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INTRODUCTION
Luria & Delbruck (1943) have shown that if a culture of some hundreds or thousands of
millions of Bacterium eoli, grown from a single cell, is plated out on a nutrient medium
impregnated with a bactertophage to which the strain of coly is sensitive, the vast majority
of the bacteria are lysed, but a few give vise to colonies. These colonies contain only
bacteria resistant to the bacteriophage, and give rise only to resistant bacteria on further
subcultivation. Evidently hereditary variations or mutations can occur in bacteria.
Numerous other examples are known of mutations in bacteria, affecting fermentation
reactions (e.g. Lewis, 1934), resistance to chemicals (e.g. Stewart, 1947), to antibiotics
(e.g. Demerec, 1945), or to radiation (Witkin, 1946),

The demonstration of phage-resistant mutants necessarily involves the exposing of the
bacteria to the phage, and it is not immediately obvious whether the mutation to phage
resistance occurs spontaneously during the growth of the culture, and is merely made
apparent by subsequently testing with phage, or whether the mutation is induced by the
phage and does not occur until the bacteria are brought into contact with phage. Most
experiments on bacterial variation have left open the two alternatives of spontaneous
mutation on the one hand, and induced mutation or adaptation on the other, and the
interpretation adopted has usually been determined by the previous training of the
individual worker rather than by any compelling evidence provided by the experiments.

Luria and Delbruck, however, in their paper, described a method by which a decision
between the two alternative explanations may be reached, and concluded that the
acquirement of resistance to phage is a spontaneous mutation which occurs during the
growth of the culture and prior to its treatment with phage. Demeree (1945) and Witkin
{1946) have applied the same method to mutants resistant to penicillin and to X-rays
respectively, and have concluded that these changes also are spontaneous mutations
occurring independently of the penicillin or of the radiation respectively.

The principle of Luria and Delbruck’s test is as follows. A culture of (say) 10° bacteria
is divided into (say) ten equal portions which are separately tested for phage-resistant
organisms by plating out on a phage-impregnated medium. A small number is found in
each of the ten portions, and the numbers are found experimentally to be distributed with
a variance approximately equal to the mean. This result is not swrprising on cither hypo-
thesis, On the spontaneous mutation theory, we suppose thabt mutations to phage
resistance occurred from time to time during the growth of the culture. All the bacteria
produced by subsequent divisions of a mutant bacterium were similarly phage resistant.
Thus the culture of 109 bacteria contained a certain number of phage-resistant bacteria,

* [Note by C. A. C. A few days before Dr Lea’s untimely death in June 1947, the manuscript and the caleula~
tions reported here had just been complebed. It was Dr Lea’s intention to make further. experiments more

suitable to o best of the theory outlined in this paper, These experiments cannot now be made, but it has been
thought wise to publish the theory and numerical tables beeause ol their value to other investigators.]
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being either bacteria which had recently undergone mutation, or bacteria derived from
the division of mutants which arose earlier in the growth of the culture. When the culture
was divided into ten equal portions the phage-resistant organisms were distributed
at random between the ten portions. We may expect, therefore, the numbers in the
different portions to fall in a multinomial distribution with variance nearly equal to the
mean.

On the adaptation or induced mutation theory, it is supposed that no phage-resistant
bacteria arose during the growth of the culture. The ten portions, at the time of plating
out, each contained 108 normal hacteria and no resistant bacteria. On being brought into
contact with the phage most were lysed, but a few were able to adapt themselves to the
phage {or the phage-induced mutations in them). The probability of this process is very
small, but was presumably the same for all the bacteria. On this theory, therefore, we
expect the number of resistant colonies on the ten parallel plates to be distributed in a
Poisson distribution with variance equal to the mean. Kither theory is thus capable of
accounting for the experimental variance, and this experiment alone does not make
possible a decision hetween the two theories.

A second experiment is now made in which (say) ten cultures, of (say) 10® bacteria are
tested for phage-resistant organisms. On the adaptation or induced-mutation theory this
experinment is not essentially different from the preceding one, and we again expect the
numbers of phage-vesistaut colonies on the ten test plates to be distributed in a Poisson
distribution with variance equal to the mean. For, on this theory, the phage-resistant
mutants do not appear until the bacteria are plated out on the phage-impregnated medium,
and there can be no relevant difference hetween a culture of 10? bacteria divided into ten
equal portions, and ten separately grown cultures of 108 hacteria.

In practice a very different result is obtained: the distribution obtained is much wider
than in the former experiment, and has a variance many times—perhaps fifty times—
the mean.

On the spontaneous mutation hypothesis a very wide distribution of the number of
phage-resistant bacteria in parallel cultures is to be expected. The reason is that not only
do the parallel cultures differ in the numbers of mutations which have occurred, but also,
and much more importantly, they differ in the stages at which the mutations occurred.
If a mutation occurs towards the end of the growth of a culture, it will give rise to one
phage-resistant organism, but if it oceurs early in the growth, say when the culture is only
one-hundredth of its final size, it will give rise to a large number of phage-resistant
organisms. Thus even in cultures in-which equal numbers of mutations have occurred, the
numbers of phage-resistant organisms will usually be widely different.

It is evident, therefore, that the hypothesis that spontaneous mutation to phage
resistance oceurs during the growth of the culture before it is brought into contact with
the phage is in qualitative agreement with the experimental result, while the alternative
hypothesis of mutation induced by the phage, or adaptation of the bacterium to the phage,
1s not. Luria and Delbruck’s method thus provides, for the first time, a clear means of
distinguishing between the two hypotheses.

As left by Luria and Delbruck, the method is a qualitative one, since they do not derive
the shape of the distribution to he expected on the spontancous mutation theory. They do
derive expressions for the mean and variance of the distribution, but as they point out, on
account of the extreme skewness of the distribution, the mean and variance are very
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inefficient statistios for estimating the parameters ol the distribution from experimental
results, or for testing the agreement of experiment and theory.

The purpose of the present paper is to extend Luria and Delbruck’s method by calculating
the form of the distribution of numbers of mubants in parallel cultures to be expected on
the spontancous mutation theory, so malking the test of the applicability of the spontaneous
mutation theory a quantitative test. Statistically efficient methods of deducing the
mutation rate from experimental observations are also discussed.

THE DISTRIBUTION
First method
During the active growth of a culture, the number of organisms ineveases as an exponential
funetion of the time, and may be represented as
n=2aP, (1)
there being one organism ab time §=0,
Thus dn = fn dt. (2)

If & is the mutation rate, defined by the relation that « di is the probability that an
individual phage-sensitive organism shall undergo mutation to phage resistance in time d¢,
nadt 15 the mean number of mutations which oceur in time di. (Strictly, since n is the total
number of organisms, we should subtract from # in this formula the number of resistant
organisms, but in practice the number of mutant organiswms in a culbure is o minube
fraction of the total number.) Hence the mean number (m) of mutations which will have
occurred in the culture by the time it has grown to size » at tiwe # is

12 o [ o
nadt==] dn=={(n-1).
J =g ] an =01

Since at all relevant times 7 much exceeds unity, we may write

o
m= B 7 (3)
for the mean number of mutations in the culture by the time it has attained size n. The
mean number of mutations which ocenr while the culbure grows from m, $o n, organisms

is evidently
- (’Lz:?_ﬁ) , (4)
7

If it should happen that the mutation rate o and the growth rate 8 arve equally affected
by factors such as nutritional conditions and density of population which affect 8, then
the mutation rate per generation, though not per undt tme, will be independent of these
factors, and o/, which may be regarded as the probability of mutation per division, will
be constant even though e and 8 are not. Under these conditions equations (3) and (4)
can be derived without the assumption of exponential growth.

We must distinguish between the number of mutalions which have oveurred, and the
number of mutants, the latter being derived not only by mutation of the normal bacteria
but also by division of bacteria which have suffered mutation earlier. It r (»=m) is the
number of mutants in the culture at a given time, and if we asswme that the division rate of
the mutant is the same as that of the normal bacteria, then #fdt=rdn/n is the probability
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that one of the mutants shall divide in time d¢. Similarly, (r —1) dn/n is the probability
that one of the mutants shall divide in time d/ in a culture containing (7 — 1) mutants.
Let p, (a function of n) be the probability that a culture of n bacteria grown from
a single bacterium at ¢=0 shall have r mutants (i.e. of a large number of cultures of
n bacteria, a proportion p, of cultures will have » mutants).
Consider the proportion 9, + {l dn of cultwres which, at time ¢--di, when the culture
size is n+dn, have » mutants. These will be derived from:
(@) cultures which, at time ¢, had # — 1 mutants and in which a mutation occurred in the
interval dt;
(b) cultures which, at time ¢, had » —1 mutants and in which a mutant divided in the
interval d¢;
(¢} cultures which, at time ¢, had » mutants and in which neither mutation nor division
of a mutant occurred in the interval d¢;
providing that the interval d¢ is small enough. For («/f) dn and rdn/n to be much less than
unity, the possibility of more than one of the rare events mutation and division of a
mutant in the interval dt can be neglected. We see, therefore, that

dp o dn dn
Py +Z— dn=p, {—B(l)l+() -1) —;} +9, { Bdn—7 —);}

, cly 2 o 7—1
8o that /3 ] 5 + p =P, (73 + T) .
Making, from (3), the substitution m= (a/B) n, we have
dp, -1
. — . 5
cl)n _7 T + ]) =Pr-1 (l + m ) ( )

Multiplying by the integrating factor ¢” we have

Now m is the mean number of mutations which have occurred in a culture by the time it con-
tains n bacteria. Therefore e, the first term of the Poisson distribubion, is the probability
P that no mutation shall have occurred. Thus gy=¢"p,=1 for all values of m. Evidently
initially, when m =0, ¢,=0 for all »>0.

Starting from ¢,=1 we can calculate ¢, ¢a, g5, etc. in succession from the differential
equation (6). Thus:

dg, 1

=+ g =1 whence ¢, =1m;
dm  mtt 7 Q=g
d 2 1
e o=1m{1+=], whence g =3m -+ Im?;
dm m m
fl%

2 ;
S, 2 Loy - L2 2 6 o =L 4 rlgp® L8
(lm p. q3—( m+ §m?) (1 +m ,  whence gg=5m +gm? +Fgm®.

Evidently g, is a polynomial in s, with powers 1'zulgin<T from 1 to r.

, ,
Writing 7= % C, —_01 »m—+C + A0, —7’| )

j=1 " j! 2'2'
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' r i1
dg, & W

we have m = Pl i W . (8)
Inserting (7) and (8) in (6), and equating coefficients of si~1/j!, we have
(J+7) Cg,p=1C;2pa+(r=1) Cj .. 9

With this recurrence relation a table of C; , may be drawn up. Such a table, for values
of r<10, is given in the Appendix.
1

BEvidently Gy, = PYmY ;0 C.=27" (10)

TFrom (6) and (7), py=¢", and for r>1
py= é10 (e—’” ;n ) Cy ., (e™m)+ Gy, ( g %2) +...4+0,, (e"”' %) . (11)
A generating function for p,

Define a function [ (w, m)=qo+q v+ga 2®+ .. éoq,.m’l (12)
We have % =2ra’lq, and % =Z:r;"%% . (13)
Multiplying equation (6) by 2" and summing for all » we have

zar gm +— - Sro g =x Zrlg, +§§ S —1)a2q,_,,
or, using (13), am )’I)Jb gJ; Y+ i%’
whence g:/))z —(1—m) %:w, (14)

where* ¢ =1log f. This equation is satisfied by
¢ (@, m)=mf (z)
providing J+x (l—2) ' =u,
W 1

Le. ey G

Multiplying by /(1 —=) and integmtmg

z/;——l— +log (1—2)—1,

1 -
the integration constant —1 bemg introduced since when z=0, f=g,=1, so that $=
and so y=0. Thus

p=14 bog (L) =g 5+ szs +3ch4
whence f: il = gt (1 —mym (l—:u)/:u,
so that p,=e g, is the coefficient of #” in the expansion in ascending powers of @ of
@ zvz
(1 —z)m A=kt op of ™ exp [m (1 5 Fo g 5 )} (15)

* Jog means natural logarithm to bage ¢ =2-718... throughout this paper.
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. : B x o a? m x a;2 B mE
1.e. Of [ ’”+(i—2'f‘§—3+)6 mﬂ—i‘(l 9—| 2 5 ) 4 2' “+ .. (16)
Comparing with (11), it is evident that C; , is the coefficient of " in the expansion of
z @ i ;
(m%‘ﬁ%‘...) . (17)

It will be shown later that C; . is the probability that a culture in which exactly j muta-
tions have ocewrred shall contain + mutants. If we define

’
)
D""'_.,Ej Ci s
D;,, 1s the probability that a culture in which exactly 7 mutations have occurred shall
have <r mutants. Summing equation (9) over all » between 7 and » leads to the following
recurrence relation between the D,

g
(T _i_.?) Oj, r :j (Dj—l,'1'~1_D7', 7-—1): (18)
or (T +.7’) Dj, r= TD:/', r=1 +.7‘Dj—1. r-1* (1 9)

Tquation (18) is useful as an arithmetical check during the computation of the C; , by
means of equation (9).
It is sometimes convenient to discuss P, defined as

P.= 29, (20)
r=0

P, being the probability that a culture shall contain 0, 1, 2, ..., or 7 mutants, i.e. any number
of mutants up to r. Py=e¢™; P.=1 for all » at m=0. The following equations can be
readily deduced by summing (5) and (11) over all » between 0 and 4

%—P"+P,. (1 +1->=P,,_1 (1 +1—) (21)
ant m m
j
P,=cny % D, (em 2. (22)
j=1 J!

Second method

An alternative method of calculating p,, the probability of a culture having » mutants,
is instructive. A mutant appearing by mutation any time after the culture has passed
the size §n will not have time to divide by the time the culture size reaches », and will
therefore contribute 1 to the final complement of mutants. A mutant appearing by
mutation during the period in which the culture grows from In to n will have time to
divide once only and will therefore contribute 2 mutants to the final complement. A
mutant appearing by mutation in the period in which the culture grows from {n to tn will
have time to divide twice only and will contribute 4 mutants to the final complement,
and so on.

Confining attention for the moment to all those cultures in which exactly one mutation
oceurs during the growth of the culture from one organism to n organisms, in one-half of
the cultures the mutation will oceur while the culture is growing from 4# to n, in one-quarter
of the cultures the mutation will occur while the culture is growing from = to in, and so
on {compare equation (4)). Or, in other words, in one-half of these cultures the mutation
oceurs ab such a time that it gives rise finally to 1 mutant, in one- quarter of the cultures
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the mutation occurs at such a time that it gives rise finally to 2 mutants, in one-eighth at
such a time that it gives rise to 4 mutants, and so on.

According to this argument, a mutation is necessarily represented, by the time the
culture has reached size n, by a clone of 1 or 2 or 4 or 8, ete., organisms, there being no
intermediate numbers. This would be so if divisions in a clone were synchronous. It is
probably true that clones of 3, 5 or 7 cells will be less common than clones of 2, 4 or 8 cells
(cp. Adolph & Bayne-Jones, 1932), but rather than make the extreme assumption that
only integral powers of 2 are to be considered it is probably preferable to neglect this fact
and to assume that the frequency of clones of different sizes is a smooth function of
clone size.

A clone which, by time ¢, contains » mutants will have originated when the number of
bacteria in the culture was about n/v. We thus replace the subdivision of the growth of the
culture into generations by subdivision into intervals in which the population increased
from §n to n, from }n to {n, from 4n to n, and so on, and suppose that a mutation which
occurred while the population increased from n/(v + 1) to n/v is, by the time the population
has grown to n, represented by a clone of » mutants. Now, of those cultures in which
exactly one mutation has occurred, the proportion in which the mutation occurred while
1
v_ﬁ) Ty (w+1)
be represented as the coefficient of ¥ in the generating function

the culture grew from n/(v+1) to n/v is (} - (cp. equation (4)). This may
14

z z? /g
23
13Te st Tt (23)

Considering now all those cultures in which exactly j independent mutations occurred,
the fraction of cultures in which the final number of mutants is v is, from (23), evidently
the coefficient of 2 in the expansion of

& @ By
1.2°2.3 34 )"

Now if m is the mean number of mutations per culture, the proportion of cultures in
i . .
which exactly j mutations occursis e % . Thus the proportion of all cultures in which the

final number of mutants is r is the coefficient of #” in the expansion of
© z 72 3 i mi
Z — .

(1 stoataate ) 71

Thus p,, the probability of a culture having » mutants, m being the mean number of
mutations per culture, is the coefficient of z” in the expansion of

o NN ]
exp |m|TgTg gt
in agreement with equation (15).

Arithmetical procedure
By means of the recurrence relation (9) and the boundary values (10) a table of values
of C; , has been computed for all (integral) values of j from 1 to 36 and of r from 1 to 64,
subject to 7 >5. Equation (18) was employed as a check on the arithmetic at j=63. C;,
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is the probability that a culture in which exactly s mutations have occurred shall contain
r mutants. In practice when comparing the theoretical and experimental distvibutions the
distributions will always be grouped. Tor economy of space, therefore, we do not publish
the full table of C;, but give in Table 1 grouped values for =1, 2, 3, 4, 5-8, 9-16,
17-32, 33-64 and > 64.

Table 1. C; ,

0y, » 1s the probability that a culture in which exanctly j mutations have occurred shall have » mutants (r=4).

Tor values of » greater than 2, the values of € , have been grouped. Thus the numbers in the column headed

r=32
‘17-32” are values of % ¢ See also the Appendix for certain other values of €, .

jore
r=
% 1 9 34 -8 9-16  17-32 8364 > 64
1 05000 01667  0-1333  0-0889  0-0523 00285 00149 0-0154
2 — 0-2500 02778 0-2118 01272 00671 00335  0:0325
3 — — 0-2500  0-3100 02161  O-1161 00563 00515
4 — — 0-0625  0-3093  0-2086 01735 00834  0-0726
5 — — — 0-2060 03479  0-2353 01140 0-0960
6 — — — 0-0885 03445 02040 01504 01216
7 — — — 0:0260 02007  0-3441 01894 01497
] — — — 0-0030 02100  0-3753 02305  0-1804
9 — — — - 01312 0-3830  0-2721  0-2137
10 — — — — 0-0718  0-3665  0-3122  0-2495
11 — — — — 0-0342  0-3204  0-3486  0-2878
12 — — — — 00138 02790  0:3780  0-3284
13 — — — — 0-0045 02234 04010  0-3711
14 — — - — 0-0011  0-1698  0-4135  0-4157
15 — — — — 0-0002 01298  0-4135 04616
16 —_ — — — 0-0000  0-0846 04071  0-3084
17 — — — — — 0-0553 03891  (-5555
18 — — — — — 0-0343  0-3633  0-6024
19 — — — — — 0-0200  0-3815  0-6485
20 — — — — _ 0-0109  0-2061 06930
21 — — — — — 0-0055  0-2501  0-7354
29 — — — — _— 0-0026  0-2222  0-7752
23 — — — — — 0-0011  0-1871  0-8118
24 — — — — — 0-0004  0-1546  0-8450
2% — - — —_ — 0-0001  0-1254  0-8745
26 — — — — — 0-0000  0-0998  0-9001
27 — — — — — — 00779  0-9221
28 — — — — — — 0-0596  0-0404
29 — — — —_ — — 0-0447  0-9553
30 — — — — — — 0-0327 09673
31 — — — — —_ — 0-023¢&  0-9766
32 — — — — — — 0-0164  0-9836
33 — — — — — — 0-0111 09889
34 — — — — — — 0-0074  0-9926
35 — — — — — — 0-0048  0-9952
36 — — — — — — 0-0030  0-9970

P, 18 the probability that a culture of such a size that the meen number of mutations is

r mi
_ . , , ., L .
o shall contain » mutants. p,=e and for »>1, p,= % ;, (6“’”’ —T> For any given
j=1 7 J

value of m, p, can he caleulated with the aid of the table of C; ., for the same groupings
! _ . . . . . o, .
of r. The calculation is facilitated if a table of Poisson coefficients a"”.—] i1s available
7!

(Molina, 1942). In Table 2 values of p, arve given for a number of values of m from 0-05
to 15.
The fignres in Tables 1, 2 and 4 are liable to occasional rounding errors of one unit in
the last decimal place,
Journ. of Genetics 49 19
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Table 2 provides the means of testing the agreement between theoretical and experimental
distributions in experiments in which the mean number of mutations per culture is 15 or
fewer, and in which a minority of the cultures have more than 64 mutants. To extend
Tables 1 and 2 by use of the recurrence velation (9) to cover experiments in which the
mean number of mutations per culture considerably exceeds 15, and to subdivide the class

P, is the probability thab a culture shall have » mutants, the average number of mutations which have ocenrred
per culture being m. Ior values of » greater than 2, the values of p, have been grouped. Thus the numbers

Pe=

32

Table 2. p,

0

in the column headed ‘17-32° are values of £ p,.
7

mN

0-05
0-10
015
0-20
025
0-30
0-35
0-40
045
0-50

ot

WOw g
oS ot oo

WOd Sk B

B WL WWIS W =i Q00 O
DO 0y

S
o

s = &
DS Ee Swe i

o3t

1]
0-9512
0-9048
0-8607
0-8187
0-7788
07408
07047
0-6703
06376
0-6065
0-5769
{5488
0-5220
0-4966
0-4724
(4493
04974
0-4066
0-3867
0:3679
0-3012
02466
0-2019
0-1653
013853
0-1108
0-0907
0-0743
0-0608
0-0498
0-0408
0-0334.
0-0273
0-0224
00183
0-0150
0-0123
0-0101
0-0082

0-0067
0-0025
Q-0009
0-0003
00001
0-0000
0-0000
0-0000
0-0000
0-0000
0-0000

1
0-0283
0-0452
0-0646
0-0819
0-0074
01111
0-1233
0-1341
01435
0-1516
01587
0-1646
0-1697
01738
0-1771
0-1797
0-1817
0-1830
0-1837
0-1839
0-1807
0-1726
0-1615
0-1488
0-1353
0-1219
0-1089
0-0966
0-0851
0-0747
0-0652
0-0567
00402
0-0425
0-0366
00815
0-0270
0-0231
0-0198
00168
0-0074
0-0032
0-0013
0-0008
0-0002
0-0001
0-0000
0:0000
0-0000
0-0000

re=1
2 3—4
0-0082 0-0067
0-0162 0-0134
0-0239 0-0200
00314 0-0267
00385 0:0332
0-0454 00397
0-0519  0-0462
00581 00525
00640  0-0387
00695  0-0648
0-0747 0-0707
0-0796 0-0765
00841  0-0821
0-0884 0-0876
0-0923 0-0928
0-0959 0-0979
00992  0-1028
01022  0-1076
0-1049 01121
0-1073 0-1164
01145 01317
0-1180 0-1438
0-1184 0-1528
0-1165  0-1587
01128 01620
01077  0-1629
0-1016  0-1617
00049 0-1587
00880  0-154%
0-0809 0-1487
0-0739 0-1421
00671 01350
0-0607  0-1274
00545 0-1195
00488 01115
0-0436 0-1036
0-0387 0-0958
0-0343  0-0882
0-0303 0-0809
00267  0-0739
00136 0-0451
00066  0-0258
00031 00141
00014 00074
0-0006  0-0038
0-0003 00019
0-0001  0-0009
0-0001 0-0004:
0-0000 0-0002
00000 0-0001

5-8
0-0044
0-0090
0-0137
0-0184
0-0231
0-0279
0-0328
0-0376
00425
0-0475
0-0524
0-0573
0-0622
0-0672
0-0721
0-0769
0-0818
0-0866
0-0914
0-0961
0-1144
01316
0-1473
01615
0-1738
0-1844
0-1930
0-1998
0-2048
0-2080
0-2095
0:2095
0-2081
02054
0-2016
0-1969
01912
0-1849
0-1780

0-1707
0-1311
0-0986
0-0630
0-0404
0-0249
0-0148
0-0086
0-0048
0-0027
0-0014

0-16
0-0026
0-0053
0-0081
0-0109
0-0138
00167
0-0196
0-0226
0-0257
0-0288
0-0319
0-035]
0-0383
0-0415
0-0448
0-0482
0-0515
0-0549
9-0583
Q0-0617
0-0757
0-0899
0-1041
01184
0-1324
0-1462
0-1595
0-1723
01844
0-1958
0-2063
0-2159
0-2246
0-2324
0-2391

o000 o

-1586
0-1233
0-0923
0-0668
00469
00320
0-0214

LiMITING FORM OF DISTRIBUTION FOR LARGE NUMBERS

17-82

0-0014
0-0029
0-0044
0-0059
0-0074
0-0000
0-0106
00122
0-0139
0-0155
0-0172
0-0189
0-0207
0:0224
0-0242
0-0260
0-0279
0-0297
0-0316
0-0335
0-0414
0-0496
0-0581
0-0670
0-0761
0-0855
0-0951
0-1049
0-1149
0-1249
0-1351
01452
01554
0-1655
0-1755
0-1854
0-1951
0-2046
0-2139
0-2228
0-2620
0-2808
0-3043
0-3056
0-2950
02751
0-2486
0-2185
01871
0-1564

Distribution of numbers of mutants in bacterial populalions

33-64
0-0008
0:0015
0023
0-0031
0-0038
0-0046
0-0055
0-0063
0-0071
0-0079
0-0088
0-0006
0-0105
0-0114
0-0123
0-0132
0-0141
0-0150
0-0159
0-0168
0-0207
0-0247
0-0288
00382
0-0377
0-0423
0-0471
0-0521
0-0573
0-0626
00680
0-0736
0-0794
0-0853
0-0913
0-0975
0-1038
0-1102
0-1167
0-1234
01577
0-1932
0-2283
0-2615
0-2913
0-3165
03359
0-3489
03552
03549

> 64

0-0008
0-0015
0-0023
0-0031
0-0039
0-0047
0-0035
0-0063
0-0071
0-0079
0-0087
0-0096
0-0104
0-0112
0-0120
0-0129
0-0137
0-0146
0-0154
0-0163
0-0198
0-0233
0-0270
0-0307
0-0345
0-0383
0-0423
0-0484
0-0505
0-0547
0-0590
0-0634
0-0679
0-0725
0-0771
0-0819
0-0867
0:0917
0-0967
0-1018
0-1289
0-1584
0-1903
02244
0-2608
0-2991
0-3391
0-3805
0-4228
0-4657
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> 64 mutants into further classes, e.g. 65-128, 129-256, 257-512 mutbants, etc., would
involve an impracticable amount of arithmetic. An attempt was therefore made to find
asymptotic formulae for p, or P, valid for large values of m. We have not succeeded in
finding explicit formulae, but have obtained some information on the form of the function.
If we consider P, as a continuous function of the two variables r and o, then for values
of r>1 we have approximately P,—P,_;=0P,/dr. Thus equation (21) approximates to

op, r\ 9P, z
S (1) 5o=0, (24)
which is satisfied by P=F (%—109,‘ /H’b), (25)

where # is any function.
In Fig. 1 we have plotted P, (derived from Table 2, i.e. based on the recurrence relation)
against (r/n—log m) for =8, 16, 32 and 64, using (ive values of m (viz. 4, 6, 8, 13, 1B)

T T T T T T T T T T T T T T T T

08

06 -

PF b—

04 |-

02}

0 | 1 | | | 1 1 | 1 1 1 | 1 | | |
2 0 2 4 6 8 10 12 14

r/m—log m

Fig. 1. P,, for different » and m, is a function of »/m —log . The points are plotted for
r=8, 16, 32 and 64, and with m =4, 6, 8, 13 and 15.
selected so that the twenty points are conveniently spaced. It is seen that the points lie
quite well on a single curve, showing that these values of » are large enough for equa-
tion (24) to be a satisfactorily close approximation to equation (21). The smooth curve
in Tig. 1 is thus a graph of the function # which enters into equation (25).

For any given value of m, (r/m—1log m) is evidently distributed in a skew distribution
about a median 1-24. We have found by trial that the derived variate (r/m —log m +4-5)-1
is distributed in a distribution rvather closely approximating to a Gaussiah distribution of
standard deviation 0-086. This is shown by the closeness with which the points in Fig. 2
lie on a straight line. The points in Fig. 2 are derived from those of Fig. 1 by transforming

-0

the ordinates to probits, defined by the relation xﬁf e~ ¥ dy=P,, where y is the
us

— @
probit corresponding to P,. (Tables of probits ave given in Fisher & Yates, 1938.) Also,
19-2
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the abscissae ave transformed to values of (r/m—logm+4-5)-1. Tig. 2 shows that,
approximately,
1 _ X 11-6
g=f—— 0174}/ 0086 =" 9.9 (26)
#fm —log m+4-5 rfin—log m 45

is a normal deviate.

We conclude, in this semi-empirical manner, that when the spontaneous mutation
theory is to be compared with experiments falling outside the scope of Table 2 (i.e. experi-
ments in which cultures containing more than 64 mutants ave frequent), it will be satis-

. 11-6
factory for practical purposes to suppose z=|—-——————2-02) to be normally
+ o r/m—log .+ 4-5
¢ 1 t !
o m=4
6 —
A m=6
X m=8
® m=13
SH -
+ m=15
_.E
=]
a
41— J\ -
i -
2 L L I [ M
0 01 0-2 0-3 0-4 0-5

1
rfm—log m+4-5
Fig. 2. 1/(r[m —log m +4-5) is distributed in an approximately normal distribution, The
points are plotted for »=8, 16, 32 and. 64, and with m =4, 6, 8, 13 and 15.
distributed with unit variance about the value 0. » is the number of mutants in an

individual culture, m is the mean number of mutations per culture in the batch of parallel
cultures,
The median of the distribution satisfies the relation
11-6 . . .
- —2:02=0, i.c. at the median 7/m—logm=1-24. (27)
r/im—log m+4-5
This equation provides a means of making & first estimate of m from the count of the
number () of mutants in the median culture of the batch.
The quartiles of the distribution (i.e. values of » making P,=0-25 or 0-75) satisfy the
relations:

at quarbiles: rfm~logm=—02 and ¢/m—logm=41, (28)
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which relations may be wsed as a first test of whether the spread of an experimental
distribution is comparable with the theoretical spread.

All the relations in this section are approximations, to be used only when dealing with
experiments which lie outside the scope of Table 2. The approximation should not be used
for the extreme ends of the distribution, e.g. for values of P, exceeding 0-95 or less than 0-05.

THE BSIIMATION OF MUTATION RATE FROM EXPERIMENTAL ORSERVATIONS
m from the mean number of mulonts per culture
As shown by Luria and Delbruck, the mean and variance of the distribution can be simply
caloulated, without knowing the distribution p,, as follows:

While the culture grows from n, to n,-+dn,, the mean number of mutations will be
(mfn) dny (op. equation (4)), the actual number being distributed in a Poisson distribution
about this mean with variance also (m/n) dn, (since the variance of a Poisson distribution
is equal to the mean). The contribution to the final number of mutants (when the culture
size is n) will be n/n, mutants for each mutation. Thus the contribution to the final number
of mutants will be distributed about a mean :7%%’ dn, with a variance. (%)2%3 dn, . Thus

1

1
the mean of the required distribution is

. o
F =J — —dn,=m log n, (29)

170

and the variance of an individual determination of » will he

% {7\ 2
o?= — dny =mn.* (30)
L \%y/) B

We can confirm that owr distribution p, yields the same mean and variance. The mean is

F=2rp,.
" 2
Since p, is the coefficient of 2” in the expansion of e-™exp {m (] 5 ; 3 )] (equation (15)),

and since ¢, =¢"p,, we have

% g.a"=exp ['m, ( — 3 )] . (31)
Differentiating
Zrar g, =m 1+ +2;2+ exp ﬂm 2 4 i +..1- (32)
r 23 4 1.2 2.3
Inserting =1, and putting ! —l—~J~+ +£—~100 9 and == -I—~L—l- .=1, we have
’ 23 1.2 2.3 ’

F=2rp,=e X rq.=mlogn.

Again, multiplying (32) by «? and differentiating,

s . o x? a8 1 a-
249'(7'+1):1;’grzfn/b{(a;—]—a;“—l—:ﬁ—i—...)+m(§+§+...)(-2—-l—§+...)}exp

Inserbing w=1, S (r+1)g,=me (n4in log? n)

@ .fv?'_l_ ’
_m, 1'2-}—2.3 .

2o (r4-1) p,=mn - m? log? n.

# Bub see Appendix: the correct value is o=z 2mn.
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Now the variance o? =51 —7)2p, =X, — 22 p, +i¥ 0y,
=%r (r4-1) p,—7—7%

Thus o?=mn—~m log n, i.e. o>=mn since > 1.

Since 7=m log n, a possible methad of determining . (and hence the mubation rate)
experimentally would be to divide by log# the mean number of mutants per culture
experimentally determined in a bateh of N parallel cultures. ITowever, on examination
it appears bhat the precision of the estimuabe of m given by this method does nob increase
with increase of N. For it is evident that the total numbers of mutants in batches of
N parallel cultures cach of size n will be distributed (from batelh to batch) in much the
same way as the numbers of mutants in parallel cultures of size nN. The mean number of
mutations in a culture of size nlN will be mV (since the mean number of mutations 1s
proportional to the size of the culbure, cp. equation (3)), and hence by application of (30)
the variance of the numbher of mutations in cultuves of size niV is mN.nN =mnN% Thus
the total number of mutants in a batel: of N cultures of size n 1s distributed from hatch to
bateh with a varlance mniN2. A [raction 1/N of this total number (i.c. the mean numbexr
per culture derived from a count of N cultures) is therefore distributed with variance mn.

Thus we see that the variance of the mean number # of mutants i N cultures is no smaller
than the variance of the nmmnber of mutants in an individual culture, which shows that
however many cultures are averaged, no improvement in precision is obtained over the
use of a single culbure selected ab random. Consequently, the mean number of mutants pex
culture is an extremely inefficient statistic from which to calculate the mutation rate, If,
nevertheless, this method of estimating m is employed, the variance (o%) of the estimate
of m will (from (29) and {30)) be

mn - (33)
(log n)?

independent of the number N of cultures averaged.

m from proportion of cullures without mulants
In view of the unsuitability of 7 as a means of estimating # from numerical data, Luria
and Delbruck proposed its estimation by equabing e~ o the proportion of culbures
experimentally determined to be without mutants. In a batch of N parallel cultures, in
which the mean number of mutations is m per culture, the expected number of cultures
without mutation is Ne=, the actual number being distributed about this mean in a
binomial distribution having a variance N e (1—e~"). Thus the variance of the estimate

. . dm . . .
e~tis e ™ (1 —e~™)/N. Bince T~ —e¢™, the corresponding estimate of m has a variance
d (e
(o?,) which is ¥ times as great, i.e.
G‘})L — 1 (34)
O, = A
m N
Thus the standard error (o,,) in the estimate of m is given by
Oy, 2 1 Gm_,l (35)
m) N\ m? )’

a,,/m thus varies with m. It has a minimal value when s =1-594, when a fraction 0-2032
of cultures have no mutants. At m=1-594, (g, /m)? takes the value 1-544/N. At small or
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large values of m (e.g. when the fraction of cultures without mutants exceeds 0-9 or is less

' : , - C o 4 . Oy

than 0-01), the value of (o,,/m) is much increased. Fig. 34 shows graphically —2 /N as
: m

a function of .

The low precision at small values of . is to be attributed simply to the fact that an
experiment in which the great majority of the cultures have no mutants does not provide
much precise information about the mutation rate. The reduced precision at high values
of sn is, however, to be ascribed to the fact that this method of determining m does not

3 | ]fII]IlF 1 F[IIIII| I_IIIII”] T T TTTT

o/ N/m

0 Ll b Ll ERENIRT
01 1 10 100 1000

Tig. 3. The precision of the estimate of m derived by various methods: 4, the method of the proportion of
cultures without mutants; 13, the method of the median; ¢, the method of S[a]=0; D, the method of
maximal likelihood.

malke full use of the experimental data, and in these cases more suitable methods, which
we shall describe, enable a more precise estimate of m to be made from the same data.

1m from the median
When the mutation rate is to be deduced from an experiment in which all, or nearly all,
the cultures had mutants, so that the method just discussed is inapplicable, a very
convenient method is to deduce m from the median of the distribution. The counts of the
numbers of mutants in N parallel cultuves are arranged in ascending orvder, and the middle
one selected. The count in this culture is an estimate of 7, the median of the distribution
of 7. Since we know that (approximately) the derived variate

@ . .
= — Vi =116 =45 =909 36
z (T o —Tog b c) with @ 6, b=4-b, =20 (36)
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is normally distributed about median 0, it follows that
7y @ ,
L _log m=-—b=1-24. 37
mo o c (37)

This equation enables an estimate of m to be made from an experimentally determined
value of 1,. With its aid Table 3 has been constructed, which enables m to be obtained for
any value of 7, up to 4400. While the derivation of m from the median is not the most
efficient way of utilizing the experimental data from a statistical standpoint, it is the
quickest satisfactory method, and is useful for making a preliminary estimate even if
a more elaborate method is to be employed in making the final estimate.

Table 3. Preliminary estvmation of m from median value of v

Thus if the middle culture of the series has 50 mutants, interpolation in the table between ry=49-2 and
19 =558 gives ryfm =381, so that m =50/3-81 =13-1. This is the mean number of mutations per culture.

7o rofin 7o 7olm 7o rolm 7o rofm
14 13 15-3 2-9 117 4-5 787 G-1
16 Lod: 17-4 3-0 132 4-06 884 6-2
19 8] 19-9 31 150 47 993 6-3
23 16 229 3-2 169 4-8 1115 64
27 1.7 25-9 33 190 49 1251 8-5
32 1-8 20-5 34 215 50 1404: 6-6
37 1-9 335 3:5 242 il 1575 6-7
4-3 2-0 38-1 3-8 273 52 1767 6-8
5-0 21 43-3 37 307 53 1981 6-9
57 2-2 492 3-8 346 B4 2221 7-0
6-6 23 55-8 39 389 55 2490 71
7 2-4 (3-2 4-0 438 56 2791 72
8-8 2:5 71-6 41 493 57 3127 7-3
10-1 2:6 811 42 554 5-8 3503 74
11-6 27 917 4-3 623 59 3924 7-5
13-3 2-8 104, 4ed: 700 6-0 4395 7-6

The precision of an estimate of m made in this way from counts of N cultures may be
determined by calculating a,,/m. We shall make use of the approximate result that » is
distributed in a normal distribution with unit variance. The probability of # lying hetween:

1 @ .
zand z +dwx is —— e—** da. The probability of its lying hetween 0 and z is \/(9 )f e¥* o,
Errs 0

1
Jen"
and for observations in the neighbourhood of the median (22<€1) we may write this as

x . @
—=. Thus 18 the probability of getting an observation <uz, and <~~———)
J@n) ( \/<n)) ! v on 8eme 2 J@m)
is the probability of getting an observation »a. Thus the probability that, of N=2s+1
observations, s shall be <, s shall hbe >z, and one shall be between » and z+dw is
(providing @ is in the neighbourhood of the median)

(Zs+1)! /1 @ \S /1 x \® de  (Gs+1)1[ 0 2 da
slsl (5‘“,\/@#)) ('é“.J(zﬂ)) J@m) T (28 s1)2 (1“?) J@m)

qlitlpen (o @ e ) oo

for s 1. Thus the median value of a set of N =2 +1 values of z is distributed about =0

. . i
with variance — =

LT
4s "IN’
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1t follows that if equation (37) is used to deduce from an experimentally determined
median value r, an estimate of m, then this estimate will be subject to a vaviance

il / (—ai) M, the suffix 0 denoting evaluation at the median. Differentiating (36),

oN[ \om/,
v (z4c)? (1= rm) e l x+
Ju_(v+of A=btlogm) wro .\ p@ w+e (59)
om am " moom
: : . . o c .
where d=(1—0-+logm)/a. Hence at the median 2=0, 5 = (ed+1). Thus the
0
variance o, of the estimate of m derived from the median is given by
a))l 2_ ] _ ?[:Tr ((('/02)2 __l _— !’,77- (4_0)
m) N (l+afe—b+logm)® N ¢ (cd+1)%

or, ingerting the values of «, b, ¢ from (36),

( m) TN (224 +log m)?’ (41)

Tig. 3B is a plot of (%) /N against m as given by (41). Having used Table 3 to make an
estimate of s from the observation of the median value of r, Wig. 3 B is consulted to obtain

the standard deviation to be ascribed to the estimate of m.

m from S [x]=0
An alternative method of estimating i from experiments in which all or nearly all of
the cultures have mutants is the following. Since z is distributed approximately normally
about the value =0, the mean value of x is zero. An estimate of m from a set of N
observations can therefore be made by finding that value of m which malkes

. a ,

S[x]=S [Wflég#n?b — c] =0, (42)
the summation being over the N experimental observations. In using this method a first
estimate of m is made by the median method. Inserting this value of m into (36), each
experimental value of » is converted into a value of @, and the swm S [#] formed. A series
of adjacent values of m are then tried, and the value of m which males S [#]=0 found
(e.g. by plotting S [#] against m).

The estimate of m obtained in this way is a little more precise than that based on the
median. The mean S [z]/N of a hatch of N independent values of # will be distributed
(from batch to batch) with variance 1/N about a mean zero. Suppose that its value for
a particular bateh is 8, so that

S [.ZC]=N8

If m+38,, is the estimate of m derived from this particular batch (5,, being the deviation
between the estimated and true values of m),

O

S [% + 3 87“] ={),
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' [0z/om . o [o0x
Thus 3, ‘S—[%@ﬂﬂ = —3§ or approximately 5,, It [%J = —0, where we have replaced the
mean value of 9z/0m for the set of N observations by the ewpectation B baiJ of g)_a .
m, 19

Now from (39) we have

.g%b: q_}? {22 +z (2ed -+ 1)+ c3d +},

and @ heing normally distributed with anit variance aboub mean zero,

B 2*]=1 and £ [z]=0.

ox] 1
m . L LA
Thus ) [E)lm,] - {d (1+c®) +¢},
—md
and so 8, AET I

The variance of § from batch to batch being 1/N, we obtain for the variance(o,,2) of m the
relation

2 1 1
E.jﬂ' B e = 4.
(m) N+ a2 (43)
with ¢=11-6, b =45, c=2:02, d=(1—b-+log m)/a.
A plot of FL’.L\/N against m as computed by this formula is given in Fig. 3C. Having
3t

derived m by the method described in this section, the standard deviation to be ascribed
to it is read from Tig. 3C.

Maximal likelihood method.: large counts

None of the methods we have so far described is fully efficient statistically. At the
expense of somewhat more laborious computation a fully efficient estimate of the mutation
rate may be made by employing the method of maximal likelihood. We give two solutions:
one for experiments which fall within the range of Tables 1 and 2, i.e. in which most of the
cultures have fewer than 64 mutants, which is set out in the next section, and one for
experiments falling outside the range of Tables 1 and 2, and for which the approximation
that z is a normal deviate is employed, which is set out in the present section.

The probability that the number of mutants shall lie between 7 and r+dr is given
approximately (for 7 not too small) as

I e, L Om,
N e dy= NED o dr=fdr (say). (44)
d . Ldf oz &z [Oa -
Thus dm loc’fﬁ?m— Vom ! %'871’&/5} (45)
@ . .-
N S - =116, b=4-5 =92-02
Now © (1‘ T —Tog M40 c) with a=11-6, b=4-5, ¢=2-02, (46)
and by differentiating we find
on d w+e, Px [Oz _ d 1

N

— —_— — T C
om w o ~ omorf or moom
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where d=(1—b+log m)/a. (48)

Thus jc%ﬁﬁ{ & (@+c)lPd—x(r+c)+2 (z+e) d+1}. (49)

Now L, the log likelihood, is (apart from irvelevant terms) S [log /], the summation being
for the N observations of », and the maximal likelihood condition is

dL [l df ]
= e :6 =
dm Jdm]’
Le. Sla(@+ePd+ta{z+e)—2 (x+e)d—1]=0. (50)
The routine for applying this method is as follows. Tmploying the preliminary estimate
of m given by the median method, (48) is used to caleulate d, and then (46) is used to
caleulate a value of @ from each of the N experimental observations of r. For each of these
N values of » the expression
z(z+e)d+z (v+c)~2(@+c)d~1
is evaluated and the N quantities added. The sum is similarly evaluated for several

adjacent values of m, and by plotting against m (or otherwise) the value of m which satisfies
(50) is deduced.
The variance to be attached to the maximal likelihood estimate of a parameter m is
given by Fisher’s formula (cp. e.g. Fisher, 1938)
1

Umzzz\'yg’ (51)

2
where 4= [( 7 Zj; ) ] is the expectation of ( 7 lf ) . Hence, using (49),
P =1 [{a3d +a? (2ed + 1)+ (Bd -+ —2d) — (2ed + 1)}?]

=d? I} [2%]+ (6c2d? + 6ed — 4d? + 1) B [24]

+{ctd® + 2% — 12¢%02 — 12cd + 4d* - 2 - 2) E {22

+(4c?dP+ded + 1)

+terms involving odd powers of .

Now it is readily shown that « being distributed normally about zero with unit variance,
L |2™] vanishes for odd n, and
L 2% =E[2=1, E[2%=3, E [25]=15.

Inserting these values in (52) we obtain

wmP=d? (¢*+10c2+7)4-d (263 + 100) + (2 +2),

hat o)L ! _— 5
so that (m) TN (A 102+ T) +d (2634 10¢) + (> + 2) (©3)
with a=11-6, b=4'5, ¢=2-02, d=(1—b+log m)/a.

The part of Fig. 3D to the right of m=10 is a plot of ( "L) JN against m. Having

determined the maximal likelihood estimate of m, as deseribed in this section, the standard
deviation to atbach to it is vead off from Fig. 3 D.
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Mazimal likelihood method: smaller counts
In this section we describe the method of arriving at the maximal likelihood estimate of
m {from an experiment falling within the scope of Tables 1 and 2; i.e. one in which the
majority of cultures have fewer than 64 mutants.
9, 1s the probability of a culture having » mutants. The log likelihood of a set of N values
of r is (apart from irrelevant terms)
y " .
L=5[log p,J,
S denoting summation over the N experimental values of 7.
The maximal likelihood value of m is that satisfying

0= EIL{I= S [i E@J .
dm P, dm

Now from equation (11)

@ m o dp, & mit nﬂ')
pp= 50, eMm—, =20, e — ],
Dr= 20 OG0 2 ((j~1)! J!
so that 1 [_ZE:{'—_E, (54)
pdm P,
where =% C, .(c"“ ?nj—l ) (55)
=R
Thus the maximal likelihood estimate of m is that satislying
=D
s [——— 7”J=0, (56)
Py

f, has been computbed for a range of values of m exactly as described eazlier for p,, and
in Table 4 values of (¢,—p,)/p, ave listed for a range of values of m and for the same
grouped ranges of » as were used previously.

The method of estimating m is therefore the following., A preliminary estimate of m is
obtained either by the median method or by equating e=® to the proportion of culbures
without mutants. Table 4 is entered at the value of m nearest to this preliminary estimate,
and a value of (4, —p,)/p, read off for each of the N experimental values of . The N values
are summed. The procedure is repeated for several adjacent values of s, and thence
(graphically or otherwise) the value of m inferred which would make 8 [t’—;ﬁ] =0.

;

The variance of this maximal likelihood estimate of m is given by the relation

, 1 .21 fdp\t L —p)?
 J—— A g — ) i) ?
TNy where ,-50 P, ((l'm,) = e
", Bl o

Py
2 here means summation over all values of » from 0 to infinity, and is to be distinguished
from S, meaning summation over the N experimental observations.
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10

12
13
14
15

This table is used in estimating mutation rate by the maximal likelihood method.

1
19:000
9-000
5667
4-000

3-000
2-333
1-857
1-500
1-222
1-000
0-818
0-667

0-538
0-429
0-333
0-250

0-176
0-111
0-0533

0-000
-0-167
—-0-286
-0-375

~0-444
- 0-500
- 0-545
~0-583

-0-615
-0-643
—-0-667
-0-688

-0-706
~0:722
-0-737
-0-750

~0-762
-0-773
-0-783
-0-792

~0-800
-{-833
-0-857
-0-875

- 0-889
~0-900
~0-909
~0-917
-0:923
~0-929
~0-933

9

19-723
9-698
6341
4+652
3-639
2:046
2-451
2.077
1783
1545
1349
1-184
1-048

0-920-

0-813
0-719

0-634
0-559
0-491

0-429
0-228
0-080
-0-034

-0-125
-0-200
-0-262
-0-315

- 0361
-0-401
-0-436
—0-467

- 0-495
-0-520
-0-542
~0-563

-0-581
-0-598
~ {614
-0-629

—0-642
~0-697
— 0737
~0-768

~-0-792
-0-812
~ (828
~(-842
-0-853
-0-863
-0-872
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Table 4. b =P and ﬂ'«‘:\/N
», m

o= Pa_
Pa

34 5-8
20-019 200179
9-G98 10-166
6-644. 6-821
4957 5142
3939 4-130
3:254. 3:452
2-760 2-964
2-386 9-596
2.092 2:307
1.855 2-075
1-658 1-882
1-492 1720
1-350 1:582
1-227 1462
1119 1-357
1-023 1-264.
0-937 1-181
0-860 1107
0:790 1-039
0-727 0-978
0-520 0-777
0-3064 0-627
0-243 0-508
0-144 0411
0-063 0-330
- 0007 0-260
—0-066 0-200
-0-119 0-147
—0-164. 0-009
-0-205 0-057
—-(-242 0-018
-0275  ~0:017
-0305  —0-050
-(-333 -0-080
-0-358 - 0107
-0-381 -0-133
- 0402 -0-157
—(-422 -0-179
— 0441 - (-200
- (-4d8 -0-220
- {530 - (304
- 0-58:l -~ 0369
-0-626 -0-422
—0:660 - 0-465
-0-689  —0-502
- 0712 - 0-534
-0-733 —-0-561
-0-750 —~0-586
~0-765 -0-607
-0-779 -0-626

F

9-16
20-211
10-206

6-868
5-196

4191
3519
3-038
2-676

2-393
2166
1-979
1-822

1-689
1:574
1-474
1-386

1-308
1.237
1-174
1-117
0-931
0-793
0-686

0-599
0-526
0-464:
0-409

0-362
0-319
0-280
0-245

0-213
0183
0-155
0-129

0-105
0-082
0061
0-041
0-021
-0-062
-(-128
~0-184

-0:231
-0-272
-0-307
-0-339
—-0-367
—-0-393
- 0-416

~1 for all values ol m.

17-32
20-176
10-174

6-839
A-171

4170
3501
3-023
2-665
2-386
2-162
1-978
1-825

1:695
1-584.
1-487
1-402
1-327
1-259
1-199

1:145
0971
0-845
0-749

0-672
0-609
0-556
0-510

0471
0-436
0-404:
0-376
0-350
0-326
0-304:
0-284

0-264
0-246
0-229
0-213

0-197
0-130
0-073
0-025

-0-016
-0-053
-0-086
-0-116
—-0-143
-0-167
-0-190

33-G4:
20-124:
10-124
6790
5-123

4123
3450
2079
2.622

2-344.
2-121
1-039
1.787
1-658
1-548
1-452

1-369

1-205
1-229
1170

1117
0-948
0-828
0-736

0665
0-608
0-560
0520

0-486
0-456
0-430
0-407

0-386
0-367
0-350
0-334:

0-320
0-306
0-203
0-282

0-271
0-228
0-184
0-151

0-121
0-095
0-071
0-048
0-028
0-008
-0-010

> 64
20-057
10-057

6723

5057

4057

3-390

2:914

5]
<t
<t
-1
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O"uz'\/jy! n
4-527
3239
2-674
2341

2116
1-951
1-824
1792
1-638
1568
1-507

1456

1:409
1-368
1-332
1-289

1-269
1-242
1-217

1-194
1-118
1-059
1-012

0973
0-940
0-913
0-888

0-867
0-848
0-831
0-816

0-802
0-789
0777
0-766

0-756
0-747
0-738
0-730

0-722
§-680
0-665
0-Gdd

0-627
0-613
0-600
0-589
0680
0-571
0-564:
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In the final column of Table 4 we have tabulated

. =2 N (58)

T —o
m A/ (E (2, ]),.)) )
Py

Having determined the maximal likelihood estimate of # as just described, the value of
0,,/N/m is read off from the last column of Table 4. These values of o,,4/N/m have been
used in plotting the part of Fig. 3.D to the left of m=10. Between m=3 and m=15, the
values of o,,J/N/m caleulated from (58) and from (53) agree satisfactorily.

SUMMARY

Statistical caleulations are made of the distribution numbers of mutants in a culture of
bacteria in which the number of mutants increases on account both of new mutations and
of division of old mutants. In this way the largely qualitative conclusions of Luria and
Delbruck are extended and placed on a firm quantitative basis. The results of these
caleulations, which enable the mutation rate to be inferred from experiments with parallel
cultures, are presented in the form of tables. Statistically efficient methods of using these
tables are discussed.
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APPENDIX. (By C.A.C.)

(1) It has been suggested that a table of the individual coefficients C; , introduced in
equation (7), and which give the expansion of ¢, in powers of mn, might be useful. Such
a table, for » <10, is shown below.

Table of C,,

1 . z md
According to equation (7), ¢, 2 O,
g=1 J:
"N 9 3 4 5 6 7 8 9 10
1
2 T
1, 1
3 0 W
1 1
4 50 v g
5 2 7 B 2
J 3 00 T8 EE]
6 L A1 181 5 L
42 720 L2160 oa ¢4
1 88
7 Ta T T 7’u
3 2 107 i
T8 L1788 a5d
9 > 307 8 P 1
Do D1Ba [} Xt H1L
10 1 5900 1681 5 o 1
- 110 LoBH8 34600 £88 S1E 1084

(2) It should perhaps be pointed out that the replacement in (3) of n—1 by n is an
approximation whose effect is quite negligible provided that r<€n, as occurs in all
experiments. In fact, even for 7 of the order of nt, the values of ¢, ave seriously in ervor.
As a result of this, and of the fact that it allows » to exceed m (which is manifestly
impossible since 7 is the number of mutants and » is the total number of bacteria), the

~ generating function (15) actually gives an infinite value for all the moments. These two
difficulties have been removed in a development of this theory, to be published by Mr
D. G. Kendall, of Oxford. But unfortunately his more strictly correct generating function
cannot be expanded with any ease to determine the ¢,. Except for large » or small n,
however, it differs insignificantly from our (15).

(3) Mr Kendall has kindly pointed out to me that the argument in (31) and (32),
which was copied from Luria and Delbruck, is not quite valid. Forin (32) the complete
series 5+t I not convergent when x=1, and in order to get an expression for
the mean value and the variance it was necessary artificially to curtail this series by
truncating it at its term a™/n. This device is not a valid procedure, and it appears that
although there is no change in the mean 7, the variance o2 of an individual determination
of r requires to be multiplied by 2, so that the correct relation o2 == 2mn.



