. If ff E ~(s) ,  then 

P(F)  consists of all F E  ~:(s) such that for each 1 <- t <-_j, F ( s , )E  P,(F(s,)). 

(Remember that F(s,) denotes the restriction of F to s,.) 
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LEMMA 15. P =  P, x . . .  x P, is a partial assignment on s. If P~,.. . ,P~ are 

good, then P is good. 

PROOF. The  first s t a t emen t  follows f rom the fact that  the p roduc t  of two 

societies is a society (see the r emark  at the end of w The  second s t a t emen t  

follows f rom the fact that  if P = P~ x . . .  x F, and G, = (~1 x . . .  x (~j, then 

implies 

P ~ c~ 

F, ~ (~, ( l ~ t  ~ j ) .  

A global assignment P is a collection (P~ts~.~ of good  part ial  ass ignments ,  one  

for  each skele ton s, such that  for any s E 5e with maximal  subske le tons  sl, �9 �9 ", sj, 

Ps is less p romiscuous  than Ps, x �9 �9 �9 x P~,. The  global  ass ignment  P is minimal  if 

for  each s C 5e, there  is no o the r  good  ass ignment  less p romiscuous  than Ps. 

LEMMA 16. Minimal global assignments exist. 

PROOF. For one-ske le tons  s, set Os(P)  = ~ ( s )  for  all P E ~ ( s ) .  Choose  any 

P~ less p romiscuous  than Q~ which has the above  minimal i ty  p roper ty .  

If P~. has been  defined for  all ske le tons  s '  of o rder  less than n, and if s is an 

n -ske le ton  with maximal  subske le tons  s~, � 9  sj (of o rder  less than n), then set 

O~=P,x...xpj 

and p roceeed  as for one-ske le tons .  This defines P by induction and the l e m m a  is 

proved.  

Note  that any minimal  global  ass ignment  satisfies the inequali ty of L e m m a  14. 

w Proof of the main theorem 

We can now p rove  T h e o r e m  1. By L e m m a  2 we may assume that  p k 'p2 = 

p~- ' p2  and we may  choose  k as large as we wish. Now as k tends to infinity, the 

average  n u m b e r  of places in a point  s of X occupied  by the symbol  1 is 

k~ = kp~ 'p2 and this tends to zero.  Thus  the en t ropy  e of the m a r k e r  process  

also tends to zero,  and the filler en t rop ies  g and ~ approach  the original 

en t ropies  h and /~  of the Bernoull i  schemes.  Moreove r ,  if s C ~" cor responds  to 
A t a fiber X ( s  of the fo rm H,~z d, then for a lmost  all ~ the ave rage  length of the 

l,, which is cons tant  by the ergodic  t h e o r e m  for  a fixed k, tends to infinity as k 

tends to infinity. For  x ~ X let s ,(x)  be the sequence  of ske le tons  defined af ter  

L e m m a  12 cor responding  to x, t _-> 1, and let m,(x) be the n u m b e r  of filler blocks 
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of s,(x), and l,(x) the total filler length of s,(x). By the above, we may choose k 

large enough such that for almost all x E X, 

lim m,(x ) -  (~3  -) l,(x ) = -o , .  

(This is one of the uses of our hypothesis h >/~  with a strict inequality.) Choose 

and fix k such that this relation holds. This fixes also g and g. 

By Lemma 4, the formula of Lemma 5 holds a.e. on fibers X(Y) with respect to 

the fiber measure/z~, at least for almost all fibers X(.~). It follows that for almost 

all x E X, 

lim/Zo({F E ~(s,(x)): F bad})  = O. 

Likewise for t2o we have for almost all x E X, 

!im fi0({ff ~ ~(S,(x)):  Fbad})  = 0. 

Now let P be any minimal global assignment (Lemma 16). It follows from 

Lemma 14 and the above remarks that for almost all x E X, 

(1) lim/z0({F • ~(s,(x)) :  F belongs to more than one Ps(P)}) = 0. 

This statement depends only on .f = 7r(x), and is thus true for almost all fibers 

X(.~). If x belongs to such a fiber, we define 4 ' ( x ) 6  X(.~)C.~ in the following 

manner. Let s,(x) be the skeleton sequence corresponding to x (which depends 

only on .~), and let Ft(x) denote the filler for s,(x) determined by x. Suppose that 

S,(x) occurs at (q,, r,) in x. Then for any t such that F,(x) belongs to only one 

P,(x)(P), say Ps(x)(P,(x)), we set 

4'(x)[q,, r,] = s,(x) filled with F,(x).  

By the definition of global assignments, if t < t' and if the above is true for both t 

and t', then F,(x) is the restriction of ifft,(x) to the subskeleton s,(x), so that the 

definition is consistent. Moreover,  by (1), 4,(x) [q,, r,] is defined for an infinity of t 

for almost all elements x E X ( i )  with respect to the fiber measure. By Lemma 4, 

this defines 4,(x) for almost all x E X. 

To complete the proof, we must show that 4, is a finitary homomorphism. It is 

obvious from the definition that 4, is (measurable and) finitary and that 4' 

commutes with T and "/~. To check that 4'/z =/2 it suffices to prove that for 

almost all s E )(, the map 
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carries /z~ to fix. Now if s is a skeleton occurring around zero in .~, then the 

elements of ~ ( s )  and ~ ( s )  correspond to cylinder sets in X(.~) and .,~(,~) whose 

/z~ and/.Z~ measures are given by tto and/-L, respectively. It follows easily from 

the construction above and from the definition of a society that 

and hence 

~ ~ .  

Therefore &/z = fi and our proof is complete. 

We close this paragraph by stating the following result without proof. 

THEOREM 17. The construction of & is effective ; that is, it can be carried out by 

a machine if the probability vectors p and ~ are given, and the average time needed 

to determine the zero coordinate of th(x ) (or any finite number of coordinates) is 

finite. 

This is in contrast to the Meshalkin and Blum-Hanson codes, which are 

simpler but have infinite expectation. 
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