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INTRODUCTION 

I f  a population has sharply divided generations" and a �9 breeding system, is sz~bject 

to selection of constant intensity, and is so large tha twe  can use deterministic hypotheses, 
a mathematical  t reatment of selection requires the solution of one or lla.ore recurrence, 
or  finite difference, equations. In the case of inbreeding without seIectioaj these 
equations are linear. I f  selection occurs, they are nonlinear. 

These equations may be of the second or higher order. For example, if autosomal 

recesxives are etimir~ated in the male but not the female sex, and mating is at random; 
while the fi'equencies of  a recessive gene are x;, and y= in the female and male sexes 

respectively of generation n, 

~-+* ='~ %, +Y,') t 

Y,+I--  2(I--x,y,~) " 
(1.t) 

These simultaneous equations are each of the first order, and on eliminating y~ and 

Yn+l, yield the equation 

,~ _ 2x,~+i-x,, (1 +x,,+d (Z~,~+l--x,d 

. _ (x.+l-i) (2x,,+1-.,,)..~ 1 0.2) 
(x.+ Ax~. l )  (x,~+2Ax.)x,, 

or /_X x,+l=. 2 (I--x,~2--2x~Ax=) j 

These three equations, all equivalent, are a recurrence equation and two difference 

equatiods of the second order. For they involve fi-equencies in three successive genera- 
tions. We shall not deal with them in this article. On the other hand if a fraction k 
of  recessives is eliminated in both sexes in a randona mat ing populations and q,~ is 'the 
frequency o f  recessive gametes in generation n, then 

qr~ --kq,,:" " t 
q"+*-- 1 --kq.,, 'z (1.3) 

i or q,~+l--q~ = 1 --kq." " J 

These are an equivalent recurrence and difference equation of the first order, the 
former of the second degree. Tha t  is to say qn..~-i is a rational function of 6, containing. 
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no terms higher than its square. We  desire to get an expression which wiI1 enable  us to 
calculate q~ given qo and n, or n given q0 and q~ with speed and accuracy  even when  
n is large. Since Jz must  be  a positive integer, it wilI mat te r  very little i f  the error in 
the calculated value of  n is as large as 0 �9 In  the par t icular  case (1.3) one can express 

n as a series in ascending powers of  k which is pre t ty  accurate over the whoIe  range  o f  

q~ f rom i to zero. This  cannot  be done where  several constants are involved.  But  
whgn q.r~ is near  zero we can get an expression for ,~ in ascending powers  of  ~ ,  and  

when q,~ is near  uni ty  we can get a similar expression in powers of  (1--q,a). T h e  
methods of  doing so are  quite general, and will be described. 

Consider the general equat ion 

z~+l--f(zr,) (1 .,~) 

where f i s  a one-valued analytic fnnction. A n, a themat ical  t reatment ,  wi th  rigorous 
proofs of certain theoren~, and references, are given by Picard (1928) and  Val i ron 
(1954). I f  

f (s  - Z = 0  (1.5) 

then if  z ~ = Z ,  z~+, = ~,  so Z is said to be a fixed point of the iteration (1.4). W e  shall 
assume t h a t f ( z )  is a real fnnction, but  even so some or alI the roots of  ( t .5)  m a y  be 
compIex, and  (1.4) can only be  fuliy discussed i f - ~  is a complex variable.  

I f  f (z) is a ra t ional  funct ion whose numera to r  is of  order n i and  denomina to r  of  
order  n2, the number  of  roots of (1,5) is *t, or n ~ + l ,  ~v:hichever is larger. But  two or 
more  roots of  (1.5) 1nay be equal. Thus  the fixed points of  (1.3) are 0, 0, and 1. 

I f  g is any  finite root  of  (1.5), and z ~ =  s  then  x ~ + , = f  (Z+,v~) - f ( g )  

,,J'(z> + + e ' " (z )+- - - .  

i 
I f  a value of Z is in~nite, as when z~+l =az~ 2 +bz,~, we put  x , ~ = ~ .  With  the 

Z~ + c  
French attthor% we shall denote  f ' ( Z )  by s. T h e  behaviour  of  x~, and  therefore z , ,  

ir~ the ~leighbourhood of a fixed point, depends on the value ofs .  I t  is easily seen t ha t  
i f  is[ < I, and ix={ is sufficiently small, Ix~+~[ is still smaller, and ,% approaches  zer6 

as n increases. Such a point  is called an attractive point. I f  s = 0 ,  the a p p r o a c h  is very  
rapid,  and  we shaI1 call it a highly at~ra~tivq po&t. I f  s is positive, x~ does not  change 

its sign after a certain value of  n, i fs  is negative the signs alternate.  - I f  Is} > 1 successive 
values of lx~I increase at  1east below some value of  n, and Z is said to be  a repzdsive 
point, t f l s t =  I, Val i ron describes Z as an iMiffe,e~t pobzL We think this is mlsleadir~g: 
I n  fact such a point  is a t t ract ive in certai~a directions in the complex  p lane  
and  repOisive in others�9 For example in the case of  (1.3), if k is positive, zero 
is a t t ract ive Mong the real positive, axis. T h a t  is to say if q~ is positive and  
less than  ur i ty ,  q~+l is smaller. But it is repulsive along the real  negat ive  

axis. For if  q,~ is negative, q~ bl is also negat ive with a larger absg_lute value .  Since 
negat ive values of  q= have  no biologicM meaniug,  it i% for practlcal  purposes,  an  a t t rac-  
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rive point. A point  where s~-I  corresponds to two or more  equal roots of  ( i '5) ,  and  
we shall call it a confluent point. I f  s =  --1, we have only to p u t y , ~ ( - - 1 ) ' ~ ' , ,  and y~ 

has a confluent point. Similarly if s=co, where c~ is a complex root of  uni ty  with 

~o~-----1, we can pu t  xl~,-~y~: The case when [sI~--I , but  is not  a complex root of  unity, 

e.g. s = [  (4-.'--3"V'I~), is intractable, but  has no reIevance to genetics. I t  is easy to 

show that  s is invariant  under  any homographic  or ant ihomographic  transtbrmation 

of  Z~. 
I f  most of  the cases of  (1.4) which have yet occurred in genetics, f (z) is a rat ional  

function of  degree 1 or 2. We shall consider a few cases when f ( z )  is a function of  

a more  complicated kind. T he  solution when it is of  the first degree is trivial. The  

most  general expression is 

s x,, (1.7) 
X~+l-- l+ax~ 

Hence x,~+l -~ = s  -J (x, -1 + a ) ,  or 

7~,-r J. 1 - - S  

Hence , - l ~ . . a  . . . . . .  ( , a "~ 
- T 1 - - s ]  ' 

x.,~ l_s_~a(l_s,~)x ~ 1 

J o l - , , l o g ,  = log if0 . 

(1.8) 

These are the appropr ia te  forms when Isi < 1, i.e. if zero is an attractive point. I t  
will be seen that  we have found a simple function of  x.,~ whose values form a geometric 

series. We  cannot  do this exactly for recurrences of" higher degree, but  we can ap- 

proximate to it. (1.8) has a second fixed point,  X--a-~(s--1). I f  however s = t  

the two fixed points are confluent, and xu+~-t~:.-x~,-l@a, so that the values of  x.,~ form 

a harmonic  series, and 

x~ = 1 -]--nax 0 

ll  = a - - I  (Xn =1 --'~"O -- 1 ) ,  

(1.9) 

I f  a is positive, zero is attractive when x~ is positive, repulsive when it is; negative. 

W h e n f ( z )  !n (1.4.) is a rational function, n is an automorphic  funcdo~ of' z~, or x~ of  

a type  first desc~ibed by  Poincard. Such functions have not  Seen tabulated, al].d so 

far as we know have had no applications in physics. They  can be represented by  
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infinite series in certain regions of the z plane. 
we shall say a little about the general theory of second order iterations. 
generaI difference equation with finite fixed points may  be written 

Po~ulaSorz GeTzetics 

Before showing how to deal with them, 
The  most 

x= [b,b~--azaa+a~(a~+aa--b~--b~)-k-.!b,-kb~--a~__.aa)x.~ ] 
x~+i . . . .  ( a i _ b t ) ( a l _ b z ) + ( b , + b ~ _ 2 a l ) x . + x ~  

(~,-a2) (~,-~) 
Thus h = l  (a i_bi )  (al_b2) 

which becomes unity if  a 1 =a~. or ,a s or both, that is to say if two or three fixed points 
coincide. Similarly one can show that the condition fc~,? a i to be a highly attractive 

point is that (ai--b~) (ai--b=)=(al--a~.) (ai_aa).  T h e  condition that a 1 should be 

attractive is that (al --a~.) (a i --an) should be positive but  less than 2. (~-b~) (~--b~) 

STANDARD FORMS 

The general recurrence equation of the second degree contains dive arbitrary constants. 
X'h[s number is reduced to four on transferring the origin to a fixed point. Even so 

the solution is cmnbrous. But by a further transformation we can reduce the number  

to two, one, or even zero. Further, in some cases, we can greatly simplii) the final 
solution. 

The most important group., of cases has an ordinary attractive or repulsive point 
with s between 0 and I for an attractive point (stable equilibrium), exceeding ani ty  for 

a repulsive point (unstable equilibrium). The exact vaIue of unity is only reached 
if some condition is exactly fulfilled, for example if  the loss or gain of fitness of a homozy- 

gore is co.topic[ely recessive. This can very rarely be the case, even when dominance 
is so complete lhat  we do not know whether the heterozygote is or is not fitter than the 
homozygous dominant.  However s must sometimes be so near to unity that  it is best 
taken to be exactly unity. We begin therefore with the general case. 

,~,JI +A~,) (2.i) 
Let x~+~-- 1 -[-Bx~ +Cx~ ~ " 

A z , _ - ( z , - ~ t )  (z,-~2) (z,-a.~) (z,--b,) (z,--b,) ' (1.10) 

(a t n-a2-ba 3 - b i  --b,2z z.."--( a,.a a -~-a~t 1 q-a.ta 2 --blb~) z,, +aia~.aa (1.11 ) 

which is the most general rational quadratic recurrence equation. For given b 1 and 
be. we can choose az, a2, and an, so that the coeff2cients of the rmmerator assume any  
assigned values, al, az, and a a are the fixed points. I f  one or more is infinite, one or 
both ofb,  and b~ must also be infinite. I f % = z ~ - - a ,  then 

-.~'~ (~-a~-.~.) (a~-~-x,,) 
./>o =--(bl-~,- . , , ) (a~ - - ~ - , , )  
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Here Is[ is not  uni ty  or zero, and AZ--ABq-C is no t  zero, or (1 +Axa) would be  a 

factor of  the denominator .  I t  is convenient to proceed ',.o the standard form in two 

steps. 

1 x,~-~'+Bx,~ - I + C  
3,;aq 1 -  ~ :  

= s  -I  ~" - ~ + B - - A  q A ~ - - A B + C ~  
U ~ 

I f 9  A - - B  a.nd y n _ l ~ x  _l__O, yn__ 1 xn . A"~ 
1 - - s  ' --Ox~ 1 -l-~Y~ 

then 
. [  I_kA~--AB-kC'~ 

F (A~--AB+O)y#'] -~ 
.~,~+~=sy. L I-~ i ~  j 

I f  A - ~ - A B - C  is negative, let u~ ~ ( A ~" +AB--C)�89 a . . . .  (A + O) ( - -A  ~- +AB--C)-~- .  

T h e n  u,,+~.=s I - - t - - a u ~ f  " (2.2) 

This is the principal  s tandard form. Ho '#ever  i f  _d 'a A B + C  is poskive we p a t  

u.~ = (A ~ - - A B  q-C)~y,,, and  a = --  (A -{-0) (A ~ - -AB  +C)-�89 . 

, ( + ~,2 ~) -~ (~.~) Then  u,~.._l=su,~ 1 1- -au~/  

I f  /~=  (2 --s) A, then A+O=O,  and 
,,,~_,=su,, (~ =k,,2) -~ (2.4) 

the s~g~L being that  of  A~- -ABq-C.  We can use the same ~led~od for any  other function 

referred to one of  its zeros, and obtain a s tandard form of  the type u,,+l----su,, I :.j=u,( z + 
~u,? q-bu.,~ + - - .)-1. 

W h e n  s----l, with two confluent roots, we liave 

x,,,(l +~,~)  (2.5) 
"%+ i = 1 -l-B,% q-Cx,~ ~ 

A~-- -AB+C 
or x,~.~ 1-1 =x~ - l  + B - - A  -~ x,, -1-]-A " 

(.e, --A).~,, 
Zero is attractive for positive ,~3, i f B > A .  I f  so let u,~ ...... 1 +Ax,, ' or 

x:,, - ~ =  ( e - - A )  zi,~--!~A. T h e n  zq~+i~-u~(1 @u,~--mt~") =i (2.6) 
@ 

where a = ( A ~  (A- -B)  -2. 
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I f  A > B, zero is repulsive ibr positive x=, and the equilibrium is unstable. 

(A--B)x;~ whence case we put  u.,,-- 1-42Ax~ 

In  this 

(2.7) 

We may  treat any function giving s =  I in" the same way, and  obtain the tbrm 

u~d.i~u,~(i:jzu.~_au~_bu,~_cu, U t . _  _)-i. Another s tandard  form is often more  

useful than (2.7) for a second degree equa t ion  with confluent roots. I n  equat ion 
(2.5) let us transfer our origin to the root (A--B)  C-L 

Let  y,~ = A - - B - - C  a:,~. 

(A~--AB+C) y.~-2+(B--2A)  y z t + l  
Theny~+l  - ~ .  ~ . . . .  

(AB ~ -i --B- +C) y.,, --B 

Let z ,  = C -~ (A --B) (AB- -B  ~ + C) y , c  1 --BC -~ (A --B).  

Then z ,~+i :  Z~ -~- a (Z.~ - -  t ) ~ n-1 

B - - A  
where a= .  

A B - - B  2 +C " 

(2.8) 

This transformation is clearly inappticable i f  AB--Be-~C --0 and is useless when a is 

numerically large. The  fixed points of  (2.8) are 1, 1 and oo and it can be  seen to be  

quite general. For Az~ must have a square term since t~xere are two confluent roots�9 

and must be of  order z~, since oo is an ordinary attractive point .  

I f  B = A ,  all three points are confluent at  zero. Here  

x~(t +A~) 
x " + l  = i + Ax,~ +Cx,, 2 ' (2.9) 

C x~+t-l--x~-I + -.  
x~-I + A  

Zero is attractive for both positive and negative values of  x,~ i f  C is positive. I f  so 

ie~x= - -C  z~ --A, or x=-- C~_AI~ n or u=-- l@Ax n 

T h e n  u~+i = u ,  (1 ~ -i +u,~- )  . ( 2 . 1 0 )  

t f  C i s negative the sign o f  u~ 2 must  be reversed. 

At  a highly attractive point  we have 

x,~-- A +Bx,~ +Cx~ 2 

or  x,~+I-~=Ax,-2+Bx, CI +C. 

(2.10 
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Au~ x~ 
Let Ax,,-l=-u,, - ~ - � 8 9  B, or x,,-- 1 --{- Bu," u~==A +�89 Bx,, " 

Then %+1-1 =u~-~+AC+~} B(2--B) 

or if ~ =~  B(B--2)--AC, 

,,.+~ =,,.,(1 -~ , , .b-~ .  (2.12) 

Similarly for highI) attractive points of higher order, we can reduce x~+l.----xJ ~ 
(_4 + t~x,, +cx , ,~  + - - . ) -~  

to u~+z-----u,~1~(I--au~--bu,~ a - - -)-~ . 

SOLUTION AT AN ORDINARY fiXED POINT 

We have to solve the equation 

�9 ( ~'~ ~-~ 
u,+z=su ~ ! - -  t - - a u J  " (2.2) 

Using a method due to Abel (188t) let us put 

(n+C) lns=lnu~+ 27 b#c~ ~ 

where the constant C depends on the value ofuo, while the constants b~ are independent 
of it. Then 

C.O 
( n + l  +C) lns=inu~+x+ 27 bru~+:~ r ; 

r-----2 
on subtraction we find 

("~§ F b,.(,,.**.-,,,:) 
r = 2  

~ l n s - - I n (  u'= "~ - - ~  b.,,u,~r , , z  "~""1 
\ l - - a u , d  r = 2  1--aug/ ' 

This is an identity, in which we may determine the values of b r by equating the 
coefficients of powers of*q2 to zero. I t  is convenient to put 

1 --s i =hr '  so tha* 1 +hr --= 1 --s r" 

We have 
=__b,u='[1 --s ~-2sht , ,  =-2as=u~ ~ - - -] +bau, a[l --s a-3sau.. ~ - - -] 

+ b # , ~ 4 [ 1  - - #  . . - ]  + . . . . .  . 

Clearly b2= i ! f i = l  +h=, ba=~. i, a . . . .  a(1 +ha) , (1 - # )  ba=2sib~+aZ+~.=a =+�89 

whence b~ .  (1-{-h~) (a =-[-{~q-2h~) etc. 
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Thus. we have 

(,~ + c )  ~ns = h ~ u .  + (1 +h=) , , .J  + (1 +~,~)~,,? I- (1 +h,,) (,,~ +-} +%)~,+~" + 

(I i-.hs)a(aZ+l , 2h~-r- h,)u,~+. +(1, ---i h+]c~ra rb-," w~-h,= , Shaw th,~) a + a  rob., -L2h~-kShJ,.,] 

�9 u,,"--+- (1 -t-hT)a[a" + (2 +2h+ +Sh  a +4h,, +5hs)a ~ + (1 +6hs  + 6 h  a +2a~ + h a  s -l-Shah,, + 

I (<.,.q + 15gh~] ++,,7 + _ _ - .  (3.1) 

K.a is large such a form as 

cO 

/ z + C )  has---lnu~+ N (l+h~)a"-~u,~+(l+h,,)(,[+2hz)u,~'*+ 
r = 2  

(~ -s+~) ( l + 2a.  + 3h~) a+,~ ~ + - - - 
nu~y be convenient-. 

When s is less than mlity this m a y  be written 

, ~ + C =  I~176 u " - t -  3-04 u, z [1 + h + + ( 1  + h a ) a u = +  - - - ] .  
ldg10 s -1 7 Iogl0 s-1 

3"04 
i~Iere 7 ' = .4342857 is used as an approximat ion to-4342949,  or  Iogl0e. u~ will 

generaliy be iess than �89 and  au~ less than unity. I f  so the terms in the bracket will 

amount  to less than unity,  and may'  be negIected if  we merely wish-to calculate n to 
tl>e ~learest integer, t-towever when s >  1 the series ~fr diverge when ~n > s-~, and 

will not  be very accurate whert su,~ exceeds �89 T h e  other  fixed" points are given by  

u -~ - b a ( 1 - - s ) u - - l + s = 0 ;  they are u ----- � 89  {(1--s) (4+a2--a~s)} +- - -a (1- -s ) ] .  The .  

series certainly diverges when Iu~/! exceeds the modulus  of  the smaller of  these, o r  
exceeds 1 ~ -" (s- --I)~ if  they~are comple~. T he  series (3.1) is often quite sufficient for 
conzputatlon. H o w e v e r  it can be transforrned as follows. 

s~=C• exp [b .u~+bau .  3 _  q_ , ~ ,  ~ .. 4_T+ - - -] 

- -  3 g 4 1  1 1  2 5 I 6 1  - -u,~+b~u,~ ~-ba~,, wff~-r~-b~. )z~,~ - r ( b s + b # ~ ) z ~  ~ - 

= u  n +(1  +h2)u,~ a + ( i  +ha)autO-+l(1 +h+)a ~- +1 +ah~w-~-h.~T~-h~ T2h2rq]u~ + - - - .  

( 3 2 )  

I~ sn+C:t, 

�9 . . I 5 Z . . k _ 9  5 _ _ . ,,,,.=t--(1 +h~)+a--(I +ha)at'~--[(t +h+)aZ--2--2h., ++h,--+h z + _h~h,~]t - (3.3) 

This series may  he used for calculation, and cart o f  course he extended, but  (3.1) 
is generally sufficient. Examples are given later. 

�9 Next  consider 

1 --au++] (2.3) 
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Let  un=i  Wn, or wn---- --i u, n. 

( "- 

w,~+l =s  w~ 1 1--z aw, j  " 

Then 

So from (3.1) 

(nq-C') lns=tnw~ v-Xb,~ w,, , 

where b'~ is derived from b,. by substituting ia for a. Hence 

(n +C) lns=Inu,~ +Xb'~( - - i  u,,)" 

= ~n ,,, - (~ +h.,) ~,? - (~ + 4 )  auJ  + ( 1 +h~) ( - a "  + �89  + 24)~,.' + ( 1 + & )  a 
(--a~q-1 2k2hz+3ha) u,5+ - - - .  (3.4) 

This is derived fi'om (3.1) by changing the sign of the first term in the coefficient 
Of each power of u~,, conserving that of the second, changing that of the third, and so 
on. One can x~n'ite down expressions corresponding to (3.2) and (3.3). 

To solve 

, ~ + , = s  u,,(1 + u ~ )  -1 (2.4) 

we can put z,,~, i~----s%~=(1 q-2u~+u=4) -1, 
which is an equation of type (2.6) in u, 2, or use AbeI's method directly. By the latter 

method we find 

(n q-C)Ins = In u~ -- (1 +h2) u~ ~ q- (1 q-h~) (�89 q-2hz)u,~ ~ -  (1 +t@ (~- -~-3h,, q-2h4 q-Sh~tq) u,~ 6 -k 
(1 q-hs) (-~: q-4hz q-5Ih-k2t% + 20hah~-k 18h~h6 + ] 2h~h6 --48hjqh~) u,~% (3.5) 

In the general case we can always, by a homggraphic transformation of Z~, derive 

the iteration 

zt.n+ * ==s u,~(1 -bu,, ~-aau~ a-a~u,~a-a~ur, ~ . . . .  ). 

Taking the negative sign for the ambiguity, Abd's  method gives~ 

(n -kC)Ins--lnu,,-}- (1 -kh..)ze~ = -}- (1 -}-ha)aaz,,, = -}- (1 q-tq) (a 4 q- ~--~--2hg.)u, ~ -k 

(~ +hD D~ + ( 1  + 2 4  +3a8) ~a] , ,~  + - - - (~.G) 

which can be transformed like (3.1). 

I t  may be remarked that (3.1) and similar equations may be written as differential 

equations provided C is assumed constant. (3.1) becomes 

ins ~=u-1-1-2(1 -I-h=)u +3( t  q-ha)au 2 +2(1 -l-ha) (2a 2 4-1 -k4h2) c' a ~- . . . .  

We have thus got rid of the awkward logarithmic term. 
Equations sometimes arise which can readily be reduced to the fm'm 

:1 

a'~+i = s  x,,(t --x,,). (3.7) 
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Putting (1--s) u,, (I--s) .% x,~-.~-~ --s'--~u-7 ' or u,~-- 1--s-Fx,, ' we have 

wherea 2 - - s  2+hl .  
I - -s  

So fi 'om (3.1), ( n + C ) l n s = l n u , , + ( 1  +h.,)z*,,~+(2 +h~) (1 +ha) u,,,a-k - - - .  

SOLUTION AT A CONFLUENT POINT 

We have to so lve  

(2.2) 

(3.8) 

u~+l =u,~ ( 1 +z,,, - -au,))- i .  
oO 

Let n + C = u ~ - ~ a  lnu, ,+(a+{)  In (1 --au,,) +a  27 b~uJ. 

Then by Abel's. method, 

1 ~ 1 -- au.,~ +aln(1 +z<--aun"-) + (a +})  [ln(l -kU.) --in(1 +,& --az&2)] 
cO 

- a  27 b~ej [ t - (1  + . . - au .2 )  - ']  
r = 2  

o r  

03 
2 

r = 2  
brz&"[1--(t +u,~--au,?) -~] ~--U.n-I-ln(l ~ u ,~ ) - -~ ln  1-- l + u , / "  

(2.6) 

The values of b,. are obtained by equating powers, of coefficients of u, .  So 

n +C  = u,, - 1 - a  lnz& + (a +�89 in (~" --au.n) 

au~a[ au~ , (5a2+10a+2) ] 
12 1 - - 7 - ~  20 %2 . . . .  . (4.1) 

The terms in the infinite series are often negligible. The second logarithmic term 
arises as follows. The fixed points of (2.6) are 0, 0, and a -1. I f  x n : l - - m & ,  

= a + l  x,~(a+I --x~) This is an equation of type (2.1) with s =  
x ~ + l  a - f - x ~  - - x ~  ~ "" a 

By (3.1) its solution for small .% is 

(n+C') In a + t  =lnx=+O(x,~) 
a 

( i 1 ) 
or n+C'= a+{~--l-~aq 24a2-- - - - In(l--au~). 

The use of the terms aq-~- reduces the coefficient of u n Jn (4.1) to zer% and consi- 
derably simplifies succeeding terms. 
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The inversion of (4.1) gives, writing n' for ~z+C, 

~t~=n '-~ +a  n'-~lmz ' +(a~ln~ ' +2s +{,) n'-ahxn ' -] . . . .  

�9 ~ h i e h  is too cumbrous tbr serimas eomp~tatlon.  

(~.2) 

To solve ur,+a =u.(1-+-u,~=). -1 

�9 we put  2u,~==w,~, so that  

(2.9) 

w.+l  = w . .  (~ + w.  + } w , ? )  - ~ .  

This is equation (2.6) with a = --�88 The  solution is therefore 

n--cC - ~ u , ~ + ~  lnu,~T~ In (1--~, ,~)  , 12 1 ~} 6 80 }- " - ")" (4.3) 

In generat if  u,+a=u,,(1 "zt,,--au~"--bu,, a . . . .  ) - 1  the reciprocal and logari th-  
mic terms will be as in (4.1) though the  series will be different, and if  Au~=zt,]=+ 

a u ~ + l + - - - ,  the solution will be of  the form n + C = ~ + - - - .  

SOLUTION AT A HIGHLY ATTRACTIVE POINT 

let 2"+c= --in u,,+ ~:~ 
r = l  

O0 
so 2 " q + c =  --lnu,~+~ + E b. u.+l 2~. 

Hence l nu , ,+:+ 27 b,.u~+l ~-" + 2 1 n z ~ - - 2 2  b r u,, = 0 ,  or 

r = l  r----1 

CO 

z b . , . , C [ 2 - ~ , ? , ' ( 1 - ~ C ) - ~ q . ~ I ~ ( I - a u , h  = - ( ~ C  +-~!.~z~,,%-.~&r . . . .  ). 
r = l  

(2. ]2)  

On equat ing coeiSdeats  we find bl -= --.,.,,a,,~ etc.; so 

2"+c= -Jr~,,,~-�89 (a-l-i) 4. :,n,, (,',+a) ,,,'~--~a (a" -1 -6a%a+l )  u, 8 

or >}-C=(]og  2) -1 log [ - l ~ , - ~ a , , . ; - k a  ( ~ . + ] ) C +  - " -]. (5.]) 

u,, approaches zero very rapidly, and the first t e rm in the power series is usually suf-Ii- 
cient. T h e  series m a y  be readiIy inverted, and if 

A-'---e ~', and ~-=A -~, 
1) 

, , . = t - � 8 9  a~+~.,~ (s~.-2) t~ - ~ > ,  ( 5 a - 6 )  t~ . . . .  (5.2) 
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The same metkod may be used when the iterated function is of higher order, or 
CO --1 

transcendental. I f  u,~+l=u.,, z (1 -- Z' a.,u~"] , then it is easily shown that 
\ r = 2  / 

~ " , ( 5 . a )  2,~+ c = --lnu= ---.-,:a~u='--{,aau.,, a - -~  (a,, -l-a.a q-2a:~) u,, '~ . . . .  

which can be inverted if desired. 

A GENERAL SOLUTION FOIl SINGLY CONFLUENT O UADRATIC ITERATIONS 

We have seen that the general equation (2.5) cart, except in one special case., be 
transformed to 

x~-,-z =-% -Fa (x,~ " 1  ) 2x~-1.  (.-9.8) 

Haldane (19322} , 1932b) showed that n could be expanded in ascending powers of a. 
In genetical applications a is never less than --1, but may assume fairly large positive 
Values. I f  it is large and positive or close to --1, x,, changes quickly with n an.d can be 
calculated over much of iLs ra~tge. The series for n converges slowly or not at all 
when I a [ is large, but is quite satisfactory in the neighbourhood of tlae fixed points 1 
(confluent) and m (attractive): We need only consider values of x,, > I in geneticaI 
applications. Haldane's series can be obtained simply by Abel's method as follows. 

I f  x=+z =x~ +ay, (6.1) 

wherey is a known function of x~, regular in the region considered, 

( d ) ~  
y. Let an = 2 a r-z x,~ f r (x)dx ,  l e ty~= d-xTv~ r = l  "-7(7"J~ Ixo 

where the functions f~(x) are to be, determined. Provided f~(x) can be expanded in 
a Taylor's series, 

~=1 k-7-.,i=I \d,/ A(,:=) - - ~ 0 .  

We cart determine tlle-values of f r  (x~) by equating the coefficients of powers of a to 
zero. The coefficient of a is 

yA (x,) -~  =o, soA (~,~)=7*. 

The coefficient of a ~-1, multiplied by m! y- t ,  i fm > 2, is 

N ~ t  ra-r~l 

This is a recurrence equation for f~(x) .  For example if m=4~, 
4 f  a (x) -[-6yf'~ (x) -k4y 2 f " ,  (x) = O. 
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Hence,  provided the series converges un i formly ,  

'~ = xo. ~,-=l 7- .  f , ( x )  & ,  

where 

:f~(,'O =.y-:'-, ~ 
:~f~ (x)=y- iy i ,  ! 

:A ( x ) =y-Zyta @ 2 yiy2, I 
X 1 I 

etc. J 

It  is easily shown, by puttingy----xi that  the the leading terms are tlae expansion of 

(6.2) 

Y J_ 

y In (1 q-ayt) " 

In  the case here considered, y = (x -- I) ~ x-~,yL = 1 --x -"~, yr  = ( --)" r! x -~-t, if r > 1, so 

A(x) = . ( . - I ) - t  7 
f2(x) = x - i ( x - - 1 ) - l ( x  + l )' " I 
f~(x) =-,i-(x-~ +2~ -~ +3x-D, 1 
f ~ ( x ) = x - 5 ( x z - 1 )  (x~ +2x-F5) =x-~-[-2x-2 + 4 x - a - 2 x - ~ - 5 x - 5 ,  I (6.3) 

- -  1 ~ - - 7  Ks(x)---~z ( x - - l )  e (I9x~+76xa-F-220x~+36Ox-+-105) ] 
' ~-~ ~ 6 

= - - r  9x -~- +38x  -~ +87x'-a--a~x - r176  + 150x- -q,- 105x-~). J 

The  values of  x~ thus change as if they were ohanging continuously with 
.: t:) 

d~z ..~ _ 1 a a ~ 
~xx = a  .t:t (x)-k ~.~ A ( x ) q - ~  f a  ( x ) +  ~ A ( x )  ,-k - - -~ 

On 'integrating, and putt ing z=x,~ -I,  we find 

a,~ +C. - In  (I - z )  - I n z -  z(i - z )  -~ + ~,~[2 ln(1 - z )  - inz ]  -F ~'~(lnz-i- ~z +~z ~) 

+ 'Y< 9 + . . . .  

The coefficients of tnz-}-2z are the terms of the expansion of --a [ln(1-t-a)] -~. 
taking these out, we lind 

a ln z ~_ [2_~ a 2a ] 
,:m + C =  ( I  -~-.a)ln(1 - -  z) - - z (1  - -z )  -~ - -  " l n (T~a )  la  ( t  -~-~)) z 

On 

a o z  a (6.4) ----g-- 1 - - ~ ( 2 4 - - 8 z - - 1 5 z  a) -t- (522--16z--1185z~+360za+210.d)  --O(a a) �9 

The first four tern as of this series give surprising accuracy evma when a ~  1, when 
the reciprocal logarithmic series diverges. The  four eli term which only reaches 
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+0"I  146z when a =  i, and +0'3183z when a = - - 0 - 9 ,  can be neglected for numerically 
small vaiues of a. 

To give an idea of the accuracy for numerically large values of a, let a = l ,  z0=0-5,  
z l =  0-4. Then the iirst four terms of (6.~) give C=-- I -32669 ,  C + I  = --0-32055, giving 

a difference of 1-00614, instead of unity. Similarly za= .0 I  gives exactly i (to the 
fifth place of decimals), zs--=0.99 gives 1-00018. 

The  fit is thus extremely good when z~ or 1 --z.,~ are smalt, but when z.~, is about �89 

the error is 0-6%. I f  z~ is the frequency of a recessive gene, over 5,000 individuals 
would have to be counted to reduce the  standard[ error of the estimate of  z,~ to this value. 
So the leading terms of (6-4) are Hkelv to be sufficient for many years to come. When 
a=--{~ the errors are of the same order of  magnitude, as pointed out by Haldane 
(1932b) Who however did not use the fourth term of (6.4). Thus even when dominants 

are half as fit or twice as fit as recessives, the approximation is excellent, and as the 
error is roughly-proportional to a~% it is much better for moderate intensities ofseIection. 

I f  w e  write ~ = F  (a, z), lz is an antomorphie function of z. I t  has a denumerable 
infinity of poles corresponding to the periodic points of order c where x~,+o=x,,=X~. 
X~ can be expressed as a function of a, and a as a function of X~. Thus F (a, z) has 

a denumerable infinity of poles in the a plane, and we conjecture that it is an automor- 
phic function ofe.  For example if Z~ and A c are values giving z.n+~=z.,, then 

~'1=0, I, I, g z=  i _ ~ / - a  -1, 

1 A,=0, &=~-z [3z-I~:Vz~-6z+}]" 

SELECTION OF CONSTANT ~NTENStTY, WITI-t R.ANDOM I'~ATING 

We assume that a pair  of autosomal allelomorphs is segregating normally,  that 
mating is at random, and the relative fitnesses of the three genotypes are constant. I f  
then the nth generation.is formed fi'om gametes p,~ A+q.~ a (pn+q,~=l) ,  the parents 
Of the next generation are in the ratios 

(1 --k) p, 2 AA : 2 p~q~ Aa : (I --I) q2  aa .  

Here k alld t may have any vatues not exceeding unity. They are most simply 
thought of as measures of differential mortality, but  the same form is reached if they 
measure differential fertility. I t  [bllows tlaat 

% ( i  --q,0 -/ 

or Aq,~---- p~ q'~ (kP'~--lq'0 g 2 I --kp,, --lq,~ . I  

(7.t) 
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If  k4-l i lcl=O, or (1--k) (1--l) = 1~ that is to say the fitnesses ofthe three genotypes 
are in geometric progression, this simplifies to the first order recurrence equation 

( t -Oq~ 
qn+l='  1--iq~ +" 

The fixed points are 0 and 1, and by (1.7)', 

(1 --l)~qo "1 q,~== 
1--qo+(I-- l )  nqo I 

i (7.2) 
- q o + ( l _ k ) . ( 1  _qo ) J 

The gene ratio p~ increases or diminishes in a geometric progression. 

We also obtain a first order recurrence if k =  1, or l = 1, that is to say if a homozygote 
is effectively lethal. I f  l = l ,  (7.1) becomes 

q.,+, =q=[I --k+(1 +k) q,d -*- 

There are equilibiia when q~=0 or q,~=Q=k (1 +k)7 ~, the latter being stable and 
meaningful if  and only i lk  is positive. From (1.8) and (I.9) the solutions are: 

(n+C) log (I--k) = tog  ( q ~ - e ) - l o g  q. 
@+c)  log (1-k) = log ( ~ - q , , ) - l o g  q~ 

n+C = q,-1 
(n+C) log (l--k) = . l o g  (q,, - Q) - l o g  q~ 

(n+C) log 2 = - log~q= 
(n'-C) log (I--k) -- log (0.Tq~)--log q,, 

(k=i), 1 
(0<k<a, %>Q), [ 
(0<k<L q,,< Q), [ 
(/c--o), ~. (7.3) 
( 0 > k >  --1), i 
(k=-- l ) ,  1 
(k< - t ) .  J 

Decimal logarithms may be used. The equations may of course also be written in 
s u c h  t~ornls a s  

q,,= Q [! -(1 -k)',+c] -I, 
q,, = (n +C)-I 

a n d  so  o n .  

In general the fixed points of (7.1) are 0, 1, and k (k+l) -x. The latter is onIy blo- 
logically relevant i lk  and k+l  have the same sign. There are 9 cases. 

(1) k > 0, t <0. q=0 is an unstable, q= 1 a stable equilibrium, both being ordinary 
fixed points, 0 repulsive and 1 attractive. 

(2) k < 0, l > 0. As above with p substituted :[o1' q. 
(3) k=O, /<0 .  q=0 is a confluent point, effectively repulsive, but with slow 

withdrawal; q = 1 is an attractive point, giving a stable equilibrium. 
(4) k<0,  I=0 .  As above wi thp substituted :for q. 
(5) k=O, />0 .  q = 0 i s  a confluent point, effectively attractive, but with stow ap- 

proach; q=  1 is m? ordin.ary repulsive point. 
(6) k> 0, l=0 .  As above with p ~ubstituted for q. 
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(7) k<0,  l<0 .  There is a repulsive poin( giving an unstable equilibrlum at 
q=k  (k+l)7 ~ and attractive points giving stable equilibrium at q=0  and 1. 

(8) k>0 ,  l>0 .  There is an attractive point giving a stable equilibrium at 
g=k(k+I)  ~1, and repulsive points giving unstable equilibria at q=0  and 1. 

(9) /~-----l=0. Every value of q gives a neutral equilibrium. 
tn  fact the last case is negligible, though selection may be less important than muta- 

tion or drift. Also (3), (4), (5), and (6) are ideal cases, probably never realised in 
practice, tho~@z we often do not know whether the heterozygote is slightly fitter or 
slightly less fit than one homozygote. They must theretbre be considered. I t  will 
be seen that (1) and (2), (3) and (4), (5) and (6) are equivalent. So (1), (3), (5), 
(7), and (8) demand investigation. 

An approximate Solution can be given if]k[ and IX! are both small, when (7.1) can 
be treated as ~ differential equation 

dq 
~-n --q(1--q) [k--(k-]-l)q] 

1 I- (~+0'~ ] 
x ( l - q )  kZ ik - -  (k + 0  q} " @ 

O F  

n+C=k -~ Inq~-~/Lqn(l--q~)+(k+l) (kl)-qn[ (k-~l) q~--k] ] 
T" 

~>U@-? t 
t 

1 

�9 ( 7 . 4 )  

with the well-known simplifications whell k--O, or l----O. We shall see that these 

are approximations to the values found when k and I are not smMl. 

There is a furtlier simplification when k--0, or Z=0, that is to say when dominance 
is complete. I f  t=0 ,  

q" , ~ (7.5) q'~+~= 1--kp~ ~" ' or if z~----q~ -1, z~+t=z,~--k (~.~--1)- z~ -1-. 

We have shown how to solve this equation, which is oar (2.8) with al:--k. 
In general we need expressions for:-- 

(a) The relation of n and q~ near zero when this is an ordinary attractive or 

repulsive point. 

(b) The same relation when zero is a confluent point. 

(c) The same relation when Q:k (k +l) -I is an ordinary attractive or repulsive 

point between zero and unity.. 
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In the neighbourho0d of zero we have, from (7.1) 
q,, (1-q,,) 

-1~ + 2kq~,--(k-vZ)% 

Thus in (2.1), ,--(1 _k)-l, A "----4 B=2k(1--k)-", C =--(~+Z)(1--k)-( 

Hence O=k -~, (2]r +I - -k l ) ,  A -- O =k -1 (2k +l- -2kI) ,  

A~--AS~+C=-(1-k )  -~ (~ - 0  (~ +I-k~). 

t f  this is negative, we put  

~,,~=[. (~-k) ~ (~-z) (k+Z-kt)]~ q. [1-x-~ (k+Z--2k0 %]-L 
(7@ 

whence z%l. 1-'- su~t 1 1--au.n/ 

Thus if)~=s --0" 1, I .... }-0"2, 

" V " ~  0"2954196 q,.. 
u ' - - 2 " 5 + 3 ' 5  q.,, 1 + 1 ' 4  q,~ 

or q~-- .2954196~1.4%, ' 

s-a-x,.:-~~ a -  1 / ~ =  1.354904.,. , 

100 i000 h 1 % 0 0 0  100,000 
h 2 = ~ ] - ,  h3-- 33t ' .a ~ , h~-- t51,051 ' e t c .  

:-~ 

~1.21., 1331 
and n + C = - - 2 4 - 1 5 8 8 5  logao u,~--10.49184 u~f L-~-~- r - - -~  c%, 

4641 + 2  ' 2i ] us'2+ . . . .  ] 

- -  --24' 15885 lo8'1o u~,.--60..4530 u,~"(l -}-'96006 u.~ +6"4919 .% ' , Zbrl, - i  . . . .  ) ' 

l f u u = ' 0 1  , 

C= 4,8:;3177 -- '0060453 (1 + 0 0 9 6 0  + '0006492 -I . . . .  ) =4,8.3116. 

N?.)v if q.,~=~,}, u.n=0.086888, so 

, .08o~1~,+.04908+ -) ==25-1396 n + 4 8 . 3 1 1 6 =  25.6335--0.46915 (1 ~- '~" ? - - 

or n=- -23"1720 .  T h e  error is of the order of the last term in the series, 0r.0:02, I f  
this were considered unacceptable,  further terms could be taken, bu.t in fact it is pro-. 
bably sufIicient to determine n to the nearest unit. I f  u0'='01, q0'='035534I. So 
23'2 generations would be needed to reduce the ge~ae fi:'equency" q,~ fi:dm 50% to 3-553~ 
Clearly for positi.v~ values of  n, only the logarithmic te rm need be used. 

2 
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I f  k-I-l--kl is negative, A~- -AB+C is positive, so 

u . = [ - - ( I - - k )  -~ (I--Z) (k+l--~t) ]~ %[1--k -~ (2k-l-Z--/~l)q,,] -~ 

a-=--~ -~ (2k@l--2kl) [--(1--k) -~ (I--l) (k-[-t--kl) ]~ 

�9 1 - - a u J  
(2.s) 

The arlthnaeticaI work is quite similar. 

When k=0,  zero is a confluent point, and we can use equation (7.1). In the neigh- 
k 

bourhood of 0 . = ~ l  , let q~=Q@x,~, P = I - - Q .  Then (7. I) becomes 

A,,~= Aq.,, - - ( ~ + l )  .~,~ (P- ,~ )  (Q+.~,) 
-/~(P-x,d-" -t(Q,+a:,,), 

= 7 x ,  [kt + (~ --k~)~,~ - (k + Z ) % ? ]  
lc +l - -k l - - (k  +I) ~ x~ ~ 

_x~ [k+t- -_kl - . (k- - - I  5 ~,.] 
o r  , ~ ' ~ z - 1 -  , ' 1 9 , ,  - -  �9 k t t --kZ--(k-r- l)-  x~, o (7.7) 

k + I - - 2 k l  k~'--I " ~ - - (k  +I)~ 
So in (2.I), s =  k + l - - k l '  A = k - ~ k [ '  B=-O, C--k +~i__k I 

0 =(k~--l5 (J~-l-Z--kl) 
kt (k +~--2kt)  

A~ - -AB + C  = --  ( t - k )  ( I -~)  .,,~ '- ' "~ (k + t  --2kt) "~ (k + t  --kl) - ~, 

which has the opposite sign to k+l--kI ,  and iS negative if the equilibrium is stable. 
In the stable case Iet 

(1--k) (1--l) ~�89 kt (k-I-t)~x.,, 
u,~= k +l-- l~t  ~ kI (t~..t--2kL) + ( t 2 - - k  ~) (l~+i--kI)x,~ 

= - i V  (1 i) 

( -1 
un+l =sun 1 1--au~/ 
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For example if  k= .2 ,  l = . l ,  

2 2 13 
Q = g ,  x,~=q~,-  . y ,  ~ = ~  . 

27a,~ _ 7'21605x~ 
u,, = 4r (13 --21 x,~) -- 13 --2tx,~" 

5 
a =  --g ~r --3.11~;05 

(1 u"2 "i -* R~-bI = Sztgz \ 1--ou, , /  " 

We note that x,~ may be positive or negative. 
avoid complex Iogaritl~ms. 
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I f  it is negative we put v,~----- --u,~ to  

SELECTION W!TI-I ~ONSTANT INTENSITIES AND INBREEDING 

Consider selection as in the last section, but with a constant mean coefficient of 
inbreedingf. If then the gametic frequencies are Pn A~-q~ a as before, the patellas 

of the next generation are i~a the ratios 

(1--k)p,~ (p,~+j'q,,) AA : 2(I--f)P,d,~ Aa : (1--[)q,~(q~+fp,~) an. 

Here l ~ f ~ 0 .  In huma.r~ pol2ulations f rarely exceeds 0.02, b u t  it may be much 
larger in plants and anlmai.s. We find without di~cuIty 

�9 [ 

q,,~ - l ,  q,, + f p , ) ]  
q'~+*= i - k  P,~(i,,, + f  ,}~,) - L  q,,(q,~+f t ,d  

~,~,, E 1 - / ~ . - ( l - f F q d  
1 - -k  + (2/c--fk---f l)  q,,~-- (1 - - f )  (k @I) q,~= ' 

,.o- "1 

A p,~q,,[ (k,-f/)./,,, . -  (~.-fk)q,,] 
q. = ~ --w p 7  & g.-~ ~ p,T., --7~7q,# " 

, ' t 3  ~3" 
t O  K ~  
: t 

I f k - k l - - ( I  .+f) kl= O, or (I-.4c) ( i - - i ) + f k l = l ,  (8.1)becomes 

(1 --l~fl)q,, .  , .-:. 
q"+~ - 1 - (1 + f )  lq,, ; 

which is of form (1.7). 

We also obtain a first order recurrence if  k = I, or l =  1, that is to say a homozv~"oL ~ J .  ~ .... 

is Ietha!. I f  l~] . ,  (8-t) becomes 

r = ( i  - f )  ~,~[i -~-+-{~ - f ) ( ~  +k)%]-~. 
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I f  Q -  ( k - - f )  (t --j')-~(1 +k) -:t, q,~=Q is the stable eqailibrlum i l k  >f" 
.q,,,-~0 is the stable equilibirum. By (I.8) and (1-9) d~e solutions are: 

O therwise 

/ l - - k \  

(n+C) log (]_f)I--k = log !Q--q,~)--l.og q~ 1 ~ k > : f ,  ~,.,i < 0..), 

,~+c  = (t +~)-~q,,,-~ (k=f) ,  ~ (8-4) 

/ ', 1--k (n+C) ( f > k > - - l ) ,  
\ l - - j /  

(~+C') log @__f) = - l o g  q,~ (k= - t ) ,  

(,,+c) log t--k _ I o g  (Q-q,)--log q,~ (~< t). j 

As before the. equatiDns may be wrttten in several fbrms. TEey could be used, 
for example, in the.study of sickling in man, where one homozygote is 1)early lethal, 
and mutation is generally thougl~t to he tmimportant. 

17n the generai case the fixed points are;  q~- 0, q.~=l, and q , , -Q.=  

k - f t  . ( i - - f ) (k4l)"  the latter represelatlng a biologlcally relevant equilibriuna if k- - f~  and 

(1--f) (k+l)  have the same sign. )~s before, tlaere ,are 9 possible cases. 

(I) k--fl>O, t--fk<0. 
(2) k - - f I<O,  l - - f k>O.  

(3) k~ fg, l - - f k  <O. .q= 

(4) k - f z < o , t  fJ~. q 
(5) k -.fl, ~-fk > o. q 
(6) !~ f l > o ,  z fk. q~ 
(7) k - f z < o ,  l - - f  k<0.  
(8) k - - f  l> O, l - - f k >  O. 
(9) k f I ,  l= f k .  T1aere 

if k.--. l -  O, or k = l , f : ' l .  

q 0 ~s unstable, q--1 stable. 
q= 0 is stable,, q = 1 unstable. 

0 is unstable but left slowly, q -- 1 stable. 
0 is stable, q = i unstabIe but left slowly. 
0 is stable b~lt approached slowly, q ;- 1 is unstab!e. 

0 is unstable, q=-I Stable but slowly approached. 
q- 0 and q=!" are stabl% q~ Q unstable. 
q: 0 and q = I  are unstable, q : Q stabIe. 

is a neutral equiiibrium at any point. Ttais is only possible 

At q= 0 when k@fI,  we  lmve 

1-f l  ~ - ( 1 - f ) z  B 2#-f(k+zi c - - ( l ~ ) , k - - , l )  
s - -  1- -k  ~ 1 - - f t  "' - -  i - - k  " ' 1 - -k  ' 

So O = (k- - f l )  -1 (1--fl) -~. [2k + l - - k g - - f  (k +2 l  +ld)-F-f21 (if+l)] 

A~.-AZ~+C - - - ( I - - f )  (1-4)(1 ..Jl) -2 (1-I~.)-~ (I~+Z-z~z-)~H.) 
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and so on. It  is generally more convenient to compute s, A, B, and C, etc. numerically. 

[f,~ f l ;  % + ~ =  1 - - f l - ~ f  (1 - - f ) l  q,,,--(1 - - f a ) l  g~,9" (8..5) 

so : 4 -  = ( ~ - f ) ~  B - f ( - ~ - f ) z  c =  - ( 1 - ] , ) ~ .  
l - - f l  ' I - - f !  ' 1 - - f l  

(1 _ f " )  lq~ 
So ir~,,-= t - - f z  - ( l - f )  Zq~ " (8.6) 

where ~ = --(1 -Ff) -~ l -~(1--0.  

Or we may use the form (2.8). 

k- - f l  let  q~ = Q-bx.,,. I f  there is an equilibrium at Q =  (1 - - f )  (k+I) ' 

Then 

% [ k + l - - 2 f d - - f  (Iv+l--k---l-) T(1 = f )  (k --! )x,,,] 
k + t - - k l - - f k l - - f  (kZ--lZ)x,~--(1 - - f )  (k+/) 2 x,~ 2 

,3 

T h t l s  S - -  
9 • ~ ~ k ~ + y  ( k + z - ~  ~ - - j~ l - r5  1~+Z--_kl--f(k, t.--l;---l-) = i 
k + l - - k t - - f  k! /~4-[-.kl--f kl ' 

,{l 

(t - f  ) (I~."--r B = - f  (~2_t~) 
A = k 4 - l - - 2 k l - - f  (k-'-Z--k~-Z ~) ' k + l - - k Z - - f k ~ "  

C:-  - - ( l - - f )  (k-I-l) ~ 
k + l - - k l - - f  kl 

Again, numerical calculation is usually most convenient. 

] ~ A R T I A L  S E L F - F E R T I L I Z A T I O N  W I T H  C U L L I N G  OF RECESSIVE8 

Sen (1961) has discussed this case. Suppose the nth generation consists os (t --x~) AA, 
,~, Aa, a fi'action c is mated at random, while 1--c is selL!~rtilized, therl the next 
generation consists of 

(1 [ ( !  4-c(1 '~] ~] AA _L [(i--c)-}x,,~+c,4,.(l--~.~,)] Aa 
Lk ,A I J 
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k(i +c)x.--~cx,~- 
Hence x,,,+l= 1 --�88 - - c ) x . , , - - ~ c  a.~, , o9. * (9.i) 

x,,--0 is a stable equilibrium, 

C 
s=-}( l+c) ,  A =  1-t-c '  B = - - ~ ( 1 - - c ) ,  C = - - ~ c .  

1 =-4c--d- 
O= 2(1--c") ' A'a--AB+C'-  

. l 

[2~(I .~)? (1 -~).,,, 
So if u,,---- 2(1--c")--(1--4c--c ~) x , , , '  

2 0  +-~"~ ' which ~s never positive. 

a - -  - l - - c  

- - 1  

--  2(2--4's+s ~") [(1 --s) ~ (2s--l)]  '", and s={(1 q-c), 

The frequency of recessives culled in generation n + l  i s  :}x~ (1--c-+c x,~). Equa- 
tion (3.2) should not be used uaeiI u, ~- is sufficiently small. 

In what follows we shalI give some examples of the treatment of iterations of higher 
order than quadratic, or of transdendentaI functipns. 

C O M P F ~ T I T I O N  B Y  H Y B R I D I Z A T I O N  

Consider two species A and B whose hybrids are inviable or sterile. Let their relative 
fitnesses be as 1 +k  : 1 --k. Let p.,~ be the frequency of A and q~ that of B in generation 
n, the sex ratios being the same in the two species. If  encounters are at random the 
A females will encounter A and B males in proportion to their fi'equencies. Suppose 
that the probability that an encotmter with a B mate will lead to fertilization is A 
times the corresponding probability for an encounter with an A male. Then the 

progeny of A females will be P'~ A, and Zq~ hybrids. Let /, be a similar 

parameter for B females. Both ~t and./~ are probably usually much less than unity. 
Then it is easily see~ that 

(1--k) q~ [ (I +k) p,~" (1--k) q,~" ] -1 

(1-k) q,? (p,H-aq,d 



j.. B. s .  HALDANE &; S. D.  JAYAKAR 313 

~ : " =  ~ - ~  T ~ , ~ : g  f~,,~ (t,,,+a~4 (9.:) 

There are therefore four fixed points when q=0,  q = I ,  or (l--k)2tq~.--2kpq - 

(1 +k) /, p~"--0, q=0 and q = ]  are highly attractive, and represent very stable equi- 
libria. Of  the other two fixed points one gives a negative value ofp or q, the fourth 
gives 

1. 

0..= 2k+  a (1 = k ) -  ~ (i +k) (9.2) 

1 
2 (k~+ Z/. - -  ~ k=) v 

which is a repulsive point with s ~ l  ~- 
l + ( k = +  a~, - ~,~,{~){ ' 

representing an unstable equilibrium. 

~[~ 

Since P = (k i+  k/* -- ~/* k~)~-k 
Q ~(1 -I-k) 

a (~--1~) ~(1  --k ~-) 
2k 1 4k ~ 8M 

we see that Q increases ~.-ith /~ and decreases with A. So natural selection mUSt 
tend to increase discmmmat on by females and decrease discrimination by males in 
each species. 

Consider the dynamics when q,; is small. ~ (9.1) may be written 

_ ,(1-k) q,? [1 ~-(l~-~) qd 
+( i  +a) (~-3~)q,~-(~ +s/~-3~-3W~)q,~ ~(2t,+a--~l~--t~--t,k)q~ 

(1-[-k) /zq~ t h e n  

1 • " 
(9.3) 

THE PROBABILITY OF SURVIVAL O1 ~" A MUTANT OENE 

Suppose that a mutant gene occurs in a very large population of constant nnnlber, 
Suppose one member of the poptdation carries a mutant gene, let 'fit. be the pro]Jability 

0 3  

that this g'ene will be fbund in members of the next generation, and let f ( t ) =  22 p~. tr 
" T ~ _ O  

be the generating function of this probability distribution. I f  q,~, be the probability 
that this gene )as  disappeared after n generations, Fisher (t930) showed that 

q~-.=/(q,d. 
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12(3 

Fisher considered the case whenf ( t )  = e-* ~'=2 0 r~tr net-'1' 

that  is to say the distrfbution is a Poisson distribution with ra.ean unity. This implies 

tha t  the ge'ne is neutral, q~+1---eq ',~-1" (10.1) 

This has two confluent fixed points at q =  1, and an infinity of repulsive points 

(cot~ +/ ) , "  where t cosec k='e ,~cota-1. Only t h e  real confluent point is of 
biological interest. Let z.,~= 1--q~. Then z.,~ ~s the probability that  the mu tan t  wilI 
Still be present in the population after n generations, z 0 ~  I, and z~+, -~ 1 --e-Z,~ (10.2) 

I ~ : ( ~  I 1 ,~  "~--1 

( ,1 1 ,, I . --) --J" 

' " 3 45 '94a  4~za 

Let  n + C = u , g ? - -  g tnu~+g  In 1--~u,~, -r'r=2~ 2 b,.%'. 

Then I coth u,~ --u,~ -1-~- 1 + 1 In (u~ co th u,, d-u~) q- g in t -- 3 (u,~ coth u.,~-~u,~) 

r OD 

" 6 r = 2  

~ I t 2 b,.u,?' I --(u,~ coth u,~ +u.~)-" 
T : ~ 2  

, ~ . 1  I -~ coth z..,~--u,~- , g  in (u,~ coth u~+u,~) 

9 1 ] 
-I-In (u,~ coth u.~ -k., ~u~)a -- In(l -- ~u,~) . 

Hence, or f iom Fisher's formula, we find 

5 in u,~-~g in(1 -- gu~) + ~ ( 3 -- 2--7 --  4"--2 

• I4,533u~ s 
' 9,185,400 . . . .  )" 

1051 u~ 3 53u,~ ~ 
47,250 -k 164,025 

�9 ~ z.~z z~? 1 z.~ 5z.,, ~ l'051z'*~a i 53z~*~ 
n-[-C" 2z.~ 31 in z,~-[- 1 In (1 -- if-) -t- ~ (5- -  5"4 . . . . . . .  168 378,000 -'- 2,624,400 

t ,453z~ 
"{- 2 9 ~ ( ) 0  " -)" (I0.3) 
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T h e  coefficients are a little simpler than those of  Fisher's series, but  Fisher h a s  made  

:alt the relevant calculations, including C'=. . . , . : . . , . :50732430 .  The  series'terms are negligi- 

ible in practice.  
Next  suppose that  the mutan t  is not neutral', but  confers a rel~/tive fitness 1-ll-k on 

Iseterozygotes. "Then if z.~ is the probabil i ty of  surviving for ,a generations, 

T h e r e  is a fixed point  at z " 0, and another real fixed point, besides an  ififinity of  

complex repulsive points. 
I f  # is nega{ive, then z.,, tends to zero, which is an attractive point ,  while there .is a 

repulsive m:d biologically in;elevant negative f~xed point.  Let  1 -}-k �9 s < 1. 

,, , - = s e 1 - - - ~ - s z  ...,.: = s - "~ " T h e n  ~ ~ ~ - . -~  

Puttingy.,, = z,, , we have 
1 sz'~" 

9_(~ _~) 

r l J -  1. ~- , = - ~ u  sa ( 3 - s ) a , ~  -r  - , ] .  

S2 . 2 

2 ~  g 
,~ s ~,, + 0 ( z , ? ) .  or (a@C')  ln.s=- lnz,,.-- l n ( 2 - - 2 s - - s z , ~ )  6(t --s 2) 

Fur ther  terms can easily be ce.Jculated. 
I f  k is positive, there is an attractive fixed "poin} at a positive vaIne Z, while zero is 

repulsive, with s--- 1 --':It To find Z, we revert the ieries 

(1, @k)-7 . . . .  In(t  " -Z)  --7_L:~7~_._J~_ ~ a ' , .  a~Ta~L _ _ _ 

_~ 2k-'i 
wl~ence Z= 21c(1 ; - ~ j '  ~."~ ~ •  ~ (4--~:~-k-k. - - -). ( t 0 . 5 )  

This is t}~e probability that a single mutant will survive indefinitely. Even if k is 

as large as ~., the first term. has an error under .001. To find the rate at which the 

probability approxhrLates to ~ we put Zr~ =~--.'%.- Then 

x,~_+~- i l -Z) [ ~I~+~~ ] 

=(1-i-k.) ( I - Z )  x, ,  [1-~-(1-q-o/,-)x,,-p~ (1 q-k) 2 ..%= . . . .  ], (10.6) 

1 

s . - (1  +z-)  (~ - / 7 )  =- l -ka: -2 /~  ( ,  +~-.)-~- = 1 - . - k + ~ 1 ~ " - - ~ / c , ~ - i  . . . .  . 

I f  (i q.-/c) ..v,~ :=j,~ we have y,~q_]. = s  _)%(1 --�89 ~, -~-a,,.I ~, ~ _ ~ ~.,,,~2 ~, a _~ - - -), Abel ' s  method  
,9 

gives 
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y O . j .  ........ y 3  " - - - ' r - - "  
(,~+c) Ins=h~y._h~(2--2s-y.)  ~ 12ii--P) ' 24(i --S) (1 --~') 

(l +k)%? +o(,-,?). or (,~+C') 1,~,=l,~x,0 ln[2--2~--(~-~,~).~.,,1-1. 12(1--s ~) (10.7) 

DISCUSSION 

Having shown how to solve one set of non-linear recurrence relations as exactly as is 
wished, it is perhaps worth enumerating some things which remain to be done. 

1. Solation of equations of the types considered when one or more of  the constants 

is replaced by a random variable. For example if q.,~+z- q~(1 --k q~) . and k is a ran- 
1--k q ~  ' 

dora variable never exceeding unity, whose distribution has given cumulants, it would 
b e  desirable to find an expression for the distribution of q~ in terms of q0, and the 
above cunmlants. 

2. Solution of }he above equations when the population is large, but a gene is rare 
enough to have a finite probability of extinction. Fisher (1930) opened this probtem. 

3.  Solution when the population is finite. Here it is often desirable to consider 
mutation. Wr{ght's analysis requires development when selection is intense. 

4. Solution when a parameter such as k varies in a simple manner with time. "vVe 
hope to soIve this problem. In this case mutation must be considered. 

5. Soiution when generations overlap. Here the difference, or recurrence equations, 
are repiaced by non-linear integraI equations. Norton (1928) and Haldane (1927) 
opened up this field, but it is difficult because the ages of mates are correlated, 

6, Solution of sets of simukaneou~ equations such as (1.1). Here there is more 
than one arbitrary constant like C; and wlaen we express q~ as a function of n, its coeffi- 
cient may tend to zero quicker t hanany  negative power of n, while being non-negligible 
for several generations. Such equations generally arise when genes at several loci are 
considered. 

7. SoIution of equations combining two or more of these complications, for example 
those arising with finite populations and overlapping generations. 

8. Tests for the truth of various hypotheses, e.g. that dominance is complete, mating 
at random, and the relative fitness of recessives constant, given a series of population 
samples. 

9. Methods of estimating parameters giving the intensity of selection. This has 
only been done in the very simplest cases. 

10. Study of n as a function of a in equation (6.4). We do not know whether n is 
a function of a type so far studied. 

11. Investigation of the convergence of the series derived in this paper. 
I2. Tabulation of  solutions of equations (2~2) and (2.3) and perhaps others, for 

different vaIues of s and a. 
Even if some of these tasks involve the use of eIectronic computer~, the programming 

of such computations requires great skill. 
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SUMMARY 

W h e n  q~ is a pa ramete r  of  a popu la t ion  in genera t ion  n, q,,+i is often a s imple  func- 

t ion o f  q~. I f  so, ~z is an au tomorph ic  funct ion  of  q,,. A simple t ransformat ion  of  

q ,  pe rmi t s  the  expression of  ~z as an infinite series which  often converges quicMy, and  

al lows numer l ca l  calculation.  I t  is sometimes possible to obta in  a very close a pp rox ima -  

t ion  to the  va lue  of  n in terms o f  logari thms.  Examples  a re  given. 
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