

Hong Wang

Department of Mathematics, Massey University, Palmerston North, New Zealand

Abstract. Let k and s be two positive integers with $s \geq 3$. Let G be a graph of order $n \geq sk$. Write $n = qk + r$, $0 \le r \le k - 1$. Suppose that G has minimum degree at least $(s - 1)k$. Then G contains k independent cycles $C_1, C_2, ..., C_k$ such that $s \le l(C_i) \le q$ for $1 \le i \le k - r$ and $s \le l(C_i) \le q + 1$ for $k - r < i \le k$, where $l(C_i)$ denotes the length of C_i .

1. Introduction

Let G be a graph. A set of subgraphs of G is said to be independent in G if no two of them have any common vertex in G. The length of a cycle C is denoted by *l(C).* Corrádi and Hajnal [2] investigated the maximum number of independent cycles in a graph. They proved the following: If G is a graph of order $n = qk + r$, where $q \geq 3, k \geq 1$ and $0 \leq r < k$, and G has minimum degree at least 2k, then G contains k independent cycles $C_1, C_2, ..., C_k$ such that $l(C_i) \leq q$ for $1 \leq i \leq k - r$ and $l(C_i) \leq q + 1$ for $k - r < i \leq k$. In particular, when $n = 3k$ this result means that G contains k independent triangles. Hajnal and Szemerédi [3] proved that if G is a graph of order *sk* with $s \ge 3$ and $k \ge 1$ and G has minimum degree at least $(s - 1)k$ then G contains k independent complete subgraphs of order s. In this paper, we generalize Corrádi and Hajnal's result, proving the following theorem.

Theorem. Let k and s be two positive integers with $s \geq 3$. Let G be a graph of order $n \geq sk$. Write $n = qk + r$, $0 \leq r \leq k - 1$. Suppose that G has minimum degree at least $(s - 1)$ k. Then G contains k independent cycles $C_1, C_2, ..., C_k$ such that

$$
s \le l(C_i) \le q \text{ for } 1 \le i \le k-r \quad \text{and} \quad s \le l(C_i) \le q+1 \text{ for } k-r < i \le k \quad (1)
$$

We recall some terminology and notation. For a graph *G, V(G)* and *E(G)* are the vertex set and edge set of G, respectively. For a vertex $u \in V(G)$ and a subset $U \subseteq V(G)$, we define $N(u, U)$ to be the set of all those vertices in U that are adjacent to u in G and let $d(u, U) = |N(u, U)|$. If H is a subgraph of G, define $N(u, H)$ and $d(u, H)$ by $N(u, V(H))$ and $d(u, V(H))$, respectively. Thus $d(u, G)$ is the degree of u in G. We also use $G[U]$ to denote the subgraph of G induced by U. Moreover $H + u$ is the subgraph of G obtained from H by adding to H the vertex u and all the edges of G between u and H. All graphs will be simple. Unexplained terminology and notation are adopted from [1].

2. Lemmas

Our proof of the theorem needs the following lemmas. In the following, p , q , s and t are fixed positive integers, G is a graph, $C = x_1x_2...x_ix_1$ is a cycle of G and $P = y_1 y_2 ... y_n$ is a path of G independent of C. The subscripts of the x_i's will be reduced modulo t. A segment of C from x_i to x_i ($x_i \neq x_j$) is the path $x_i x_{i+1} \ldots x_{i-1} x_j$, denoted by $C[x_i, x_j]$, of C. Note that $C[x_i, x_j]$ and $C[x_i, x_j]$ have no common vertices except x_i and x_j . A subpath of P with two endvertices y_i and y_j is denoted by $P[y_i, y_j]$ and called a segment of P.

Lemma 2.1. *Suppose that t > s* ≥ 3 *and G has a vertex* $y_0 \in V(G) - V(C)$ *such that* $d(y_0, C) \geq \frac{1}{2}s + 1$. Then $C + y_0$ contains a cycle C' such that $s \leq l(C') < t$.

Proof. On the contrary, we suppose that the lemma fails. Let t have the smallest value with $t > s$ such that $C + y_0$ does not contain a cycle satisfying the requirement. Clearly, $d(y_0, C) < t$. If $t > s + 1$, let x_i be such that $x_i y_0 \notin E(G)$. Consider $H = G - x_i + x_{i-1}x_{i+1}$ and $C_1 = C - x_i + x_{i-1}x_{i+1}$. Then $d(y_0, C_1) \geq \frac{1}{2}s + 1$ holds in H. By the minimality of t, we see that in H, $C_1 + y_0$ contains a cycle C' with $s \le l(C') < t - 1$. Then *C'* is not a cycle of $C + y_0$. Let $C'' = C' - x_{i-1}x_{i+1} +$ $x_{i-1}x_i + x_ix_{i+1}$. Then *C*" is a cycle of $C + y_0$ with $s \le l(C'') < t$. So $t = s + 1$ holds. Since $d(y_0, C) \ge \frac{1}{2}s + 1$, there exists i such that $x_i y_0$, $x_{i+3} y_0 \in E(G)$. W.l.o.g., say x_1y_0 , $x_4y_0 \in E(G)$. Then the cycle $x_1y_0x_4x_5...x_{s+1}x_1$ of $C + y_0$ has length s. \square

Lemma 2.2. *Suppose that* $t \geq s + 2$ *and* $s \geq 7$ *. If G contains a vertex* $y_0 \in V(G)$ – *V*(*C*) such that $d(y_0, C) \geq \lceil \frac{1}{2}S \rceil$ then $C + y_0$ contains a cycle C' such that $s \leq l(C') < t$ *unless* $s = 12$ *and* $t = 14$ *. When* $s = 12$ *and* $t = 14$, *if G contains another vertex* $y_1 \in V(G) - V(C)$ such that $d(y_1, C) \ge 6$ then $C + y_0 + y_1$ contains a cycle C' such *that* $12 \leq l(C') < 14$.

Proof. On the contrary, we suppose that the lemma fails. In the natural way, we partition $N(y_0, C)$ into segments of C, say I_1, I_2, \ldots, I_k , in order along C. Let J_i denote the segment of C between I_i and I_{i+1} , where the subscripts are reduced modulo k. Clearly $|V(I_i)| \le 3$ for all i, $1 \le i \le k$, for otherwise obviously $C + y_0$ has a cycle of length $t - 1$. Similarly, we see that either $|V(J_i)| = 1$ or $|V(J_i)| \ge 4$ for all i, $1 \le i \le k$. Suppose that there is some J_i such that $|V(J_i)| = 1$. Let $V(J_i) = \{x_i\}$. Add the edge x_jy_0 to G. By Lemma 2.1, $C + y_0 + x_jy_0$ contains a cycle C_1 with $s \le l(C_1) < t$. Then C_1 must contain $x_j y_0$. It is also clear that C_1 contains exactly one of the edges $x_{j-1}x_j$ and x_jx_{j+1} . W.l.o.g., say C_1 contains $x_{j-1}x_j$. Let $C' = C_1$ $x_jy_0 + x_jx_{j+1} + x_{j+1}y_0$ if $l(C_1) = s$, or let $C' = C_1 - x_j + x_{j-1}y_0$ if $l(C_1) \geq s + 1$. Then C' is a cycle of $C + y_0$ with $s \le l(C') < t$, a contradiction. So $|V(J_i)| \ge 4$ for all $i, 1 \le i \le k$. We next claim that $|V(J_i)| \ge t - s + 2$ for all $i, 1 \le i \le k$. Let the first and last vertices of J_i be x_i and x_h . Then $C'' = x_1 x_2 \dots x_{j-1} y_0 x_{h+1} x_{h+2} \dots x_i x_1$ is a cycle of length less than t. Hence $l(C'') < s$ for otherwise we are done. Thus $|V(J_i)| \geq t - (s - 2)$. So the claim holds. Therefore we have

$$
t = \sum_{i=1}^{k} |V(I_i)| + \sum_{i=1}^{k} |V(J_i)| \ge \left\lceil \frac{1}{2} s \right\rceil + k(t - s + 2) \tag{2}
$$

$$
= t + (k - 1)(t - s + 2) - (s - 2) + \left[\frac{1}{2}s\right].
$$
 (3)

It is easy to see that (2) does not hold if s is odd since $k \geq \lceil \frac{1}{6}(s+1) \rceil \geq 2$. If s is even, write $s = 6m + r$ with $0 \le r < 6$. Note that $k \ge m + \lceil \frac{1}{6}r \rceil$ and r is even. Then it is not difficult to see that (2) does not hold unless $r = 0$, $t = s + 2$, $k = 2$ and equality in (2) holds. Hence $|I_1| = |I_2| = 3$ and $|J_1| = |J_2| = 4$ hold and thus we have $s = 12$ and $t = 14$. Similarly, we define I'_i and J'_i , $i = 1, 2, ..., k'$ with respect to $N(y_1, C)$ and apply the above argument to I'_i and J'_i ($1 \le i \le k'$). Then it is easy to check that when $s = 12$ and $t = 14$, $C + y_0 + y_1$ contains a cycle C' such that $12 \le l(C') < 14$, a contradiction. This proves the lemma. \Box

Lemma 2.3. Suppose that $t > s \geq 3$. Assume that $d(x_i, C) + d(x_{i+1}, C) \geq s + 2$ for *some i,* $1 \le i \le t$ *. Then G[V(C)] contains a cycle C' with* $s \le l(C') < t$ *.*

Proof. On the contrary, we suppose that the lemma fails. Clearly, C has a chord in G. This implies $s \ge 5$. We may let t be the smallest integer with $t > s$ such that $G[V(C)]$ does not contain a cycle satisfying the requirement. W.l.o.g., we may assume that $d(x_1, C) + d(x_2, C) \geq s + 2$. If $t \geq s + 2$, then x_4 is not adjacent to x_1 , nor to x_2 . So by the minimality of *t*, $G[V(C) - \{x_4\}] + x_3x_5$ contains a cycle C_1 with $s \le l(C_1) < t - 1$. Therefore C_1 must contain the edge x_3x_5 . Let $C' = C_1$ $x_3x_5 + x_3x_4 + x_4x_5$. Then C' is a cycle of $G[V(C)]$ satisfying the requirement. Hence we have $t = s + 1$. It is easy to see that for each $i \in \{1, 2, ..., s + 1\}$, if $x_1x_i \in E(G)$ then $x_2x_{i+2} \notin E(G)$ for otherwise $G[V(C) - \{x_{i+1}\}]$ contains a cycle of length s. Let I be the segment of C from x_4 to $s - 1$ and J from x_5 to $s + 1$. *Then* $d(x_2, J) \leq d(x_2, J - x_5) + 1 \leq |V(J - x_5)| - d(x_1, I) + 1 = |V(J)| - d(x_1, I).$ We also have $d(x_1, C) = d(x_1, I) + 2$ and $d(x_2, C) = d(x_2, J) + 2$. Thus $d(x_1, C) +$ $d(x_2, C) \le d(x_1, I) + 2 + |V(I)| - d(x_1, I) + 2 = s + 1$, a contradiction. This proves the lemma. \Box

Lemma 2.4. *Suppose that* $t > s \geq 3$ *and G[V(C)] does not contain a cycle with length at least s but less than t. Let* $a > s$ *and* $b \ge 0$ *be two integers such that t =* $a + b$. Then there exists a segment P of C with a vertices such that $\sum_{i=1}^{t} d(x_i, P) \leq$ $\frac{1}{2}(s+1)a + \frac{1}{2}(s-3)b + 2.$

Proof. We first show that $\sum_{x \in V(P)} d(x, P) \leq \frac{1}{2}(s + 1)a$ for any segment P on a vertices of C. For the sake of simplicity, let $P = x_1 x_2 ... x_a$. By Lemma 2.3, we must have $d(x_i, P) + d(x_{i+1}, P) \le d(x_i, C) + d(x_{i+1}, C) \le s + 1$ for all $i, 1 \le i \le t$. Therefore, if a is even, then $\sum_{i=1}^{a} d(x_i, P) \leq \frac{1}{2}(s+1)a$ holds. Assume that a is odd. It is easy to see that if $G[V(P)] + x_1x_0$ contains a cycle C' with $s \le l(C') < a$ then, by replacing x_1x_a by the segment of C from x_a to x_1 , we would obtain a cycle C" of $G[V(C)]$ with $s \le l(C'') < t$, contradicting the assumption of $G[V(C)]$. Hence by Lemma 2.3, we must have $d(x_1, P) + d(x_a, P) \leq s + 1$. W.l.o.g., we assume that $d(x_a, P) \leq$ $\frac{1}{2}(s + 1)$. Hence $\sum_{i=1}^{a} d(x_i, P) = \frac{1}{2}(s + 1) + \sum_{i=1}^{a-1} d(x_i, P) \le \frac{1}{2}(s + 1) + \frac{1}{2}(s + 1)(a - 1)$ $=\frac{1}{2}(s+1)a$.

Now we assume that $a < t$. Again by Lemma 2.3, there exists a vertex, say *x_b*, such that $d(x_b, C) \le \frac{1}{2}(s + 1)$. Let $L = x_1 x_2 ... x_b$ and $P = C - V(L)$. We shall prove $\sum_{i=1}^{b} d(x_i, P) \leq \frac{1}{2}(s-3)b + 2$. This is true when $b = 1$. When b is even, we h ave $\sum_{1 \le i \le (1/2)b} (d(x_{2i-1}, P) + d(x_{2i}, P)) \le \sum_{1 \le i \le (1/2)b} (d(x_{2i-1}, C) + d(x_{2i}, C) - 4) + 2$ $\leq \frac{1}{2}(s-3)b + 2$ as claimed. When b is odd, we have $\sum_{1 \leq i \leq (1/2)(b-1)}(d(x_{2i-1},P) +$

 $d(x_{2i}, P) + d(x_b, P) \le \sum_{1 \le i \le (1/2)(b-1)} (d(x_{2i-1}, C) + d(x_{2i}, C) - 4) + 1 + d(x_b, P)$ $\leq \frac{1}{2}(s-3)(b-1)+1+\frac{1}{2}(s+1)-1=\frac{1}{2}(s-3)b+2$ as claimed again. This proves the lemma. \Box

Lemma 2.5. *Suppose that t* ≥ 4 *and t* + 1 $\geq p \geq t$ *. Assume that* $\sum_{i=1}^{t} d(y_i, C) \geq t^2$ $t + 1$ if $p = t$ and $\sum_{i=1}^{t+1} d(y_i, C) \ge t^2$ if $p = t + 1$. Then $G[V(\overline{C} \cup P)]$ contains two *independent cycles of length t.*

Proof. First assume $p = t$. Since $t^2 \ge \sum_{i=1}^t d(y_i, C) \ge t^2 - t + 1$, we see that $d(y_1, C)$ $d(y_t, C) \ge t + 1$. This implies that there exist two consecutive vertices of C that are adjacent to y_1 and y_t , respectively. W.l.o.g., say $x_1y_1, x_ty_t \in E(G)$. Thus $C \cup P$ – $x_1x_1 + x_1y_1 + x_1y_2$ is a hamiltonian cycle of $G[V(C \cup P)]$. Consider $t - 1$ pairwise disjoint pairs of edges $\{y_i x_{t-i}, y_{i+1} x_{t-i+1}\}$ ($1 \le i \le t - 1$). These edges are not necessarily in G. Each one of the $t-1$ pairs divides the hamiltonian cycle into two independent cycles of length t. Since $G[V(C \cup P)]$ misses at most $t - 1$ of those possible edges between C and P, we may assume that exactly one of the two edges $y_i x_{t-i}, y_{i+1} x_{t-i+1}$ is not in G for all $i, 1 \le i \le t-1$. But then $y_t x_3 x_4 \ldots x_t x_1 y_t$ and $x_2y_1y_2... y_{t-1}x_2$ are two independent cycles of length t in $G[V(C \cup P)]$.

Now assume that $p = t + 1$. If $d(y_1, C) \le t - 1$ then we have $\sum_{i=2}^{t+1} d(y_i, C) \ge$ $t^2 - t + 1$ and therefore we can use the above argument. So we may assume that $d(y_1, C) = t$. Similarly, we may assume that $d(y_{t+1}, C) = t$. It is easy to see that if $d(y_3, C) \ge 1$ or $d(y_{t-1}, C) \ge 1$ then we have two independent cycles of length t in *G*[*V*(*C* U *P*)]. So we may assume that $d(y_3, C) = 0 = d(y_{t-1}, C)$. If $t \neq 4$, then $\sum_{i=1}^{t+1} d(y_i, C) \le t^2 - t$, a contradiction. If $t = 4$, then $d(y_i, C) = 4$ for $i = 1, 2, 4, 5$, and so $G[V(C \cup P) - \{y_3\}]$ contains two independent cycles of length 4. This proves the lemma.

For a subgraph H of G and a vertex $x \in V(G) - V(H)$, we define $\overline{d}(x, H)$ to be the number of vertices y of H that are not adjacent to x in G, i.e., $\overline{d}(x, H) =$ $|V(H)| - d(x, H)$. The proofs of the following two lemmas share much in common, especially when we deduce that $t = s$ and (b) follows from (a).

Lemma 2.6. *Suppose that* $p \ge q \ge s \ge 7$ *and* $t \ge s$ *. Set* $\sigma = 0$ *or* 1 *according to whether s is even or odd, respectively. Let Y be a subset of* $V(P)$ *with* $|Y| = q$ and $I = \sum_{y \in Y} d(y, C)$. Suppose that $G[V(C \cup P)]$ does not contain a cycle of length at least s but less than *t. Then the following two statements hold:*

- (a) If $I \geq \frac{1}{2}(s-\sigma)q + \frac{1}{2}t(s-2+\sigma) + 1$ then $G[V(C \cup P)]$ contains two indepen*dent cycles of length at least t.*
- (b) If $q > s$ and $I \geq \frac{1}{2}(s \sigma)(q 1) + \frac{1}{2}t(s 2 + \sigma) + s$ then $G[V(C \cup P)]$ *contains two independent cycles of length at least t but at most* $p - 1$ *.*

Proof. Let $r = p + q + t$. On the contrary, we suppose that the lemma fails and assume that $r = p + q + t$ has the smallest value with p, q and t satisfying the conditions of the lemma such that $G[V(C \cup P)]$ does not contain two cycles satisfying the requirement. We first prove (a) and then (b) will follow. To prove (a), we distinguish two cases: $t > s$ or $t = s$.

Assume first that $t > s$. If $q \le t + 1$, then $\lceil l/q \rceil \ge s - 1$. Therefore, there exists $y \in Y$ such that $d(y, C) \geq s - 1$. By Lemma 2.1, $C + y$ contains a cycle of length at least *s* but less than *t*, contradicting the assumption of $G[V(C \cup P)]$. So $q \ge t + 2$. By the minimality of *r*, we see that $d(y, C) \ge \frac{1}{2}(s - \sigma) + 1$ for all $y \in Y$. Thus, by Lemmas 2.1 and 2.2, we see that $t = s + 1$ and s is odd.

Suppose that there are two consecutive vertices, say x_i and x_{i+1} , of C such that x_i and x_{i+1} have at most $\frac{1}{2}(s-2+\sigma)$ common neighbours in Y. We obtain a new graph *G'* and a new cycle *C'* from *G* and *C* by contracting the edge $x_i x_{i+1}$ to a new vertex z. Then $\sum_{x \in V(C')} d(x, Y) \geq I - \frac{1}{2}(s - 2 + \sigma) = \frac{1}{2}(s - \sigma)q + \frac{1}{2}(t - 1)(s - 2 + \sigma)$ σ) + 1 holds in *G'*. If *G'*[*V*(*C'* U*P*)] contains a cycle *C''* with $s \le l(C'') < t - 1$ then we obtain a cycle C''' in $G[V(C \cup P)]$ by undoing the contraction. Clearly $l(C'') \le l(C'') \le l(C'') + 1 < t$, a contradiction. Therefore, by the minimality of r, $G'[V(C' \cup P)]$ contains two independent cycles C_1 and C_2 of length at least $t - 1$. Again, by undoing the contraction, we obtain two independent cycles C'_1 and C'_2 in $G[V(C \cup P)]$ from C_1 and C_2 with length at least $t - 1$. These two cycles must have length at least t by the assumption on $G[V(C \cup P)]$. Hence $|N(x_i, Y) \cap N(x_{i+1}, Y)| \ge$ $\frac{1}{2}(s + \sigma)$ for all i, $1 \le i \le t$.

Choose any two distinct vertices $z_1, z_2 \in N(x_1, Y) \cap N(x_2, Y)$. Since $d(z_1, C)$ + $d(z_2, C) \geq s + 1$, there exists i such that $x_i z_1, x_{i+4} z_2 \in E(G)$. It is easy to check that $C + z_1 + z_2$ contains a cycle of length *s*, a contradiction. Hence $t = s$.

By Lemma 2.5, it $p = s$, (a) is true. So $p \ge s + 1$. We now show that $Y = V(P)$ and $|N(y_i, C) \cap N(y_{i+1}, C)| \ge \frac{1}{2}(s - \sigma) + 1$ for all *i*, $1 \le i \le p - 1$. Suppose that $|N(y_i, C) \cap N(y_{i+1}, C)| \leq \frac{1}{2}(s - \sigma)$, or $\{y_i, y_{i+1}\} \nsubseteq Y$ for some $i, 1 \leq i \leq p - 1$. We obtain a new graph G' , a new path P' and a new subset Y' of $V(P')$ from G , P and Y , respectively by contracting the edge $y_i y_{i+1}$ to a new vertex w. Then in $G', \sum_{y \in Y'} d(y, C)$ $\geq \frac{1}{2}(s-\sigma)q+\frac{1}{2}(s-2+\sigma)t+1$ if $\{y_i, y_{i+1}\}\nsubseteq Y$ and $\sum_{y\in Y'}d(y, C)\geq \frac{1}{2}(s-\sigma)(q-1)$ $f(x) + \frac{1}{2}(s - 2 + \sigma)t + 1$ if $\{y_i, y_{i+1}\}\subseteq Y$. By the minimality of r, $G'[V(C \cup P')]$ contains two independent cycles of length at least s from which we readily obtain two independent cycles of length at least s in $G[V(C \cup P)]$ by undoing the contraction. Therefore $Y = V(P)$ and $|N(y_i, C) \cap N(y_{i+1}, C)| \ge \frac{1}{2}(s - \sigma) + 1$ for all i, $1 \le i \le$ $p-1$.

Let $\bar{I} = \sum_{i=1}^{s} \bar{d}(x_i, P)$. Then

$$
\bar{I} = ps - I \le \frac{1}{2}(s + \sigma)(p + 2 - s) - 1 - \sigma \tag{4}
$$

We shall derive a lower bound for \overline{I} to obtain a contradiction with (4). Since $d(y_1, C) + d(y_p, C) \geq s + 1$, there exist two consecutive vertices, say x_1 and x_s , of C such that x_1y_1 , $x_sy_p \in E(G)$. For each i, $1 \le i \le s - 1$, let

$$
B_i = y_{s-i} y_{s-i+1} \dots y_{p-i+1} \tag{5}
$$

If $d(x_i, B_i) + d(x_{i+1}, B_i) \ge |V(B_i)| + 2$, then there are two vertices y_i and y_k on B_i with $j < k$ such that $x_i y_j$, $x_{i+1} y_k \in E(G)$. Then $x_1 x_2 \ldots x_i y_j y_{j-1} \ldots y_1 x_1$ and $x_{i+1}x_{i+2}...x_{s}y_{p}y_{p-1}...y_{k}x_{i+1}$ are two independent cycles of length at least s, a contradiction. So we must have

$$
d(x_i, B_i) + d(x_{i+1}, B_i) \le |V(B_i)| + 1 \text{ for } i = 1, 2, ..., s - 1
$$
 (6)

and therefore

$$
\overline{d}(x_i, B_i) + \overline{d}(x_{i+1}, B_i) \ge 2|V(B_i)| - |V(B_i)| - 1 = p + 1 - s \text{ for } i = 1, 2, ..., s - 1
$$
\n(7)

Let $X = \{x_i | d(x_i, P) \ge \frac{1}{2}(p + 1 - s), 1 \le i \le s\}$. By (7), we see that $|X| \ge \frac{1}{2}(s - 1)$ and no two vertices in $V(C) - X$ are consecutive on the path $C - x_1 x_s$. We discuss the following two cases.

Case 1. $|X| \ge \frac{1}{2}(s + \sigma)$.

Then $p + 1 - s$ must be even for otherwise $\overline{d}(x, P) \geq \frac{1}{2}(p + 2 - s)$ for all $x \in X$ and so $\overline{I} \ge \frac{1}{2}(s + \sigma)(p + 2 - s)$, contradicting (4). Let $X_0 = \{x_i | \overline{d}(x_i, P) = 0, 1 \le i \le \frac{1}{2}\}$ s}. If $\bar{d}(x_i, P) = 0$, i.e., $d(x_i, P) = p$ then, by (7), $\bar{d}(x_i, P) \ge p - s + 1 \ge \frac{1}{2}(p + 1 - s)$ $+ 1$ for some $x_i \in \{x_{i-1}, x_{i+1}\}$. Since $|X| \geq \frac{1}{2}(s + \sigma)$, we can choose distinct x_i for all $x_i \in X_0$. Thus $\overline{I} \ge \frac{1}{2} |X|(p+1-s) + s - |X| \ge \frac{1}{2}(s+\sigma)(p+2-s) - \sigma$, contradicting (4).

Case 2. $|X| < \frac{1}{2}(s + \sigma)$.

Then s must be odd, $|X| = \frac{1}{2}(s - 1)$ and $X = \{x_2, x_4, x_6, ..., x_{s-1}\}$. It is easy to see, similar to obtaining (7), that $\bar{d}(x_i, B_i - y_{p-i+1}) + \bar{d}(x_{i+2}, B_i - y_{p-i+1}) \ge p - s$ for all i, $1 \le i \le s - 2$. If $p + 1 - s$ is even, then $p - s$ is odd. Therefore either $\overline{d}(x_1, P) \geq \frac{1}{2}(p + 1 - s)$ or $\overline{d}(x_3, P) \geq \frac{1}{2}(p + 1 - s)$ and so $|X| \geq \frac{1}{2}(s + 1)$, a contradiction. If $p + 1 - s$ is odd then $\bar{d}(x_{2i}, P) \ge \frac{1}{2}(p + 2 - s)$ for $i = 1, 2, ..., \frac{1}{2}(s - 1)$ and therefore $\bar{I} \ge \frac{1}{2}(s-1)(p+2-s)+2(p-s) \ge \frac{1}{2}(s+1)(p+2-s)-1$, contradicting (4). This proves (a).

We now turn to the proof of (b) which easily follows from (a). If $t > s$, we can easily show, as before, that $q \ge t + 2$ by the minimality of r. Also by the minimality of r, we have y_1 , $y_p \in Y$. If $t = s$, we may assume, by Lemma 2.5, that $p \geq s + 2$, and again by the minimality of r, we can easily show, as before, that $Y = V(P)$.

If $d(y_p, C) \leq s - 1$ then $\sum_{y \in Y - \{y_n\}} d(y, C) \geq 1 - s + 1 \geq \frac{1}{2}(s - 2 - \sigma)(q - 1) + \sigma$ $\frac{1}{2}t(s + \sigma) + 1$. By (a), $G[V(C \cup P) - \{y_p\}]$ contains two independent cycles of length at least t. Obviously these two cycles have length at most $p - 1$. So we may assume that $d(y_p, C) \geq s$, and similarly, $d(y_1, C) \geq s$. Therefore $t = s$ by Lemma 2.1. Then $d(y_i, C) = 0 = d(y_i, C)$ for $i, j, s - 1 \le i \le p - 2$ and $3 \le j \le p - s + 2$ for otherwise we obtain two independent cycles in $G[V(C \cup P)]$ of length at least s but at most $p-1$. So $I < s^2$. But by the condition of (b), we have $I \geq s^2$. This proves (b) and therefore the lemma.

Lemma 2.7. *Suppose that* $6 \ge s \ge 4$, $p \ge q \ge s$ *and* $t \ge s$ *. Set* $\sigma = 0$ *or* 1 *according to whether s is even or odd, respectively. Let Y be a subset of* $V(P)$ *with* $|Y| = q$ and $I = \sum_{y \in Y} d(y, C)$. Suppose that $G[V(C \cup P)]$ does not contain a cycle of length at *least s but less than t. Then the following two statements hold:*

- (a) If $I \geq \frac{1}{2}(s-2-\sigma)q + \frac{1}{2}t(s+\sigma) + 1$ then $G[V(C \cup P)]$ contains two indepen*dent cycles of length at least t.*
- (b) If $q > s$ and $I \ge \frac{1}{2}(s 2 \sigma)(q 1) + \frac{1}{2}t(s + \sigma) + s$ then $G[V(C \cup P)]$ *contains two independent cycles of length at least t but at most* $p - 1$ *.*

Proof. As we did in the proof of Lemma 2.6, it is easy to see that (b) follows from (a). So we shall give the proof of (a). Let $r = p + q + t$. On the contrary, suppose that (a) fails and assume that r has the smallest value with p, q and t satisfying the conditions of the lemma (a) such that $G[V(C \cup P)]$ does not contain two independent cycles of length at least t.

To a contradiction, suppose that $t > s$. As we did in the proof of Lemma 2.6, we can easily deduce that $q \ge t + 2$, $|N(x_i, Y) \cap N(x_{i+1}, Y)| \ge \frac{1}{2}(s + \sigma) + 1$ for all i, $1 \le i \le t$ and $d(y, C) \ge \frac{1}{2}(s - \sigma)$ for all $y \in Y$. Thus $G[Y(C \cup P)]$ has a cycle of length 4. Therefore $s = 5$ or 6. Let $Y_i = N(x_i, Y) \cap N(x_{i+1}, Y)$ for $i = 1, 2, ..., t$. Then $|Y_i| \geq 4$ for all i, $1 \leq i \leq t$. If $s = 5$, $Y_1 \cap Y_2 = \emptyset$; otherwise $G[V(C \cup P)]$ contains a cycle of length 5. Hence $d(x_2, Y) \ge 8$. Let z_i ($1 \le i \le 8$) be eight vertices in $N(x_2, Y)$ in order along P. Then $x_2P[z_1, z_4]x_2$ is a cycle of length at least 5 and $G[V(C \cup$ $P[z_5, z_8]$ – $\{x_2\}$ contains a cycle of length at least 5 since $d(z_5, C - x_2) \ge 1$ and $d(z_8, C - x_2) \ge 1$. If $s = 6$, Then $|Y_1 \cap Y_2| \le 1$, $|Y_2 \cap Y_3| \le 1$ and $Y_1 \cap Y_3 = \emptyset$ for otherwise we have a cycle of length 6 in $G[V(C \cup P)]$. So $|N(x_2, Y) \cup N(x_3, Y)| \ge 10$. The rest of the argument is similar to the above.

Now we prove (a) for $t = s$. By Lemma 2.5, when $p = s$, (a) is true. So assume that $p > s$. Again, as we did in the proof of Lemma 2.6, we see that $Y = V(P)$ and $|N(y_i, C) \cap N(y_{i+1}, C)| \geq \frac{1}{2}(s - \sigma)$ for all $i, 1 \leq i \leq p - 1$.

Let x_i ad x_j be two distinct vertices of C such that $x_i y_1, x_j y_p \in E(G)$. It is easy to see that there are two independent segments P_1 and P_2 of C and two vertices z_1 , z_2 of $N(y_{s-1}, C) \cap N(y_s, C)$ such that $x_i, z_1 \in V(P_1)$ and $x_i, z_2 \in V(P_2)$. If $p \ge 2(s - 1)$ then $G[V(C \cup P)]$ contains two independent cycles of length at least s. This idea is also used (by choosing x_i , x_j , z_j and z_j properly) in the following three cases while $p \leq 2s - 3$.

Case 1. $p \geq s + 2$ *.*

Then $s = 5$ or 6. First assume that $s = 5$. Then $p = 7$, $I \ge 23$ and $N(y_i, C) \cap I$ $N(y_{i+1},C) \ge 2$ ($1 \le i \le 6$). It is easy to see that $N(y_4, C) \cap N(y_5, C)$ must contain x_i for otherwise we readily get two independent cycles of length at least 5. Similarly, $x_i \in N(y_3, C) \cap N(y_4, C)$. Then it is easy to see that if y_5 or y_7 is adjacent to a vertex $x_k \in V(C) - \{x_i, x_j\}$ then $G[V(C \cup P)]$ contains two independent cycles of length at least 5 with one being $x_i y_1 y_2 y_3 y_4 x_i$. So we may assume that $N(y_5, C)$ = ${x_i, x_j} = N(y_7, C)$. Similarly, $N(y_1, C) = {x_i, x_j} = N(y_3, C)$. Since $I \ge 23$, we see that $d(y_2, C) = d(y_4, C) = d(y_6, C) = 5$ and so $G[V(C \cup P)]$ contains two independent cycles of length 5.

Now let $s = 6$. Then $8 \le p \le 9$, $I \ge 2p + 19$ and $N(y_i, C) \cap N(y_{i+1}, C) \ge 3$ (1 \le $i \leq p-1$). Let x_a , x_b , x_c be three distinct vertices in $N(y_5, C) \cap N(y_6, C)$ in order along C. It is easy to see that if there is a vertex $u \in V(C) - \{x_a, x_b, x_c\}$ such that $uy_p \in E(G)$ then there is a vertex $v \in N(y_1, C)$ such that the graph $C \cup P \cup \{uy_p, vy_1\}$ together with the six edges between $\{y_5, y_6\}$ and $\{x_a, x_b, x_c\}$ contains two independent cycles of length at least 6. Thus $N(y_p, C) = \{x_a, x_b, x_c\}$. It is easy to see that if the three vertices x_a , x_b , x_c are not consecutive on C, then there exists $v \in N(y_1, C)$ such that the graph $C \cup P + vy_1$ together with the nine edges between $\{y_5, y_6, y_p\}$ and $\{x_a, x_b, x_c\}$ contains two independent cycles of length at least 6. So we may assume that $\{x_a, x_b, x_c\} = \{x_1, x_2, x_3\} = N(y_p, C)$. Thus we see that $x_2y_1 \notin E(G)$ for

the same reason. Similarly, we may assume that y_1 is adjacent to three vertices in $N(y_3, C) \cap N(y_4, C)$ that are consecutive on C. We now see that $G[V(C \cup P)]$ contains two independent cycles of length 6.

Case 2. p = s + 1 and no two consecutive vertices of *C* are adjacent to y_1 and y_{s+1} , respectively.

In this case, we may assume w.l.o.g. that $N(y_1, C) = \{x_1, x_3\} = N(y_{s+1}, C)$ if $s = 4$ or 5 and $N(y_1, C) = \{x_1, x_3, x_5\} = N(y_7, C)$ if $s = 6$. If $s = 4$, then $I \ge 14$ and both $N(y_2, C)$ and $N(y_4, C)$ contain the two vertices x_1 and x_3 . To avoid the occurrence of two independent cycles of length at least 4, x_3 must be in $N(y_3, C) \cap$ $N(y_4, C)$. Similarly, x_1 must be in $N(y_3, C) \cap N(y_2, C)$ and hence $d(y_2, C) = 2$ $d(y_4, C)$ must hold. Therefore $I \leq 4 \cdot 2 + 4 = 12$, a contradiction.

Similarly, if $s = 5$, we have $I \ge 22$ and $\{x_1, x_3\} \subseteq N(y_2, C) \cap N(y_5, C)$. To avoid the occurrence of two independent cycles of length at least 5, one of x_1 and x_3 , say x_1 , must be in $N(y_3, C) \cap N(y_4, C)$. For the same reason, we see that neither of the two edges y_2x_5 and y_5x_5 is in G, nor is one of y_3x_5 and y_4x_4 . Hence $I \leq 2 \cdot 2 + 3 \cdot$ $4 + 5 = 21$, a contradiction.

If $s = 6$, then $I \ge 33$ and $\{x_1, x_3, x_5\} \subseteq N(y_2, C) \cap N(y_6, C)$. We have $30 \ge$ $\sum_{i=2}^{6} d(y_i, C) \ge 33 - 6 = 27$, which easily implies that $G[V(C \cup P)]$ contains two independent cycles of length at least 6.

Case 3. $p = s + 1$ and there exist two consecutive vertices of C that are adjacent to y_1 and y_{s+1} , respectively.

Say $y_1x_1, y_{s+1}x_s \in E(G)$. As in Lemma 2.5, we see that each of the $2(s - 1)$ pairwise disjoint pairs of edges (not necessarily in *G)* $\{y_i x_{s-i}, y_{i+1} x_{s-i+1}\}\$ and ${y_{i+1}}{x_{s-i}}, y_{i+2}{x_{s-i+1}}(1 \le i \le s - 1)$ contains an edge which is not in G. Hence $I \le 14$ if $s = 4$, $I \le 22$ if $s = 5$ and $I \le 32$ if $s = 6$. Therefore we must have $s = 4$ or 5. When $s = 4$, $x_1x_2y_1y_2x_1$ and $x_3x_4y_4y_5x_3$ are two independent cycles of *G[V(C U P)]*. When $s = 5$, $x_1x_2y_1y_2y_3x_1$ and $x_4x_5y_4y_5y_6x_4$ are two independent cycles of $G[V(C \cup P)]$. This proves (a) and therefore (b) follows.

3. Proof of the Theorem

Let k, n, s be integers with $k \geq 1$, $s \geq 3$ and $n \geq sk$. Let G be a graph of order n with minimum degree at least $(s - 1)k$. Write $n = qk + r$, $0 \le r < k$. We shall prove that G contains k independent cycles satisfying (1) . Corrádi and Hajnal's result $[2]$ shows the theorem is true for $s = 3$. So we may assume that $s \ge 4$ in the following. It is well known that if a graph H has minimum degree $\delta \geq 2$ then H contains a cycle of length at least $\delta + 1$. We first claim:

Claim 1. G contains a cycle C with $s \le l(C) \le q$.

On the contrary, suppose that every cycle of G with length at least s has length at least $q + 1$. Since G has a cycle of length at least s, we may choose m cycles C_1 , C_2, \ldots, C_m of G such that C_1 is a smallest cycle of length at least s in G and C_i is a smallest cycle of length at least s in $G - \bigcup_{j=1}^{i-1} V(C_j)$ for $i = 2, 3, ..., m$ but $G -$

 $\bigcup_{i=1}^m V(C_i)$ does not have a cycle of length at least s. By the assumption, we have $l(C_i) \ge q + 1$ for $i = 1, 2, ..., m$. This implies that $m < k$. Suppose that $V(G) \ne$ $\bigcup_{i=1}^{m} V(C_i)$. Then $G - \bigcup_{i=1}^{m} V(C_i)$ has a vertex y_0 such that $d(y_0, G - \bigcup_{i=1}^{m} V(C_i))$ $\leq s - 2$. Then $d(y_0, \bigcup_{i=1}^{m} C_i) \geq (s - 1)k - (s - 2) = (s - 1)(k - 1) + 1$ and so there exists i_0 such that $d(y_0, C_{i_0}) \ge s$. If $V(G) = \bigcup_{i=1}^m V(C_i)$ then, by the choice of C_m and Lemma 2.3, we see that C_m contains a vertex y_0 such that $d(y_0, C_m) \leq \lfloor \frac{1}{2}(s+1) \rfloor$. Then $d(y_0, \bigcup_{i=1}^{m-1} C_i) \ge (s-1)k - \lfloor \frac{1}{2}(s+1) \rfloor \ge (s-1)(k-1) + 1$ and so there exists i_0 such that $d(y_0, C_{i_0}) \geq s$. By Lemma 2.1, $C + y_0$ contains a cycle C' with $s \leq l(C') < l(C_{i_0})$, contradicting the choice of C_{i_0} . This proves the claim.

Let k_0 be the greatest integer such that G contains k_0 independent cycles C_1 , C_2, \ldots, C_{k_0} such that

$$
s \le l(C_i) \le q \text{ for } 1 \le i \le k-r \quad \text{and} \quad s \le l(C_i) \le q+1 \text{ for } k-r+1 \le i \le k_0
$$
\n
$$
(8)
$$

Subject to (8) , we may choose C_i 's such that

$$
\sum_{i=1}^{k_0} l(C_i) \text{ is minimum.} \tag{9}
$$

By Claim 1, $k_0 \ge 1$. For the proof of the theorem, we may assume that $k_0 < k$. We shall prove that this is a contradiction.

Claim 2. G contains k_0 independent cycles C_i satisfying (8) and (9) such that $G \bigcup_{i=1}^{k_0} V(C_i)$ contains a cycle of length at least s.

Suppose that this claim fails. Then we choose, subject to (8) and (9) , k_0 independent cycles C_i such that $G - \bigcup_{i=1}^{k_0} V(C_i)$ contains a longest path. Let $H = \bigcup_{i=1}^{k_0} C_i$, $D = G - \bigcup_{i=1}^{k_0} V(C_i)$ and $P = x_1 x_2 ... x_p$ be a longest path of D. Then $d(x_1, D) =$ $d(x_1, P) \leq s - 2$ and $d(x_p, D) = d(x_p, P) \leq s - 2$ hold.

We now show that D is connected. If not, let D_0 denote a component of D which does not contain P. Then, since D_0 does not contain a cycle of length at least s, D_0 contains a vertex x_0 such that $d(x_0, D_0) \leq s - 2$. Hence we have $d(x_0, H) + d(x_1, H)$ $\geq 2(s-1)k - 2(s-2) = 2(s-1)(k-1) + 2$. Therefore there exists i_0 such that $d(x_0, C_{i_0}) + d(x_1, C_{i_0}) \ge 2(s - 1) + 1$. So either $d(x_0, C_{i_0}) \ge s$ or $d(x_1, C_{i_0}) \ge s$. By Lemma 2.1 and (9), we have $l(C_{i_0}) = s$. Then C_{i_0} contains three consecutive vertices, say y_1, y_2, y_3 , that are adjacent to both x_0 and x_1 . Thus $C'_{i_0} = C_{i_0} - y_2 + x_0y_1 +$ x_0y_3 is a cycle of length s and $P + y_2x_1$ is a path longer than P, contradicting the choice of P. This proves that D is connected. It follows from this argument that $D - V(P)$ does not contain a vertex adjacent to x_2 or x_{n-1} ; for if such a vertex exists, say x_0 again, then $d(x_0, D) = d(x_0, P) \le s - 2$ and a contradiction follows from this argument. This, in turn, implies that $p \ge 4$ since $|V(D)| \ge q \ge s \ge 4$.

We now consider $R = d(x_1, H) + d(x_2, H) + d(x_{p-1}, H) + d(x_p, H)$. Then $R \ge$ $4(s-1)k-(s-2)-(s-1)-(s-1)-(s-2)=4(s- 1)(k-1)+2.$ Thus there exists *i*₀ such that $d(x_1, C_{i_0}) + d(x_2, C_{i_0}) + d(x_{p-1}, C_{i_0}) + d(x_p, C_{i_0}) \ge 4s - 3$. This, together with Lemma 2.1 and (9), implies that $l(C_{i_0}) = s$. Let $C_{i_0} = y_1 y_2 ... y_s y_1$.

Since $d(x_1, C_{i_0}) + d(x_2, C_{i_0}) + d(x_{p-1}, C_{i_0}) + d(x_p, C_{i_0}) \ge 4s - 3$, either $d(x_1, C_{i_0})$ $\geq s - 1$ or $d(x_p, C_{i_0}) \geq s - 1$. W.l.o.g., say $d(x_1, C_{i_0}) = s - \tau$, where $\tau = 0$ or 1.

Then

$$
d(x_2, C_{i_0}) + d(x_p, C_{i_0}) \ge 4s - 3 - (s - \tau) - s = 2s - 3 + \tau
$$

This implies that $|N(x_2, C_{i_0}) \cap N(x_p, C_{i_0})| \ge s - 3 + \tau$. Therefore if $d(x_1, C_{i_0}) = s$, we obtain two independent cycles \tilde{C}' and C'' of lengths s and p, respectively. With C_{i_0} replaced by C', we obtain $D' = G - \bigcup_{i \neq i_0} V(C_i) - V(C')$, which contains C''. Since D' must be connected, we see that either C'' contains all vertices of D' , contradicting the assumption that the claim is false, or D' contains a path longer than P, contradicting the choice of D. For the same reason, if $d(x_1, C_{i_0}) = s - 1$, say $x_1y_2 \notin E(G)$, then $N(x_2, C_{i_0}) \cap N(x_p, C_{i_0}) \subseteq \{y_1, y_3\}$. Therefore $s = 4$. It is easy now to see that $G[V(C_{i_0} \cup P)]$ contains two independent cycles of lengths of 4 and p, respectively. This contradiction completes the proof of the claim.

By Claim 2, we may choose k_0 independent cycles $C_1, C_2, \ldots, C_{k_0}$ of G satisfying (8) and (9) such that

$$
G - \bigcup_{i=1}^{k_0} V(C_i) \text{ contains a smallest cycle of length at least s.}
$$
 (10)

Let $L = \bigcup_{i=1}^{k_0} C_i$, $F = G - V(L)$, $C = x_1 x_2 ... x_i x_i$ be a smallest cycle of length at least s in F and $F_0 = F - V(C)$. Then $t \ge q + 1$. By the maximality of k_0 , when $t = q + 1$ we have $k_0 < k - r$. By Lemma 2.4, we may assume that $P = x_1 x_2 ... x_{q+1}$ satisfies

$$
\sum_{i=1}^{q+1} d(x_i, C) \le \frac{1}{2}(q+1)(s+1) + \frac{1}{2}(s-3)l_0 + 2, \text{ where } l_0 = t - q - 1 \quad (11)
$$

We define three numbers as follows:

$$
I_1 = \sum_{i=1}^{q+1} d(x_i, L); \qquad I_2 = \sum_{i=1}^{q+1} d(x_i, C); \qquad I_3 = \sum_{i=1}^{q+1} d(x_i, F_0) \tag{12}
$$

Clearly,

$$
I_1 + I_2 + I_3 = \sum_{i=1}^{q+1} d(x_i, G) \ge (q+1)(s-1)k
$$
 (13)

We shall estimate the lower bound for I_1 and then apply Lemmas 2.6 and 2.7. To do so, we first estimate the upper bounds for I_2 and I_3 . Define $\sigma = 0$ or 1 according to whether s is even or odd, respectively. Let $f_0 = |V(F_0)|$ and $p_0 =$ $\sum_{i=1}^{k_0} l(C_i)$. Then $l_0 + f_0 = qk + r - p_0 - q - 1$. We distinguish two cases: $s \ge 7$ or $4 \leq s \leq 6$.

Assume first that $s \ge 7$. If $t = s + 1$ then $q = s$, $k_0 < k - r$ and $l(C_i) = s$ for all i, $1 \le i \le k_0$. By Lemma 2.1 and the minimality of C, we have $d(x, P) \le d(x, C) \le$ $\frac{1}{2}(s + \sigma)$ for all $x \in V(F_0)$. Together with (11), we obtain $I_2 + I_3 \leq \frac{1}{2}(q + 1)(s + 1)$ $+\frac{1}{2}(s + \sigma)(f_0 + l_0) + 2$. From this and (13), we obtain $I_1 \geq (\frac{1}{2}(s - \sigma)s - 1)k_0 +$ $\frac{1}{2}(s + \sigma)p_0 + 1$. This implies that there exists i_0 such that $\sum_{i=1}^{s+1} d(x_i, C_{i_0}) \geq \frac{1}{2}(s - \sigma)s$ $-1 + \frac{1}{2}(s + \sigma)s + 1 = s^2$. Then by Lemma 2.5, $G[V(C_{i_0} \cup P)]$ contains two independent cycles of length s, contradicting the maximality of k_0 . If $t \geq s + 2$ then, by Lemmas 2.1 and 2.2, $\sum_{y \in V(F_0)} d(x, P) \leq \frac{1}{2}(s - 2 + \sigma)f_0 + 1$. Together with (11) and

(13), we obtain

$$
I_1 \ge (q + 1)(s - 1)k - \frac{1}{2}(q + 1)(s + 1) - \frac{1}{2}(s - 3)I_0 - 2 - \frac{1}{2}(s - 2 + \sigma)f_0 - 1
$$

\n
$$
\ge (q + 1)(s - 1)k - \frac{1}{2}(q + 1)(s + 1) - \frac{1}{2}(s - 2 + \sigma)(qk + r - p_0 - q - 1) - 3
$$

\n
$$
= (\frac{1}{2}(s - \sigma)q + s - 1)k + \frac{1}{2}(s - 2 + \sigma)p_0 - \frac{1}{2}(3 - \sigma)(q + 1) - \frac{1}{2}(s - 2 + \sigma)r - 3
$$

\n(14)

From (14), we deduce that when $k_0 < k - r$, $I_1 \geq (\frac{1}{2}(s - \sigma)q + s - 1)k_0 + \frac{1}{2}(s - \sigma)q + s$ $2 + \sigma p_0 + 1$. This implies that there exists i_0 such that $\sum_{i=1}^{q+1} d(x_i, C_{i_0}) \ge \frac{1}{2}(s - \sigma)q$ $f_1 + \frac{1}{2}(s - 2 + \sigma)l(C_{i_0}) + s$. If $k_0 \ge k - r$, then $I_1 \ge \frac{1}{2}(s - \sigma)(q + 1)(k - 1) + \frac{1}{2}(s - \sigma)$ $2 + \sigma p_0 + 1$ by maximizing r to $k - 1$. This implies that there exists i_0 such that $\sum_{i=1}^{q+1} d(x_i, C_{i_0}) \geq \frac{1}{2}(s-\sigma)(q+1) + \frac{1}{2}(s-2+\sigma)l(C_{i_0}) + 1.$

For the case that $4 \le s \le 6$, by Lemma 2.1, we have $d(y, P) \le d(y, C) \le \frac{1}{2}(s + \sigma)$ for all $y \in V(F_0)$. Therefore we obtain

$$
I_1 \ge (q + 1)(s - 1)k - \frac{1}{2}(q + 1)(s + 1) - \frac{1}{2}(s - 3)I_0 - 2 - \frac{1}{2}f_0(s + \sigma)
$$

\n
$$
\ge (q + 1)(s - 1)k - \frac{1}{2}(q + 1)(s + 1) - \frac{1}{2}(s + \sigma)(qk + r - p_0 - q - 1) - 2
$$

\n
$$
= (\frac{1}{2}(s - 2 - \sigma)q + s - 1)k + \frac{1}{2}(s + \sigma)p_0 - \frac{1}{2}(s + \sigma)r - \frac{1}{2}(1 - \sigma)(q + 1) - 2
$$

\n(15)

From (15), we deduce that if $k_0 < k - r$, then $I_1 \ge (\frac{1}{2}(s - 2 - \sigma)q + s - 1)k_0 +$ $\frac{1}{2}(s + \sigma)p_0 + 1$ and therefore there exists i_0 such that $\sum_{i=1}^{q+1} d(x_i, C_{i_0}) \geq \frac{1}{2}(s - 2 - \sigma)q$ $+ \frac{1}{2}(s + \sigma)l(C_{i_0}) + s$. If $k_0 \ge k-r$, then $l_1 \ge \frac{1}{2}(s - 2 - \sigma)(q + 1)(k - 1) + \frac{1}{2}(s + \sigma)p_0 +$ 1 and therefore there exists i_0 such that $\sum_{i=1}^{q-1} d(x_i, C_{i_0}) \geq \frac{1}{2}(s-2-\sigma)(q+1) +$ $\frac{1}{2}(s + \sigma)l(C_{i_0}) + 1.$

In both cases, we have $l(C_{i_0}) < q + 1$ for otherwise there exists x_i such that $d(x_i, C_{i_0}) \geq s - 1$, contradicting (9) by Lemma 2.1. Then by Lemma 2.6 or Lemma 2.7, $G[V(C_{i_0} \cup P)]$ contains two independent cycles C' and C'' such that $l(C_{i_0}) \leq$ $l(C')$, $l(C'') \leq q$ if $k_0 < k - r$, or $l(C_{i_0}) \leq l(C') \leq q$ and $l(C_{i_0}) \leq l(C'') \leq q + 1$ since $l(C_{i_0}) + q + 1 < 2(q + 1)$, contradicting the maximality of k_0 . This proves the theorem.

References

- 1. Bollobás, B.: Extremal Graph Theory, Academic Press, London (1978)
- 2. Corrádi, K., Hajnal, A.: On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hunger. 14, 423-439 (1963)
- 3. Hajnal, A., Szemerédi, E.: Proof of a conjecture of Erdös, in "Combinatorial Theory and its Application", Vol. II (P. Erdös, A. Renyi and V. Sós, eds), Colloq. Math. Soc. J. Bolyai 4, North-Holland, Amsterdam, 1970, pp. 601-623

Received: October 1, 1993 Revised: April 15, 1994