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COCYCLES A N D  THE STRUCTURE 
OF ERGODIC GROUP ACTIONS 

BY  

R O B E R T  J. Z I M M E R  

ABSTRACT 

We show, for a large class of groups,  the existence of cocycles taking values in 
these groups and which define ergodic skew products. We apply this to prove a 
generalization of Ambrose ' s  representat ion theorem for ergodic actions of these 
groups. 

1. The concept of a flow built under a function was introduced into ergodic 

theory by von Neumann in [9]. The significance of this concept was demon- 

strated by Ambrose [1] when he showed that every ergodic flow with an 

invariant probability measure could be represented as a flow built under a 

function. In a variety of situations, this allows one to reduce questions about 

flows to questions about automorphisms. Ambrose 's  theorem, as well as the very 

concept of a flow built under a function, was put in a new light by Mackey when 

he introduced the idea of looking at ergodic theory as a theory of "virtual 

subgroups" in order to bring out certain analogies between ergodic theory and 

group theory [8]. In particular, Mackey defined the notion of the range of a 

cocycle, or homomorphism, of an ergodic action into a locally compact group, 

which includes as a special case flows built under functions. In this context, 

Ambrose 's  theorem implies that every ergodic flow is the range of a cocycle of an 

action of the integers, and Mackey then raised the question: For which locally 

compact groups is it true that every ergodic action is the range of a cocycle of an 

automorphism? This question was considered by Forrest in [5], where he 

describes a class of groups for which this is true, and which includes Z k • R". In 

this paper, we approach the question with different, perhaps simpler, techniques, 

and show that Mackey's question has a positive answer for a class of groups 

which includes (among others; see section 3 for details) Z ~ • recurrent 

groups, and connected nilpotent lie groups. Section 2 below reduces the general 
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problem to constructing cocycles into groups whose range is the whole group, 

and this problem is then examined in section 3. 

2. We begin by recalling Mackey's  construction of the range [8]. Let G be a 

locally compact  second countable group and S a standard Borel space. Suppose 

there is a right Borel action of G on S and a probabili ty measure ~ on S 

quasi-invariant and ergodic under the G-action.  If H is another  locally compact  

(second countable) group a Borel function a : S x G ~ H is called a cocycle if 

for all g, h ~ G, a(s,  g h ) =  a(s ,  g)a( sg ,  h)  for almost all s. One can then define 

an action of G x H on S x H given (almost everywhere;  see [10, section 3]) by 

(s, h) (g ,  k ) =  (sg, k ~ha(s,  g)). This action preserves the measure class of ~ x 

m~, where ~ ,  is Haar  measure on /4, and this measure is ergodic under the 

G x H action. It is also possible that S x H is actually ergodic under the action 

of G x {e}. In this case, we say that c~ has range H. In any event, we can let 

B0 C B (S x H )  be the Boolean (r-algebra of Borel sets modulo null sets that are 

invariant under G x{e}. Then B,, will be a Boolean H-space  and hence 

isomorphic to B (X) for some (essentially unique) H-space  X [7]. The H-space  

X is called the range of a and generalizes the construction of flow built under a 

function [8, section 6]. 

Our  aim in this section is to prove the following theorem. 

THEOREM 2.1. i ) I[ there is a cocycle c~ : S x G --~ H with range H, then [or any 

ergodic H-space  X,  there is an ergodic G-space  Y and cocycle [3: Y x G --~ H with 

range X. 

ii ) Suppose [urther that S can be chosen to have a finite invariant measure. Then 

if X has a finite (~r-finite) invariant measure, we can choose Y so that it will also 

have a finite ((r-finite) invariant measure. 

We will need the following lemma, which we shall also use in section 3. 

LEMMA 2.2. Suppose ct : S • G ~ H is a cocycle with range H. Let X be an 

ergodic H-space .  Define an action of  G on S • X by (s, x)g = (sg, xa  (s, g)). Then 

S • X is an ergodic G-space  with the product measure. ( W e  will denote this 

G-space  by S x ~X.) 

PROOF. (We remark first that (s, x)g  doesn ' t  quite define an action but a near 

action [10, def. 3.1]. However ,  there is an action which agrees with this a.e. for 

each g C G [10, prop. 3.2].) 

Suppose that there is a G-invariant  Borel set A C S x X. For s ~ S, let 

As = {x C X l(s, x ) ~  A }. Let U: H ~ U (L 2(X)) be the natural induced unitary 
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representat ion of H on L2(X). For  each Borel set E CX, let P~ be the 

projection opera tor  in L2(X) defined by multiplication by the characteristic 

function of E, and denote Pa, by P,. Then s--* P, is a Borel map of S into 

L(L2(X)) where the latter has the weak Borel structure. G-invariance of A 

implies that for each g E G, A, �9 a(s ,  g ) =  A, s modulo null sets in X for almost 

all s. Hence  for each g, U(a(s,g))-lP, U(s,g)=P,s for almost all s. Define 

O: S • H---~ L(L2(X)) by O(s, h)--- U(h)P,U(h) -~. Then 0 is Borel. Further- 

more,  for each g E G, h E H, 

O(sg, ha(s, g)) = U(h )U(ct(s, g))P, gU(a(s, g ) ) - l U ( h ) - '  

= U(h)P,U(h)-'  

= O(s,h) for almost all s. 

Thus, 0 is an essentially G-invariant  Borel map and since L (L2(X)) is countably 

separated,  0 must be essentially constant by the ergodicity of G on S • H. Thus, 

for some h and almost all (s, t), 

U(h )P,U(h )-' = U(h )P,U(h ) -~, so P, = P,. 

Hence we can write P, = P for almost all s, and we have for each g, 

U(a(s, g))-'PU(a(s, g)) = e for almost all s. Let H0 = {h E H I  U(h)- 'PU(h)  = 
P}. Then Ho C H is a closed subgroup and by changing c~ on a null set, we see 

that a is equivalent to a cocycle into Ho. Since S • , H  is ergodic, /4o = H. Since 

H acts ergodically on X, P = I or P = 0, which implies that A is ei ther null or 

conull. This proves the lemma. 

We now proceed to the proof  of Theorem 2.1. 

PROOF (OF THEOREM 2.1). Let Y = S x ,X, which by the preceding lemma is 

ergodic. Define fl to be the "restr ict ion" of a to S x X (cf. [10, example 2.7]), 

i.e. f l (s ,x ,g)= a(s,g). Thus, /3: Y •  G---}H is a cocycle. We claim that the 

range of fl is X. 

Consider first the action of H • H on X •  H defined by (x, h ) . ( m , k ) =  

(x �9 m, k-~hm ). Let q: X x H---~ X be q(x, h) = xh -1. Then q is invariant under  

H x{e} and for each z E X ,  H •  is transitive on q-~(z). Hence,  

q : X  • H---~X provides an ergodic decomposit ion of the H x{e} action on 

X x H. Decompose  the product measure on X • H over  the fibers of q. This 

yields a Borel field of measures on X • H, z-~/xz,  z ~ X, such that /z: is 

supported on q-~(z) and (X x H, / z , )  is ergodic under H • {e}. Fur thermore,  the 

Boolean subalgebra of H x {e} invariant sets in B ( X  • H) is just q*(B(X)), 
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where q * : B ( X ) - - - * B ( X •  is the induced map, and the ergodic { e } •  

action on q*(B(X))  is isomorphic to the given action of H on B(X) .  

Now form the G •  space Y x ~ H = - S x X x H .  The G •  action is 

defined (almost everywhere) by 

(*) (s, x, h) (g, k) = (sg, xa(s, g), k - 'ha(s ,  g)). 

Suppose E C S x X • H is a Borel set essentially invariant under the Boolean 

G x {e} action. Let ~b: S x X x H--*  X x H be projection and p = qo~b. Then 

the product measure on S • X • H can be decomposed over the fibers of p as 

f~x(lz x p,~)dz. For each z E X, (*) also defines a near action of G • {e} on 

(S x X x H, g • ~ )  and the Boolean action it defines is ergodic by L e m m a  2.2, 

since (X • H, p,z) is an ergodic H-space.  For z E X, let Ez = E M p-l{z}. Since E 

is essentially invariant, for each g we will have E~ �9 g = Ez modulo tzz null sets 

for almost all z. Then for Go C G a countable dense subgroup, we will have on a 

conull set of z, E z . g  = E ~ m o d  0 for all g ~ G 0 .  Thus E ~ . g = E ,  in 

B(S  • X • H, tz • I~) for all g ~ G,,, which implies by the ergodicity of tz • p,, 

that Ez is either ~z-null or gz-conull for almost all z. This implies that 

E ~ p* (B(X) )C  B(S x X x H). Conversely, since p is essentially G-invariant ,  

every element of p*(B(X))  is G-invariant .  Thus, for the G x H space Y • ~H = 

S x X • H, the Boolean subalgebra of G x {e} invariant elements  is precisely 

p*(B(X))  = cb *(q *(B(X))). Since tb*: B ( X  • H)--* B(S x X • H)  is a Boolean 

H-map ,  the range of /3 can be identified with the H-space  defined by the 

Boolean H-space  q *(B(X)) ,  which is just X. Finally, it follows directly from the 

construction that if S and X have finite (or o'-finite) invariant measures,  so does 

Y. This completes the proof. 

REMARKS. i) If the H-space  X is the range of a cocycle of a Lebesgue 

Z-space  (i.e. a Z-space  with an invariant probability measure) then it is the 

range of a cocycle of any Lebesgue Z-space.  This follows from the 

Dye-Bel inskaya theorem. Namely, suppose S and T are Lebesgue Z-spaces.  

Then (perhaps by passing to invariant conull sets) there is an orbit preserving 

measure preserving map & : S --* T [2]. Thus, there is a function 0 : S x Z--~ Z 

such that &(s �9 n) = ~b(s). O(s, n). It is straightforward to see that 0 is a cocycle 

and this imples that if a : T  x Z ~  H is a strict cocycle, so is /3:S x Z---> H 

defined by /3(s,n)=a(cb(s) ,O(s,n)) .  Now define t o : S x o H - - * T x ~ H  by 

t0(s, h ) --- (,;b(s), h). It is easy to check that to is an orbit preserving isomorphism 

of the Z • {e} actions and hence to* is an isomorphism of the Z x {e}-invariant 

Boolean algebras. Since to is clearly an H - m a p ,  the range of /3 will equal the 

range of a. 
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ii) An argument similar to the proof of Theorem 2.1, using Ambrose's 

theorem as in [11, theor. 2], shows that if X is the range of a cocycle on a 

Lebesgue Z-space, it is also the range of a cocycle on an arbitrary Lebesgue 

R-space. 

3. We now turn to the problem of constructing cocycles whose range is a 

given locally compact group. We shall be interested primarily in Lebesgue 

Z-actions. In [11], it was shown that every compact group is the range of a 

cocycle of such an action. The same technique works for a larger class of groups, 

namely the recurrent groups, by which we mean those groups admitting a 

non-singular recurrent random walk. (Non-singular means that some power of 

the law of the random walk has an absolutely continuous component with 

respect to Haar measure.) 

THEOREM 3.1. Let H be a recurrent group. Then for any ergodic Lebesgue 

Z-space S there is a cocycle on S whose range is H. 

PROOF. The construction and proof of Theorem 3 of [11] apply for any 

locally compact group. Since the sample sequence space of a non-singular 

recurrent Markov process is ergodic (see [6], e.g.), the general result follows 

from the remarks at the end of section 2. 

REMARKS. i) Among the groups known to be recurrent are countable 

Abelian groups with rank _-< 2 [4] (in particular Z and Z2), R, R 2, and the group 

of displacements of the plane [3]. 

ii) Theorems 2.1 and 3.1 provide a proof of a weak form of Ambrose's 

theorem. ("Weak"  in the sense that Mackey's range construction is somewhat 

more general than the flow built under a function construction; see [8, section 

61.) 
We shall now describe some inductive procedures for constructing cocycles 

"on to"  large groups given cocycles "on to"  small groups. We will need the 

following lemma. 

LEMMA 3.2. Suppose S is an ergodic G-space, X an ergodic H-space, 

a: S • G--~ H has range H and fl : X • H ~ L has range L. Then there is a 

G-space Y and a cocycle y: Y x G --~ L with range L. I f  S and X have finite (or 

o'-finite) invariant measures, Y can be chosen with this property as well. 

PROOF. Let Y =  S x~X, i.e. the G-space defined by (s ,x)g = (sg, xa(s ,g)) .  

Then Y is ergodic by Lemma 2.2. Define 3': Y •  by y ( s , x , g ) =  
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/3(x ,a(s ,g)) .  Then G acts on Y x , L  = S x X x L by (s,x, 1)g = (sg, xa ( s ,g ) ,  

1/3(x, a(s, g))). However ,  we can also consider this action as S • , ( X  • eL), and 

since X x eL is an ergodic H-space ,  and a has range H, the result follows by 

another  application of L e m m a  2.2. (The final s tatement  of L e m m a  3.2 is 

immediate  from the construction.) 

THEOREM 3.3. Suppose S is a Lebesgue Z-space and a :S  x Z - - * H ,  

fl: S x Z--* L are cocycles with range H and L respectively. Then there is a 

Lebesgue Z-space Y and a cocycle 3/: Y x Z--~ H x L with range H x L. 

PROOF. S x S is an ergodic Z2-space under the action (s, t ) .  (n, p)  = (sn, tp). 

It is straightforward to check that the function O : S x S x Z 2 - - * H x L ,  

O ( s , t , n , p ) = ( a ( s , n ) ,  /3(t,p)) is a cocycle and that the Z2-space ( S x S ) x  

o(H x L )  is isomorphic to the product Z2-space (S x ~ H ) x  (S x eL), and hence 

is ergodic. Thus, H x L is the range of a cocycle of an ergodic Lebesgue 

Z2-space and the theorem follows from Lemma  3.2 and (the remarks  following) 

Theorem 3.1. 

COROLLARY 3.4. For any Lebesgue Z -  or R- space, there is a cocycle with 

range Z k x R" x K, where K is compact. 

As a consequence of Corollary 3.4 and Theorem 2.1, we obtain the theorem of 

P. Forrest referred to in the introduction. We also note that Lemma  3.2 implies 

the following. 

PROPOSITION 3.5. Suppose D C H  is a closed subgroup such that H / D  has 

finite invariant measure, I f  there is a cocycle on a Lebesgue Z-space with range H, 

then D has this property as well. 

PROOF. Let s: H / D  --, H be a section of the natural projection. Then it is 

straightforward to check that a : H / D x H - - ~ D  defined by a ( x , h ) = s ( x ) h  

s (xh) - '  is a cocycle with range D. Lemma  3.2 now implies the result. 

By modifying the argument  of Theorem 3.3, we obtain the following result 

which will enable us to construct cocycles whose ranges are nilpotent groups. 

THEOREM 3.6. Suppose H is a locally compact group and N C H is a closed 

subgroup contained in the center of H. I f  S is a Lebesgue Z-space and 

a : S x Z ~ N and ~ : S • Z --~ H / N  have range N and H / N  respectively, then 

there is a Lebesgue Z-space Y and a cocycle Y : Y x Z ~ H with range H. 

PROOF. Let s : H / N  ~ H be a Borel section of the natural projection p. Let 

7 : S x Z - - - ~ H  be a cocycle such that P ' Y  =/3. Define O : S •  by 
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O(s, t, n, p) = a (s, n)y(t ,  p). Since N is in the center of H, it is easy to check that 0 

is a cocycle. Form the Z 2 space (S x S) • oH. We can define a Borel isomorphism 

H---~ N • H / N  by x ~ (s(p(x))-lx,  [x]). Since the range of a is N, it is easy to 

see that the space of Z • {0} ergodic pieces of S • S x H under the restriction of 

the Z ~ action is precisely S • H/N.  But {0} • Z acts ergodically on this space 

since /3 has range H/N,  and it follows that the Z 2 action on S • S • 0H is 

ergodic. The theorem again follows from Lemma  3.2 and Theorem 3.1. 

COROLLARY 3.7. Every connected nilpotent lie group is the range of a cocycle 

on a Lebesgue Z or R-space. 

PROOF. This follows from Theorem 3.6 and Corollary 3.4 via an induction on 

the dimension of the group. 
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