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Abstract. Let k and s be two positive integers with s > 3. Let G be a graph of order n > sk.
Writen = gk + r,0 < r < k — 1. Suppose that G has minimum degree at least (s — 1)k. Then
G contains k independent cycles C,, C,, ..., C,such thats < I(C;) < gfor 1l <i <k —rand
s<I(C)<q+ 1fork —r < i<k, where I(C;) denotes the length of C;.

1. Introduction

Let G be a graph. A set of subgraphs of G is said to be independent in G if no two
of them have any common vertex in G. The length of a cycle C is denoted by I(C).
Corradi and Hajnal [2] investigated the maximum number of independent cycles
in a graph. They proved the following: If G is a graph of order n = gk + r, where
g=3,k>1and 0 <r <k, and G has minimum degree at least 2k, then G contains
k independent cycles C,, C,, ..., C, such that I(C;)<q for 1 <i<k—r and
I(C,) < q+ lfork —r < i< k. In particular, when n = 3k this result means that G
contains k independent triangles. Hajnal and Szemerédi [3] proved that if G is a
graph of order sk with s > 3 and k > 1 and G has minimum degree at least (s — 1)k
then G contains k independent complete subgraphs of order s. In this paper, we
generalize Corradi and Hajnal’s result, proving the following theorem.

Theorem. Let k and s be two positive integers with s > 3. Let G be a graph of order
n > sk. Writen = gk + r,0 < r < k — 1. Suppose that G has minimum degree at least
(s — 1)k. Then G contains k independent cycles C,, C,, ..., C, such that

s<lC)<qforl<i<k—r and s<lC)<q+1lfork—r<i<k (1)

We recall some terminology and notation. For a graph G, V(G) and E(G) are
the vertex set and edge set of G, respectively. For a vertex u € V(G) and a subset
U < V(G), we define N(u, U) to be the set of all those vertices in U that are adjacent
to u in G and let d(u, U) = |N(u, U)|. If H is a subgraph of G, define N(u, H) and
d(u, H) by N(u, V(H)) and d(u, V(H)), respectively. Thus d(u, G) is the degree of u in
G. We also use G[ U] to denote the subgraph of G induced by U. Moreover H + u
is the subgraph of G obtained from H by adding to H the vertex u and all the edges
of G between u and H. All graphs will be simple. Unexplained terminology and
notation are adopted from [1].
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2. Lemmas

Our proof of the theorem needs the following lemmas. In the following, p, g, s and
t are fixed positive integers, G is a graph, C = x,x,...X,x; is a cycle of G and
P =y:y,...y,1s a path of G independent of C. The subscripts of the x;’s will be
reduced modulo t. A segment of C from x; to x; (x; # X;) is the path x;x; 4, ... x;_, x;,
denoted by C[x;,x;], of C. Note that C[x;,x;] and C[x;,x;] have no common
vertices except x; and x;. A subpath of P with two endvertices y; and y; is denoted
by P[y;,y;] and called a segment of P.

Lemma 2.1. Suppose that t > s > 3 and G has a vertex y, € V(G) — V(C) such that
d(yo,C) = 3s + 1. Then C + y, contains a cycle C' such that s < Il(C') < t.

Proof. On the contrary, we suppose that the lemma fails. Let ¢ have the smallest
value with ¢t > s such that C + y, does not contain a cycle satisfying the require-
ment. Clearly, d(y,,C) <t. If t > 5 + 1, let x; be such that x;y, ¢ E(G). Consider
H=G—x;+ %;_1%;4;and C; = C — X; + X;_;X;+;- Thend(yy, C;) = s + 1 holds
in H. By the minimality of ¢, we see that in H, C, + y, contains a cycle C' with
s<I(C)Y<t—1. Then C' is not a cycle of C+ y5. Let C"=C' — x;_(X;41 +
X;_1%; + X;%;4,. Then C” is a cycle of C + y, withs < (C”) < t.Sot = s + 1 holds.
Since d(y,, C) = Ls + 1, there exists i such that x;y,, ;130 € E(G). Wlo.g, say
X1Yo> XaVo € E(G). Then the cycle x; ygx,Xs...Xs41Xx; of C + y, has lengths. [

Lemma 2.2. Suppose that t > s+ 2 and s > 7. If G contains a vertex y, € V(G) —
V(C) such that d(y,, C) > [1s] then C + yq contains a cycle C' suchthats < I(C') <t
unless s =12 and t = 14. When s = 12 and t = 14, if G contains another vertex
v € V(G) — V(C) such that d(y,,C) = 6 then C + y, + y, contains a cycle C' such
that 12 < I(C') < 14.

Proof. On the contrary, we suppose that the lemma fails. In the natural way, we
partition N(y,, C) into segments of C, say I,, I,, ..., I, in order along C. Let J;
denote the segment of C between I; and I;,,, where the subscripts are reduced
modulo k. Clearly |V(I;)| < 3foralli, 1 <i < k, for otherwise obviously C + y, has
a cycle of length t — 1. Similarly, we see that either |V(J;)] = 1 or |V(J;)] = 4 for all
i, 1 <i< k. Suppose that there is some J; such that |V(J})| = 1. Let V(J;) = {x;}.
Add the edge x;y, to G. By Lemma 2.1, C + y, + X;y, contains a cycle C, with
s <1(C,) < t. Then C; must contain X;y,. It is also clear that C, contains exactly
one of the edges x;_, x; and x;x;,;. W.lo.g, say C, contains x;_;x;. Let C' = C; —
XiYo + XjXjr1 + Xj41 Yo f HC ) =5, 0rlet C' = Cy — x; + x;_,y0 if (Cy) 25+ 1.
Then C' is a cycle of C + y, with s < [(C') < t, a contradiction. So |V(J;)| = 4 for
all i, 1 <i < k. We next claim that |[V(J,)] >t —s+ 2foralli, 1 <i<k Letthe
first and last vertices of J; be x; and x,. Then C” = X, X5 ... X;_; VoXp o1 Xps2-+- Xe X1
is a cycle of length less than t. Hence I{(C”) < s for otherwise we are done. Thus
IV({J)| =t — (s — 2). So the claim holds. Therefore we have

K K
t= i; V)l + ;1 V)l = Bs_l +k(t—s+2) 2

=t+(k—1)(t—s+2)—(s—2)+[-s]. 3
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It is easy to see that (2) does not hold if s is odd since k > [§(s + 1)] > 2. If s is even,
write s = 6m + r with 0 < r < 6. Note that k > m + [4r] and r is even. Then it is
not difficult to see that (2) does not hold unless r = 0, t = s + 2, k = 2 and equality
in (2) holds. Hence |I,| = |I,| = 3 and |J,| = |J;| = 4 hold and thus we have s = 12
and t = 14. Similarly, we define I} and J}, i = 1, 2, ..., k" with respect to N(y,,C)
and apply the above argument to I and J; (1 < i < k'). Then it is easy to check that
whens = 12and ¢ = 14, C + y, + y, contains a cycle C’ such that 12 < l(C') < 14,
a contradiction. This proves the lemma. O

Lemma 2.3. Suppose that t > s > 3. Assume that dix;,C) + d(x;4,,C) = s + 2 for
some i, 1 <i<t. Then G[V(C)] contains a cycle C' withs < I(C’) < t.

Proof. On the contrary, we suppose that the lemma fails. Clearly, C has a chord in
G. This implies s > 5. We may let ¢t be the smallest integer with ¢ > s such that
G[V(C)] does not contain a cycle satisfying the requirement. W.l.o.g., we may
assume that d(x,,C) + d(x,,C) = s + 2. If t > 5 + 2, then x, is not adjacent to x,,
nor to x,. So by the minimality of ¢, G[V(C) — {x,}] + x,xs contains a cycle C,
with s < I(C,) <t — 1. Therefore C, must contain the edge x;x5. Let C' = C, —
X3Xs + X3X4 + X4Xs. Then C’ is a cycle of G[V(C)] satisfying the requirement.
Hence we have t =s+ 1. It is easy to see that for each ie{1,2,...,s + 1}, if
x1x; € E(G) then x,x;., ¢ E(G) for otherwise G[V(C) — {x;,,}] contains a cycle
of length s. Let I be the segment of C from x, to s — 1 and J from x5 to s + 1.
Then d(x,,J) < d(x,,J — x5) + 1 < |\V(J — x35)| —d(x(, ) + 1 = |V(J)| — d{x,, ).
We also have d(x,,C) = d(x,I) + 2 and d(x,,C) = d(x,,J) + 2. Thus d(x,,C) +
d(x,,C) < d(x, 1) + 2 + | V()] — d(x,,I}) + 2 = s + 1, a contradiction. This proves
the lemma. O

Lemma 2.4. Suppose that t > s > 3 and G[V(C)] does not contain a cycle with
length at least s but less than t. Let a > s and b > 0 be two integers such that t =
a + b. Then there exists a segment P of C with a vertices such that ) |, d(x;, P) <
s+ Da+i(s—-3b+2

Proof. Wefirst show that ) . v d(x, P) < 3(s + 1)afor any segment P on a vertices
of C. For the sake of simplicity, let P = x,x,...x,. By Lemma 2.3, we must have
d(x;, P) + d(x; 41, P) < d(x;,C) + d(x;4,,C) < s+ 1forall i, 1 <i < t. Therefore, if
‘a is even, then Y ¢, d(x;, P) < 3(s + 1)a holds. Assume that a is odd. It is easy to
see that if G[V(P)] + x,x, contains a cycle C’' with s < [(C') < a then, by replacing
x,;x, by the segment of C from x, to x,;, we would obtain a cycle C” of G[V(C)]
with s < [{C") < t, contradicting the assumption of G[V(C)]. Hence by Lemma
2.3, we must have d(x,, P) + d(x,, P) < s + 1. W.lLo.g., we assume that d(x,, P) <
3(s + 1). Hence } 2., d(x;, P) = 5(s + 1) + Y {5t d(x;, P) < 35 + D+ 3(s + Dia — 1)
= 4(s + Da.

Now we assume that a < t. Again by Lemma 2.3, there exists a vertex, say
Xy, such that d(x,,C) < 3(s + 1). Let L = x,x,...x, and P = C — V(L). We shall
prove Y 7., d(x;, P) < 3(s — 3)b + 2. This is true when b = 1. When b is even, we
have Yy <o (@(Xai-15 P)+d(x2: P S Y 1 i< 1o (%21 -1, O) +d(x;, C) — 4)+2
< i(s — 3)b + 2 as claimed. When b is odd, we have Y i<isyp- @0x2-1, P) +
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d(x2;, P)) + d(x, P) < Y 1<iciamp-1)@(X2i-1,C) + d(x,,C) —4) + 1 + d(x,, P)
<3s—=3)b—-1)+1+is+1)—1=1%s— 3)b+ 2 as claimed again. This proves
the lemma. I

Lemma 2.5. Suppose thatt > 4andt + 1 > p > t. Assume that )}, d(y;, C) > t* —
t+lifp=tand Yitld(y,C)=t*if p=t+ 1. Then G[V(CUP)] contains two
independent cycles of length t.

Proof. First assume p = t.Since t* > ) i, d(y;,C) > t* — t + 1, wesee thatd(y,, C)
+ d(y,,C) > t + 1. This implies that there exist two consecutive vertices of C that
are adjacent to y, and y,, respectively. W.Lo.g., say x, y,, x,, € E(G). Thus CUP —
XX, + X1 ¥; + X,¥, is a hamiltonian cycle of G[V(C U P)]. Consider ¢t — 1 pairwise
disjoint pairs of edges { y;X, _;, Yi+1 X1 -i+1 } {1 < i <t — 1). These edges are not neces-
sarily in G. Each one of the t — 1 pairs divides the hamiltonian cycle into two
independent cycles of length t. Since G[V(CU P)] misses at most t — 1 of those
possible edges between C and P, we may assume that exactly one of the two edges
YiXo—is VierX—j+g iSnotin G forall i, 1 <i <t — 1. But then y,x,x,...X,x,y, and
X3¥1Y2 .- Vi1 X, are two independent cycles of length ¢t in G[V(CU P)].

Now assume that p =t + 1. If d(y;,C) < t — 1 then we have Y i3} d(y;,C) >
#* — t + 1 and therefore we can use the above argument. So we may assume that
d(y,,C) = t. Similarly, we may assume that d(y,.,, C) = t. It is easy to see that if
d(y;,C) =1 or d(y,_,,C) = 1 then we have two independent cycles of length ¢
in G[V(CU P)]. So we may assume that d(y;,C) = 0 = d(y,_;,C). If ¢t # 4, then
Yitld(y;, C) <t —t, a contradiction. If ¢t = 4, then d(y;,C) =4 fori=1,2,4,5,
and so G[V(CUP)— {y;}] contains two independent cycles of length 4. This
proves the lemma. O

For a subgraph H of G and a vertex x € V(G) — V(H), we define d(x, H)
to be the number of vertices y of H that are not adjacent to x in G, i.., d(x, H) =
|V(H)| — d(x, H). The proofs of the following two lemmas share much in common,
especially when we deduce that t = s and (b) follows from (a).

Lemma 2.6. Supposethatp > q > s > Tandt > s. Set ¢ = 0 or 1 according to whether s
is even or odd, respectively. Let Y be a subset of V(P)with|Y| = qandI =Y, .y d(y,C).
Suppose that G[V(C U P)] does not contain a cycle of length at least s but less than
t. Then the following two statements hold.:

@ If I >3(s—0)g + 1t(s —2 + 0) + 1 then G[V(CU P)] contains two indepen-
dent cycles of length at least t.

(b)) If g>sandl > 4(s — 0)(q — 1) + 3t(s — 2 + o) + s then G[V(CU P)] contains
two independent cycles of length at least t but at most p — 1.

Proof. Let r =p + q + t. On the contrary, we suppose that the lemma fails and
assume that r = p + g + ¢t has the smallest value with p, g and ¢ satisfying the
conditions of the lemma such that G[V(CU P)] does not contain two cycles
satisfying the requirement. We first prove (a) and then (b) will follow. To prove (a),
we distinguish two cases:t > sort =s.
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Assume first that t > 5. If ¢ < t + 1, then [I/g] = s — 1. Therefore, there exists
y € Y such that d(y,C) > s — 1. By Lemma 2.1, C + y contains a cycle of length at
least s but less than ¢, contradicting the assumption of G[V(CUP)].Sog >t + 2.
By the minimality of r, we see that d(y,C) > (s — o) + 1 for all y € Y. Thus, by
Lemmas 2.1 and 2.2, we see that ¢t = s + 1 and s is odd.

Suppose that there are two consecutive vertices, say x; and x; ., of C such that
x; and x;,, have at most (s — 2 + ¢) common neighbours in Y. We obtain a new
graph G’ and a new cycle C’' from G and C by contracting the edge x;x;, to a new
vertex z. Then Y, .y d(, Y) 2 I —4s—2+0)=3s—0o)g+3(t — (s —2+
o)+ 1 holds in G'. If G’'[V(C'U P)] contains a cycle C” with s< K{C")<t—1
then we obtain a cycle C” in G[V(CU P)] by undoing the contraction. Clearly
[(C) < C") < I(C") + 1 < t, a contradiction. Therefore, by the minimality of r,
G'[V(C' U P)] contains two independent cycles C, and C, of length at least t — 1.
Again, by undoing the contraction, we obtain two independent cycles C} and Cj in
G[V(CU P)] from C, and C, with length at least t — 1. These two cycles must have
length at least ¢ by the assumption on G[V(CU P)]. Hence |N(x;, Y)N N(x; 44, Y)| =
s+ o)forallil <i<t.

Choose any two distinct vertices z,, z; € N(x,, Y) N N(x,, Y). Since d(z,,C) +
d(z,,C) = s + 1, there exists i such that x;z,, x;,,2, € E(G). It is easy to check that
C + z, + z, contains a cycle of length s, a contradiction. Hence ¢ = 5.

By Lemma 2.5, it p = s, (a) is true. So p = s + 1. We now show that ¥ = V(P)
and |N(y;, ONN(yi41,C) = 4s—0)+ 1 for all i, 1 <i<p— 1. Suppose that
IN(Y:, YN N(Yi+1, O < 3(s — 0),0r {y;, ¥;+1} & Yforsomei, 1 <i<p— 1. Weob-
tain a new graph G’, a new path P’ and a new subset Y’ of V(P’) from G, P and Y,
respectively by contracting the edge y;y; ;, to a new vertex w. Thenin G, Y’ . y-d(y, C)
24— 0)q+3s — 2+ e+ 1if {y,yin } £ Y and 3,0, d(3, 0236 — 0)(g — 1)
+3(s — 2 + o)t + Lif{y;, y;+;} < Y. By the minimality of r, G'[V(C U P’)] contains
two independent cycles of length at least s from which we readily obtain two
independent cycles of length at least s in G[V(C U P)] by undoing the contraction.
Therefore Y = V(P) and |N(3;,C)NN(y;41,C) =2 3(s—o)+ 1 forall i, 1 <i<
p— 1

Let I = )i, d(x;, P). Then

I=ps—I<is+o)p+2-s5)—1—0 4

We shall derive a lower bound for I to obtain a contradiction with (4). Since
d(y,,C) + d(y,, C) = s + 1, there exist two consecutive vertices, say x, and x,, of C
such that x, y;, x,y, € E(G). Foreachi, 1 <i<s—1,let

B, =Y iVs—is1-- < Vp-i+1 &)

If d(x;, B;) + d(x;.,, B;) = |V(B;)| + 2, then there are two vertices y; and y, on
B; with j <k such that x;y;, x;1,y, € E(G). Then x,%;...X;¥;¥j-1...¥1X; and
Xit1Xi42++-XgYpYp~1--+ YiXis+y ar€ two independent cycles of length at least s, a
contradiction. So we must have

d(x;, B;) + d(x; 41, B) < |V(B)| + L fori=1,2,...,5 — 1 (6
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and therefore

d(x;, B) + d(x;1,B) 2 2|V(B)| — |[V(B)| —1l=p+ 1 —sfori=1,2..5—1
()

Let X = {x;|d(x;, P) > %(p + 1 —s5),1 < i < s}. By (7), we see that |X| > i(s — 1)
and no two vertices in V(C) — X are consecutive on the path C — x, x,. We discuss
the following two cases.

Case 1.|X| > 3(s + o).

Then p + 1 — s must be even for otherwise d(x,P) > i(p + 2 —s)forallx e X
andso I > 3(s + o)(p + 2 — s), contradicting (4). Let X, = {x;/d(x;,P) =0,1 <i <
s}. If d(x;, P) = 0, i.e,, d(x;, P) = p then, by (7), d(x;,P) > p—s+ 1> 4(p+1—5)
+ 1 for some x; € {xl —1sX;41 ) Since | X| > 3(s + a) we can choose distinct x;, for
allx; € X,. ThusI >3 Xlp+1—-8)+s—|X|=>is+a)(p+2—3)— a,contra—
dicting (4).

Case 2. |X| < 3(s + o).

Then s must be odd, [X| = }(s — 1) and X = {x2,%4,Xg,...,%;_1 }. It is easy to
see, similar to obtaining (7), that d(x;, B; — Vp—i+1) + d(Xi42,Bi = Ypoir) =P~
forall i 1<i<s—2 Ifp+1—siseven, then p—sis odd. Therefore either
d(x,P)=4(p + 1 —s)ord(x;,P) > 4(p + 1 — s) and so | X| > i(s + 1), a contra-
diction. If p + 1 — s is odd then d(x,;, P) > i(p+2 —s)fori=1,2,...,3%s— 1)
and therefore I > i{s— 1)(p+2—5)+2(p —s) = (s + 1)(p + 2 — s) — 1, con-
tradicting (4). This proves (a).

We now turn to the proof of (b) which easily follows from (a). If t > s, we can
easily show, as before, that g > ¢ + 2 by the minimality of r. Also by the minimality
ofr,we have y, y, € Y. If t = 5, we may assume, by Lemma 2.5, that p > s + 2, and
again by the minimality of r, we can easily show, as before, that Y = V(P).

Hd(y,,CO)<s—1then) .y, 1 d(,C)=2I—s+125s—-2—-0)g—1)+
1t(s + 0) + 1.By(a), G[V(CUP) — ( ¥} ] contains two independent cycles of length
at least t. Obviously these two cycles have length at most p — 1. So we may assume
that d(y,, C) > s, and similarly, d(y,, C) = s. Therefore t = s by Lemma 2.1. Then
d(y,C)=0=d(y;,C)fori,j,s -1 <i<p-—2and3 <j<p— s+ 2forotherwise
we obtain two independent cycles in G[V(C U P)] of length at least s but at most
p — 1. So I < s%. But by the condition of (b), we have I > s2. This proves (b) and
therefore the lemma. O

Lemma 2.7. Suppose that 6 > s>4,p>q=sandt >s. Set 6 =0 or 1 according
to whether s is even or odd, respectively. Let Y be a subset of V(P) with|Y| = q and
I=Y,_yd(y,C). Suppose that GLV(C U P)] does not contain a cycle of length at
least s but less than t. Then the following two statements hold:

@ If I >%s—2—0)q+Lits + o) + 1 then G[V(CU P)] contains two indepen-
dent cycles of length at least t.

(b) If q>sand I > 4(s — 2 — 0)(q — 1) + (s + o) + s then G[V(C U P)] contains
two independent cycles of length at least t but at most p — 1.
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Proof. As we did in the proof of Lemma 2.6, it is easy to see that (b) follows from
(a). So we shall give the proof of (a). Let r.= p + g + t. On the contrary, suppose
that (a) fails and assume that r has the smallest value with p, g and ¢ satisfying the
conditions of the lemma (a) such that G[V{(C U P)] does not contain two indepen-
dent cycles of length at least ¢.

To a contradiction, suppose that ¢ > s. As we did in the proof of Lemma 2.6, we
can easily deduce that q >t + 2, [N(x;, Y)ON(x;+(, Y} = 4(s + 6) + 1 for all i,
1 <i<tandd(y,C)>4(s — o)forall y € Y. Thus G[V(C U P)] has a cycle of length
4. Therefore s=5 or 6. Let ¥, = N(x;,, )N N(x;4,,Y) fori=1, 2, ..., t. Then
Y] >4foralli, 1 <i<tIfs=25Y,NY, =, otherwise G[V(CU P)] contains a
cycle of length 5. Hence d(x,, Y) > 8. Let z; (1 < i < 8) be eight vertices in N(x,, Y)
in order along P. Then x,P[z,,2,]x, is a cycle of length at least 5 and G[V(CU
P[zs,25]) — {x,}] contains a cycle of length at least 5 since d(z5,C — x,) > 1 and
d(zg,C—x,)=>1.Hs=6Then | NY,|<L|,NYi<land V,NY; = for
otherwise we have a cycle of length 6 in G[V(C U P)]. So [N(x,, Y)U N(x,, Y)| > 10.
The rest of the argument is similar to the above.

Now we prove (a) for t = s. By Lemma 2.5, when p = s, (a) is true. So assume
that p > 5. Again, as we did in the proof of Lemma 2.6, we see that Y = V(P) and
[N(y;$ ONN(y;41,0O) = 4s —o)foralli,1 <i<p-—1.

Let x; ad x; be two distinct vertices of C such that x;y,, x;y, € E(G). It is easy
to see that there are two independent segments P; and P, of C and two vertices z,,
2, f N(y5-1, )N N(y,, C)such that x;,z; € V(P;)and x;,z, € V(P,). If p > 2(s — 1)
then G[¥(C U P)] contains two independent cycles of length at least s. This idea is
also used (by choosing x;, x;, z, and z, properly) in the following three cases while
p<2s—3.

Casel.p=s+ 2

Then s =5 or 6. First assume that s =5, Then p=7, I > 23 and N{(y,,C)N
N(y:i+1,C) =2 (1 <i<6). It is easy to see that N(y,, C)N N(ys,C) must contain
x; for otherwise we readily get two independent cycles of length at least 5. Simi-
larly, x; € N(y3, C}N N(y,, C). Then it is easy to see that if y5 or y, is adjacent to a
vertex x;, € V(C) — {x;,x;} then G[V(CU P)] contains two independent cycles of
length at least 5 with one being x;y, y,y3y,X;. So we may assume that N(ys, C) =
{x:,x;} = N(y5, C). Similarly, N(y,;,C) = {x;,x;} = N(y3,C). Since I > 23, we see
that d(y,, C) = d(y4,C) = d(ys,C) = 5 and so G[V(CU P)] contains two indepen-
dent cycles of length 5.

Nowlets =6.Then8 <p<9,I>2p+ 19and N(3,C)NN(y;41.C) =2 3(1 <
i<p-—1). Let x,, x;, x, be three distinct vertices in N(y5,C) N N(ys, C) in order
along C. It is easy to see that if there is a vertex u € V(C) — {x,, X;, X} such that
uy, € E(G) then there is a vertex v € N(y,, C) such that the graph CUP U {uy,, vy, }
together with the six edges between {ys, ys} and {x,, x,, x.} contains two indepen-
dent cycles of length at least 6. Thus N(y,, C) = {x,, x;, x}. It is easy to see that if
the three vertices x,, X, X, are not consecutive on C, then there exists v € N(y,, C)
such that the graph CU P + vy, together with the nine edges between {ys, s, y,}
and {x,, x,,x.} contains two independent cycles of length at least 6. So we may
assume that {x,, x,,x.} = {X;,X,,x3} = N(y,, C). Thus we see that x,y, ¢ E(G) for
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the same reason. Similarly, we may assume that y, is adjacent to three vertices in
N(y;, C)N N(y,,C) that are consecutive on C. We now see that G[V(CU P)]
contains two independent cycles of length 6.

Case 2. p = s + 1 and no two consecutive vertices of C are adjacent to y, and y,.,,
respectively.

In this case, we may assume w.lo.g. that N(y,,C) = {x;,x3} = N(y;4,,C) if
s=4or5and N(y,,C) = {x;,x3,x5} = N(y;,C)ifs = 6. Ifs = 4, then I > 14 and
both N(y,,C) and N(y,,C) contain the two vertices x, and x;. To avoid the
occurrence of two independent cycles of length at least 4, x5 must be in N(y;,C)N
N(y4, C). Similarly, x, must be in N(y;, C) N(y,, C) and hence d(y,,C)=2 =
d(y4, C) must hold. Therefore I < 4:2 + 4 = 12, a contradiction.

Similarly, if s = 5, we have I > 22 and {x;,x3} < N(y,, C)N N(ys, C). To avoid
the occurrence of two independent cycles of length at least 5, one of x, and x;, say
x,, must be in N(y;, C) N N(y,, C). For the same reason, we see that neither of the
two edges y,xs and ysx5 is in G, nor is one of y;x5 and y,x,. Hence I < 2-2 + 3-
4 + 5 = 21, a contradiction.

If s=6, then I >33 and {x,,x3,x5} S N(¥,,C)NN(ys,C). We have 30 >
Y f.2d(y;, C) = 33 — 6 = 27, which easily implies that G[V(C U P)] contains two
independent cycles of length at least 6.

Case 3. p = s + 1 and there exist two consecutive vertices of C that are adjacent to
y: and y,,,, respectively.

Say yixq, ¥s+1Xs € E(G). As in Lemma 2.5, we see that each of the 2(s — 1)
pairwise disjoint pairs of edges (not necessarily in G) {y;x,_;, i+1Xs-i+1} and
{¥i+1Xs~1> Vi+2Xs—i+1}{(1 <i < s — 1) contains an edge which is not in G. Hence
I<14ifs=4,1<22if s=5and I <32 ifs = 6. Therefore we must have s = 4
or 5. When s =4, x;x,y,y,Xx; and x3x,y,ysX3 are two independent cycles of
G[V(CUP)]. When s = 5, x;X,¥,¥,¥3%; and x,Xsy,VsVeXs are two independent
cycles of G[V(CU P)]. This proves (a) and therefore (b) follows. O

3. Proof of the Theorem

Let k, n, s be integers with k > 1, s > 3 and n > sk. Let G be a graph of order n with
minimum degree at least (s — 1)k. Write n = gk + r, 0 < r < k. We shall prove that
G contains k independent cycles satisfying (1). Corradi and Hajnal’s result [2] shows
the theorem is true for s = 3. So we may assume that s > 4 in the following. It is
well known that if a graph H has minimum degree § > 2 then H contains a cycle
of length at least § + 1. We first claim:

Claim 1. G contains a cycle C withs < lI(C) < q.

On the contrary, suppose that every cycle of G with length at least s has length
at least ¢ + 1. Since G has a cycle of length at least s, we may choose m cycles C,
C,, ..., C, of G such that C, is a smallest cycle of length at least sin G and C; is a
smallest cycle of length at least s in G — | JiZ} V(C)) fori=2,3,...,mbut G —
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U}":l V(C;) does not have a cycle of length at least s. By the assumption, we have
I(C)y=qg+1fori=1,2, ..., m This implies that m < k. Suppose that V(G) #
"L V(C). Then G — U;"=1 V(C;) has a vertex y, such that d(y,, G — { Iy V(CY))
<s—2.Thend(yo, | J C;) = (s — Dk — (s — 2) = (s — 1)(k — 1) + 1 and so there
exists ip such that d(y,, C;,) = 5. If V(G) = | JI~; V(C;) then, by the choice of C,, and
Lemma 2.3, we see that C,, contains a vertex y, such that d(y,,C,) < |3(s + 1)].
Then d(yo, | P! C)=(s— Dk =36+ 1] =(s—1)(k—1)+ 1 and so there
exists iy such that d(y,, C;)) = s. By Lemma 2.1, C + y, contains a cycle C' with
s < I(C") < I(C,,), contradicting the choice of C;,. This proves the claim.
Let k, be the greatest integer such that G contains k, independent cycles C,,
C,, ..., Gy, such that

s<liC)<qforl<i<k—r and s<IlC)<qg+1lfork—r+1<i<k,

®)
Subject to (8), we may choose C;’s such that
ko
¥ I(C)) is minimum. 9
i=1

By Claim 1, k, > 1. For the proof of the theorem, we may assume that k, < k.
We shall prove that this is a contradiction.

Claim 2. G contains k, independent cycles C; satisfying (8) and (9) such that G —
Uf?__l V(C,) contains a cycle of length at least s.

Suppose that this claim fails. Then we choose, subject to (8) and (9), k, indepen-
dent cycles C; such that G — ( J2, V(C,) contains a longest path. Let H = | Ji2, C,,
D=G-{Ji,V(C)and P = x,x,...x, be a longest path of D. Then d(x,,D) =
d(x,, P) <s—2and d(x,, D) = d(x,, P) < s — 2 hold.

We now show that D is connected. If not, let D, denote a component of D which
does not contain P. Then, since D, does not contain a cycle of length at least s, D,
contains a vertex x, such that d(x,, Dy) < s — 2. Hence we have d(x,, H) + d(x,, H)
=>2(s — 1)k —2(s —2) = 2(s — 1)(k — 1) + 2. Therefore there exists i, such that
d(xo,C;;) + d(x,C;)) = 2(s — 1) + 1. So either d(x,,C;)) = s or d(x,,C; ) = 5. By
Lemma 2.1 and (9), we have [(C; ) = s. Then C;  contains three consecutive vertices,
say yi, Y2, V3, that are adjacent to both x4 and x,. Thus C; = C; — y, + Xoy; +
XoY3 is a cycle of length s and P + y,x, is a path longer than P, contradicting the
choice of P. This proves that D is connected. It follows from this argument that
D — V(P)does not contain a vertex adjacent to x, or x,,_; ; for if such a vertex exists,
say x, again, then d(xq, D) = d(x,, P) < s — 2 and a contradiction follows from this
argument. This, in turn, implies that p > 4 since |V(D)| = g > s > 4.

We now consider R = d(x,, H) + d(x,,H) + d(x,_,, H) + d(x,, H). Then R >
4s—-Dk—(s—2)—(—1)—(s—1)—(s—2)=4(s — 1)(k — 1) + 2. Thus there
exists ig such that d(x,,C;)) + d(x,,C;)) + d(x,-,C; ) + d(x,,C;)) = 4s — 3. This,
together with Lemma 2.1 and (9), implies that I(C; ) = s. Let C; = y,y,...ys)1-

Since d(x,, C;)) + d(x,,C;)) + d(x,_;,C;,) + d(x,,C;,)) = 4s — 3, either d(x,,C;))
=>s—1ordx,C)=s—-1 Wlog, say d(x,,C;))=s—71, where t=0 or 1
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Then
d(xy,Ci)) + d(x,,C; ) =4s—3 —(s—1)—s=25—3+71

This implies that |N(x,,C; )N N(x,,C; )| = s — 3 + 7. Therefore if d(x,,C;)) = s,
we obtain two independent cycles C’ and C” of lengths s and p, respectively. With
C,, replaced by C', we obtain D’ = G — | J;;, V(C;) — V(C’), which contains C".
Since D’ must be connected, we see that either C” contains all vertices of D',
contradicting the assumption that the claim is false, or D’ contains a path longer
than P, contradicting the choice of D. For the same reason, if d(x,,C;)) = s — 1, say
X1y, ¢ E(G), then N(x;,C; )N N(x,,C; ) < {y,,y3} Therefore s = 4. It is easy now
to see that G[V(C,; U P)] contains two independent cycles of lengths of 4 and p,
respectively. This contradiction completes the proof of the claim.

By Claim 2, we may choose k, independent cycles C,, C,, ..., C;  of G satisfying
(8) and (9) such that

ko
G — fL=)1 V(C,) contains a smallest cycle of length at least s. (10)

LetL = Uf‘;l C,F=G—-V(L),C=x,x,...x,x, be a smallest cycle of length
at least sin F and F, = F — V(C). Then t > q + 1. By the maximality of k,, when
t =q + lwehaveky < k — r.By Lemma 2.4, we may assume that P = x; X,... X, 4,
satisfies

q+1 1 1
Zi d(x;,C) < E(q + D+ 1)+ i(s — 3y + 2, wherely=t—q—1 (11)

We define three numbers as follows:

q+1 q+1 q+1
I, = Zl dix, Ly, I, = Zl d(x;,C);, Iy;= 21 d(x;, Fo) (12)
Clearly,
g+1
L+L+I;=Y dx,6 =g+ 1)(s— 1k (13)
i=1

We shall estimate the lower bound for I, and then apply Lemmas 2.6 and 2.7.
To do so, we first estimate the upper bounds for I, and I5. Define 6 =0 or 1
according to whether s is even or odd, respectively. Let f, = |V(F,)| and p, =
ngl I(C;). Then I, + fo = gk + r — pg — q — 1. We distinguish two cases: s > 7 or
4<s<6.

Assume first that s > 7. Ift = s + 1 then ¢ = 5, kg < k — r and I(C,) = s for all
i,1 <i<ky By Lemma 2.1 and the minimality of C, we have d(x, P) < d(x,C) <
(s + o) for all x e V(F,). Together with (11), we obtain I, + I; < (g + 1)(s + 1)
+ 3(s + 0)(fy + lo) + 2. From this and (13), we obtain I, > (3(s — o)s — 1)k, +
3(s + 0)p, + 1. This implies that there exists i, such that ) §21 d(x;, C;)) > 3(s — o)s
— 1+ 3(s + 0)s + 1 = s>. Then by Lemma 2.5, G[V(C; U P)] contains two inde-
pendent cycles of length s, contradicting the maximality of k. If ¢ > s + 2 then, by
Lemmas 2.1 and 2.2, ), .y, d(x, P) < (s — 2 + 0)f, + 1. Together with (11) and
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(13), we obtain
L@+ D) —Dk—-3g+Ds+1)—36-3)g—2—-36~-2+0)f—1
2@+ Ds—Dk—3q+Ds+)—3s—2+0)gk+r—p,—qg—1)—3

=36—o)g+s—Dk+3is—-2+0)p,—33—-0)g+ 1) —4s~-2+0)r—3
(14)

From (14), we deduce that when kg <k —r, I; > (3(s — 0)qg + s — Dkg + 3(s —
2 + 0)po + 1. This implies that there exists i, such that Y X! d(x;,C; ) > 3(s — o)q
+36-2+0C)+s I kg =k —r, then I, = 3(s —o)(g + Dk — 1) + 3s —
2+ a)p0 + 1 by maximizing r to k — 1. This implies that there exists i, such that
i dx, C) 2 Hs —o)g+ 1) + 36— 2+ o)l(C,) + 1.
For the case that 4 < s < 6,by Lemma 2.1, we have d(y,P) <d(y,C) < (s + o)
for all y € V(F,). Therefore we obtain

L2@+ D)6 —-Dk—3g+ D+ D) —36s—-3)—2—-3f6+0)
2@+ D6—Dk—-3g+ D+ 1) —3s+o)gk+r—p,—q—1)—2

=@36—-2—-0)g+s—Dk+3is+)p,—3s+Ar—-i1-a)(g+1) =2
(15)

From (15), we deduce that if kg <k —r, then I, > (3(s =2 — 0)q + s — D)ky +

1(s + o)py + 1 and therefore there exists i, such that yaxt d(x,, C,)=3(s—2—0)q

+3(s + o)(C;,))+s. Ifkg=k—r, thenl, > s—2—a)g+ )k —1)+i(s+ o)po+

1 and therefore there exists ig such that Yt d(x,,C J=3s—2-0)g+ )+
3 + 0)l(C,) + 1.

In both cases, we have I(C; ) < q + 1 for otherwise there exists x; such that
d(x;,C; ) = s — 1, contradicting (9) by Lemma 2.1. Then by Lemma 2.6 or Lemma
277, G[V(C;,U P)] contains two independent cycles C" and C” such that [(C; ) <
IC), HC) < qifkg <k —r,0rl(C;)) <I(C') < qand I(C;)) < I(C") < q + 1 since
I(C;)) + q+1<2(q+ 1), contradicting the maximality of k,. This proves the
theorem.
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