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Abstract 

This is the first of a two-part series describing the sorption kinetics 
of hydrophobic organic chemicals. This paper discusses the use of 
first-order kinetic compartment models in environmental studies, 
of subjects such as bioaccumulation and sorption. A comprehen- 
sive mathematical description and model calculations are presented. 
Differences between these models and the pharmacokinetic compart- 
ment models will be indicated, emphasis being given to the use of 
the former in sorption studies. 

1 In t roduc t ion  

The fate of organic micropollutants released into the aqua- 
tic environment is determined by a combination of physical 
and chemical processes such as volatilization, sorption in soils 
and sediments, accumulation in aquatic organisms and chem- 
al and biological degradation. First-order kinetic com- 
partment models are often used to describe the processes sep- 
arately, and particularly the kinetics of the processes. 
The simplest kinetic model to describe the accumulation of 
chemicals in aquatic organisms or the sorption of chemicals 
in soils and sediements is the model where the organism or 
the sediment is represented as one homogeneous compart- 
ment. However, in several studies it has been shown that 
this model is too simple. 
Accumulation studies and particularly elimination studies 
suggest the use of two fish-compartment models for hydro- 
phobic organic chemicals [1, 2]. Several papers give a de- 
scription of one- and two-compartment accumulation models 
[1, 3 - 5]. However, since the mathematics of the models are 
given for limited experimental conditions, a more extended 
mathematical description is often required. 
Sorption and desorption data for organic chemicals also ap- 
pear to be more complicated than is assumed in a one- 
sediment compartment model [e.g. 6 -  11]. Two-sediment 
compartment models have been described in several studies 
[10, 1 2 - 1 4 ] .  However, to simplify the mathematical de- 
scription of these models, important assumptions are re- 
quired. 
From sorption or bioaccumulation experiments kinetic pa- 
rameters have to be obtained by inverse modelling. Data sets 
of these experiments, however, only yield temporal trends 
of the chemical's concentration in water and whole fish or 

whole sediment. In the case of two sediment or two fish- 
compartments, no information is available about the (inter- 
nal distribution.) concentration in the individual compart- 
ments. Therefore, regular techniques to assess or to calcu- 
late the exchange rate constants between the compartments, 
as is used for instance in pharmacokinetic studies, are not 
applicable. To allow one to obtain kinetic parameters for 
data sets of more-compartment processes in which two com- 
partments can not be distinguished, a numerical method is 
developed. The method is applied to the results of sorption- 
desorption data, but is also applicable to bioaccumulation 
or transformation of more compartment processes. 
In the present paper the use of first-order kinetic compart- 
ment models in environmental studies is investigated, em- 
phasis being on the use of such models in sorption studies. 
The mathematics of the models for the specific situation in 
accumulation and sorption studies are given, together with 
a comprehensive description of calculations. 

2 F i rs t -Order  Kinetic C o m p a r t m e n t  Mode l s  

2.1 One-Compartment Model 

In the one-compartment model organisms or sediment are 
described as one homogeneous compartment. The exchange 
of the chemical between the organism or sediment and the 
water compartment is then described by first-order kinetics. 

k 1 ~ ORGANISM 
WATER "- OR 

k 2 SEDIMENT 

Here, k 1 and k 2 are first-order rate cons t an t s  ( h - I ) ,  and the 
concentration of the chemical in the water and in the organ- 
ism or the sediment is given in/ag/L.  However, k 1 is ac- 
tually a pseudo-first-order rate constant which describes the 
mass of a chemical removed from the water over time. A 
change in the ratio of organism or sediment/water will 
change kl. One can convert this k~ to a first-order rate con- 
stant so that it becomes system independent (kl ~ by divid- 
ing it by the organism/water or sediment/water ratio. The 
rate constant k 1" has then the dimension of L.kg- l .h  -~, 
which corresponds to the chemical concentration in the or- 
ganism or the sediment expressed in/ lg /kg.  
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When the concentration of the chemical in the water is zero,. 
and there is thus no uptake of the chemical from the water 
into the sediment (or organism), the decrease in concentra- 
tion in the sediment or organism (C) can be given by: 

d C / d t  = - k 2. C (1)  

and after integration: 

C = C(~=o).e -k2~ (2) 

where t is the time (h) and C(t-o) the concentration of the 
chemical in the sediment or in the organism at t = 0. The lat- 
ter equation shows that the decrease in chemical concentra- 
tion is an exponential decrease; the excretion rate constant 
k 2 can be estimated by fitting the decrease in chemical con- 
centration to equation 2. 
However, to describe the kinetics of the accumulation or the 
sorption process, the simple one-fish or one-sediment com- 
partrnent model often turns out to be inadequate. In fact this 
calls for a model with two (or more) fish or sediment com- 
partments. Such models can be developed by modifying the 
kinetic models that are used in pharmacokinetics to describe 
the excretion of pharmaca by an organism after a single dose 
has been administered or, a more complicated situation, 
when the pharmacon was administered continuously (intra- 
venous infusion) [e.g. 1 5 - 1 7 ] .  

2.2 Two-Compartment Models in Environmental Studies 

As far as the model description is concerned, accumulation 
or sorption is comparable to the pharmacokinetic situation 
of continuous administration. In accumulation or sorption 
experiments, fish or sediment have been exposed to the chem- 
ical for an extended period before excretion or desorption 
starts. However, a serious problem arises when pharmaco- 
kinetic models are used in accumulation or sorption studies. 
The mathematical description of the pharmacokinetic mod- 
el is given for cases where chemical concentrations are meas- 
ured in one of the compartments. However, in accumula- 
tion and sorption studies concentrations of the chemicals are 
measured in the complete organism or sediment rather than 
in part of it. A schematic representation for these specific 
situations is given below, where compartment I and com- 
partment II represent fish or sediment compartments, and 
complete fish or sediment is indicated by the dotted line: 

k 2 k3  ,~_ 
"- II < 

k 4 

The decrease in chemical concentration in compartment I and 
II can be theoretically given by: 

dCl / d t  = - ( k  2 + k3).C t + k4.Cil (3 a) 

dCu / d t  = k3.Ct-k4.C1,  (3 b) 

where CI and Cn are the chemical concentrations in com- 
partment I and compartment II, and k 3 and k s are first- 
order rate constants. Solving these two differential equations 
yields for the first and the second compartment respectively, 
solutions of the form [18]: 

Ct = At.e -~ + BI.e -bt (4 a) 

CII = An.e -at + BU.e -bt (4 b) 

where the parameters A" B" A'" B'" a and b are complica- 
ted functions of the rate constants (k 2, k 3 and k,). 
However, the decrease in the concentration of the chemical 
in the whole fish or sediment should be described by the sum 
of the concentrations of the chemical in compartments I and 
II. The chemical concentrations in the first and second com- 
partment (CI and Cu) are referenced to the total mass, so 
CI+ii = Ci + Cit. 

Ct+u = A .e  -at + B.e-bt  (5)  

where A = A '  + A "  and B = B" + B". Values for the pa- 
rameters A, B, a and b are obtained by fitting to this equa- 
tion the experimental concentration of the chemical in the 
fish or sediment. Rate constants k2, k3 and k 4 c a n  then be 
calculated from these estimates. However, the relationships 
between the rate constants and the parameters will be differ- 
ent from those associated with equations 4 a or 4 b. This 
is due to the specific conditions of the accumulation and sorp- 
tion experiments: i) compartment II is not empty at the be- 
ginning of the excretion/desorption period and i/) the chem- 
ical concentration is measured in the two compartments 
together. 
Compartment models that are described in chemical reac- 
tion kinetics [19, 20], cannot be used in environmental stud- 
ies either. Mathematical descriptions of these kinetic mod- 
els are the same as those of the pharmacokinetic models, 
because the same assumptions are made to simplify calcula- 
tions. These assumptions are possible because at the start 
of a chemical reaction there is only the original compound 
present and no reaction products have yet been formed. There- 
fore in terms of compartments, the second compartment 
can be assumed to be empty at the start of the reaction. Fur- 
thermore, the rate of the reaction is monitored by following 
the formation of one of the reaction products or by follow- 
ing the disappearance of the original compound. In terms 
of compartment models this means that the chemical con- 
centration is measured in one single compartment. 

2.3 Calculations 

In calculating rate constants according to the above men- 
tioned method, i.e. calculating rate constants based on the pa- 
rameters which result from the curve fitting of the experi- 
mental data (--' Fig. 1), one encounters two problems: i) By 
fitting the experimental data it is assumed that the parame- 
ters of the exponential equation are independent, however 
they are not, for they are all complicated functions of the 
same rate constants, ii) To calculate the rate constants, one 
needs not only to have the estimates of the parameters but 
also to know the chemical concentration at the beginning 
of the experiment (-~ Appendix) .  Since in most cases this 
is also an experimental data point, its influence on the re- 
sulting calculations of the rate constant is disproportionally 
high compared to the influence of the parameters. The lat- 
ter are the result of the use of all data points together in curve 
fitting. 
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An alternative way of calculating rate constants is to use the 
experimental data together with the set of differential equa- 
tions corresponding to the kinetic model concerned. The rate 
constants estimated in this way can then be used to calcu- 
late the parameters of the exponential equations which de- 
scribe the experimental data. This route is also indicated in 
Figure 1. This method ist worked out in more detail in the 
Al~pendix. 

. . . . . . . . . . . . .  t EXPERIMENTAL DATA I 

curve fitting 

numerical 
solution 
(iterative) 

. . . . . . . . . .  �9 .l,. I 

PARAMETERS 
A,B,a,b 

calculations 

A 
numerical 
solution 
(iterative) 

RATE CONSTANTS 
ke, k~, k4 

c o m m o n  route 
alternative route, presented in this study 

Fig. 1: Calculating rate constants from experimental data 

3 Sorpt ion Studies 

3.1 One-Sediment Compartment Model 

In sediment studies the use of compartment models is even 
more complicated. In determining the dissolved and sorbed 
concentrations separately one encounters difficulties because 
of the problems of separating sediment and water [21, 22]. 
This implies that in desorption studies, the concentrations 
of the chemicals have to be determined in the whole sedi- 
ment suspension rather than separately in sediment and wa- 
ter. For desorption studies where the disappearance of chem- 
icals from a sediment suspension is being investigated, the 
process can be represented by: 

ko 
C 

WATER kl ~ SEDIMENT 

This one-sediment compartment model must be regarded as 
a two-compartment kinetic model. 
In this model it is assumed that only the dissolved chemical 
is removed from the sediment suspension, the removal being 

described by the rate constant k o (h-l). This rate constant 
is dependent on the efficiency of the experimental method 
used to remove the dissolved chemical from the suspension, 
and is thus a system-dependent rate constant [23]. Values for 
ko, belonging to a set of experimental conditions (e.g. tem- 
perature, volume of water), can be determined separately in 
an experiment without sediment. 
In the desorption experiments the chemical concentration is 
determined in the whole sediment suspension. This concen- 
tration (C*,/ag/L) is the sum of the concentrations of the 
dissolved and sorbed chemicals: 

c~ = G, + G.s  (6) 
where Cw (pg/L) is the dissolved concentration of the chem- 
ical in the water, C~ is the concentration of the chemical in 
the sediment (/~g/kg) and S is the sediment/water ratio 
(kg/L). 
In the period of desorption the decrease in chemical concen- 
tration in the sediment suspension will be biphasic, because 
two compartments are involved (water and sediment). This 
decrease is described by a two-exponential equation (see also 
equation 5): 

C* = P.e -pt + Q.e -qt (7) 

Changes in the concentration of the chemicals in the water 
and the sediment compartment are given by the differential 
equations: 

d C w / d t  = - ( k  o + kx).C w + k2.Cs.S (8 a) 

dC~.S/dt = kl .C w - k2.C~.S (8 b) 

3.2 Simplified Two-Sediment Compartment Models 

A triphasic decrease in chemical concentration in the sedi- 
ment suspension corresponds to a three-compartment kinet- 
ic model with two sediment compartments. In the last dec- 
ade different first-order kinetic two-sediment compartment 
models have been used to describe sorption (-~ Fig. 2). In 
this figure only two sediment compartments in series are 
shown, because that is the one which is reported the most 
frequently. However, analogous assumptions and/or  sim- 
plifications can be made for the sediment compartments in 
parallel. 

In the two-sediment compartment model, introduced by 
KARICKHOFV [10, 12], two assumptions are made which limit 
the mathematical complexity. Firstly, an instantaneous equi- 
librium is assumed between sediment compartment I and wa- 
ter. The advantage of this is that only one parameter is re- 
quired, namely the sorption partition coefficient, to describe 
the chemical exchange between these compartments. Sec- 
ondly, the chemical movement into and out of the second 
compartment is assumed to be described with the same first- 
order rate constant (k). 
The bicontinuum model introduced by Bv, ussEAu and co- 
workers [13, 14] is different in that the movement of the chem- 
ical in and out sediment compartment II is described with 
two different rate constants (kf and kb). In this model too 
an instantaneous equilibrium is assumed between the first 
sediment compartment and the water. 
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I I ls II " ,lO,12, 

[13, 141 

]WAT E R ,~_______ [ SEDIMENT I [ k3~ SEDIMENT II 
k 2 ~ present study 

Kp = sorption partition coefficient; k, kf, kb, k t, k2, k3, k4: first-order rate constants 

Fig. 2: Two-sediment compartment models to simulate sorption kinetics 

3.3 Two-Sediment Compartment Model 

The two-sediment compartment model presented in the pres- 
ent study is an extended version of these two-sediment com- 
partment models. No instantaneous equilibrium or equal "in" 
and "out" rate constants for sediment compartment II has ko 
been assumed in advance and exchanges between compart- < 
ments are all described with different rate constants for the 
forward and backward direction. Afterwards, i.e. after cal- 
culations of the rate constants, the assumptions in the alter- 
native simplified models may turn out to be justified. How- 
ever, this may differ from experiment to experiment, be- 
cause the nature of the chemical and the nature of the sedi- 
ment influences the sorption process and the sorption ki- 
netics. 
The two-sediment compartment model (series version) of the 
present study can be represented by: 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

-~ WATER SEDIMENT I II 

It . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I 

The total concentration of the chemical in the sediment sus- 
pension (Cw*, pg/L) is then given by: 

C~* = Cw + Ca.S + C,n.S (9) 

where Ca and Cat are the concentrations of the chemical in 
the first and the second compartment respectively, refer- 
enced to the total sediment mass (pg/kg). A three-exponential 
equation is required to describe adequately the triphasic de- 
crease in chemical concentration in the sediment suspension: 

C~ = P.e-P' + Q.e  -qt + R.e  -'t  (10) 

The three equations that describe the change in concentra- 
tion in the three compartments, water, sediment I and sedi- ~, k~ 
ment II, are given respectively by: 

d C w / d t  = - ( k o + k l ) . C  ~ + k2.Ca.S (11 a) 

d C a . S / d t  = k rCw - (k2+k3).CspS + k 4 . C s w S  (11 b) 

dCsli.S / d t  = k3.Csl.S - k4C.sll.S (11 c) 

Theoretically, an alternative version of a two-sediment 
compartment model can be constructed in which no exchange 

of the chemical is possible between the two sediment com- 
partrnents. 

WATER ~ k2 ~ SEDIMENT I 

SEDIMENT II ] 
I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  r 

The differential equations accompanying the above scheme are: 

d C w / d t  = - ( k o + k l  +ks).C w + k2.Cs1.S + ksCsn.S (12 a) 

dCa.S / d t  = kl.Cw - k2.Ca.S (12 b) 

dCavS ~dr = ks.C ~ - ks.C,u.S (12 c) 

A third version of two-sediment compartment model can be 
constructed by combining the two previous versions. This 
version describes the exchange of the chemicals between the 
two sediment compartments as well as between the sediment 
compartments and the water. 

kl 
WATER ~, "- 

-'~ k2 
SEDIMENT I 

S 
SEDIMENT II ] 
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k s and k 6 are f irst-order rate constants .  The accompanying 
differential equat ions are given by: 

d C w / d t  = - ( k o + k l  + k s ) . C  ~ + kz .CsvS + k6Csn.S (13 a) 

d C a . S / d t  = k l . C  ~ - (k2+k3) .Csl .S  + k4.Cst1.S (13 b) 

d C a v S / d t  = k s .C  ~ + k3.Csl.S - (k4+k6).CsH.S (13 c) 

It can be shown that  all three versions cannot  be distin- 
guished solely on the basis of  the decrease in chemical concen- 
t ra t ions in the sediment suspension [24]. Thi  decrease is tri- 
phasic according to all three versions and can be described 
by a three-exponential decay. However ,  estimates of the rate 
constants will be different,  because o f  the different sets of  
differential equations.  These sets, together  with the experi- 
mental ly  determined concentrat ions  o f  the chemicals in the 
sediment suspension, can be used to derive the rate constants 
( ~  Append ix ) .  However ,  for the last  version of  the two- 
sediment compar tment  model  in fact i t  is mathematical ly im- 
possible to calculate the rate constants  independent ly,  be- 
cause this model  involves too many  rate constants.  

4 C o n c l u s i o n s  

Firs t -order  kinetic compar tmen t  models  as described in the 
pharmacokinet ics  cannot  be appl ied automat ica l ly  to envi- 
ronmenta l  studies. The  mathemat ics  required for sorpt ion 
and accumulat ion studies is more  compl ica ted ,  due to spe- 
cific experimental  condit ions.  
The two-sediment compar tment  model  presented in the pres- 
ent study is an extended version of  two-sediment  compar t -  
ment  models  that  have a l ready been used in sorpt ion stud- 
ies. The lat ter  incorpora te  one or more  assumptions in or- 
der to limit computa t iona l  difficulties. These assumptions 
are avoided in the present  model .  
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6 Appendix 

This appendix explains how the rate constants can be computed.  For 
brevity, the discussion is restricted to the three-compartment model with 
two sediment compartments  in series (equations l l a ,b , c ) .  The compu- 
tational steps for the other models discussed in this paper run along the 
same lines; the reader is left to fill in the details. 

1.1 The explanation becomes more routine if the problem is formu- 
lated in matrix notat ion.  
The set of differential equations corresponding to the three-comparmaent 
kinetic model with two sediment compartments  in series (equations 
(11a,b,c)) can be given in matrix form: 

m 

_aC~ 
dt 

_a Ca .  S 
d t  

a C~u" $ 
dt 

-(k 0 + kl) 

= k 1 

0 

D 

or in a more condensed form 

k 2 

- ( k  2 + k 3) 

k3 

0 

k4 

- k  4 

Cst" $ I ,(1.1) 

Csl I . 

-~I (t) = (K + Ko)~'(t) for all t _  0, (1.2) 

where ~ (t) represents the concentrations of  the chemicals in the var- 
ious compartments  after t hours of  desorption time: 

C w :re, s] 
and K and K 0 are matrices of  rate constants: 

(1.3) 

K : =  
i:1 0 0 0  

1 - ( k 2 + k 3 )  k4 a n d K  0 : =  0 . (1.4) 

k 3 - k  0 

Here,  the total concentration of  the chemical suspension after t hours 
of  resorpt ion time is denoted by y(t) (see equation 9): 

y(t)  = C~(t) = Cw( t )+C, i ( t ) "  S + Cm(t  ) �9 S. (1.5) 

y is a three-exponential function: 

y(t)  = Pe -pt  + Qe -qt  + Re -ft .  (1.6) 

By taking measurements,  one obtains measured values for a number of  
function values y(tl) . . . . .  y(tn). Here n is the number of measurements 
performed, and t i are the points of  time at which measurements were 
taken. 
The function y depends only on the rate constants k o , . . .  ,k4, and the 
concentrations C w o, Csl o, CslI 0 at the beginning of the desorption pe- 
riod in the various compartments .  The value of the rate constant k 0 is 
known,  as it can be determined in a separate experiment without sedi- 
ment.  This leaves seven unknowns kl,  . . . , k4, Cwo , Cdo , Csl10 that  
together determine the function y. The six parameters P, Q, R, p, q, 
r in (1.6) can be estimated by fitting a three-exponential function through 
the measured values y(ti). Unfortunately,  these six parameters cannot 
determine the seven unknowns uniquely. Apparently, in order to be able 
to compute the rate constants k l , . . .  , k4~ one needs some extra in- 
formation. 

This can be found by taking the sorption uptake period into account. 
The concentrations of  the chemical in the various compartments  dur- 
ing this sorption uptake period.of T hours can also be described by dif- 
ferential equations. In matrix notation, the change in concentration then 
can be described by  Cw] 

Csi �9 S = 

I sj 
k2 ollw 

-(k 2+k 3) k4 Csl ". " 

k 3 - k 4 LCsu 

(1.7) 

or  in a more condensed form 

~I(t)  = K~-~(t) (1.8) 

where x-'(t) represents the concentrations of  the chemicals at time t in 
the various compartments during the sorption uptake period. The rate 
constants k t , . . .  , k 4 in the sorption uptake period are identical to the 
ones in the desorption period. The length T of  the sorp'tion uptake pe- 
riod is known precisely. In each of  the compartments ,  the concentra- 
tion of the chemical at the end of  the sorption uptake period is equal 
to the concentration at the beginning of  the resorpt ion period: 

~,(0) = ~ ( T ) .  (1.9) 

Apparently, since T and k 0 are known,  the function values y(t) are 
uniquely determined by the four rate constants kl ,  . . . , k 4 and the 
concentration X0 of  the chemical in the water at the beginning of  the 
sorption uptake period (the initial concentrat ion in the sediment com- 
partments is zero)l: : 01 

~,(0) = [ C , r  (0) �9 S = (1.10) 

Lear (0) �9 s 

It is a routine matter to compute ~(T)  and any function value y(t) if 
one not  only knows T, t and k 0 but one also has values for k l , . . . .  , 
k 4 and X0: the computation involves s tandard manipulations with the 
eigenvalues and eigenvectors 2 of  the matrices K and K + K 0 (compu- 
tational details can be found in section 1.10 or, e.g. [1], pp. 127 - 144). 
Summarizing, this leads to the following situation: 

I In the two-compartment situation the four parameters P, Q, p, q that describe 
the two-exponential function (see equation 7) are uniquely determined by the 
known rate constant ko, two unknown rate constants kl, k2, and the two un- 
known initial concentrations C~ 0, Cs 0" Therefore, one may be able m com- 
pute k 1 and k 2 if the parameters P, Q, p, q have been estimated. However, one 
may minimize the propagation of the errors, introduced by the measurements, 
by basing the computations on as many measurement values as are available. 
Therefore, also in this two-compartment situation, it is preferable to take the 
sorption uptake period into account. Moreover, the approach described above 
and the subsequent way of computing applies undiseriminately to all models 
discussed in this paper. 

z In the case of matrices of size 3 x 3, one can express the eigenvalues and eigen- 
vectors in terms of the rate constants k 0 . . . . .  k 4. These expressions are 
rather nasty (and are not available for larger matrices). However, standard numer- 
ical computer programs yield accurate numerical values for the eigenvalues and 
eigenvectors for matrices of any size for which numerical values are given for 
all matrix entries. The program MATLAB (The MathWorks, Inc., South Na- 
tick, MA 01760, U.S.A.) was used in all the computations. 
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1.2 There is a sequence 0 = t 1 <-- t 2 _< . . .  < t n of points of time 
(hours since the beginning of the desorprion period) at which the meas- 
urements  are performed. There are known values for the rate constant  
k 0 and the length of time T of the sorprion uptake period. As de- 
scribed above, for any possible sequence (]e D . . . , ]e4) of rate constants 
and any possible value of the initial concentrat ion X0, the total concen- 
t rat ion y(ti) of the chemical in the suspension can be computed at any 
point  t i of time of measurement.  

In experimental data sets, neither the exact values k~, X~ for the rate 
constants kj and the initial concentrat ion X0, nor the exact values 
y ' ( t  i) o f  the total concentration y(ti) are available. Only experimental 
values x~ for x0 and y* for Y(ti) are available from which an estima- 
t ion of the exact values k~ has to be made.  As explained above, for 
these estimated kfvalues y-values can be computed. The y-values, esti- 
mated in this way should be optimal,  i.e. the estimated values kifor 
kj and X0 for X0 should be such that  the corresponding y-values ~(ti) are 
the best approximations of the experimental  data y* and x~- This 
leads to the following problem. 

1.3 The  problem: The change in the concentrat ion of the chemical 
in the various compartments  is assumed to be described by the differ- 
ential equation (1.2) for the exact sequence ]e~, k~, ]e~, ]e~ of values 
of rate constants kl ,  k2, k3, ]e 4 and the exact  value X~ of the initial 
concentrat ion X0. These exact values are no t  known nor are the exact 
values y*(ti) of the corresponding function y~ with y~ = y. However,  
values y~ were measured that  differed from the exact values y'(t i)  by 
the measuring errors y~ - y~ 
From these measured values y~, an opt imal  estimation ]el, k2, k3, k 4 
of the sequence k~, k~, k~, ]e,~ of exact values 3 and an estimation of 
the s tandard deviation of these k l ,  k2, k3,k4 (see 1.5) have to be ob- 
tained. 
It is emphasized that  the exact value x~ is no t  known: even to obtain 
the initial concentration the measured values y~ have to be used. Since 
there is no loss of chemical from the system during the sorption uptake 
period, the total concentration Xo at the beginning of the sorption up- 
take period is equal to the total concentrat ion at the end of this sorp- 
t ion uptake period. Therefore, by (1.9), Xo is also the total concentra- 
t ion y(0) at  the beginning of the desorption period: y(0) = Xo- So, in 
order to obtain x~ theoretically only y~ is needed; however,  as ob- 
served in section 2.3, the choice x~ = y~ would mean a disproportional 
influence of y~ on the rate constants  compared to the influence of the 
other y~. 
In the sections 1.4 and 1.5 it is clarified under  what  assumptions and 
in what  sense the obtained ]e-values ki are optimal.  In section 1.6 it is 
explained how to estimate the s tandard deviation in the values ki and 
~0 once these values are known. These opt imal  values are computed 
iteratively. For reason of simplicity some nota t ion  is introduced, which 
is used in section 1.7, in which the iterative method to compute 
/el, ]e2, ]e3, ]e4, ~0 is described. The subsequent sections 1.8 and 1.9 con- 
tain comments and refinements on this method.  Finally, in section 1.10, 
a detailed description of the computat ion of the values y(t) is presented. 
Concerning the measurements,  the following assumption is made: 

1.4 Assumption:  The errors in the function values y* are uncorrela- 
ted, and, in a relative sense, have equal variances a2; to be precise: the 
variances matrix of the relative error vector, which is the vector with 
coordinates y'(t) - yj~ , is equal to a 2 I, where I is the identity matrix. y? 
The errors in the function values y'(t i)  cannot  only be caused by the 
inhomogenity of the sediment, but  also by chemical analysis which 
gives relative errors with a distribution as in the assumption. Since the 
error introduced by the sediment is unknown,  there are no arguments 
for adapt ing the assumption. 

1.5 The  best estimation: Note  that  the sequence (y(q), y(t2) . . . . .  
y(tn)) of concentration values at the subsequential points t i of measure- 
ment  can be seen as the value of a (computable) function depending on 
(]el, - - - , ]e4, xo). For ease of describtion, this function is denoted by ~: 

�9 (kl,  k2, k3, k4, Xo) = (y(tl) . . . . .  y(t,)). (1.11) 

In order to handle more elegantly the fact that the values y~ have equal 
variances in a relative sense, one must first slightly modify this function 
�9 . Consider the function ~ that  assigns to any (kl,  . . . . , k4, Xo) the 
scaled sequence (Y(h), �9 , (Y(?) of total concentration values: 

Y I *  " " Y n  

(kl, k2, k3, k4, Xo) = (y(tl), y(t2) y(tn)) �9 (1.12) 
yl ~ . . . .  y: 

The optimal estimation (kl, k2, k3, k4, Xo) of the sequence (k~, k~, k j ,  
]e~, X(~) of exact values is the sequence ]el, k2, k3, k4, xo that  
minimizes 4 

/ y(tD - y~ ) 2 = 
j~t~ 7"1 [l ~(]el, k2, ]e3, ]e4, xo) - 111 ~, (1.13) 

where 1 denotes the sequence (1,1 . . . .  ,1) of n ones. This sequence 
(~1, k2, L'3, k4, Xo) is also called the minimum least-squares solution to 
the problem 

r k2, k3, k4, Xo) = (1,1 . . . . .  l). (1.14) 

The estimator (kl, k2, k3, k4, Xo) is the best one in the following sense. 
If assumption 1.4 holds, in first order, on account of the Gauss-Markov 
theorem (cf. [3]), (J~l, k2, k3, J~4, Xo) is the best unbiased estimator of 
(k~, k~, k~, k,~, Xj): it has minimum variance. 
In order to estimate the standard deviation of the values ki, and Xo the 
variance a 2 is needed. Unfortunately its value is unknown.  In the com- 
putations its value is estimated by 

1 ~ (~(ti) y~ )2 
x : - n - ~ -  ~ ' 

j= l  \ Yi 
(1.15) 

where ~ is the function y corresponding to (kt, k2, lea, ]e4, ~0): in first 
order,  the residual mean square is an unbiased estimator of 0 -2 (cf. [3], 
section 3.7). 

1.6 The standard deviation: For ease of notation, put  k instead of (k 1, 
]e2, ]e3, k4). Let ]| (k, Xo) be the Jacobi matrix of �9 in (k, Xo): 

j .  (k, x0) is an n x 5-matrix with coefficients oy(t) (k, x0) in ( j - t h  
column (j = 1 . . . . .  4) and coefficients ,~t~) (k, xJ ,~ in  the last column. 

�9 . . ~  

Slmdarly, Ja~ (k, x0) is the Jakobi  matrix of �9 in (k, xo). Note  that  J,~ 
(k, Xo) = W - l  j| (k, Xo), where W = diag (y~, . . . ,y*) is the diago- 
nal matr ix with the measured values on the diagonal. 
Then,  in first order, 

x(JT])-I; where ]: =]| ~o)- (1.16) 

is an unbiased estimator of the variance matr ix of (k, X0) (cf. [3], sec- 
tion 3.8). An estimation of the standard deviation of ki,is the square 
root of the i-th diagonal element of x(J T J) - I and an estimation of the 
standard deviation of  X0 is the square root  of the right lower diagonal 
element of this matr ix (cf. [3], section 3.8). 

3 The computational strategy to be described presently also yields an estimation 
x0 of the exact initial value x~. 

4 I[ (Xl . . . . .  Xn)l[is, by definition, equal to the Euclidean distance'V/x12 + . . . +x2t 

s Errors on k 0 and T contribute to the standard deviation of ~ as well�9 In the 
actual computations, these contributions were taken into account. For brevity, 
however, these computational details are not discussed here. 
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1.7 An iterative solution method: If (/q x0) is the solution of the least- 
squares problem (1.14), with k= (k1 ,~2,~3, '~4) ,  t h e n  (lq X0), is the exact 
solution of a so-called normal equation (cf. [2], S 10.2) 

J~(k, xo)T(~(k,  XO) - 1 )  = 0. (1.17) 

An attempt is made to approximate the solution ([q X0) of the equa- 
tion (1.17) iteratively by a GN (Gauss-Newton type of) process (also 
called a linearization method; cf. [2], g 10.3). 

�9 ( / ) .  
Suppose (IO), X0 ) Is an approximation of the true solution.{!~ x0). Then, 
a new and hopefully better approximation (k0+ U, ~0 v+ u) is obtained 
as follows. Perform one GN step in order to compute the solution of 
the problem 

jj}T(~(k, X0) - 1) = 0, where h :  = /'~'(k(/)), x0~}): (1.18) 

with 

let 

r0): = /iS(k (/), Xo ~}) - 1  and A(/):  = (jTjj)-IjTr(/)), (1.19) 

k(/+U, x0 ~+U) = (k (/), x00 )) + A 0). (1.20) 

If the sequence ((k0), X~))) converges, then it converges to a sequence 
of values in which r attains a local minimum, where 

O(k, Xo): =ll~(k, Xo) -11l 2: (1.21) 

0 attains a local minimum in any solution of the normal equation (1. t 7) 
and vice versa. However, the best estimation is the sequence of values 
at which O attains its global minimum. If 0 attains a local minimum 
in not more than one sequence of values, then the limit of ((kq), X~))) 
is precisely (k, X0)- 

1.8 Starting and stopping the process: As is well known, the success 
of any iterative process greatly depends on the choice of the starting 
value. There is no exclusive strategy. In almost all of the experiments 
the first trial in the "trial and error strategy" produced a converging se- 
quence. 
The iteration was stopped when the value 

]lJ~(k(J), XOo))T (~i(k0), X~ )) -1)11 

was sufficiently small (_< 10-12). The last value (k(/), X~ )) was taken 
as an approximation for (~ X0)- 
0 attains (approximately) a local minimum in the last iterate (k(/), x0~)). 
In order to collect some evidence that the computed minimum is a glob- 
al one, the computations were carried out with other starting values 
as well. This led to the same results. Moreover, the method of comput- 
ing an estimation of the standard deviation, as explained in section 1.6, 
is also applicable to non-global minimum values. This leads inevitably 
to larger values for the errors. 

1.9 Modifications: Only positive solutions ki, X0 of the minimisation 
problem ( 1.13 ) are of interest. In order to prevent the GN process from 
converging to some non-positive values, A0) in (1.19) is interpreted as 
a search direction. Instead of (1.20), 

(k(J+l), X0 ~+U) = (k0), X0 ~)) + aj A(/), (1.22) 

is taken, where uj is an appropriate scalar, a so-called damping para- 
meter. In the standard situation aj = 1. If, however, in a certain step 
the choice aj = 1 leads to an approximation of which one or more of 
the coordinates are non-positive, a smaller positive aj is taken such that 
the new approximation (ldJ + 1), X0 ~+ 1)) has only positive coordinates. 
In some of the experiments convergence was obstructed by this positive- 
ness restriction. In this situation, a relaxation of the positiveness re- 
quirement turned out to be useful: if, with aj = 1, some of the coordi- 

nates are less than - { for some appropriate e, 0 -- �9 ,, 1 then a smaller 
positive aj is taken such that the new approximation has coordinates 

Also in cases where the process does not seem to converge, namely in 
the cases where in a certain step the 0 values did not reduce (say, 
0(k(/+ll, X0 q+l)) > 1.1 0(k0), x~))), a value for cej smaller than 1 is tak- 
en (see also [21, p. 269). 
In literature, one uses not only the GN search direction, but also a 
search direction produced by a cheaper steepest descent step and combi- 
nations of these two (this strategy is known as Marquardt's compro- 
mise, cf. [2], p. 272). This modified search direction is more likely to 
reduce the 0-values than the GN search direction, i.e. the "steepest de- 
scent approach" gives a reduction in the 0 values, also in cases where 
the GN approach fails to reduce. However, concerning the present prob- 
lems and experimental data, in the cases where the GN approach gave 
a significant reduction in the 0-value in one step, this reduction was 
about 10 4 times better than the reduction by a steepest descent step. 
Also in cases where in one GN step there was no reduction of the O- 
value, it turned out to be more efficient to proceed with the next step 
using the seemingly worse GN iterate. The "bad" GN steps lead to a 
new, better starting position for fast convergence, while the steepest de- 
scent process lingered a great number (as much as 10 4) of steps near 
the old, bad starting position. 

1 .10  The computation of  ~-values  and the Jacobi matrices: For any 
(kl, k2, k3, k4, Xo), the function ~(kl, k2, k3, k4, Xo) is computed as 
follows. The solution ~ of the differential equation (1.2) is of the form 

y(t)  = a ~  e - p t  + f l ~  e - q  t + } t ~  e - r t  for all t _> O, 

where a, B, Y are some appropriate real scalars and ~ ,  ~ ,  ~ are linea- 
rly independent eigenvectors of K + K 0 with respective eigenvalues 
- p ,  - q  and - r .  Once ~ is known any of the function values y(t) in 
(1.5) or Y(ti) in (1.12) can easily be computed, because: P = a(u: + 
u 2 + u3), with u 1, u2, u 3 the coordinates of fi*, etc. The scalars a, B, 
y, are determined by the requirement ~ (0) = ~ (T). 
Therefore, in order to compute the y(ti) values, proceed as follows. 
Compute lineraly independent eigenvectors ~ ,  ~ ,  ~ of K + K o and 
their respective eigenvalues - p ,  - q  and - r .  In order to compute the 
real scalars a, fl, y, define the 3 x 3-matrix Y whose columns are the 
eigenvectors ~ ,  F ' , / ~ :  

Note that 

~ ( 0 ) = V  = ~ (T) 

and solve a, fl, Y from this last linear equation. Clearly, in order to get 
numerical values for a, fl and y one needs to know the vetor ~(T) .  How- 
ever, the computation of ~-~(T) runs along the same lines, uses the ei- 
genvalues and eigenvectors of K and the known initial value ~(0) = 
(X0, 0, O) T. 
In order to compute the Jacobi matrices, the derivatives were replaced 
by finite differences. 
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