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Abstract. Let k and s be two positive integers with s > 3. Let G be a graph of order n > sk. 
Write n = qk + r, 0 < r < k - 1. Suppose that G has minimum degree at least (s - 1)k. Then 
G contains k independent cycles C1, C2 .. . . .  Ck such that s < l(Ci) < q for 1 < i < k - r and 
s < l(Ci) < q + 1 for k - r < i < k, where l(C~) denotes the length of Ci. 

1. Introduction 

Let G be a graph. A set of subgraphs of G is said to be independent in G if no two 
of them have any common vertex in G. The length of a cycle C is denoted by l(C). 
Corr~tdi and Hajnal [2] investigated the maximum number of independent cycles 
in a graph. They proved the following: If G is a graph of order n = qk + r, where 
q > 3, k > 1 and 0 < r < k, and G has minimum degree at least 2k, then G contains 
k independent cycles C1, C2, . . . ,  Ck such that l(Ci) < q for 1 < i < k - r and 
l(Ci) < q + 1 for k - r < i < k. In particular, when n = 3k this result means that G 
contains k independent triangles. Hajnal and Szemerrdi I-3] proved that if G is a 
graph of order sk with s > 3 and k > 1 and G has minimum degree at least (s - 1)k 
then G contains k independent complete subgraphs of order s. In this paper, we 
generalize Corr~di and Hajnars result, proving the following theorem. 

Theorem. Let k and s be two positive integers with s >_ 3. Let G be a graph of order 
n >_ sk. Write n = qk + r, 0 <<_ r <_ k - 1. Suppose that G has minimum degree at least 
(s - 1)k. Then G contains k independent cycles C1, C2 . . . . .  Ck such that 

s < l ( C i ) < q f o r l < _ i < k - r  and s < l ( C ~ ) < q + l f o r k - r < i < k  (1) 

We recall some terminology and notation. For a graph G, V(G) and E(G) are 
the vertex set and edge set of G, respectively. For a vertex u E V(G) and a subset 
U ~_ V(G), we define N(u, U) to be the set of all those vertices in U that are adjacent 
to u in G and let d(u, U) = IN(u, U)I. If H is a subgraph of G, define N(u,H) and 
d(u, H) by N(u, V(H)) and d(u, V(H)), respectively. Thus d(u, G) is the degree of u in 
G. We also use G[U] to denote the subgraph of G induced by U. Moreover H + u 
is the subgraph of G obtained from H by adding to H the vertex u and all the edges 
of G between u and H. All graphs will be simple. Unexplained terminology and 
notation are adopted from [1]. 
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2. Lemmas 

O u r  p roo f  of  the theorem needs the following lemmas .  In the following, p, q, s and  
t are  fixed posit ive integers, G is a graph,  C = X l X z . . . x t x  I is a cycle of  G and 
P = YlY2 . . .Yp is a pa th  of G independent  of  C. The  subscripts of  the x{s will be 
reduced m o d u l o  t. A segment  of  C f rom x~ to xj (xi # xj) is the pa th  x~xi+l. . ,  x j _ l x  j, 
denoted  by  C[xi,  xj], of C. Note  tha t  C[xi ,  xi] and  C[xj ,  xi] have no c o m m o n  
vertices except x~ and  x i. A subpa th  of  P with two endvertices y~ and yj is denoted  
by P[Yi,  Yj] and called a segment of  P. 

L e m m a  2.1. Suppose that t > s > 3 and G has a vertex Yo ~ V(G) - V(C) such that 
d(y  o, C) > �89 + 1. Then C + Yo contains a cycle C" such that s < l(C') < t. 

Proof. O n  the contrary ,  we suppose  that  the l e m m a  fails. Let  t have the smallest  
value with t > s such that  C + Y0 does  not  conta in  a cycle satisfying the require- 
ment .  Clearly, d(y o, C) < t. I f  t > s + 1, let x i be such tha~ x~yo q~ E(G). Consider  
H = G - xi + xi - lx i+l  and C1 = C - xi + x i - lx i+l .  Then d(yo, C1) > �89 + 1 holds 
in H.  By the minimal i ty  of  t, we see that  in H,  C1 + Y0 contains  a cycle C' with 
s < l(C') < t - 1. T h e n  C' is no t  a cycle of  C + Yo. Let  C" = C' - xi-lx~+t + 
x i - l x i  + xixi+~. Then  C" is a cycle o f C  + Yo with s < l(C") < t. So t = s + 1 holds. 
Since d(yo, C) > �89 + 1, there exists i such that  xiyo, X~+ay o ~ E(G). W.l.o.g., say 
x l yo ,  x4yo ~ E(G). Then  the cycle x l y o X 4 X s . . ,  xs+lx  1 of C + Yo has length s. [ ]  

L e m m a  2.2. Suppose that t >_ s + 2 and s > 7. I f  G contains a vertex Yo ~ V(G) - 
V(C) such that d(y  o, C) >_ [�89 then C + Yo contains a cycle C' such that s <_ l(C') < t 
unless s = 12 and t = 14. When s = 12 and t = 14, i f  G contains another vertex 
Yl ~ V(G) - V(C) such that d(y l ,  C) " >_ 6 then C + Yo + Yl contains a cycle C' such 
that 12 < l(C') < 14. 

Proof. On the contrary ,  we suppose  tha t  the l e m m a  fails. In  the na tura l  way, we 
par t i t ion  N ( y  o, C) into segments  of  C, say 11, 12 . . . . .  I k, in order  a long C. Let  Ji 
denote  the segment  of  C between It and  I~+1, where  the subscripts are reduced 
m o d u l o  k. Clearly I v(I,)l _< 3 for all i, 1 < i < k, for otherwise obviously C + Yo has 
a cycle of  length t - 1. Similarly, we see tha t  either I V(J,)l = 1 or I v(J,)l -> 4 for all 
i, 1 < i < k. Suppose  tha t  there is some  J~ such tha t  I V(J~)l = 1. Let  V(J~) = {xi}. 
Add  the edge xjyo to G. By L e m m a  2.1, C + Yo + xjyo contains a cycle C1 with 
s < l(C~) < t. Then  C1 must  conta in  xjyo. I t  is also clear that  C1 contains  exactly 
one of  the edges xi_~ x j and xjxj§ 1 . W.l.o.g., say C 1 contains  xj_i x~. Let C' = C 1 - 
xjyo + xjxj+l + xj§  if l(C1) = s, or  let C' = C1 - xj + x j - l yo  if l(C1) > s + 1. 
Then  C'  is a cycle of  C + Yo with s < l(C') < t, a contradict ion.  So I v(J,)[ >_ 4 for 
all i, 1 < i < k. We next  claim tha t  I v(J,)l  >_ t - s + 2 for all i, 1 < i < k. Let  the 
first and  last vertices of  Ji be xj and  xh. Then  C" = x l x 2 . . .  Xi-~yoxh+lXh+2... XtXl 
is a cycle of length less than t. Hence  l(C") < s for  otherwise we are done. Thus  
I V(J,)l >- t - (s - 2). So the claim holds. Therefore  we have 

t = ~ [ V ( l * ' [ + ~ [ V ( J ' ) l > > - I ~ s ] + k ( t - s + 2 ' , = ~  ,=1 (2, 
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It is easy to see that  (2) does not  hold ifs  is odd since k > [~(s + 1)] > 2. I f s  is even, 
write s = 6m + r with 0 < r < 6. Note  that  k > m + [~r] and r is even. Then it is 
no t  difficult to see that  (2) does not  hold unless r = 0, t = s + 2, k = 2 and  equality 
in (2) holds. Hence I l t  I = ]I2 [ = 3 and I J11 = [ J2 [ = 4 hold and thus we have s = 12 
and  t = 14. Similarly, we define I~ and J~, i = 1, 2, . . . ,  k' with respect to N(y 1, C) 
and  apply the above argument  to I~ and J~ (1 < i < k'). Then  it is easy to check that 
when s = 12 and t = 14, C + Yo + Yl contains a cycle C'  such that 12 < l(C') < 14, 
a contradict ion.  This proves the lemma. [ ]  

L e m m a  2.3. Suppose that t > s >_ 3. Assume that d(xi, C) + d(x~+ 1, C) >_ s + 2 for 
some i, 1 <_ i < t. Then G[V(C)] contains a cycle C' with s <_ l(C') < t. 

Proof. O n  the contrary,  we suppose that  the 1emma fails. Clearly, C has a chord  in 
G. This implies s > 5. We may  let t be the smallest integer with t > s such that 
G[V(C)] does not  contain a cycle satisfying the requirement. W.l.o.g., we may 
assume that  d(xl,  C) + d(x2, C) ~ S + 2. If  t > S + 2, then x4 is not  adjacent to xl ,  
no r  to x2. So by the minimality of  t, G[V(C) - {x4}] + x3xs contains a cycle Cx 
with s < l(C1) < t - 1. Therefore C1 must  contain the edge x3xs. Let C' = C1 - 
x3x s + x3x  4 + x4x s. Then C' is a cycle of  G[V(C)] satisfying the requirement. 
Hence we have t = s +  1. It is easy to see that for each i e  {1,2 . . . .  ,s  + 1}, if 
x lx i  ~ E(G) then X2Xi+ 2 ~ E(G) for otherwise G[V(C) - {xi+l} ] contains  a cycle 
of  length s. Let I be the segment of  C f rom x4 to s - 1 and J f rom x s to s + 1. 
Then d(x2,J ) < d(x2,J - xs) + 1 < IV(J - xs) [ - d(x l , I )  + 1 = IV(J)I - d(xl,I).  
We also have d(xl, C) = d(xl, I) + 2 and d(x2, C) = d(x2, J) + 2. Thus  d(xl,  C) + 
d(x2, C) <_ d(xl ,I)  + 2 + I V ( J ) I -  d(xl ,I)  + 2 = s + 1, a contradiction. This proves 
the lemma. [ ]  

L e m m a  2.4. Suppose that t > s >_ 3 and G[V(C)'I does not contain a cycle with 
length at least s but less than t. Let a > s and b >__ 0 be two integers such that t = 
a + b. Then there exists a segment P of C with a vertices such that ~,~1 d(xi, P) <- 
�89 + 1)a + � 8 9  3)b + 2. 

Proof. We first show that  ~x~ v(e) d(x, P) <_ �89 + 1)a for any segment P on a vertices 
o f  C. F o r  the sake of  simplicity, let P = x l x 2 . . ,  x,. By Lemma 2.3, we must  have 
d(xi, P) + d(xi+l,P) <_ d(xi, C) + d(xi+l,C) _< s + 1 for all i, 1 _< i _< t. Therefore, if 
a is even, then ~ = i  d(xi, P) <_ �89 + 1)a holds. Assume that  a is odd. I t  is easy to 
see that  if G[V(P)] + x t x  , contains a cycle C' with s _</(C') < a then, by  replacing 
x l x  . by the segment of  C from x a to x 1, we would obta in  a cycle C" of  G[V(C)] 
with s _< I(C") < t, contradict ing the assumpt ion  of G[V(C)]. Hence by Lemma 
2.3, we must  have d ( x t , P  ) + d(x , ,P)  _< s + 1. W.l.o.g., we assume that  d(x, ,P) <_ 
�89 + I). Hence ~ = 1  d(xi, P) = �89 + 1) + ~ - ~  d(x,,P) <_ �89 + 1) + �89 + 1)(a - 1) 
= �89 + 1)a. 

N o w  we assume that  a < t. Again by Lemma 2.3, there exists a vertex, say 
x b, such that  d(xb, C ) <_ �89 + 1). Let L = x l x  2 . . .xb and P = C - V(L). We shall 
prove ~ t  d(x~,P) <_ �89 - 3)b + 2. This is true when b = 1. When  b is even, we 
have ~ t___i~,/2)b (d(XEi-1, P) + d(x2~, P)) <- ~ l~t~/2)b (d(x2i-1, C) + d(x2~, C) - 4) + 2 
_< �89 - 3)b + 2 as claimed. When  b is odd, we have ~t<i<_tt/2)tb,1)(d(x2i_l,P) + 
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d(x2i, P)) + d(xb, P) <_ ~,l<i<(i/2)(b_l)(d(x2i_l,C) + d(xzi, C ) -  4) + 1 + d(xb, P) 
< �89 -- 3)(b - 1) + 1 + �89 + 1) - 1 = �89 - 3)b + 2 as claimed again. This proves 
the lemma. [ ]  

L e m m a  2.5. Suppose that t > 4 and t + 1 >_ p >_ t. Assume that ~ = l  d(yi, C) >_ t 2 - -  

t + 1 i f p  = t and ~.[+~d(yi, C) > t 2 i f p  = t + 1. Then G [ V ( C U P ) ]  contains two 
independent cycles o f  length t. 

Proof. First assume p = t. Since t 2 _> Z [  =1 d(yi, C) >_ t 2 - -  t - t -  1, We see that  d(yl ,  C) 
+ d(y,, C) _> t + 1. This implies that  there exist two consecutive vertices of  C that  
are adjacent to Yl and y,, respectively. W.l.o.g., say x l y  1, x ,y t �9 E(G). Thus C U P - 
x l x ,  + x l y  1 + x,y,  is a hamil tonian cycle of  G [ V ( C  U P)]. Consider  t - 1 pairwise 
disjoint pairs of  edges {yixt- i ,  Yi+l x,_i+l } (1 < i _< t - 1). These edges are not  neces- 
sarily in G. Each one of  the t -  1 pairs divides the hamil tonian cycle into two 
independent  cycles of  length t. Since G [ V ( C  U P)]  misses at most  t - 1 of  those 
possible edges between C and P, we m a y  assume that  exactly one of  the two edges 
y ix , - i ,  Yi+lxt-i+l is no t  in G for all i, 1 _< i _< t - 1. But then y t x a x 4 . . . x t x l y  t and 
x2Yl  Y2 . . .  Yt-1 x2 are two independent  cycles of  length t in G[V(C  U P)].  

N o w  assume that  p -- t + 1. If  d(y l ,  C) _< t - 1 then we have ~ I + [  d(yi, C) >_ 
r _ t + 1 and therefore we can use the above  argument .  So we may  assume that  
d ( y D C  ) = t. Similarly, we may  assume that  d(y,+~,C) = t. It is easy to see that  if 
d(y 3, C) _> 1 or  d(y t_l,  C) >_ 1 then we have two independent  cycles of  length t 
in G [ V ( C  U P)]. So we may assume that  d(y  a, C) = 0 = d(y,_ l, C). If  t # 4, then 
~,~+~ d(y(, C) _< t 2 - t, a contradiction.  If  t = 4, then d(yi, C) = 4 for i = 1, 2, 4, 5, 
and so G [ V ( C U P ) -  {Y3}] contains two independent  cycles of length 4. This 
proves the lemma. [ ]  

Fo r  a subgraph H of G and a vertex x �9 V(G) - V(H), we define d(x, H) 
to be the number  of  vertices y of  H that  are not  adjacent  to x in G, i.e., d(x, H) = 
IV(H)] - d(x, H). The proofs of  the following two lemmas share much in common,  
especially when we deduce that  t = s and (b) follows from (a). 

L e m m a  2.6. Suppose that p >_ q >_ s >_ 7 and t >_ s. Set a = 0 or 1 according to whether s 
is even or odd, respectively. Let  Y be a subset o f  V(P) with [ YI = q and I = ~.y ~ r d(y, C). 
Suppose that G [ V ( C  U P)]  does not contain a cycle o f  length at least s but less than 
t. Then the following two statements hold: 

(a) I f  I >_ �89 - a)q + �89 - 2 + cr) + 1 then G [ V ( C U  P)] contains two indepen- 
dent cycles o f  length at least t. 

(b) I f  q > s and I >_ �89 - u)(q - 1) + �89 - 2 + (r) + s then G[V(C O P)]  contains 
two independent cycles o f  length at least t but at most p - 1. 

Proof. Let r = p + q + t. On  the contrary ,  we suppose that  the lemma fails and 
assume that  r = p + q + t has the smallest value with p, q and t satisfying the 
condi t ions  of  the lemma such that G [ V ( C U P ) ]  does not  contain two cycles 
satisfying the requirement. We first prove (a) and then (b) will follow. To prove (a), 
we distinguish two cases: t > s or  t = s. 



Independent Cycles with Limited Size in a Graph 275 

Assume first that  t > s. If  q _< t + 1, then [I/q] > s - 1. Therefore, there exists 
y e Y such that  d(y, C) > s - 1. By Lemma 2.1, C + y contains a cycle of  length at 
least s but  less than t, contradict ing the assumption of  G[V(C U P)]. So q > t + 2. 
By the minimali ty of  r, we see that  d(y, C) > �89 - a) + 1 for all y e Y. Thus, by 
Lemmas  2.1 and 2.2, we see that  t = s + 1 and s is odd. 

Suppose  that  there are two consecutive vertices, say xi and xi+1, of  C such that 
xi and xi+l have at mos t  �89 - 2 + a) c o m m o n  neighbours  in Y. We obta in  a new 
graph  G' and a new cycle C' f rom G and C by contract ing the edge x~xi+l to a new 
vertex z. Then  ~xEvtc,)d(x,  Y) > I - �89 - 2 + a) = �89 - a)q + �89 - 1)(s -- 2 + 
a) + 1 holds in G'. If  G'[V(C 'UP)]  contains a cycle C" with s < l(C") < t - 1 
then we obta in  a cycle C" in G [ V ( C U P ) ]  by undoing  the contraction.  Clearly 
l(C") <_/(C") _ l(C") + 1 < t, a contradict ion.  Therefore, by the minimali ty of r, 
G'[V(C'U P)]  contains two independent  cycles Cl and Cz of  length at least t - 1. 
Again, by undoing  the contract ion,  we obtain  two independent  cycles C't and C~ in 
G[V(C  U P)]  f rom C1 and C2 with length at least t - 1. These two cycles must  have 
length at least t by the assumpt ion on G[V(C U P)]. Hence ]N(xi, Y) f'l N(xi+l,  Y)] > 
�89 + a) for all i, 1 < i < t. 

Choose  any  two distinct vertices z l ,  z2 e N ( x l ,  Y) f'l N(x2,  Y). Since d(zl ,  C) + 
d(z 2, (7) >_ s + 1, there exists i such that  xiz 1, xi+4z2 e E(G). It  is easy to check that 
C + zl + z2 contains a cycle of  length s, a contradict ion.  Hence t = s. 

By L e m m a  2.5, it p = s, (a) is true. So p > s + 1. We now show that  Y = V(P) 
and ]N(yi, C) f lN(yg+l ,C)l  > �89 - a) + 1 for all i, 1 _< i _< p - 1. Suppose that 
[N(yi, C)AN(yi+t ,C)[  < �89 - a) ,or  {Yi, Yi+l} ~ Yfor some i, 1 < i < p - 1. We ob- 
tain a new graph  G', a new path  P '  and a new subset Y' of  V(P') from G, P and Y, 
respectively by contracting the edge YiYi +1 to a new vertex w. Then in G', ~ y  ~ r' d(y, C) 
>_�89 -- a )q+ �89 -- 2 + a ) t + l  if {Y,,Y,+I} ~ Y and Zy~r ,d (y ,  C)>�89 - a)(q - 1) 
+ �89 - 2 + a)t + 1 if{y/, Yi+l } -~ Y. By the minimality of  r, G'[V(C U P ' ) ]  contains 
two independent  cycles of  length at least s f rom which we readily obtain  two 
independent  cycles of  length at least s in G [V(C U P)]  by undoing the contraction.  
Therefore Y = V(P) and ]N(y i, C)f? N(y~+ l,  C)] > �89 - a) + 1 for all i, 1 _< i < 
p - 1 .  

Let i = Y'.[=l d(x,, P). Then 

i = ps - I <_ �89 + a)(p + 2 - s) -- l - a (4) 

We shall derive a lower bound  for ] to obtain a contradic t ion with (4). Since 
d(yt ,  C) + d(yp, C) > s + 1, there exist two consecutive vertices, say x 1 and xs, of C 
such that  x l y l ,  xsyp e E(G). For  each i, 1 < i < s - 1, let 

B i = y s - i Y s - i + l . . . Y p - i + l  (5) 

If  d(xi, B i ) +  d(xi+l ,Bg)> IV(Bi)I + 2, then there are two vertices yj and Yk on 
B i with j < k such that  xiy j, x i+ lykeE(G) .  Then x l x 2 . . . x i y j y j _ l . . . y l x l  and 
Xi+tXi+2...Xsypyp_l.. .ykX~+ 1 are two independent  cycles of  length at least s, a 
contradict ion.  So we must  have 

d(xi, Bi) + d(Xi+l,Bi) < I V(Bi)I + 1 for i = 1, 2 . . . . .  s - 1 (6) 
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a n d  the re fo re  

d(x, ,  B~) + d(x~+l,  B~) > 21V(B,)[ - I V(B,)I - 1 = p + 1 - s f o r  i = 1, 2 . . . . .  s - 1 

(7) 

Le t  X = {x ,  ld(xi ,  P ) > �89 + 1 - s ) , l  < i < s}. By  (7), we see t ha t  IXl ~ �89 - 1) 
a n d  n o  two  ver t i ces  in V(C) - X are  c o n s e c u t i v e  o n  the  p a t h  C - x l x~ .  W e  discuss  
the  f o l l o w i n g  t w o  cases.  

Case 1. IXl ~ �89 + ~). 
T h e n  p + 1 - s m u s t  be  even  for  o t h e r w i s e  d ( x , P )  > �89 + 2 - s) for  al l  x s X 

a n d  so  i > �89 + a ) ( p  + 2 - s), c o n t r a d i c t i n g  (4). L e t X o  = {xi ld(xi ,  P) = 0, 1 < i < 
s}. I f  d(x~, P)  = 0, i.e., d(xi,  P)  = p then ,  b y  (7), d(xj, ,  P)  > p - s + 1 > �89 + 1 - s) 
+ 1 for  s o m e  xi, _~ { x i - l , x i §  Since  IXl -> �89 + ~r), we can  c h o o s e  d i s t inc t  xj, for  
allx~ e X o . T h u s I  > � 8 9  + 1 - s) + s - IXl > �89 + cr)(p + 2 - s) - tr, c o n t r a -  
d i c t i ng  (4). 

Case 2. IXl < �89 + ~). 
T h e n  s m u s t  be  o d d ,  IXI = �89 - 1) a n d  X = { x 2 , x 4 , x  6 . . . . .  Xs-1}.  I t  is ea sy  to  

see, s i m i l a r  to  o b t a i n i n g  (7), t h a t  d(xi ,  Bi - Yp- i§  + d(xi+2,  B~ - Y~-~§ > P - s 
for  al l  i, 1 < i < s - 2. I f  p + 1 - s is even ,  t h e n  p - s is odd .  The re fo re  e i the r  
d ( x l , P )  > �89 + 1 - s) o r  d ( x s , P )  > �89 + 1 - s) a n d  so IXI > �89 + 1), a c o n t r a ,  

m 

d ic t ion .  I f  p + 1 - s is o d d  t hen  d(x2i,  P)  > �89 + 2 - s) for  i = 1, 2 . . . .  , �89 - 1) 
a n d  t he r e fo re  i > �89 - 1)(p + 2 - s) + 2 (p  - s) > �89 + 1)(p + 2 - s) - 1, con-  
t r a d i c t i n g  (4). Th i s  p r o v e s  (a). 

W e  n o w  t u r n  to  the  p r o o f  of  (b) w h i c h  eas i ly  fo l lows  f r o m  (a). I f  t > s, we can  
eas i ly  show,  as  before ,  t h a t  q > t + 2 b y  the  m i n i m a l i t y  o f  r. A l so  by  the m i n i m a l i t y  
of  r, we  have  y~, yp ~ Y. I f t  = s, we m a y  a s s u m e ,  b y  L e m m a  2.5, t ha t  p > s + 2, a n d  
a g a i n  b y  the  m i n i m a l i t y  of  r, we can  eas i ly  show,  as before ,  t h a t  Y = V(P).  

I f  d(yp,  C) < s - 1 t hen  ~ y ~ r _ { y _ } d ( y , C )  >_ I - s + 1 > �89 - 2 - tr)(q - 1) + 
�89 + a) + 1. By (a), G[ .V(C  U P) - ( j ;p}]  c o n t a i n s  t w o  i n d e p e n d e n t  cycles  of  l eng th  
a t  l eas t  t. O b v i o u s l y  these  t w o  cycles  have  l e n g t h  a t  m o s t  p - 1. So we m a y  a s s u m e  
t h a t  d(yp, C) > s, a n d  s imi la r ly ,  d ( y l ,  C) > s. T h e r e f o r e  t = s b y  L e m m a  2.1. T h e n  
d(y~, C) = 0 = d(y j ,  C) for  i ,j ,  s - 1 < i _< p - 2 a n d  3 < j < p - s + 2 for  o the rwi se  
we o b t a i n  t w o  i n d e p e n d e n t  cycles  in  G [ V ( C  t_J P ) ]  o f  l eng th  a t  leas t  s b u t  a t  m o s t  
p - 1. So  I < s 2. Bu t  b y  the  c o n d i t i o n  of  (b), we h a v e  I > s 2. Th i s  p r o v e s  (b) a n d  
the re fo re  the  l e m m a .  [ ]  

Lemma 2.7. Suppose  that  6 >_ s >_ 4, p >_ q >_ s and t >_ s. Se t  a = 0 or 1 according 

to whe ther  s is even or odd, respect ively .  L e t  Y be a subset  o f  V(P)  with I Y[ = q and 
I = ~ y ~ r d ( y ,  C). Suppose  that  G [ V ( C U P ) ]  does not  contain a cycle  o f  length at  
least  s but  less than t. Then  the fo l lowing  two s ta t emen t s  hold: 

(a) I f  I >_ �89 --  2 --  a)q + �89 + a) + 1 then G [ V ( C  tA P ) ]  contains  two indepen- 
dent  cycles  o f  length at least t. 

(b) I f  q > s and I >_ �89 - 2 - tr)(q - 1) + �89 + cr) + s then G [ V ( C  U P ) ]  contains  
two independent  cycles  o f  length at  least  t bu t  at  mos t  p - 1. 
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Proof. As we did in the p roo f  of L e m m a  2.6, it is easy to see that  (b) follows f rom 
(a). So we shall give the p roof  of (a). Let  r = p + q + t. On  the contrary ,  suppose 
that  (a) fails and assume that  r has the smallest  value with p, q and t satisfying the 
condi t ions of  the l e m m a  (a) such that  G[V(C t3 P)]  does not  contain  two indepen- 
dent  cycles of  length at least t. 

T o  a contradict ion,  suppose that  t > s. As we did in the p roo f  of  L e m m a  2.6, we 
can easily deduce that  q > t + 2, [N(xi, Y)('lN(xi+l, Y)[ > �89 + a) + 1 for all i, 
1 < i < t and  d(y, C) > �89 - a) for all y ~ Y. Thus  G[V(C U P)]  has a cycle of  length 
4. Therefore  s = 5 or  6. Let  Y~ = N(xi, Y)71N(x~+l, Y) for i = 1, 2 . . . . .  t. Then 
I Y~I > 4 for all i, 1 < i < t. I f s  = 5, Yt fq Y2 = ~ ;  otherwise G[V(CU P)]  contains  a 
cycle of  length 5. Hence  d(x 2, Y) > 8. Let  z~ (1 < i < 8) be eight vertices in N(x2, Y) 
in order  a long P. Then  xzP[z l ,  z~]xz is a cycle of length at least 5 and G[V(C U 
P[zs,  Zs] ) - {x2} ] contains  a cycle of  length at  least 5 since d(z 5, C - x2) > 1 and 
d(z s, C - x2) > 1. If  s = 6, Then  I Y1 f3 Yz] N I, I Y2 71 Y31 -< 1 and Y1 71 Y3 = ~ for 
otherwise we have a cycle of  length 6 in G[V(C U P)].  So IN(x2, Y) U N(x3, Y)I > 10. 
The  rest of  the a rgumen t  is similar to the above.  

N o w  we prove  (a) for t = s. By L e m m a  2.5, when p = s, (a) is true. So assume 
that  p > s. Again, as we did in the p roo f  of L e m m a  2.6, we see that  Y = V(P) and 
IN(yi, C) 71 N(y~+~, C)I > �89 - a) for all i, 1 < i < p - 1. 

Let  x~ ad x~ be two distinct vertices of C such tha t  x~yl, Xjyp ~ E(G). I t  is easy 
to see tha t  there are two independent  segments  P~ and  P2 of  C and two vertices z~, 
z2 o f N ( y , - 1 ,  C) 71 N(y~, C) such that  xi, zl  ~ V(P1) and  xj, z2 e F(P2). I f p  > 2(s - 1) 
then G [V(C t3 P)]  contains  two independent  cycles of  length at  least s. This  idea is 
also used (by choosing x i, xj, z~ and z 2 proper ly)  in the following three cases while 
p < 2 s - 3 .  

Case 1. p >_ s + 2. 
Then  s = 5 or  6. First  assume tha t  s = 5. Then  p = 7, I > 23 and  N(y~, C) f'l 

N(y~+I,C) > 2 (1 < i < 6). I t  is easy to see tha t  N(y4, C)f ' IN(ys ,C ) must  contain 
xj for otherwise we readily get two independent  cycles of length at  least 5. Simi- 
larly, x i ~ N(y3, C) 71N(y4, C). Then  it is easy to see tha t  if Y5 or Y7 is adjacent  to a 
vertex Xk ~ V ( C ) -  {x~,xj} then G[V(CU P)]  contains  two independent  cycles of  
length at least 5 with one being xlyly2yay4x i. So we m a y  assume tha t  N(ys,  C) = 
{x,, xj} = N(yT, C). Similarly, N(ya, C) = {x,, xj} = N(y3, C). Since I > 23, we see 
that  d(y2, C) = d(y 4, C) = d(y6, C) = 5 and  so G[V(C U P)]  contains  two indepen-  
dent  cycles of  length 5. 

N o w  let s = 6. Then  8 < p < 9, I _> 2p + 19 and N(y  i, C) N N(yi+~, C) > 3 (1 < 
i < p - 1). Let  x,, Xb, Xc be three distinct vertices in N(ys,  C) fq N (y  6, C) in order  
a long C. I t  is easy to see that  if there is a vertex u ~ V(C) - {x,, Xb, Xc} such that  
uy~ ~ E(G) then there is a vertex v ~ N(yx, C) such tha t  the g raph  C U P U {uyp, vyt} 
together  with the six edges between {Ys, Y6} and {x,, Xb, Xc} contains  two indepen- 
dent  cycles of  length at  least 6. Thus  N(yp, C) = {x,, Xb, Xc}. I t  is easy to see that  if 
the three vertices x,, Xb, X~ are not  consecut ive on C, then there exists v ~ N(y~, C) 
such tha t  the g raph  C U P + vyl together  with the nine edges between {Ys,Y6,Yp} 
and {x,, Xb, X~} contains  two independent  cycles of  length at least 6. So we may  
assume that  {x,, Xb, X~} = {Xl, X2, X 3 ~ ~--- N(yp, C). Thus  we see that  x2y ~ q~ E(G) for 
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the same reason. Similarly, we m a y  assume that  y~ is adjacent  to three vertices in 
N ( y  3 , C ) N N ( y 4 , C  ) tha t  are consecutive on C. We now see that  G[V(CUP)] 
contains  two independent  cycles of length 6. 

Case 2. p = s + 1 and  no two consecutive vertices of  C are adjacent  to y~ and  y~+~, 
respectively. 

In  this case, we m a y  assume w.l.o.g, tha t  N(y l ,  C)= {xl ,x3}  = N(Ys+I, C) if 
s = 4 or  5 and  N ( y l ,  C) = {x l , x3 ,xs}  = N(y7,  C) i fs  = 6. I f s  = 4, then I _> 14 and 
bo th  N(y2, C) and N(y4,  C) contain  the two vertices xt  and  x3. T o  avoid  the 
occurrence of  two independent  cycles of  length at  least 4, x 3 mus t  be in N(y  3, C) I3 
N(y4,  C). Similarly, x l  mus t  be in N(y3,  C)N N(y2,  C) and  hence d(y2, C) = 2 = 
d(y4, C) must  hold. Therefore  I _< 4" 2 + 4 = 12, a contradict ion.  

Similarly, i f s  = 5, we have I _ 22 and  {x 1, x3} _~ N(y2,  C) t3 N(ys,  C). T o  avoid 
the occurrence of two independent  cycles of  length at  least 5, one of  x~ and  x 3, say 
x~, mus t  be in N(y3, C) t3 N(y4, C). F o r  the same reason,  we see that  nekher  of  the 
two edges y2x5 and ysxs is in G, nor  is one ofy3x  ~ and y~x4. Hence I _ 2 - 2  + 3. 
4 + 5 = 21, a contradict ion.  

I f  s = 6, then I_> 33 and  {x t , x3 ,xs}  ~ N(y2 ,C)NN(y6 ,  C ). We have 30_> 
~6=2 d(yi, C) >_ 33 - 6 = 27, which easily implies tha t  G[V(C U P)]  contains  two 
independent  cycles of  length at least 6. 

Case 3. p = s + 1 and  there exist two consecut ive vertices of  C that  are adjacent  to 
Yx and Ys+l, respectively. 

Say y l x  1, ys+tx~ ~ E(G). As in L e m m a  2.5, we see tha t  each of  the 2(s - 1) 
pairwise disjoint pairs of  edges (not necessarily in G) {yix~_i,y~+~x~_~+~} and 
{y~+~x~_i, yi+2x~_i+~}(1 <_ i <_ s - 1) conta ins  an edge which is not  in G. Hence  
I _ 14 if s = 4, I _< 22 if s = 5 and I _< 32 if s = 6. Therefore  we must  have s = 4 
or  5. W h e n  s = 4, x~x2y~y2x ~ and x3x4y,~ysx 3 are two independent  cycles of 
G[V(C U P)].  When  s = 5, x lx2y ly2yax l  and x4xsy4ysy6x,~ are two independent  
cycles of  G[V(C U P)-]. This proves  (a) and  therefore (b) follows. [ ]  

3. Proof of the Theorem 

Let k, n, s be integers with k _> 1, s > 3 and  n >_ sk. Let  G be a graph  of order  n with 
m i n i m u m  degree at least (s - 1)k. Wri te  n = qk + r, 0 < r < k, We shall p rove  tha t  
G contains  k independent  cycles satisfying (1). Corr/~di and  Hajna l ' s  result [2] shows 
the t heo rem is t rue for s = 3. So we m a y  assume that  s _ 4 in the following. I t  is 
well k n o w n  that  if a g raph  H has m i n i m u m  degree 8 > 2 then H contains a cycle 
of  length at  least 8 + 1. We first claim: 

Cla im 1. G contains a cycle C with s <_ I(C) <_ q. 

On the contrary ,  suppose  that  every cycle of  G with length at  least s has length 
at  least q + 1. Since G has a cycle of  length at least s, we m a y  choose m cycles CI ,  
C2 . . . .  , Cm of  G such tha t  Ct is a smallest  cycle of  length at least s in G and Ci is a 
smallest  cycle of length at  least s in G - U~-2~ V(Cj) for  i = 2, 3, . . . ,  m but  G - 
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~ V(Ci) does no t  have a cycle of  length at least s. By the assumption, we have 
l(C~) > q + 1 for i = 1, 2 . . . .  , m. This implies that  m < k. Suppose that  V(G) 
~7'=~ V(C,). Then G - UT'=~ V(C,) has a vertex Yo such that  d(yo, G - U7'=1 v(c , ) )  
< s - 2. Then  d(y o, ~;~=1Ci) > (s - 1)k - (s - 2) = (s - 1)(k - 1) + I and so there 
exists i o such that  d(yo, Cio) > s. If  V(G) = ~ = 1  V(Ci) then, by the choice of  Cm and 
L e m m a  2.3, we see that  Cm contains a vertex Yo such that  d(yo, Cm) < L�89 + 1)J. 
Then  d(yo, ~)7'~ 1 Ci) >_ (s - 1)k - k�89 + 1)J > (s - 1)(k - 1) + 1 and so there 
exists i o such that  d(yo, C~ o) >_ s. By L e m m a  2.1, C + Y0 contains a cycle C' with 
s <_ l(C') </(C~o), contradict ing the choice of  Cio. This proves the claim. 

Let  k o be the greatest integer such that  G contains k o independent  cycles C1, 
C2 . . . . .  Cko such that  

s < _ l ( C i ) < q f o r l < _ i < _ k - r  and s < l ( C ~ ) < _ q + l f o r k - r + l < i < k  o 
(8) 

Subject to (8), we may  choose  Ci's such that  

ko 

I(C~) is minimum. (9) 
i=1 

By Claim 1, ko > 1. For  the p roo f  o f  the theorem, we may  assume that  ko < k. 
We shall prove that  this is a contradict ion.  

Claim 2. G contains k o independent cycles Ci satisfying (8) and (9) such that G - 
U~~ V(C~) contains a cycle of length at least s. 

Suppose that  this claim fails. Then  we choose, subject to (8) and (9), ko indepen- 
dent  cycles C, such that  G - Uk~ V(C,) contains a longest path. Let  H = ~ k o  C,, 
D = G - Uk~ V(Ci) and P = x l x  2 . . .xp be a longest pa th  o l D .  Then d(xl ,D ) = 
d(x 1, P) < s - 2 and d(xp, D) = d(xp, P) < s - 2 hold. 

We now show that  D is connected. If  not,  let Do denote  a componen t  of  D which 
does no t  contain P. Then, since D O does no t  contain  a cycle of  length at least s, D O 
contains  a vertex Xo such that  d(xo, Do) < s - 2. Hence we have d(xo, H) + d(x~, H) 
> 2(s - 1)k - 2(s - 2) = 2(s - 1)(k - 1) + 2. Therefore there exists i 0 such that  
d(xo, Ci o) + d(xl,  C~ o) >_ 2(s - 1) + 1. So either d(xo, Cio) >- s or d(x 1, Cio) >- s. By 
L e m m a  2.1 and (9), we have l(Cio) = s. Then  Cio contains three consecutive vertices, 
say Yl, Y2, Ya, that  are adjacent to bo th  x o and x 1. Thus  C'~o = C~o - Y2 + xoyl + 
xoy3 is a cycle of  length s and P + y2xl  is a pa th  longer than P, contradict ing the 
choice of  P. This proves that  D is connected.  It  follows from this a rgument  that  
D - V(P) does no t  contain  a vertex adjacent to x 2 or  xp_~; for if such a vertex exists, 
say x o again, then d(xo, D) = d(x o, P) _< s - 2 and a contradict ion follows from this 
argument .  This, in turn, implies that  p _> 4 since [ V(D)[ _ q _> s >_ 4. 

We now consider R = d(x 1, H) + d(x2, H) + d(xp_l, H) + d(xp, H). Then R > 
4 ( s - 1 ) k - ( s - 2 ) - ( s - 1 ) - ( s - 1 ) - ( s - 2 ) = 4 ( s -  1 ) ( k - 1 ) + 2 .  T h u s t h e r e  
exists i o such that  d(xl,  Cio) + d(x2, Ci o) + d(xp_~, Cio) + d(xp, C~o ) _> 4s - 3. This, 
together  with L e m m a  2.1 and (9), implies that  l(C~o ) = s. Let C~o = Y~Y2... YsY~. 

Since d(xl ,  C~o) + d(x2, C~o) + d(xp_l, C~o) + d(xp, C~o) _> 4s - 3, either d(xl, C~~ 
>_ s - 1 or  d(xp, Cio) _> s - 1. W.l.o.g., say d(x 1, C~o ) = s - z, where z = 0 or 1. 
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d(x2, Cio ) + d(xp, Cio ) ~ 4s - 3 - (s - z) - s = 2s - 3 + -r 

Then  

This implies that  [N(xz, C~o) N N(xp,  Cio)l > s - 3 + z. Therefore if d(xl ,  Ci o) = s, 
we obtain  two independent  cycles C' and C" of  lengths s and p, respectively. With  
C~o replaced by C', we obtain D' = G - Ui,,io V(C~) - V(C'), which contains C". 
Since D' must  be connected,  we see that  either C" contains all vertices of  D', 
contradict ing the assumpt ion  that  the claim is false, or  D' contains a pa th  longer 
than  P, contradict ing the choice o f  D. F o r  the same reason, if d(xl ,  C~o) = s - 1, say 
x a y  2 r E(G), then N(x2, Cio ) ["1N(xp, Cio ) r {Yl,Ya}. Therefore s = 4. It  is easy now 
to see that  G[V(Cio U P)]  contains two independent  cycles of  lengths of  4 and p, 
respectively. This contradict ion completes the p roo f  of  the claim. 

By Claim 2, we m a y  choose k o independent  cycles C 1, C 2 . . . . .  Cko of G satisfying 
(8) and (9) such that  

ko 
6-U 

i=1 
V(Ci) contains a smallest cycle of  lenoth at least s. (10) 

Let L = Uk~ C~, F = G - V(L), C = x l x 2 . . . x ,  x l  be a smallest cycle of  length 
at least s in F and Fo = F - V(C). Then  t > q + 1. By the maximali ty of  ko, when 
t = q + 1 we have ko < k - r. By L e m m a  2.4, we may  assume that  P = xl  x2 . . .  x~ +1 
satisfies 

4+1 1 1 
d(xi, C) < ~(q + 1)(s + 1) + ~ ( s -  3)1 o + 2, where I o = t -  q -  1 

i=1 

Clearly, 

We define three numbers  as follows: 

(11) 

q + l  

11 + 12 + 13 = ~ d(x,, G) >_ (q + 1)(s - 1)k (13) 
i=1 

We shall estimate the lower b o u n d  for 11 and  then apply Lemmas  2.6 and 2.7. 
To  do so, we first estimate the upper  bounds  for 12 and 13. Define a = 0 o r  1 
according  to whether s is even or  odd, respectively. Let fo = I V(Fo)I and Po = 
~ ~  1 I(C:). Then Io + fo = qk + r - Po - q - 1. We distinguish two cases: s _> 7 or  
4 _ < s ~ 6 .  

Assume first that  s _ 7. If  t = s + 1 then q = s, ko < k - r and l(Ci) = s for all 
i, 1 <__ i _< ko. By Lemma 2.1 and the minimali ty o f  C, we have d(x,P)  < d(x ,C)  <_ 
�89 + a) for all x ~ V(Fo). Together  with (11), we obtain  12 + 13 -< �89 + 1)(s + 1) 
+ �89 + a)(fo + lo) + 2. F r o m  this and  (13), we obtain  11 _> (�89 - a)s - 1)ko + 
�89 + a)p o + 1. This implies that  there exists i o such that  ~_-+~ d(xi, Cio) > �89 - a)s 
- 1 + �89 + a)s + 1 = s 2. Then by L e m m a  2.5, G[V(CioUP)]  contains two inde- 
pendent  cycles of  length s, contradict ing the maximal i ty  of  k o. If  t > s + 2 then, by 
Lemmas  2.1 and 2.2, ~.r~V~ro)d(x,P) < �89 - 2 + a ) f  o + i. Together  with (11) and  

q + l  q + l  q + l  

I x = ~_, d(x,,L); 12 = Z d(x,,C); 13 = • d(x, ,Fo) (12) 
i=1 i=1 i=1 
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(13), we obta in  

1 l > ( q + l ) ( s - 1 ) k - � 8 9 1 8 9 1 8 9  o - 1  

> ( q +  1 ) ( s -  1 ) k - � 8 9  1 ) ( s +  1 ) - � 8 9  1 ) - 3  

= ( � 8 9 1 8 9 1 8 9  1 ) - � 8 9  
(14) 

F r o m  (14), we deduce that  when ko < k - r, 11 > (�89 - cr)q + s - 1)ko + �89 - 
2 + cr)p o + 1. This  implies that  there exists io such that  ~__+~ d(xi, C, o) > �89 - a)q 
+ � 8 9  2 + cr)l(Cio) + s. If  k o > k -  r, then 11 > � 8 9  a)(q + 1 ) ( k -  1) + � 8 9  
2 + a)p o + 1 by maximizing r to k - 1. This implies tha t  there exists i o such that  
~_J+=~ d(xi, Cio) >- �89 - a)(q + 1) + �89 -- 2 + a)l(Cio) + 1. 

F o r  the case tha t  4 _< s < 6, by  L e m m a  2.1, we have d(y,P)  <_ d(y, C) <_ �89 + a) 
for  all y ~ V(Fo). Therefore  we ob ta in  

11 ~ (q q- 1)(S - -  1)k - �89 + 1)(s + 1) - �89 

> (q + 1)(s - 1)k - �89 + 1)(s + 1) - �89 

- -  3 ) I  o - 2 - �89 + ~r) 

+ ~)(qk + r -  Po - q -  i ) -  2 

= (�89 2 - -  ~r)q + s -  1)k + �89 + a)p o -- �89 + a ) r -  �89 - a)(q + 1 ) -  2 
(15) 

F r o m  (15), we deduce that  if ko < k - r, then 11 > (�89 - 2 - a)q + s - 1)k o + 
�89 + a)p o + 1 and  therefore there exists i o such tha t  ~7_-+~ d(x i, Cio) > �89 - 2 - a)q 
+ �89 + a)l(Cio) + S. If ko > k - r ,  then l l  > �89 - 2 - a)(q + 1)(k - 1)+�89 + a)po + 

~'q+l d(xi, Cio) >- �89 - 2 - a)(q + 1) + 1 and  therefore there exists io such that/. . , i=1 
�89 + a)l(C,o) + 1. 

In  bo th  cases, we have l(C~o) < q + 1 for otherwise there exists xl such that  
d(x i, C;o) > s - 1, contradict ing (9) by L e m m a  2.1. Then  by L e m m a  2.6 or  L e m m a  
2.7, G[V(C~o U P ) ]  contains two independent  cycles C' and C" such that  l(C~o ) < 
l(C'), l(C") < q if k o < k - r, or  l(C,o ) < l(C') < q and l(Cio) <- l(C") < q + 1 since 
l(C~o) + q + 1 < 2(q + 1), contradict ing the maximal i ty  of k o. This  proves the 
theorem.  
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