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THE SOLUTION OF SOME EQUATIONS OCCURRING
IN POPULATION GENETICS

By J. B S. HALDANE anp S. D:. JAYAKAR
Genetics and Biometry Laboratory, Government of Orissa, Bhubaneswar-3, Orissa, India

INnTRODUCTION

If a population has sharply divided generations and a fixed breeding system, is subject
to selection of constant intensity, and is so large that we can use deterministic hypotheses,
a mathematical treatment of selection requires the solution of one or more recurrence,
or finite difference, equations. In the case of inbreeding without selection, these
equations are linear., If selection ocours, thcy are nonlinear. ' :

These equations may be of the second or higher order. For example, if autosoma.l
recessives are eliminated in the male but not the female sex, and mating is at random,
while the frequencies of a recessive gene are #; and 3, in the female and male sexes

respectively of generation 7,

Xn +yu'""2xn In (11)

::% (x'n "%“.yn) }
Fnta= 2( I —Xn _}7,,)

These simultaneous equations are each of the first order, and on eliminating y, and
Ynt1, vield the equation
P Q‘xn-!-l —%n (1 _f'xqﬁl) (vayﬂ "'x‘n)
e 2 [1 X (Q'xn—il "‘“xn)]
(A"H-l—'}‘) (25\.‘”.}_1-1‘“).}\.‘% 1.9
OF Xptg —Fpt1 ™ 2 El""'kn (an+1__xn)] ( . )
. P (2 Axp—1) (2,42 Adtn) %y,
or & = 2 (1 “xnz _Qxﬂ Axn) ’ J

These three equations, all equivalent, are a recurrence equation and two difference
equations of the second order. For they involve frequencies in three successive genera-
tions. We shall not deal with them in this article. On the other hand if a fraction &
of recessives s eliminated in both sexes in a random mating population; and ¢, is the
frequency of recessive gametes in generation n, then

n _kgn:: .
1 —kq,zz
1.3
k(fn (1 "'"([11) i ( )
1 —kg2 -

These are an equivalent recurrence and difference equation of the first order, the
former of the second degree. That is to say g,4y is a rational function of ¢, containing.

Tnt1=

Or gpt1 —qn™=
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no terms higher than its square. We desire to get an expression which will enable us to
calculate ¢, given 7o and 7, or n given ¢, and g,, with speed and accuracy even when
nis large. Since n must be a positive integer, it will matter very little if the error in
the calculated value of n is as large as 0-1.  In the particular case (1.3) one can express
n as a series in ascending powers of £ which is pretty accurate over the whole range of
gy, from 1 to zero. This cannot be done where several constants are involved. But
when ¢, 1s near zero we can get an expression for » in ascending powers of ¢,, and
when ¢, is near unity we can get a similar expression in powers of {1 —gq,). The
methods of doing so are quite general, and will be described.
Cousider the general equation

Zwer=J (2,) (1.4)

where fis a one-valued analytic function. A mathematical treatinent, with rigorous
proofs of certain theorems, and references, are given by Picard (1928) and Valiron
{1954), If

SR =Z=0 (1.5)

then if z,=2, Zot1 =X, 50 Z is said to be a fived point of the iteration {1.4). We shall
assume that f{z} is a real function, hut even so some or all the roots of {1.3) may be
" complex, and (1.4) can only be fully discussed if z,, is a complex variable.

If f(z) is a rational function whose numerator is of order n; and denominator of
order ny, the number of roots of (1.5} is 1, or n, -1, whichever is larger. But two or
more roots of (1.5) may he equal.  Thus the fixed points of (1.3) are 0, 0, and 1.

If 2 is any finite root of (1.5), and 2,2+, then sy = (i) ~f (2)

a

~ 50f (R gy 2 PR+ 5 53 (R 4 - (1.6)
With the

If a value of {is infinite, as when z,44==az,%+-bz,, we put x,=

An
French authors, we shall denote f7(2) by 5. The behaviour of %, and therefore z,,
in the neighbowhood of a fixed point, depends on the value of 5. Tt is easily seen that
if <1, and [v,] is sufficiently small, [x¢,4,| is still smaller, and x, approaches zero
as n increases.  Such a point is called an aféractive point.  If s=0, the approach is very
rapic, and we shall call it a Aighly atirastive point, Ifs is positive, %, does not change
its sign after a ertain value of n, if 5 is negative the signs alternate. - If ls] > 1 successive
values of [x,] increase at least  below some value of 7, and £ is said to be a repulsive
point. If|f=1, Valiron describes J as an indifferent poini. We think this is misleading.
In fact such a point is attractive in certain directions in the complex plane
and replidsive in others. For example in the case of (1.3), if £ is positive, zero
is attractive along the real positive: axis. That is to say if g, is positive and
less than unity, g,,; is smaller. But it is repulsive along the real negative
axis.  For if g, is negative, ¢, is also negative with a larger absplute value. Since
negative values of ¢, have no biological meaning, it is, for practical purposes, an attrac-
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tive point. - A point where s=1 corresponds to two or more equal roots of (1-5), and
we shall call it a confluent point. Ifs— —1, we have only to put y,={—1)"x,, and y,
has a confluent point. Similarly if s=w, where w is a complex root of unity with
wh=], we can put x,=y,’ The case when |s|==1, but is not a complex root of unity,
e.g. s=} {4+3V —1), is intractable, but has no relevance to genetics. It Is easy to
show that s is invariant upder any homographic or dzltillonlographic transformation
of z,.

If most of the cases of (1.4) which have yet occurred in genetics, f{z) is a rational
function: of degree 1 or 2. We shall consider a few cases when f(z) is a function of

a more complicated kind. The solution when it is of the first degree is trivial, The

most general expression is

Kpb1 == an, ' (17)

. a a
Hence x, ™1 sy |t "_;H___\ ,
T—s —s/

K K (l —5) Xy

U S M N 1

Tl s tall —s)xyg %
(1.8

. i

J

2 ) a a
or nlog 5 = log (xow +1 __ﬁ) — log (xq:“1+m)

These are the appropriate forms when |5 <1, i.e. if zero is an attractive point. It
will be seen that we Lave found a simple function of x,, whose values form a geometric
series.  We cannot do this exactly for recurrences of higher degree, but we can ap-
proximate to it. (1.8) has a second fixed point, ¥=e1(-1). If however s==1
the two fixed poinis are confluent, and ., *=x, 1 J-¢, so that the values of x, form

a harmeonic series, and

P
" dnax, (1.9)
n=a~(x,~l—x— 1),

If a is positive, zero 1s attraciive when x, Is positive, repulsive when it is negative.

When f{z) in {1.4) is a rational function, n is an automorphic function of 2, or #x, of
a type first descyibed by Polncaré.  Such functions have not heen tabulated, and so
far as we know have had no applications in physics. They can he represented by
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infinite series in certain regions of the z plane. Before showing how to deal with them,
we shall say a little about the general theory of second order iterations. The most
general difference equation with finite fixed points may be written

__m(z‘n“"al} (‘Cn““az) (Zn—(l_)
e i & e ) B

(al““flﬂ‘{*f‘s“bi‘“bzzwn —(asty a3y 40,0y —bybo) 2,050y

(Zn“*bﬁ (511"'172) ’

which is the most general rational quadratic recurrence equation. For given 4, and
b, we can choose aj, a,, and a, so that the coefficients of the numerator assume any
assigned values. @y, @y, and gy are the fixed points. If one or more is infinite, oné or
both of b, and b, must also be infinite.  If x, =z, —a, then

(1.10)

whenee =

(1.11)

% (“z"““l %) (43 —ay )
Xy =
A Oy, =) (yiy )

N (015 —agay +a;(ay +a5 —by ~by) 4 (b; -+-by a5 —ag) 5,
ﬂvﬂ (a1—b1) (8 —by) +-(by +by—20,) 2 -+-22,2 )

(ay—ay) (a; =g}
{ay—b;) (a3—by)

which becormes unity if g, =a, or ag or both, that is to say if two or three fixed points
coincide. Similarly one can show that the condition foy a; to be a highly atiractive
point is that {g;—by) {a,—by)=(a;—a,) {a;—~as). The condltwn that g, should be
(4 —ay) (a1—ay)
(a3—by) (ar—0by)

Thus sy=1—

attractive is that should be positive but Jess than 2.

STaNpaARD Forms

The general recurrence equation of the second degree contains five arbitrary constants.
This number is reduced to four on transferring the origiri to a fixed point. Even so
the solution is cumbrous. But by a further transformation we can reduce the number
to two, one, or even zero. Further, in some cases, we can greatly simplify the final
solution.

The most important group of cases has an ordinary attractive or repulsive point
with s between 0 and 1 for an attractive point (stable equilibrium), exceeding unity for
a repulsive point (unstable equilibrium). The exact value of unity is only reached
if some condition Is exactly fulfilled, for example if the loss or gain of fitness of a homozy-
gote is completely recessive. This can very rarely be the case, even when dominance
is 50 complete that we do not know whether the heterozygote is or is not fitter than the
homozygous dominant. However s must sometimes be so near to unity that it is best
taken to be exactly unity. We begin therefore with the general case.

5%, (1 -+-Ax,)

Let %= 1-+-Bx, 4-Cxp? "

2.1)
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Here | 5| is not unity or zero, and A*—AB-+C is not zero, or (1+-4x,) would be a
factor of the denominator, It is convenient to proceed to the standard form in two
steps. i )
_ % 2B, -0

Xy

s A2 ABAC
=5 1 (;\,,n 1+B——ATW> .
A—B . C,
e 3 ~1 e —1 — IV 4 )
Ifg T and 3, Xy, 8, ¥ . N 77,
then
AP ABAC
N S 1
Jat1 5 (}’n +"‘—“““““‘““‘yﬁ_1+A+6)

or

i—AD 0
1 + (A + 9))’7;

If 42— 4B--C is negative, let u,=(— A2 +AB—C)t ,, a== —(A+0)(—A4*+L-AB ()4,

oisn[ 14

e a1 )
Then wu,,,=s (1—— . ) . (2.2)

1 —a,

. This is the principal standard form. However if 42— AB~+( is positive we put
u,={A2—AB+C) 3,, and a=— — (4 +){42—AB+C)¥ . :

L2\ -t
Then . =si, (1 +1 o ) . {2.3)
Tty

If B=(2—s) 4, then 4+0-=0, and
Uy =Sy, {1 Fu,H)t (2.4)

the sign being that of 42—A4B+C. We can use the same method for any other function

lcfened to one of its zeros, and obtain a standard form of the type g =su, (1-4-u*-+

au3but - - )L ‘
When s=1, with two confluent roots, we have

= xn(}- +Ax‘n) 2.5
:(n'.l-l - 1 _I_B Xn —{'"anz ( )
or xari’]_—l :xn-1 _E—B —4 _}—w
n I“J‘A
Zero is attractive for positive x, if B> 4. Ifso let n,, ----- = g%,
x,t={B—A) u,"t—4. Then w4, :u,; (1, —au,®) v (2.6)

where a=(A42--4B-}C) (4--B)-2
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If A> B, zcro is repulsive for positive x,, and the equilibvium is unstable. In this

¢y — (4—B)x,
case We put #, =—-y—— Tx,

@.7)

Uty =t (1 —1ty -a2,?) 1.

We may treat any function giving s=1in" the same way, and obtain the form

gy = (L, —an,® —bu,® —cu,* - - -y, Another standard form is often more

useful than (2.7) for a sccond degree equation. with confluent roots. In equation
(2.5) let us transfer our origin to the root (d—B) C-1.

Let y,=4—B— ¢ Xy

(£2~AB+-C) y,"2 (B~ OA) In —1T1
R .
Then y,4q (AB—B*+-C) 3, 1—

Let z,=C-(A—B) (AB—B2+C) 3,}—BC-1(4—B).

Then Zps, =2, +a{2,—1)22,> (2.8)

her B4
where a= T AB-BLC

‘This transformation is clearly inapplicable if 4B—B24-C =0 and is useless when a is
numerically large. The fixed points of (2.8) are 1; 1 andoo and it can be seen to be
quite general. For Az, must have a square term since there are two confluent roots,
and must be of order z,, since oo is an ordinary attractive point,

If B=4, all three points are confluent at zero. Here

( + Axn)
Tpty = mz , (2.9)

~lamy —1 ¢
B M g4

Zero is attractive for both positive and negative values of xy, i € is positive. If so

let 5 ~1eeChy <1 e U C}.n
et x,  =Chy,~*—4, or x, T OF == y——f— TAn
Then w3 =1,(1 4,21, (2.10)

If € is negative the sign of «,% must be reversed.

At a highly attractive point we have

%2

AT By, 0ot (2.11)

X, ==

OF Ky ~t=dAx, = 4-Bx, -t -+-C.
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A, v
1—3Bu,’ ™ A+%Bx,

Let dx,t=u,~~} B, or x,~

Then ;= =, +AG+E B(2--B)
orif g =% B(B—2) —A4C,
Uy =0, 2 (1 —aug,2) 2. (2.12)

Similarly for highly attractive points of higher order, we can reduce X, ==x,%

(A+an+cxn2+ - _)—1

10 Uppp =1, F(1 —au,? b3 - - -1,
SoruTioN At AN ORrpwary Fixep Point

‘We have to solve the equation

. 2y -1
Uptq =Sty (l— o ) . (2.2)

1 —au,
Using a method due to Abel (1881) let us put

o0
(n-+C) Ins=Iny,+ 2 bu,"
1

where the constant ¢ depends on the value of 4, while the constants b, are independent
ofit. Then

0
(n+1+C) Ins=lnupe+ & bagq” ;
' 2

=~
on subtraction we find

Insz=ln ( nﬂ) + ¥ by (tey” 1)

uﬂ =

2 g
Elns—mln( “n ) 27 bat,” [1 —s" (1 ——~——-~) :l
| —au, 2 1 —au,

==

This is an identity, in which we may determine the values of 4, by equating the
coeflicients of powers of #, to zero. Itis convenient to put
~—S—T—:k. 50 that 1 -Fh,= L .
Po—sm 70 N
We have ,*}ai,®+(e* 43w+ 4a) w5+ - ~ -
=bou, [ —5®—25%0,2 —2as%u,® ~ - ] +o 1 —53—35%,% ~ - -]

+b4‘lt"4[1 —st - - "] "f“-." =

Clearly bz:'},—g}izl +hys by= lj%:a(l +hg), (1—s%) 54:‘25%2 +at g =a®+-§ -2,

whence ba -~ (14-£) {(a®+3+24) etc.
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Thus we have

n4G) lns==lou, +(1Fhy)u,2 - (1 k) au,34-(1 +-2,) (a® -4 ~}~21¢2)u,;‘ +

(1 i-Rgya({a® -1 -2k, + 3R Ju, 5 4 (1 k) [a® 4+ (3 +2hy 3Ry +-4h,) a2 +3 +5hy -+ 2 +85k,]
1, (1 A-hy A+ (2 42k 4 By -4, 4550 (1 46y -+6hg 1+ 2, +5 -;-8112114 +
100y feg - 150001 0,7 - = -, (3.1}

if.q is'large such a form as

9]
a+C) Ins=lnu, -+ X (14-k)a 2, (1A (320 u,t +
L =2

(VLA ) (1 42k, F30)au, 54 ~ - -
may be convenlens.

When s is less than unigf this may be written

logyg = 3-04 u,? ‘
77'+G* logm —1 77 Ioglos_.l [1 ThzT(I +k3>a“n + h “v'} ‘

Here: §—,(]—J—% =4342857 is used as an approximation to -4342949, or logy.e. u, will
generally be less than §, and au, less than unity. If so the terms in the bracket will
“amount to less than unity, and may' be neglected if we merely wish-to calculate # to
the nearest integer. FHowever when s> 1 the series will diverge when u,>s-1, and
will not be very accurate when su, exceeds 3. The other fixed points are given by

2 -l —slu—14s=0; they are z = }4-{{(1—5)(4-+a®—a%)}t—a{l—s)]. The
ser%es certainly diverges when |u,! exceeds the modulus of the smaller of these, or
exceeds (572 —1)% if theyJare complex. The series (3.1) is often quite sufficient for
cornputation. However it can be transformed as follows.

st8=y_ exp [bu, Btbgn® +hgnt - - -]
——un—f—bzun ~Fbgtin® -+ (bg+30o2) 0,5 (b5 byl + -

=1, —{—(1+112)z¢,23—1—(1—1—h Yau, ~~—{(1—}z4)a~+1—{— +4h LR 20 A 0w - - -
(3.2)

If s+t
it =t~ (1) — (L fhg)att —[ (1 -hy)a® —2 —2h, +-Lh, —BR2-2h0,15 - - -, (3.3)
‘This series may be used for calculation, and can of course be extended, but (3.1)

is generally sufficient. Examples are given later.
Next consider

Upgqg =5 Uy, (1 -+ ) - . {2.3)

l —(mn
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Let u, =1 w,, or w,=—1 %, Then

- wﬂ

Wy py =8 Wy (1 - m) .
So from (3.1)

(n--C") Ins=Inw, + b, w,’,
where ', is derived from &, by substituting ¢a for a. - Hence

{n+C) lnsétlnu,; LT (=1 )"

=Inu, — (1 +hy)u,2 (1 +-hy)au,® (145, )(~a2 —1+2}19)u (1 —Hz Ja

{~a*+1 ‘9h,—r3h)un-r - (3.4)

This is derived from (3.1) by changing the sign of the first term. in the coeﬁiment
of each power of u,, conserving that of the second, changing that of the third, and 50
on. One can write down expressions corresponding to (3.2) and (3.3).

To solve ‘

1[n+1”—‘:J‘ Uy 1"',1‘?17,_2)_1 (2'4)

we can put s, ?==su,2(1 -2, 2 d-u,8)
which is an equation of type (2.6) in u,%, or use Abel’s mcthod directly. By the latter
method we find ‘

(n—+C)lns=lnu, — e (1 b hg) 2,2 (1 Ay (§-+2R,) 1, '—(1 b} (§ 43k, 2R -8Ry Ju,t +
(14-Rg) (3 4-4hy +5hy 42k +20hoh, 3 18hohs 12k, 15 +-48Rolafrg) . (3.5)

In the general case we can always, by a homsgraphic transformation of 2z, derive
the iteration

Upyr =8 (1 dru,® —agty® —agu,d—agu’— < - -}

Taking the negative sign for the ambiguity, Abel’s method gives..

(Y Ins==Ina,, -+ (1 Ao )1, 4+ (1 ARy agun® - (1 +-Ay) (ag + 5+ 2h2)1
(1A [ag-+-(1 424, ~}—3h3) agl U+ - - - (3.6)
which can be transformed like (3.1).

It may be remarked that (3.1) and similar equations may he written as differential
equations provided G is assumed constant. (3.1) becomes

lus %z-u“l A 2(1 -hy)u+3(1 +hg)au® F2{1 k) (2 1 FARY U+ ~ - -

We have thus got rid of the awkward logarithmic term.
Equations sometjmes arise which can readily be reduced to the form

Aty =3 A (1 —2).

37
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(}—s) u, of i — (1—s) x,

Putting x, == !
TR ] sy, *l—stay,

, we have

‘ 2,2 \ =
Uyt =T U, [— m;“ 3 (2.2)
N
2—s
where a :—~}=2 +hy.

So from (3.1}, (n-+0) Ins=Inu, (L hs) 2 (2 Ay (LA w2 - - - (3.8)

SoruTioN AT A CONFLUENT POINT
We have to solve .

Uprg =ity (1 F-20, —au, )L . {2.6)
- w0
Let n+C=u,~alnu, +(a+3) In (1 —aw,) +a & byu,"

r==2
Then by Abel’s method,

1z21 —au, +aln {1, —a,2) (a1 [In(l 4-u,) —In (1 Fu, —an,2)]
—a b5 b, [ — (1t —a2,2)-7]
=2

=
or

¥ ? 1 O\ e p] — - 3 1 aunz V
& bl (b —a?) 7] = iy Hn(l b) —ln (1»" TWJ)

The values of b, are obtained by equating powers of coefficients of u,. So
n+C=u,"'—a Inu, +(a+§) In(l —au,) —

auy? a, | {5a%-+102+4-2) . _:l )
o R e LR HNCRD

The terms in the infinite series are often negligible. The second logarithmic term
arises as follows. The fixed points of (2.6) are 0, 0, and o%. If x,=1—au,,

. = Fp{ad-1—x,) ~{ 1
“ntl a--x, _xnz

. This is an equation of type (2.1) with s=——-

By (3.1) its solution for small x, is

(n+Cy 1o 20

=Inx, +O0(x,)

Pl
ot n4C'= (ath g5t — n—-)ln(l——aun).

The use of the terms a--% reduces the coefficient of , in (4.1} to zero, and consi-
derably simplifies succeeding terms.
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The inyersion of (4.1) gives, writing »' for n4C,
ty=n 4z n' o' 4 (eflnn’ 4267 +4) 2 8lne - - - - (4.2)
~which is too cumbrous for serious computation.
To solve typq =ity (1 -1, %) (2.9)
- we put sznz—%wm so that

Wotq =10, (1 a0, -0, 2) 71

This is equation (2.6) with 2 == —%}. The solution is therefore
, T Uyt 1,2 Buyt
G ““ZT*Z g, +3 In (1—4,%) +35 (1 R I O
In general if wyq=su, (1l -buy, —au,® —bu,3— ~ - -}=1, the reciprocal and logarith;
“mic terms will be as in (4.1) though the series will be different, and if du,=u,*-+

. 1
auy 1. « » - the solution will be of the form zz+sz+ .-
12

SovuTioN AT A Hicery ATTRACTIVE PomNT

It un+1:iz?12(1 —au, 51 (2.12)
: o
let 274Cm —In 1y - 2 by fn
r==]
. o
50 279 = —Iny, o 2 b w4477
r==]

Hence — hmn+1+ Fo Wy -2 Ina, — 22’ b, 1, =0, or

= yee=
o o o o
& by, 12—, (1 —au, ) P =l —an ) =~ (an,® +aPu,t - 3atu, b4 - - <)
r=]
On equating coeflicients we find b= —4aq, etc., so

20+C—= —Iny, —}aw,® —3a (a-4-1) u,t—%a* (a4-3) w5 —}a (a® -|~6?12+a~}~l) e -
or n-+-C=(log 2)~ log [ — Inu, —dau,®—4a (a-4-1) w4 - « -], (5.1)

u, approaches zero very rapidly, and the first term in the power series is usually sufl-
cient. The series may be readily inverted, and if

4 n
A=g? and t=4"*

Uy=t—} a3 (3a—2) £ —ha? (5a—6) e - - - . (5.2)
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The same method may be used when the iterated function is of higher order, or

[e0g —1 ;
transcendental.  If w,, =u,? ( 12 a.,.u,/‘) , then it is easily shown that
r—=2

27+ C= —Inu, —Yayu,* —dagu,3 ~1 (a2 +-a, +2a,) u,t— - - - (5.3)

which can bhe inverted if desired.

A GENERAL S0LUTION FOR SINGLY CONFLUENT (QUADRATIC ITERATIONS

We have seen that the general equation (2.5) cdn, except in one special case, be
transformed to

Ay =g a(w, — 1), : (2.8)

Haldane (19322, 1932b) showed that n could be expanded in ascending powers of a.
In genetical applications a is never less than —1, but may assume fairly large positive
values. Ifit is large and positive or close to —1, x, changes quickly with » and can be
calculated over much of its range. The series for n converges slowly or not at all
when | a| is large, but is quite satisfactory in the neighbourhood of the fixed points 1
{confluent} and » (attractive). We need only consider values of x,>1 in genetical
applications. Haldane’s series can be obtained simply by Abel’s method as follows.

I Kpt1=%n —!—{L_}), (61)
where y is a known function of x,, regular in the region considered,-

arfl

Xn '
?’}-,-, J-xa f'l‘(‘\‘)dxa

d\ T =
let y,= (EE") y Letan = %
e

¥=

where the functions f,(x) are to bedetermined. Provided f,(x) can be expanded in
a Taylor’s series,

o) =2 2 ()

i1 7

oo} 0
So 5 [at & d\ i1 B
r=1 rl 1=1 (;j— fr(xn) —a=0.

We can determine the values of £, (x,) by equating the coefficients of powers of a to
zero. The coefficient of a is

DSy (n) —1=0, 50 f; () =yt
The coefficient of ¢®-1, multiplied by m! =%, if m>2, is
m—1 —p—1
m MamT 1 ,d_) e ; —
z (%) 7= (7)Ao

This is a recurrence equation for fi(x). For example if m=4,

&fa(x) FOuf "o (%) -+ 71 (x) =0.
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Hence, provided the series converges uniformly,

o] .
Xy 5 ar—2
n=] xy Lr=1 7!

o :

) o
‘ where
Sule) =y~
Solx) ="
Fol0)=—F0 "2 40,
Jaley=y"tyy 81291 Pe,
Sl =% (=197, =529, —2® +29 3195 15704
etc.

(6.2)

L ————

1t is easily shown, by putting y=x, that the the leading terms are the expansion of

S S
yin (I+ay)
In the case here considered, y=(x—1)? x%y,=1—x"% p,=(—)"rt x4 if r>1, 50

Al =als—1)=, 1
fols) = a1 ), |
Fole) = —Ha 24 3579), S
Salx) =x-5(x%—1) (x®4-2x+5) =a1 2572 F- 43 —Dx~t —5x~5, r )
fs(x) =—3&77 {x—1)? (19x*+764> -i—220~c2—§—360¢x—~105) ;

=—21(19%*438x24-87x% =8 3955 415056 4-105x7). J

The values of x, thus change as if they were changing continuously with

QZWfﬂ()ngﬁﬁ%%yjs@)k4Jxﬂ

On integrating, and putting £=wx,"!, we find

an4-C=In{l —z) —Inz—z{1 —z)~+4a[2 In{l —z) —Inz] +Fpa*{Ing +22+52%)

—dr(Ine 42228 5252 Fr 15a4(19Inz 38287 22 %zmagazﬁ 13025
A 4 - -

The coefficients of Inz-+2z are the terms of the expansion of —a [In(1-a}]~*. On
taking these out, we find

L= (] ba)in(l ) —z(l—g)1— B2 [o. MJL}
an-+C={1 +a)ln(l —z) —z(1—2) ln(l—}—a)_; |:2 La EYEYS z

+- [ (24* 21522+ (322—-1&—1183 —{—360/;3~}—210,54)—'0(a,3)J. (6.4)

The first four terms of this sevies give surprising accuracy even when as1, when
the reciprocal logauthnnc series diverges. The fourth term which only reaches
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401146z when a=1,.and -0 3183z when a==—0-9, can be neglected for numerically
small values of a.

To give an idea of the accuracy for numerically large values of g, let a=1, z,=0-5,
2;=0-4. Then the first four terms of (6.4) give ('=~—1-32669, (-1 = —0-32055, giving
a difference of 1-00614, instead of unity. Similarly z,='01 gives exactly I (to the
fifth place of decimals). z,==0-99 gives [-00018.

The fit is thus extremely good when z, or | —z, are small, but when z, is about §,
the error is 0-6%,. If z, is the frequency of a recessive gene, over 5,000 individuals
would have to be counted to reduce the standard error of the estimate of z, to this value.
So the leading terms of (6-4) are likely to be sufficient for many ybars to come. When
a=-1} the errors are of the same order of magnitude, as pointed out by Haldane
(1932b) who however did not use the fourth term of (6.4). Thus even when dominants
are half as fit or twice as fit as recessives, the approximation is excellent; and as the
error is roughly-proportional to 2, it is much better for moderate intensities of selection.

If we write n=F (g, z), nis an automorphic function of z. It has 2 denumerable
infinity of poles corresponding to the periodic points of order ¢ where x,.,=x,=X,.
X, can be expressed as a function of ¢, and @ as a function of X;,. Thus F (g, z) has
a denumerable infinity of poles in the a plane, and we conjecture that it is an automor-
phic function of a.  For example if £, and 4, are values giving 2,4,=2,, then

51:0: 1, I %zzli\/“a”l,

A;=0, AZ_Z [Bz—1 -V 2—6zF11.

SELECTION OF CONSTANT INTENSITY, WITH RANDOM MATING

We assume that a pair of autosomal allelomorphs is segregating normally, that
mating is at random, and the relative fitnesses of the three genotypes are constant. If
then the nth generation-is formed from gametes p, A+4-q, a (p,4-¢,=1), the parents
of the next generation are in the ratios

L—k) £, AA : 2 pg, Aa : (1) ¢,° aa.
. q

Here £ and [ may have any values not exceeding unity. They are most simply
thought of as measures of differential mortality, but the same form is reached if they
measure differential fertility. It follows that

gl —q.)

Fur1™ 1 —/x}‘)ﬂ . ZQW

\
|
>
1 “k/)n ZQH ’

(7.1

or Ag, =
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If k4+{—kl=0, or (1 —k) (1—I)=1; that is to say the fitnesses of the three genotypes
are in geometric progression, this simplifies to the first order recurrence equation

_0=Dgn
Gnt1 lblqn - ,
The fixed points are 0 and 1, and by (1.7),
L (1=l .
In l—go+(1—0)"q, }
. (7.2)
— 90 . J
o+ (1 —=£)"(1 —qo}
The gene ratio 22 increases or diminishes in a geometric progression.

We alsolobtain a first order recurrence if k=1, or {=1, that is to say if a homozygote
is effectively lethal. If /=1, {7.1) becomes :

gn-ﬂ:%z{l ___k+(1 +k)q1z]_1‘

There are equilibfia when ¢,=0 or ¢,=0Q=Fk (14-4)"1, the latter being stable and
‘meaningful if and only if £ is positive. From (1.8) and (1.9) the solutions are:

=% ' (k=1), I
(7Z+G) 1Og (I ""k) = IOg (Q’an.) ———I_Og dn (0<k< .1: qn> Q.,):
(n+C) log (1K) = log (Q—gn)—log ga  (0<k<l, g,<0),
ntC o= g1 (k=0), L (7.3)
(1+C) log (1—#) = log (gu—Q)—log ¢,  (0>k> —1),
{(n+C) log 2 = — log,g, ‘ (f=~1),
(n4C) log (1 —k) = log (Q—q.) —log g, (k< —1). )

Decimal logarithms may be used. The equations may of course also be written in
such forms as
gn==Q [1—(1 &),
In= (I'L ”,“O) -
and so on. , ’

In general the fixed points of (7.1} are 0, 1, and & (k4{)-1. The latter is only bio-
logically relevant if k and £+ have the same sign. There are 9 cases.

{1) k>0, [ <0. ¢=0 is an unstable, g=1 a stable equilibrium, both being ordinary
fixed points, 0 repulsive and 1 attractive.

(2) k<0, 1>0. Asabove with p substituted for ¢.

(3) k=0, I<0. ¢g=0 is a confluent point, cflectively repulsive,” but with slow
withdrawal; g =1 is an aitractive point, giving a stable equilibrium.

(4) k<0, I==0. As above with p substituted for 4.

(5) k=0, [>0. ¢=0.1s a confluent point, effectively attractive, but with stow ap-
proach; ¢=1is an ordinary repulsive point.

(6) k>0, I=0. As above with p substituted for q.
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(7) k<0, I<0. There is a repulsive point giving an unstable equilibrium at
¢=k (k+1)71 and attractive points giving stable equilibrium at ¢=0 and 1.

(8) k>0,{>0. There is an attractive point giving a stable equilibrium at
g=k(k+0)~*, and repulsive points giving unstable equilibria at ¢=0 and 1.

‘ (9) k=I{=0. Every value of ¢ gives a neutral equilibrium.

In fact the last case is negligible, though selection may he less important than muta-~
tion or drift. Also (3}, (4}, (5), and (6) are ideal cases, probably never realised in
practice, though we often do not know whether the heterozygote is slightly fitter or
slightly less fit than one homozygote. They must therefore be considered. It will
be seen that (1} and (2), (3) and (4), (3) and (6) are equivalent. So (1), (3), (5),
{7}, and (8) demand investigation. ‘ —

An approximate solution can be given if [f and |{| are both small, when (7.1} can
be treated as a differential equation

f’?% —¢(1 —q) [k—(k-+0)q]

‘hence n= 1 + .
whence n=] [ 72 ) CHk—k+q :ld

or
4G ==k lngn—|—z;11n(1;gn)+(k_|-[) (/Cl)“lln[“(k+[) Gn—K]
) k
(?Pm)
>
=kt Ingn 1 In(1—ga) ~(k+1) (k)7 In[k—(k+0) ga] (74)
E N
(=<e2) j

with the well-known simplifications when k=0, or [=0. We shall see that these
arc approximations to the values found when % and [ are not small.

There is 2 further simplification when k=0, or /=0, that is to say when ‘dominance
is complete. If /=0,

Frt1= 1 /f[) T —p2 2 OF lfzﬂ‘*qyz 3 Rns I‘_zn_k (7 —"1) (7.5)
7

We have shown how to solve this equation, which is our (2.8) with a=—&.
In general we need expressions for:—
{(a) The relation of n and ¢, near zero when this is an ordinary attractive or
repulsive point,
{(#) The same relation wheun zero is a confluent point.
(¢) - The same relation when @ ==k (k--[)~! is an ordinary attractive or repulsive

point between zero and unity.
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In the neighbourhood of zero we have, from (7.1)

— (118 (} _gn)
Gnt1 V—k3-2kq, (% —5“1) 9112.

Thus in (2.1), s= (1 —k)~Y, d=—1, B=2k(l —k)=L, C = —(k-0) (L—k)L,
FHence =k (2kA-I—kl), A-+8 =k (k41 21D,
A2 AB 4G = — (1 —=k) (1 =1) (k+1—kI).
If this is negative, we puit

wp==l (L—k)* (1—d) (kHl—kl) 1 g, {1kt (k+1—2kD) ¢,]7,

a =kt (2k4-1-2K1) [(1 ——kj“l (1—=0) (k- k)1, (7:9)
whence u,qq ™ Si, ( 1 —«1—%”2—;) _1. (2.2)
.
Thus if k= —0-1, [ = -+0-2,
e Ve 02954196 ¢,
*2:5435 ¢, 1414 ¢,
Hy,
O I 054196 u,
5i=39, a V= 1-354004 ,
L 100 1000 10,000 . 100,000
T ) B T TR T
and n++C= 2415885 logy, w, —10-49184 ,* [%J— 15’211 Clly,
— —94-15885 log,y 1, —604530 1,2(1 +-96006 1, 64919 g2k « - ).
If wy,=-01,
(= 48-3177 —-0060453 (1 +-00960 40006492 4 ~ - ) =48-3116.
Ngw\7 il ¢,=1%, u,=0-086888, s0
n--48-3116= 256335 —0-46915 (14083518 4--04908 - - - =) ==25-1396
or n=—23-1720. The error is of the ofd.er of the last term in the series, or.0:02, If

this were considered unacceptable, further terms could be taken, but in fact it 15 pro-
bably suflicient to determine 2 to the nearest unit. If u,-=-01, g,=-0355341. So
232 generations would be needed to reduce the gene frequency g, from 50% to 3-:353%:-
Clearly for positive values of n, only the logarithmic term need be used.

2
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If k-F-l—kl is negative, A%2—AB--C is positive, so
thy = — (1 ~&)=% (L L) (R--L—Fkl) ¥ g1 —k~ {Qk -1 —Kl)q,]~*

=kt (kI —2K) [—(1 =R (1 —1) (E-d—KD) J*

u,*
Uyt = S, (1 + l-:%zz;) .
n

The arithmetical work is quite similar.

When k=0, zero is a confluent point, and we can use equation {7.1).

k

bourhoeod of O—AJ—l let g, =Q-4x,, P P=1 —0. Then (7.1} becomes

(kD) x, (P—x,) (Q+x)
Dtp= gy = L —k(P—x,)* —l{Q+x,)?

o T [P —E)x, —(/»Jrl)“w]
- F A —F— (kD% x2

o, TRk (kuz)q
or iy =" F I (oI x

. k128 B —{k-L1)%
Soin (2.1}, 5 k—i—l~ki’A f— 7 B=(0, C= PR

g (B =E) (k-Hl—k)
=k (=)

A ABACm= (L) (1 =) (kD) (L —QhI)=2 (k-+i—K)-,

In the neigh.

(7.7)

which has the opposite sign to k--{—#kl, and is negative if the equilibrium is stable.

In the stable case let

(=R (1= T4 R (kD)
"ﬂ"[ P | H S0k (k) (el Ry,

*lwk[ k-+{—kl :{%
NIRRT ¢ ey g

(1 unﬁ -1
U = Ju, —_ -
nt1 n ] —au,
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For example if k=2, =1,
2 2 13
Qf‘"g‘ ’ xn-‘(j.n“?j* 5 5.:.:,1—-4‘ .

21w, _ 721605x,
V14 (13-21x,)  13-2Lx,

Uy

5 —
a=—z \/14x—3~11§;05

1 u,> 1

Uppy = SUp, | 1 — —Z—

21 n T— i,/

We note that x, may be positive or negative, If it is negative we put v,=-—u, 10

avoid complex logarithms.

SerzcTION wiTH CONSTANT INTENSITIES AND INBREEDING

Consider selection as in the last section, but with a constant mean coefficient of
inbreeding f. If then the gametic frequencies are p, A--¢, a as before, the paren:s
of the next generation are in the ratios

(1 _k>pn (pn*fi/‘q‘zz) Ab 2(1 mf)ﬁﬂ?n Aa : (1 —‘[)Qn(q'n'i—fﬁn) aa.

Here 13 >0, In buwman populations f rarely exceeds 0-02, but it may be much
£
larger in plants and animals. We find without dificulty

(/nD =l !-.(/-71. _{_f}bn)]
1 F__k f}n(\[)n _}_j‘ {1) — 972.(971 “f“fﬁn)

Int1

— (.7»)1.[} "—//_<] ”f)Z(In] ‘a iy
R R R A R e T
Aq'n: ]an‘n[ (k —f[)ﬁu T (Z ﬁfk) Q-»] IS?)

Tk 22 (o Dpada—tant
Ifk-1— (1) k=0, or (I k) (1—I)+fki=1, {8.1) becomes

Tt ™ (0 lg,

which 15 of form (1.7).

We alse obtain a first order recurrence if k=1, or [==1, that is to say a homozygot
is lethal. If {=1, (8-1) becomes

%+1:(1 _f)(/nU _k‘ /l _f)(l ‘f_k)(l'n]“l'
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If Q= (k—f) (=) (1+K)"Y, g,=Q is the stable equilibrium if £>f. Otherwise
g,==0 Is the stable equilibirum. By (1-8) and (1-9) the solutions are:

Gn = % : (k=1),

1
(1-+C) log (1=5) = log (3, Q) —log gx (15>, 1,>Q,
(1-+C) log (1=5) = log (Q—g)—og ¢u (13>, 1<),

nbC = (1R, (k=f), L (84

' f1—k '
(1+G) log {1=2) = log {qu—Q) —log g, (f>k>—1),

(46} log (2] = —tog g, (k= 1),
(1+Gy log (=) = Tog (Q~g)—log g (£< ~1) )

As before the equations may be written in several forms. They could be used,
for example, in the study of sickling in man, where one homozygote is nearly lethal,
and mutation is generally thought to be unimportant.

In the general case the fixed points aie, ¢,~ 0, g,=1, and gn*QI'—
7 K f)J(rk l)’ the latter 1ep1<:sentm0f 2 Dbiologically 1clevant equilibrivm 1f k—f1 and
(1 —f){£41) have the same sign. As before, there are 9 possible cases.

(1) k—fl>0, [—fk<0. ¢ 0 is unstable, ¢=1 stable.

(2) k—fl<0, I-—fk>0. g=0 is stable, ¢=1 unstable.

(3) k= fl, I—fk<0. -¢=0 is unstable but left slowly, ¢ =1 stable.

‘ 4) k—fl<Q, 1 JE ¢ 0 is stable, g =1 unstable but left slowly.

(5) k- fl, {—fk>0. ¢ 0 is stable but approached slowly, g =1 is unstable.

(6) k—fI>0, I fk. q- 0 is unstable, g=1 stable but slowly approached.

(7) k—fi<0, {—fk<0. q- 0 and ¢=1 are stable, ¢ - ( unstable.

8) k—fi>0, I—fk>0. ¢-0 and ¢g=1 are unst'lble g = Q stable.

(9) k fl,l=fk. Thereis a neutral equilibrium at any point. Thisis only poss1ble
ifk=0-0, 00 k=1 f=1.

At g+ 0 when k#f1l, we have

I A (e L i e ) B e D )
T e b T—k

S0 6= (k—fl)=t (1 —f0) > [kl ki —f (k20 1) -/ %L (E+D] 5
A2 ABAC (L —f) (L=1) (1 —f)=2 (1 —)=F (e —kl—FHT)
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~and so on. It is generally more convenient to compute s, 4, B, and C, etc. numerically.

I C g gn[l”‘f‘(l f)ZQn} . |
HEIb s o T g e (8.5)
== SU=f) —(1—~f?)1
So d=——r— Bty 0= TIA
_— (1—=f% g,
So if u,,= g p (8.6)

Unt1 un(I Fup _aunz) -1 s
where a = —(1+f)"* I73}{1-10).
Or we may use the form (2.8).
If there 1s an equilibrium at @= ko let g,=0Q+x
T D e

Then

o Rl (B (1) (BP)s,]
AT R 7 7 7 E =By, =1 o)

bl — 2kl —f (k-] —E2—£)

B _ K4S (k-+Hl—k2—kl—{7)
Thus s= [ —— =1 - .;J—,—l Jl —f ki ?
o

Ao =) e Y e A k)

F 2k —f (bl —2) © = FFI—H—F i’

C- —(1=f) (k+0)*
T TR F—f H

Again, numerical calculation is usually most convenient,

ParTisL SELF-FERTILIZATION WITH CurLrLiNg or RECESSIVES

Sen (1961) has discussed this case. Suppose the nth generation consists of (1 —-x,) AA,

x, Aa, a fraction ¢ is mated at random, while 1 —¢ is sell-fertilized, then the next
generation consists of

[(1-9 =) +e1=5) | A& + (=9t iull —bs)] Aa

2
[(I —) ,}t,;{w x4 ]aa.
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2] ey & .
2(1 +€)xﬂ z’.c'x'n (9.1)

Hence a1~ , .
y K 1 1 ]
1 "—I(l “c)x'n gl Ay

x,=0 is a stable equilibrium,.

¢

S:}(I—I-C), Am——m 3 B= -1—(1—-()), == —-—;}(}.
o lde—g® ¢ {I—0) N
= P A2—AB +G—~--W, which is never positive.

: L
QO A, [20(1 '—"5)']'} (luc)xn
So if Up = 2(1“69‘)*(1 -~4’C-—~€?‘) x, H

@= u(llvfi*}cz) (0(12_5)“} )

= (2450 [(1—9)* 25—1)] %, and s=3(1 +0),

u,? ) -t
Upty = Sty (1—— & ) . (2.2)

1—au,

The frequency of recessives culled in generation n+-1is }x, (I —c+t¢ x,). Equa-
tion (3.2) should not be used until u,* is sufficieritly small.

In what follows we shall give some examples of the treatment of iterations of higher
order than gquadratic, or of transéendental functigns.

CoMPETITION BY FIYBRIDIZATION

Consider two species 4 and B whose hybrids are inviable or sterile.  Let their relative
fitnesses be as | +-k: 1—k. Let p, be the frequency of 4 and ¢, that of B in generation
n, the sex ratios being’ the same in the two species. If encounters are at random the
4 females will encounter 4 and B males in proportion to their frequencies. Suppose
that the probability that an encounter with a B male will lead to fertilization is A
times the corresponding probability for an encounter with an 4 male. Then the

o . Ar] P n Aq'n M il
progeny of 4 females will be vy 4, and ST, hybrids. Let p be a similar

parameter for B females. Both A and. @ are probably usually much less than unity.
Then it is easily seen that

Gri— LE) 07 [(Hk) R ) an] -
mr qntpbn

bu +Aqn q +l"j)fn

{1 ~k) 9722 (@Dn”f‘"\qyb)
(L4} 207 (ppatqn) +(1—F) 007 (Pn+Agn)
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ﬁngn [(1 Fk) A %zz_“gk pnq’n"" (1 "l‘k) F‘pnz}
(}L Jl_k)j)nz (P“/)'n ‘}“Qn) _‘f'(l —"k) gnz (11)72 +’\Qn) ' (9~1)

Afjn =

There are therefore four fixed points when ¢=0, ¢=1, or (I —k&) A g2k pg—
(14k) w p2==0. ¢=0 and g=1 are highly attractive, and represent very stable equi-
libria. Of the other two fixed points one gives a negative value of p or g, the fourth
gives '

1,
ke p (LR (2 Ap — A )2
Q= g% (T—F — g (L&) 0.2

2 (B Ap - Ap £2)°
1 —§—(k° + A — Apk?)t

which is a repulsive point with s=1--

(=N n.]»—t
“ .

representing an unstable equilibrivm,

(B2 A — dp /’f’)2
Since Q - p(TH4)

_ A=k [I _ Ap{l k%) i+ 21 k12 o
2k 4> 8k

we see that Q increases with p and decreases with A. So natural selection must
tend to increase discriminatioil by females and decrease discrimination by males in
each species.

Consider the dynamics whcn ¢, s small, » (9.1) may he written

(1—/») g,° [1—{F—X) ¢,]
It ™= TR T8 (L35 0n — (1 +3k —3p—Buk) 4,2 1 (Ok T A—Ne —pp—pk) g

(1-+k) pg,

To= T 0HR) (0 Zetamgd* "
: . bul
Uy = Uy, [1 —au,* —j—:—(g—z{;] . (9.3

TuE PROBABILITY OF SURVIVAL OF A MUTANT GENE

Suppose that a mutant gene occwrs in a very large population of constant nwmber,
Suppose one member of the population carries a mutant gene, let p, be the probab:hty
that this gene will be found in members of the next generation, and let f{1)= b3 j), &

: i,
be the generating function of this probability distribution. If ¢, be the plobabﬂuy
that this gene has disappeared after n generations, Fisher (1930) showed that

Gut1 ::f(q'n) .
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(=] e

. . bN
Fisher considered the case when f(¢)= ¢! :’ 0 =gt
that is to say the distribution is a Poisson distribution with mean unity. This implies
—1. (10.1}

that the gene is neutral. g, =¢/—

This has two confluent fixed points at g=1, and an infinity of repulsive points
X(cot X i), where X cosec A=g AOOtA-L. Only "the real confluent point is of
biological interest. Let z,=1~¢,. Then z, 15 the probability that the mutant will
still be present in the population after # generations. z,=1, and z,., =1 —e=<" {10.2)

1. 1 o Y
Zn (‘2‘{472 coth $<n ";“"32‘4-)2) t

1 I 1 -1
=z, (1 +52n f—wzn ;7776%4”1‘ o _) ,

or if u, =%z,

. 0.
Uppy==1ly (1 4“?‘7:‘{*3!! —’1-521 9:“ 5 éﬁ%—.}ung + - - —) =t =u,{u, coth u,tu,)?
1 1 1 o
Let n 4G, 3 Ingy, L 5 In (l~§z¢ ) —:mri?. b,
— 1

Then 1= coth Uy =ty —{_1 —E—'— ll’l(tl coth iy “r"”n) T [ l( COlh Uy, Zm)]

[ee]

Z’

b (z’frrl Un )

i 8

) byt [ 1 —{u, coth u, —{—zz,n)_":l = coth w,—u,! J,—é [ In (u, coth u,tu,)

¥

9 A
+In(u, coth u, —!—%zzﬂ) — In(l——%zz%):‘ .

Hence, or from Fisher’s formula, we find

i w,® 1 i 5#.%  1051u,.2 53,4
C=u,"—zlnu, In{l— 1 PNy G i S L i
i r6 all=gum) b (5~ 5% ~ 555 7950 T 162,005
L 14,55‘33%5 )

9,185,400 '

5z, 105lg,® | 53z,
168" ™ 378,000 " 2,624,400

S 2 1 1 E N zn
a4 = P Inz,-+ 6111 (1—— )—}- (#

1,453¢,5

T 553535600~ ~ " V- (10.3)
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The coeflicients are a little simpler than those of Fisher’s series, but Fisher has made
all the relevant calculations, including ¢'=+4- 50732430. The seriesterms are negligi-
Ple in practice.

Next suppose that the mutant is not QCHtI‘éﬂ; but confers a relative fitness 1-~% on
Heterozygotes. ~Then if z, is the probability of surviving for n generations,

Zppq =1 —e1HEIZR, (10.4)

There is a fixed point at z - 0, and another real fixed point, besides an infinity of
complex repulsive points.

If & is negative, then gz, tends to zero, which is an attractive point,ﬁ while there is a
repulsive and biologically irfelevant negative fixed point.b Let 1+k - s<1.

12,8 1 3,
Then 2,1, =2, {1 =352, +§5%2,° % *2,°+ - ~ -).
. Ln
Putting y,, = ————m——- , we have
i 1 ‘;’zn
2(1 —s)

Fut1=5 Vn U [ S-.yna 71‘ s? (3”5)}’713+ - "].

Hence (n+-Cylns - Inp
It

6(1 ) +00,° );7

or (” —‘C’> Ings= 13.14,7 - 111(9 25‘“‘&@71) 2 n XY

Further terms can easily be cajculated.
If k is positive, there is an attractive fixed poing at a positive value g, while zero 1s
repulsive, with s=1-+k  To find £, we revert the series

(145).7 = —In(l—2Z) =2 +42°- b5 - - -

whence 2= 2k(1 k) ¥+ ’ 2 (4Bl - - ). (10.5)

(J\

This is the probability that a single mutant will survive indefinitely. Even if & is
as large as %, the first term has an error under -001. To find the rate at which the
probability approximates to Z, we put 2, =< —&,. Then

(I+kie

K1 ™= '1 _Z) [t? n_l]
—(18) (1-2) % [1—F (4B, +h (1482 5,2 - - -], (10.6)
s=(1oh) (1—2)=1-1k 2k (1+/\:)“%':1~~/c+,—’~;lc‘3—§ Bg

It (i "}"[Q N T i ::VC have Iny1=75 -7’71.( ‘.y'n I bJ’n %J’na—]_ - "): Abel’s 1neﬁlOd
gives
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(n+C) Ins=ln y, ~In(2 25—y} 4 o “52) 94(1_3;; (1“_‘&) e -
or (n-+C") Ins=Inx, —In{2—25—(I +4)x,]+ gégm ’)’ +0{x,). (10.7}

Discussion

 Having shown how to solve one set of non-linear recurrence relations as exactly as is
wished, it is perhaps worth enumerating some things which remain to be done.

" 1. Solution of equations of the types considered when one or more of the constants
ga{l =k ‘?w
I —£ ¢,2
dom variable never exceeding unity, whose distribution has given cumulants, it would
be desirable to find an expression for the distribution of ¢, in terms of g,, and the

above cumulants.

is replaced by a randem variable, For e\:ampie if gpe:= ,cand £ is a ran-

2. Solution of the above equations when the population is large, but a gene is rare
enough to have a finite probability of extinction. TFisher (1930) opened this problem.

‘3. Solution when the population is finite. Here it is often desirable to consider
mutation. Wright’s analysis requires development when selection is intense.

4. Solution when a parameter such as £ varies in a simple manner with time. We
hope to solve this problem, In this case mutation must be considered. »

5. Solution when generations overlap. Here the difference, or recurrence equations,
are replaced by non-linear integral equations. Norton (1928) and Haldane (1927)
opened up this field, but it is difficult because the ages of mates are correlated.

6. Solution of sets of simultaneous equations suck as (1.1). Here there is more
than one arbitrary constant like C; and when we express ¢, as a function of n, its coeffi-
clent may tend to zero quicker than any negative power of n, while being non-negligible
for several generations. Such equations generally arise when genes at several loci are
considered.

7. Solution of equations combining two or more of these complications, for example
those arising with finite populations and overlapping generations. :

8. Tests for the truth of various hypotheses, e.g. that dominance is complete, mating
at random, and the relative fitness of recessives constant, given a series of population
samples. '

9. Methods of estimating parameters giving the intensity of selection. This has
only been done in the very simplest cases. ‘

10. Study of 2 as a function of ¢ in equation (6.4). We do not know whether n is
a function of a type so far studied.

11. Investigation of the convergence of the series derived in this paper.

12. Tabulation of solutions of equations (2.2) and (2.3) and perhaps others, for
different values of s and 4.

Even if some of these tasks involve the use of electronic computers, the programming
of such computations requires great skill.
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SUMMARY

When g, is a parameter of a population in generaition %, iy 15 Often a simple func-
tion of ¢,. If s0, n is an autororphic function of ¢,.- A simple transformation of
¢, permits the expression of n as an infinite series which often converges quickly, and
allows numerical calculation. It is sometimes possible to obtain a very close approxima-
tion to the value of z in terms of logarithms. Examples are given.
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