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I f books ,  in general ,  have their  o w n  

special  f a t e s - - w h i c h  depend  on their  
r e a d e r s - - t h e  same is t rue for  the 
mathemat ica l  "books" from ancient  
Egypt. Indeed,  modern  edi tors  and sub- 
sequent  r eade r s  have s t rongly influ- 
enced  the way  we view them today.  

And even now, r eade r s  of  the  third mil- 
lennium can a l ter  the fate of  these  early 

texts  by their  careful  (or  careless)  

reading. 1 

Sources and Early Historiography 
For  the pas t  fifty years,  the  repu ta t ion  
of  Egypt ian mathemat ics  has  been  
ra ther  poor .  This has  been  due in par t  

to the very  l imited number  of  avai lable 
pr imary  sources ,  par t icular ly  when 

c o m p a r e d  with the vas t  col lec t ions  of  
cunei form mathemat ica l  tex ts  pro- 
duced  in Mesopotamia .  In ancient  

Egypt  the p roduc t ion  of  ma themat ics  
(as well  as l i tera ture)  t ook  p lace  in 
cities. Then, as today,  Egypt ian  ci t ies 
were  loca ted  along the Nile, and hence  
close to water.  This c i rcumstance  has  
had signif icant  consequences  for  con- 
t empora ry  Egyptological  research.  On 
the one hand, papyrus ,  the  main  writ- 
ing mater ia l  in this  culture, was  de- 
penden t  on absolu te  dryness  for  its 
preservat ion,  a condi t ion  found in the 
Egypt ian dese r t  where  mos t  papyrus  
finds were  made.  However,  in anc ient  
Egypt ian cities, where  wri t ings con- 
cerned  with the  mundane  affairs of  

daily life were  d i sca rded  af ter  use, this  
condi t ion  was  usual ly  not  fulfilled. 
Therefore,  mos t  of  the wr i t ten  evi- 

dence document ing  the role of  mathe-  
mat ics  in Egypt ian social,  economic ,  

and  cultural  life mus t  be a s sumed  lost  
forever. On the o ther  hand, to the ex- 
tent  that  such sources  may  still be re- 
t r ievable  some day, prac t ica l  p rob lems  
s tand in the  way. The loca t ions  of  an- 

c i e n t  Egypt ian ci t ies often coincide  
with those  of  modern  urban centers.  

This makes  it next  to imposs ib le  to ex- 
cavate  at  a number  of  loca t ions  where  

extant  r emains  might  still be found. 
Among the few known  (excavated)  

cities, the  Middle Kingdom town of  
Lahun (also known as l]lahun or  Kahun) 

is except ional ,  having y ie lded  the rich- 
est  f indings of  Middle Kingdom papyr i  
so far, among which  incidental ly  are a 
number  of  ma themat i ca l  fragments.  ~ 
The two mos t  s ignif icant  sources ,  how- 
ever, the famous Rhind and Moscow 

mathematical  papyri, were bought  on the 
antiquities market,  making their  prove- 
nance uncertain. These and most  of the 
other known mathematical  sources were 

already published by 1930. 
The ach ievements  of  the ear l ies t  re- 

sea rchers  who  s tudied  these  texts,  es- 
pecia l ly  those  who  w o r k e d  during the 
first  half  of  the  twent ie th  century,  were  
enormous.  As editors,  they  managed  to 
pene t ra te  a foreign vocabu la ry  of  tech- 
nical  terms,  which p laced  them in po- 

si t ion to make  a first  a t t empt  at  un- 
ders tanding  Egypt ian  mathemat ica l  
methods .  3 As was  c o m m o n  at that  
t ime, anc ient  sources  and achieve- 
ments  were  v iewed  and evalua ted  by 
means  of  d i rec t  compar i son  with mod-  
ern convent ions  and results.  In many  
respects ,  it  was  found that  Egypt ian 
mathemat ics  had  little in c o m m o n  with 
the  me thods  found in modern  mathe-  
mat ica l  t ex tbooks .  Nevertheless ,  with 
some  effort  the  mathemat ica l  content  
of  the ancient  texts  could  be  "decoded" 
a n d  "translated" into modern  mathe-  

matics.  
Unfortunately,  this  type of  reading 

often enta i led a loss of  the mos t  strik- 
ing charac te r i s t i cs  of  the  original  
sources,  a d r awback  that  was  little ap- 
p rec ia t ed  at  the  time. Not surprisingly,  

the "achievements"  of  Egypt ian math- 
ematics,  judged  in t e rms  of  a different  
mathemat ica l  cul ture (from more  than 
3000 years  later),  looked  ra ther  crude 
a n d  simple.  One of  the early leading au- 
thor i t ies  on ancient  mathemat ics  was  
Otto Neugebauer ,  who wrote  his dis- 
ser ta t ion  on Egypt ian methods  of  cal-  
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culat ing with fractions.  4 Afterward,  
Neugebauer  turned  his a t tent ion  away  
from Egyptian mathemat ics  to s tudy 
Mesopotamian  mathemat ics  and as- 
t ronomy,  which he bel ieved was  a 
higher  level of  scientif ic  achievement .  
As he once  expres sed  this: 

Egypt provides us with the excep- 
tional case  of  a highly sophist icated 
civilization which flourished for 
many centuries without  making a sin- 

gle contr ibution to the development  
of the exact  sciences. [ . . .  ] It is at 
this single center  (Mesopotamia)  that 
abst ract  mathemat ica l  thought  first 
appeared ,  affecting, centur ies  later,  
ne ighbour ing civilizations, and fi- 
nally spreading  like a contagious  
disease.  5 

It was  surely in par t  due to the out- 
s tanding quality of  the early scholar ly  

cont r ibu t ions  that  r eade r s  accep ted  so 
readi ly  this kind of  negative assess-  
ment  of  Egypt ian mathemat ics .  As in- 
d ica ted  already, this  s i tuat ion was 
c o m p o u n d e d  by  the lack of  new source  
mater ia l  w h i c h - - h a d  it been  t h e r e - -  
would  have required those  capable  of  
reading Egypt ian texts  to ref lect  upon 
the a s ses smen t s  of  thei r  p redecessors .  
Thus, in the case  of  Mesopo tamian  

mathemat ics ,  where  new source  mate-  
r ial  is still  being uncovered  on an al- 
mos t  regular  basis,  readers '  opinions  

have changed  significantly over  time. 6 
Lacking this weal th  o f  textual  material ,  
r eade r s  of  the Egyptian texts  s eemed  

to have no basis  for quest ioning the 
s tandard  views of  ear l ier  exper t s  l ike 
Neugebauer .  Indeed,  once the major  
Egyptian mathemat ica l  papyr i  became  
avai lable  in English or  German trans- 
lation, var ious  his tor ians  of  mathemat-  
ics began contr ibut ing  new ideas  based  
on their  own readings  of  these  first  
translations.  Often these involved mod- 

ern mathemat ica l  symbolism, leading to 
results  that  had a lmost  nothing in com- 
mon with the original source text. 7 

This once  c o m m o n  approach  has  
now been recognized  as  both  anachro-  

nist ic and misleading.  Indeed, for  the 

last  20 years  h is tor ians  of  mathemat ics  
have s ta r ted  to t ake  up and to r ework  
the sub jec t  of  anc ien t  mathemat ics .  8 It 

is now genera l ly  accep ted  that  histori-  

ans  of  ma themat i c s  cannot  work  on a 
source  tex t  wi thout  knowing the lan- 
guage in which it is wr i t ten  or  the cul- 
tural  background  it comes  from. At the 
same time, it has  become  obvious that  
mathemat ica l  knowledge  is not  uni- 
versal,  t t  is ne i ther  independen t  of  the  
cul tures  in which it is p roduced  and 
used, nor  has  it deve loped  universal ly  
from basic  beginnings to more  and 

more  advanced  s tages  of  knowledge.  
This dependence  on cultural  back- 
ground begins  a l ready with number  

sys tems  and number  concepts ,  as has  
been demons t ra ted  by var ious  scho la rs  
working  on e thnomathemat ics .  '~) More 
advanced  mathemat ica l  techniques 
and concep t s  have also been  shown to 
be dependen t  on the cul ture  that  cre- 
a ted them. m 

C u r r e n t  R e s e a r c h  

From this descr ip t ion  of  pas t  research,  

it fo l lows that  the edi t ions  of  Egypt ian 
mathemat ica l  sources  are by  now 
outdated.  It is to be hoped  that  new 
edi t ions  can be  publ i shed  before  the  
current  ones  reach their  centenary.  
Likewise, o lder  s tudies  of  Egypt ian 
mathemat ics ,  those  wri t ten  more  than 
30 years  ago, mus t  be read  with cau- 
tion, bear ing in mind the kind of  ap- 

p roach  pas t  r e sea rches  typical ly  took. 
Fo r  an up-to-date  in t roduct ion  to the 
subject ,  the  reader  should  consul t  the  
ar t ic les  by Jim Ritter. 11 In the follow- 

ing sketch,  I will a t t empt  to give an 
overv iew of  the  s ta te  of  cur ren t  re- 
search,  i l lustrated with se lec ted  exam- 
ples from the source  material .  

Although there  have been  no spec-  
tacular  new finds of  mathemat ica l  pa- 
pyri, ex tant  sources,  including the 
much-s tudied Rhind and Moscow pa- 
pyri, still offer many clues about  the 
role of  ma themat i c s  in Egypt ian life. 
Alongside these,  the Lahun mathemat-  
ical f ragments  have jus t  been  re-edited,  
including several  previous ly  unpub-  
l ished fragments.  12 

Other  texts  are  still await ing p rope r  

publ icat ion,  such as the  mathemat ica l  
f ragments  of  Papyrus  Berlin 6619. The 
ear l ier  publ ica t ions  from 1900 and 1902 

only conta in  facs imiles  of  the  two 
largest  fragments.  Moreover,  the inter- 
pre ta t ions  of  t hem then given are  not  
wi thout  problems.  ~:~ The Cairo wooden  

boa rds  are  current ly  avai lable  in two 
very small  and hardly  legible photos  
with a d iscuss ion  of  some of  thei r  con- 
tent. While a number  of  demot ic  math- 
emat ica l  texts  have been  published,  no 
deta i led s tudy of  Egypt ian mathemat-  
ics in the Graeco-Roman per iod  is 
available yet. 14 

Evidence from the Predynast ic  Period 

Apar t  from the ex tan t  ma themat ica l  

texts,  however,  there  are  fur ther  
sources  avai lable th roughout  Egypt ian  

his tory which inform us about  a spec t s  
and uses  of  ma themat ics  as it evolved 
in ancient  Egypt  in pe r iods  from which 
no mathemat ica l  texts  are  extant.  Writ- 
ten  evidence exis ts  from as ear ly as  
a round  3000 B.C., the o ldes t  dat ing 
from short ly before  the unif icat ion of  
Egypt. It comes  f rom the t omb  Uj at  

Abydos  1~ and consis ts  of  wri t ing on 
po t te ry  as well as on little tags of  bone  
and ivory. These  tags all reveal  holes, 

suggest ing they were  p robab ly  once at- 
tached to some per i shab le  goods  f rom 
this grave, thus indicat ing their  prove-  
nance  and quantity. H~ The quanti t ies  
were  rendered  using e lements  and 
style famil iar  from the Egypt ian  num- 
ber  sys tem in la ter  t imes, i.e., a deci- 
mal sys tem wi thout  pos i t ional  no ta t ion  

(see Figure 1). In this  system, each  
p o w e r  of  10 up to 1 mil l ion was  repre-  
sen ted  by a different  sign. In o rde r  to 

write  any number ,  the respec t ive  signs, 
wri t ten  as  of ten as needed,  were  jux-  
t aposed  in a symmet r ic  way. Note that  
the hieroglyphic  writing, which is wha t  
mos t  people  a s soc ia t ed  with anc ien t  
Egypt, was used  most ly  on s tone mon- 
uments.  For  daily life purposes ,  Egypt- 
ian scr ibes  wrote  with a reed  (d ipped 
in ink) on papyrus  or  so-cal led os t r aca  
( l imestone or  po t te ry  shards) .  The 

Figure 1. Number representations on the 
tags from tomb Uj. 
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script used in this writing is more cur- 
sive and abbreviated than hieroglyphic 
script. Several signs can be combined 
to form ligatures, whereas the writing 
itself can vary a great deal, depending 
on the individual scribe (just like mod- 
ern handwriting). 

Mathematics in the Old Kingdom 

After the unification of Egypt under a 
single king (around 3000 B.C.), the Old 
Kingdom (OK; 2686-2160 B.C.) brought 
forth the first period of cultural bloom 
in Egyptian history. Extant architec- 
tural remains, like the pyramids, as 
well as such artifacts as the scribal 
statues, demonstrate a high level of 
cultural attainment by this time. There 
can be little doubt that mathematical 
techniques lay at the heart of this de- 
velopment as a significant tool for han- 
dling organizational and administrative 
problems. To achieve something on the 
scale of the pyramids, mathematics 
was necessary not only for architec- 
tural planning but also for the organi- 
zation of labor. The scribal statues, 
which depict high officials from this 
period, demonstrate the importance of 
the administrative system. Despite this, 
there is practically no written evidence 
for mathematical practices extant from 
this time. Many of the monumental hi- 
eroglyphic inscriptions are still ex- 
t a n t - b u t  these, of course, focus on 
eternity and tell us little about Egypt- 
jan daily life and the affairs in which 
mathematics played an important part. 
Only very few papyri from this period 
have survived, some in a very frag- 
mentary state. 

Nevertheless, there is other direct 
evidence of Egyptian mathematical 
techniques, for example from the plan- 
ning and execution of building projects 
such as a mastaba from Meidum (see 
Figure 2). Around the corners of this 
mastaba, beneath the ground level, 
four L-shaped mud-brick walls had 
been built. On these walls a series of 
diagrams can be found, which indicate 
the slope of the sides of the mastaba. 
This method of handling sloped sur- 
faces points to the development of a 
concept which is well documented in 
the mathematical texts. 17 To express 
sloped surfaces, such as the sides of a 
pyramid, the Egyptians used the so- 

Figure 2. Ind ica t ion  o f  a s loped  su r face  at  Me idum.  

called sqd. This Egyptian term is de- 
rived from the verb qd, meaning "to 
build." The sqd was used to measure 
the horizontal displacement of the 
sloped face for each vertical drop of 
one cubit, that is the length by which 
the sloped side had "moved" from the 
vertical at the height of one cubit. The 
sqd was always indicated in palms, and 
if necessary, digits. Although we have 
textual evidence for this concept only 
from the Middle Kingdom onward, 
sketches from the Old Kingdom indi- 
cate that it was in use during this ear- 
lier period. Note that the parallel lines 
drawn on the mud bricks are spaced at 
a distance of one cubit or seven palms. 

Furthermore there is early evidence 
for several metrological systems. While 
these units can also be found in later 
mathematical texts, their appearance 
in administrative papyri as well as in 
the inscriptions and depictions from 
tombs indicates that these systems go 
back at least to the Old Kingdom. Some 
of these systems changed over time, 
but the sources from the Old Kingdom 
suffice to trace these changes. 

Calculations with Unit Fractions 

One of the most intriguing aspects of 
Egyptian mathematics concerns spe- 
cial methods for calculating fractions, 
which were understood in ancient 
Egypt as inverses of integers, is Hence, 
the Egyptian notation for fractions did 
not consist of a numerator and de- 
nominator, but rather a special symbol 
was used alongside an integer to des- 
ignate the corresponding fraction. An 

2 which exception was the fraction 5' 
had a special sign. The fractions ~-, ~, 

1 and ~ were also written by using spe- 

cial signs (indicating that these may be 
older) rather than by using the general 
Egyptian notation. 19 In modern stud- 
ies, Egyptian fractions are usually 
described as unit fractions, and it is 
often suggested that the Egyptians 
"restricted" themselves to calculations 
with fractions having a numerator of 
one. 2~ As explained in the paragraph 
above, however, this is a rather anachro- 
nistic view. Moreover, seen from a mod- 
ern perspective, the Egyptian system 
inevitably appears awkward and un- 
necessarily restrictive. 

One of the first to study Egyptian 
computations with fractions was Otto 
Neugebauer, who devised a notational 
system that parallels the Egyptian no- 
tation. Fractions, as inverses of inte- 
gers, are rendered by the value of 

1 
the integer with an overbar: thus, 
would be written as 5, _1 as 6, etc. The 
exceptional frac__tion ~ w6as rendered by 

l Neugebauer as 3, whereas 12, ~, and 
appeared as 2, etc. This notational sys- 
tem, which closely mirrors the Egyptian 
concept of fraction, has become the 
standard way of writing Egyptian frac- 
tions in modern textbooks. 

Following this concept of fractions 
as inverses of integers, the next s tep--  
consequently--was to express those 
parts that correspond to a multitude of 
inverses. This was done by (additive) 
juxtaposition of different inverses. 
Thus, -~ _was written in the Egyptian sys- 
tem as 2 4, whereas a general fraction 
was given as a sum of different in- 
verses written in descending order ac- 
cording to their size. (Note that this no- 
tation enables one to be as accurate as 
necessary by considering only ele- 
ments up to a certain size.) 
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Egyptian techniques of multiplica- 
tion and division (see below for a more 
detailed description) frequently in- 
volved the doubling of a number. This 
could be done very easily if the num- 
ber to be doubled was an integer or the 
inverse of an even integer. However, to 
double an odd Egyptian fraction (when 
the result is supposed to be a series of 
different inverses only) can be quite 
difficult to accomplish. Consequently, 
it proved useful to prepare tables giv- 
ing the results for doubling the inverses 
of odd numbers. These can be found in 
the so-called 2 + N tables still extant 
in two sources: at the beginning of the 
Rhind Mathematical Papyrus (for odd 
N = 1 - 101) and in the Lahun frag- 
ment UC 32159 (for odd N = 1 - 21). 

Figure 3 shows the fragment UC 
32159 in which the numbers are 
arranged in two columns. The first col- 
umn shows (what we call) the divisor 
N, except for the first entry which 
shows both the dividend 2 and the di- 
visor 3. This is followed by a second 
column that alternatingly shows frac- 
tions of the divisor and their value (as 
a series of inverses). Thus, the second 
line starts with the divisor 5 in the first 
column: it is 2 + 5 that shall be ex- 
pressed as unit fractions. This is fo_l- 
lowed in the second column by 3, 1 3, 
1-5, a_nd 3. This has to be read as 3 of 5 
is 1 3, and i5 of 5 is 3. Since 1 3 and 
added equal 2, the series of unit frac- 
tions needed to represent 2 + 5 is 3 15. 

The 2 + N table in the Rhind papyrus 
shows the same arrangement of num- 
bers; however, the solutions there are 
marked by the use of red ink. 

Obviously, the representation of 2 + 
N as a series of unit fractions is not 
unique. However, the Egyptian 2 + N 
Table uses for each N only one of the 
theoretically possible representations. 
Those we find in the Lahun fragment, 
for example, are identical to the ones 
found in the table of the Rhind papyrus. 
And whenever an odd fraction is dou- 
bled within the mathematical texts, it 
is this same representation that we find 
used. 

This circumstance has fascinated a 
number of experts on additive number 
theory. In fact, there have been several 
attempts to crack the puzzle posed by 
the 2 + N Table by finding the criteria 
that led the Egyptians to employ just 
these particular representations. Yet, 
while it is possible to describe some of 
the general tendencies--e.g., represen- 
tations with fewer elements are fa- 
vored as are also representations with 
larger inverses, etc.--it has not been 
possible to establish strict mathemati- 
cal rules that explain the choices the 
Egyptians mathematicians made. 
Rather than criticizing them for their 
lack of insight--or blaming them for 
not having followed strict rules that 
would comply with a different mathe- 
matical concept of fractions devised by 
another culture several thousand years 

23 ~2 
5 3 1 3 1 5 3  

7 4 1 2 4 2 8 4  

9 6 1 2 1 8 2  

11 6 1 3 6 6 6 6  

13 8 1 2 8 52 4 104 8 

15 10 1 2 30 2 

17 12 1 3 12 51 3 69 4 

19 12 1 2 12 75 4 l l4  [6] 

21 14 1 2 42 2 

Figure 3. Fragment UC 32159:2 + N table (Copyright Petrie Museum of Egyptian Archaeol- 
ogy, University College London). 

later--it seems more appropriate to 
recognize that mathematics is, indeed, 
culturally dependent; our modern 
point of view may not afford us the best 
picture of past achievements. Thus, in- 
stead of trying to concoct an explana- 
tion of the Egyptian solutions by using 
modern mathematics, it may be more 
rewarding simply to "accept" the 
Egyptian table and examine its use and 
usefulness within the mathematical en- 
Vironment that employed it. 

Mathematical  Problem Texts 

from the Middle Kingdom 

Apart from tables, the mathematical 
texts also include special procedures 
articulated within problem texts. As 
these names indicate, such texts set 
out a problem and then give instruc- 
tions showing how to solve it. Proce- 
dure texts derive from an educational 
setting. They may have been written by 
a teacher, who was compiling a hand- 
book, or perhaps by a student engaged 
in practicing mathematical techniques. 
An appreciation of this context is im- 
portant for understanding these texts, 
which were intended to prepare 
scribes for the mathematical tasks they 
would later have to execute as part of 
their daily work. 21 Given that these 
texts were written for this type of 
mathematical education, it should not 
be expected that we can learn how the 
Egyptians developed their mathemati- 
cal knowledge from sources of this na- 
ture. 

The extant hieratic mathematical 
texts contain roughly one hundred 
problems. Furthermore, in the largest 
of these texts, the Rhind Mathematical 
Papyrus (see Figure 4), we can discern 
an arrangement of these problems ac- 
cording to their rising level of diffi- 
culty. This is not to be judged by purely 
mathematical aspects alone but also by 
additional knowledge (often from a 
practical background) which is neces- 
sary to solve the problems. This can be 
seen, for example, in pRhind, problems 
31-34 and those immediately follow- 
ing, problems 35-38. Mathematically, 
both groups teach a procedure for de- 
termining an "unknown" number if its 
sum with fractions of itself is given. 
The procedure for solving the prob- 
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lems in both groups is roughly the 
same. However, in the second group 
(pRhind, problems 35-38), the "un- 
known" number is not an abstract num- 
ber but a quantity of grain. Therefore 
the result, which is determined in the 
same way as in the preceding prob- 
lems, needs to be transformed after- 
wards into the respective metrological 
units. 22 

The style of Egyptian mathematical 
problem texts can best be appreciated 
by looking at an actual example, like 
problem 56 of the Rhind Mathematical 
Papyrus: 

Method of  calculat ing a pyramid, 
360 is its base, 250 is its height. 
You shall let me know its inclination. 
You calculate half of 360. It results 
as 180. 
You divide 180 by 250. 2 5 50 of a 
cubit results. 
1 cubit is 7 palms. 23 
You multiply with 7. 

7 
\ 2 3 2  
\ g 1 3 1 5  
\ 50 10 25 Its inclination: 5 25 

palms 

Problem 56, like the other four ex- 
amples of pyramid problems found in 
the Rhind Papyrus (nos. 57, 58, 59, and 
59b), teaches the relation between the 
base, height, and inclination of the 
sides. This example complements the 
OK sketch found on the walls around 
the mastaba with sloping sides, which 
was discussed above. In fact, the tech- 
nical term sqd--the number of palms 
the slope of a slanted plane recedes per 
vertical difference of one cubit--is ex- 
plicitly indicated in the problem text. 
Thus, the base, height, and inclination 
of a pyramid are linked by the relation: 

1/2 base 
inclination = 7 palms • height 

The problem above presents a pyramid 
with base (360) and height (250); its in- 
clination is to be calculated. The pro- 
cedure calls for calculating half of the 
base and dividing this by the height. 
The result is then multiplied by 7 to ob- 
tain the inclination in palms. Having 
grasped "what is going on" in this prob- 
lem, let us now take a second, closer 
look at the Egyptian text and its means 
of structure. 

The text begins--as is typical for 
mathematical problem texts--with a 
title "Method of  calculat ing a pyra- 
mid." Note that the beginning of the ti- 
tle is written in red ink (rendered in my 
translation in bold). This use of red ink 
helps the reader recognize at a glance 
the beginnings of individual problems. 
The title of mathematical problems is 
very often given as "Method o f . . .  "fol- 
lowed by a key word which indicates 
the type of problem. In our example, the 
key word is the Egyptian mr, "pyramid." 

After this title, the given data are in- 
troduced, and they are always specific 
numerical values. This statement of the 
data is generally followed by a question 
or command, outlining the problem 
that the scribe shall solve. In this ex- 
ample: "You shall let me know its in- 
clination." Next, we see a sequence of 
instructions, followed by intermediate 
results. This procedure then leads to 
the numerical solution of the problem. 
Each instruction usually consists of 
one arithmetic operation. The Egyptian 
mathematical language distinguishes 
addition, subtraction, multiplication, 
division, halving, inverting, squaring, 
and the extraction of square roots. 
These individual mathematical opera- 
tions are expressed without any use of 
mathematical symbols. The instruc- 
tions themselves are always given as 
complete sentences. 

Furthermore, in this part of the text, 
a special verb form is used, the so- 
called sdm.hr=fi The name consists 

Figure 4. Rhind Mathematical Papyrus, No. 56 Copyright The British Museum. 

of the Egyptian verb "to hear" (sdm), 
which is used in Egyptian grammars to 
demonstrate different conjugations, its 
characteristic morphological element 
(Or) and the suffix pronoun of the third 
person singular (f). Its function is to 
express a "general truth" which results 
as a necessary sequence from previ- 
ously stated conditions. 24 In the math- 
ematical texts, the sdm.hr=f is used 
for both instructions and announcing 
intermediate results. As for the latter, 
the verb form expresses "mathematical 
facts"--if 2 and 2 are added, the result 
will necessarily be 4. The use of the 
sdm.hr=f in the instructions under- 
lines the specific procedural character 
of the text: the sequence of instruc- 
tions necessarily has to be followed to 
solve the problem. The last instruction 
given, the multiplication of (2 5 50) by 
7 is followed by a scheme of numbers. 
This carries out the actual multiplica- 
tion in the Egyptian manner, which 
may now be described. 

Multiplication (and division) are ex- 
ecuted following a scheme that uses 
two columns of numbers. 25 Each mul- 
tiplication begins with the initialization 
which is found in the first line of the 
scheme: a dot is placed in the first col- 
umn and the number to be multiplied 
in the second column. The multiplica- 
tion is carried out by subsequent oper- 
ations in both columns using a variety 
of techniques, depending on the nu- 
merical values of the numbers that 
shall be multiplied. The aim is to find 
the multiplier as a combination of en- 
tries in lines of the first column. The 
respective lines of the second column 
will then be the result of the multipli- 
cation. 

Problem 56 of the Rhind Papyrus 
shows the notation used to compute 
7 • 2 5 50. The initialization is followed 
by three more lines, each of which in- 
dicates one of the required fractional 
parts (2, 5, 50) of the multiplier. How 
the individual entires of the second col- 
umn were found is not obvious. It is 
possible that there may have been ta- 
bles for fractional parts of 7, as this 
was a number that leads to compli- 
cated calculations, but which came up 
frequently due to the metrological con- 
ventions. 26 
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Finally, the result of the problem is 
announced. Next to the text of the 
problem there is a sketch indicating 
characteristic measurements for this 
problem, i.e., the values of base and 
height (see Figure 5). This step-by-step 
layout can be found in virtually all 
Egyptian problem texts. This being the 
case, one can easily see that the formal 
aspect of phrasing mathematics in the 
form of procedures will be completely 
lost if a problem is "translated" into 
a modern algebraic equation (in this 
case: inclination = (1base~height )  x 

7 palms). While this formula has the ad- 
vantage of informing a modern reader at 
a single glance how an ancient measure 
was defined, it conveys nothing what- 
soever about the procedural character 
of Egyptian mathematics. Moreover, al- 
gebraic formulae played no part in 
Egyptian mathematics so that the above 
formulation for the sqd is anachronistic, 
at best, as it is foreign to the methods 
actually found in Egyptian texts. 

Analyzing Egyptian Problem Texts 

As it happens, a closer analysis of the 
problem texts reveals many hitherto 
unnoticed methodological features of 
Egyptian mathematics. Indeed, the 
procedural format can be used as a key 
to analyze not only individual problems 
but also various types of problems as 
found in the mathematical papyri. To 
get beyond a superficial understanding 
of Egyptian mathematics, however, a 
method was needed that enabled a 
reader to analyze and compare the 
Egyptian procedures. Such an ap- 
proach was first proposed by Jim Rit- 
ter. 27 In my dissertation I have adapted 
this method to analyze the various pro- 
cedures used in all hieratic mathemat- 
ical problems. 28 

The analysis of a specific problem 
text can be carried out by rewriting it 
in two stages. In the first, one keeps 
the numerical values indicated in the 
source text but rewrites the instruc- 
tions by replacing the rhetoric for- 
mulations with modern symbols that 
indicate the respective arithmetic op- 
erations. The data are noted at the be- 
ginning of the scheme by their numer- 
ical values. Thus, for the example cited 
above (pRhind, problem 56), the text 
would be rewritten as follows: 

I 1360  
Figure 5. Sketch at the end of Rhind Mathe- 

matical Papyrus, No. 56. 

Method o f  calculating a pyramid, 
360 is its base, 360 
250 is its height. 250 
You shall let me know 
its inclination. 
You calculate half of 360. 

(1) 2 x 360 
It results as 180. = 180 
You divide 180 by 250. 

(2) 180 + 250 
2 5 50 of a cubit results. 

= 2 5 5 0  
1 cubit is 7 palms. 
You multiply with 7. 

(3) 2 5 50 • 7 

The result allows one to see at a glance 
whether the arithmetic operations to 
be carried out were simplified by the 
choice of data. For example, in prob- 
lem 43 of the Rhind papyrus, the cal- 
culation of the volume of a granary 
with circular base, the diameter of the 
granary is given as 9. This greatly fa- 
cilitates the calculational procedure, 
the first step of which is to determine 
1 of the diameter. In the values of our 
problem, the given data were 360 and 
250. While the first step, halving 360, is 
fairly straightforward, the second, the 
division of the result of the first step 
by the second datum results in a frac- 
tion of three parts, which then has to 
be multiplied by 7. Thus, by compari- 
son, the data in problems 58 and 59 re- 
sult in easier calculations. 

This first stage of rewriting is espe- 
cially helpful when dealing with a cor- 
rupt text, as the modern reader is 
forced to follow the source text and 
identify the procedure in a step-by-step 
fashion. It then becomes immediately 
apparent where specific difficulties 
arise in the source. 

To further analyze the text so as to 
reveal how its procedures are related 

to those used in other problems, it is 
necessary to distinguish between dif- 
ferent types of numbers that can ap- 
pear throughout the procedure. The 
first numbers a reader encounters are 
the data of the given problem. From the 
second instruction on, three types of 
numbers are possible: data, intermedi- 
ate results, and constants. To distin- 
guish these, and also to get a clearer 
view of the structure of the procedure, 
a second stage of rewriting is required. 
In this stage the data are indicated by 
symbols D~, whereas intermediate re- 
sults are specified by a number in paren- 
theses (x) which specifies the step in 
the procedure that leads to the given re- 
sult. The only actual numbers that now 
appear in the rewritten text are con- 
stants. Thus, for our example, the result 
of this second rewriting is as follows: 

Method of  calculating a pyramid, 
360 is its base, D1 
250 is its height. D2 
You shall let me know 
its inclination. 
You calculate half of 360. 

(1) 2 • D1 
It results as 180. 
You divide 180 by 250. 

(2) (1) + D2 
2 5 50 of a cubit results. 
1 cubit is 7 palms. 
You multiply with 7. (3) (2) • 7 

In my dissertation I have analyzed 
the procedures of all hieratic math- 
ematical problems by rewriting the 
procedure in the form of a symbolic 
algorithm. This makes it possible to 
compare the various procedures used 
and analyze their respective complex- 
ity. The analysis of problems by means 
of their procedures or algorithms thus 
constitutes a powerful tool for com- 
paring the structure of individual math- 
ematical problem texts. From this, one 
can learn a great deal about Egyptian 
mathematical techniques. Within the 
Rhind Mathematical Papyrus, for exam- 
ple, one finds groups of problems with 
similar procedures (pRhind, No. 24-27), 
as well as a progression within one 
group from basic procedures to more 
elaborate ones (pRhind, No. 69-78). 

Identifying an unambiguous sym- 
bolic algorithm can sometimes be 
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straightforward, as in the example 
above. Unfortunately this is not the case 
with all problems. Individual instruc- 
tions may be missing--sometimes they 
are replaced by a written calculation, or 
several steps are summarized in one in- 
struction only. These types of difficul- 
ties can sometimes be overcome by tak- 
ing into account all of the available 
source material, if--as in the Rhind Pa- 
pyrus-several  problems of the same 
kind are available and their procedures 
are identical insofar as they are explic- 
itly stated, then those problems which 
lack certain instructions can occasion- 
ally be reconstructed by means of the 
more detailed problems. 

! would like to stress in this context 
that both types of rewriting are merely 
tools for analyzing specific aspects of 
the procedures found in the problem 
texts, whereas the source texts them- 
selves remain central and should never 
be neglected in any analysis. Taking the 
three versions of the procedure to- 
gether, however, enables one to form a 
more complete analysis that includes 
not only the various procedures but also 
technical mathematical vocabulary, as 
well as the relation of drawings and cal- 
culations carried out in writing con- 
nected with the procedure, and others. 

Mathematics within the Context 

of Egyptian Culture 
Another integral part of the reassess- 
ment of Egyptian mathematics concerns 
its role within Egyptian culture. Mathe- 
matics was one of the key elements of 
scribal training in pharaonic Egypt. It 
provided the scribes with a crucial tool 
they needed to fulfil their administrative 
tasks as well as to plan and carry out 
construction projects. Consequently, 
many of the mathematical problems 
they dealt with were related to practical 
matters, e.g., the distribution of rations, 
the volume of granaries, or the amount 
of produce to be delivered by a worker. 
Our understanding of mathematical 
problems of this kind is at least partially 
dependent on our appreciation for these 
larger contexts. 

This can be demonstrated with the 
so-called bread and beer problems, 
which appear against the background 
of economic activity, baking and brew- 
ing, under the control of a local au- 

thority (state or temple). A quantity of 
grain is taken from a granary and then 
given to workers who produce bread 
and/or beer from it. Obviously it was 
necessary to ascertain the quantity--in 
loaves of bread or vessels of beer- -of  
a given quality (in this case measured 
by grain content) that was equivalent 
to the amount of grain initially given to 
the workers. The mathematical side of 
this control is represented by the bread 
and beer problems. 29 The terminology 
used in these problems is taken from 
the respective technological language. 
Thus the bread and beer problems 
evolve around the psw,  a unit which 
measures how many loaves of bread 
have been made from one h.k. 3.t of 
grain. Apart from thepsw, there are two 
additional standard phrases indicating 
the use of specific kinds of grain prod- 
ucts and their quantities. Obviously, this 
has further consequences for the re- 
spective calculations. Similar observa- 
tions can be made for other groups of 
practical problems as well. These gen- 
erally involve not only the "basic" math- 
ematical terminology but also further 
knowledge related to the technological 
or administrative background. This usu- 
ally makes them not only more difficult 
to understand but also less likely to be 
"mirrored" by a familiar problem in 
modern mathematics. Thus, early his- 
torical research often neglected this 
area of Egyptian mathematics. 

However, as is obvious from the or- 
dering of the problems found in the 
Rhind Papyrus, it was precisely these 
practical problems that were consid- 
ered more advanced. After all, the aim 
of the mathematical handbooks was to 
prepare scribes for their daily admin- 
istrative work. So if we want to obtain 
insights into Egyptian mathematics, we 
must consider these problems and try 
to understand them. The setting of the 
individual problem may help to point 
to further sources (not only textual) 
which may be useful to understand the 
additional terminology and practice. 
Furthermore, it is this type of problem 
that indicates other possibilities of 
gaining knowledge about Egyptian 
mathematics apart from the restricted 
corpus of mathematical texts. The ac- 
tual output of the scribes in doing their 
daffy work provides us with numerous 

documents that prove the use of mathe- 
matical techniques. Thus Michel Guille- 
mot has used a ration text from Kahun 
to analyze mathematical practices. 3~ 
These can be linked to techniques taught 
in mathematical papyri. 31 It is to be 
hoped that this example can be followed 
for other texts as well. 

The most promising sources still to 
be explored in this respect are the Reis- 
ner Papyri. This set of four papyrus 
rolls contains calculations for the 
building of a sanctuary, including ra- 
tion tables, actual building calcula- 
tions, as well as the administration of 
workshops. 3u They not only enlarge the 
meagre set of seven problems related 
to architecture which are known from 
the Moscow (problem 14) and Rhind 
(problems 56-60) papyri, but they also 
demonstrate that the amount of work 
done was linked to a specific number 
of workers (and rations) per day. 

Evidence of Mathematics 

in the New Kingdom 

While the mathematical texts date al- 
most exclusively from the Middle King- 
dom, other sources are available from 
all periods of Egyptian history. The 
Wilbour Papyrus, a text from the New 
Kingdom, is an official record of mea- 
surements and assessments of fields 
over a distance of 90 miles along the 
Nile. The fields are given by localization 
and acreage, their assessments referring 
to taxes specified in amounts of grain. 

Another major opportunity to find 
relevant sources of mathematics for 
the New Kingdom is provided by the 
excavation of Deir el Medina. Deir el 
Medina is the modern name of an an- 
cient Egyptian village on the West 
Bank of the Nile opposite Luxor. The 
village was inhabited by workmen who 
were responsible for the construction 
and decoration of the tombs in the Val- 
ley of the Kings. Deir el Medina has 
yielded a huge quantity of artifacts and 
texts relating to daily life in the New 
Kingdom--similar to the findings at 
Lahun for the Middle Kingdom. Among 
the sources are ration texts, building 
plans, as well as texts for the educa- 
tion of scribes. The ostracon in Figure 
6 shows a fragment of an exercise in 
the multiplicative writing of large 
numbers. It shows in the first column 
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Figure 6. Deir el Medina: Remains and Ostracon with Number Exercise. 

(on the right) the numbers 600,000, 
700,000, and 800,000 and in the second 
(middle) column the numbers 
5,000,000, 6,000,000, and 7,000,000 
written by the sign for the number 
100,000 (or 1,000,000) with the respec- 
tive multiplicative factors (6, 7, and 8 
and 5, 6, and 7) below. The third col- 
umn (left) shows again the sign for 
1,000,000 and two illegible signs below. 

C o n c l u s i o n s  

Although Egyptian mathematics will 
probably never have the vast number of 
sources that still can be found in other 
cultures like India or Mesopotamia, 
there is more available than has been 
used so far. 33 The analysis of all the 
available mathematical texts, taken 
along with the additional material from 
administrative economic and literary 
contexts related to Egyptian mathe- 
matics, is certain to provide a better 
foundation for understanding its role 
within Egyptian culture. This inte- 
grated approach represents an impor- 
tant advance beyond the early studies 
that relied exclusively on an internal 
analysis of a small corpus of mathe- 
matical texts, which served for several 
decades as the sole basis for assessing 
nearly three millennia of mathematical 
life in ancient Egypt. By carefully 
rereading these classical mathematical 
texts while according the new sources 
a serious first reading, we may antici- 
pate that the fate of Egyptian mathe- 
matics faces an exciting future. 
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