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INTI~ODUCTION 

Luria & Delbruck (1943) have shown that if a culture of some hundreds or thousands of 

imlHons of Ba, cter'i'u,,m, coli, grown fk'om a single ceil, is plated out on a nutrient medium 

impregnated with a bacteriophage to which the strMn of cokt is sensitive, the vast majority 
of the bacteria are lysed, but a few give ~:ise to colonies. These colonies contain only 
bacteria resistant to the bacteriophage, and give rise only to resistant bacteria on further 
subcultJvation. Evidently hereditary variations or mutations can occur in bacteria. 
Nmnerous other examples are known of mutations in bacteria, affecting fermentation 
reactions (e.g. Lewis, 1934), resistance to chemicals (e.g. Stewart, 1947), to antibiotics 
(e.g. Demerec, 1.9r or ~o radiation (Wit, kin, 19r 

The demonstration of phage-resistant mutants necessarily involves the exposing of the 
bacteria to the phage, and it is not immediately obvious whether the mutation to phage 
resistance occurs spontaneously during the growth of the culture, and is merely made 
apparent by subsequently testing with l?h~a, ge, or whether the mutation is induced by ~he 
phage and does not occur until the bacteria are brought into contact with phage. )lost 
experiments on baeteriaI wu'ia~ion have left open the two alternatives of spontaneous 
mutation on the one hand[, and induced mutation or adaptation on the other, and the 
interpretation adopted has usually been determined by the previous training of the 
individual worker rather than by any compelling evidence provided by the experiments. 

Luria and Delbruck, however, in their paper, described a method by which a decision 
between the two alternative explanations may be reached, and concluded that the 
acquirement of resistance to phage is a spontaneous mutation which occurs during the 
growth of the culture and prior to its treatment with phage. Demeree (19r and Witk.in 
(194-6) have applied the same meghod go muhants resistant to penicillin and to X-rays 
respectively, and have concluded that these changes also are spontaneous mutations 
occurring independently of the penicillin or of the radiation respectively. 

The principle of Luria and Delbruck's test is as follows. A culture of (say) 10 '~ bacteria 
is divided into (say) ten equal portions which, are separately tested for phage-resistant 
organisms by plating out on a phage-impregnated medium. A small number is found in 
each of the ten. portions, and the numbers are found experimen~ally to be distributed with 
a variance approximately equal to the mean. This result is not surprising on either hypo- 
thesis. On the spontaneous matation theory, we suppose that mutations to phage 
resistance occurred from time to time during the growth of the culture. All the bacteria 
produced, by subsequent divisions of a mutant bacterium were similarly phage resistant. 
Thus the culture of lff a bacteria contained a certain number of phage-resistant bacteria, 

* [[Note by C. A. C. A few days befbre I)r  Lea's untimely death in ,June 194,7, the manuserip~ ~md the calcula- 
tions reported here had just been completed. Ib was Dr Lea's intention 1)o make flu'gher experiments more 
suitable to a test of the theory outlined ii~ thi.s p~tmr. Those experintongs etmnog now be m~l,do, bug it |u~.s been 
thought  wise to publish the theory ~md numoricM gM~les beea, use of their vMuo to other investig~l;ors.] 
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being either bacteria which had recently undergone, mutation, or bacteria derived from 
the division of mutants  which arose earlier in the growth of the culture. When the culture 
was divided into ten equal portions the phage-resistant organisms were distributed 
at random between the ten portions. We may  expect, therefore, the numbers in the 
different portions to Nll in a multinomial distribution with variance nearly eqnal to the 
inean. 

On the adaptation or induced mutation theory, it is supposed that no phage-resistant 
bacteria arose during the growth of the culture. The ten portions, at the time of plating 
out, each contained 10 s normal bacteria and no resist~nt bacteria. On being brought into 
contact with the phage most were lysed., bu t  a few were able to adapt themselves to the 
phage (or the phage-induced mutations in them). The probability of this process is very 
small, but was presumably the same for all the bacteria. On this theory, therefore, we 
expect the number of resistant colonies on the ten parallel plates to be distributed in a 
Poisson distribution with variance equal to the mean. Either theory is thus capable of 
accounting for the experimental variance, and this experiment alone does not make 
possible a decision between the two theories. 

A second experiment is now made in which (say) ten cultures, of (say) l0 s bacteria are 
tested for phage-resistant organisms. On the adaptation or induced-mutation theory this 
experiment is not essentially different tk'om the preceding one, and we again expect the 
numbers of phage-resistant colonies on the ten  test plates to be distributed in a Poisson 
distribution with variance equal to the mean. For, on this theory, the phage-resistant 
mutants do not appear until the bacteria are plated out on the phage-impregnated medium, 
and there can be no relevant difference between a culture of 10 '~J bacteria divided into ten 
equal portions, and ten separately grown cultures of 10 s bacteria. 

In practice a very different result is obtained : the distribution Obtained is much wider 
than in the fbrmer experiment, and has a variance many times--perhaps fifty t imes--  
the mean. 

On the spontaneous mutation hypothesis a very wide distribntion of the number of 
phage-resistant bacteria in parallel cultm'es is to be expected. The reason is that  not only 
do the parallel cultures differ in the numbers of nmtations which have occurred, but also, 
and much more importantly, they differ in the  stages at which the nmtations occurred. 
I f  a mutation occurs towards the end of the growth of a culture, it will give rise to one 
phage-resistant organism, but if it occurs early in the growth, say when the culture is only 
one-hundredth of its final size, it will give rise to a large number of phage-resistant 
organisms. Thus even in cultures in.which equal  numbers of mutations have occurred, the 
numbers of phage-resistant organisms will usual ly  be widely different. 

I t  is evident, therefore, that  the hypothesis  tha t  spontaneous mutation to phage 
resistance occurs dm'ing the growth o f t h e  cul ture before it is brought into contact with 
the phage is in qualitative agreement with t h e  experimental result, while the alternative 
hypothesis of mutat ion induced, by the phage, or adaptation of the bacterium to the phage, 
is not. Luria and Delbruck's method thus provides, :for the fi.rst time, a clear means of 
distinguishing between the two hypotheses. 

As left by Luria and Delbruck, the method is a qualitative one, since they do not derive 
the shape of the distribution to be expected on  the spon.taneou.s mutat ion theory. Th.ey do 
derive expressions for the mean and vari.anee of  the distribution, but as they point out, on 
account of the extreme skewness of the distribution,  the mean and variance are very 
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inefficient statistics for estimating the parameters of the distribution from experimental 
results, or for testing the agreement of experiment and theory. 

The purpose of the present paper is to extend Luria and Delbruck's method by calculating 
the fot'm of the distribution of numbers of mut, a~ts in pargRcl cul~axc,s.' go be expected on 
the spontaneous mutation theory, so malting tt~e test of the applicability o:f the s]?onta~eous 
nmtagion theory a quantitative teat. Statistically efficient methods of deducing the 
mutation rate from experimental observations are also discussed. 

THE X}ISTIIIBUTION 

Fi,rst method 
During the active g~owth of ~ culture, the nunfl~m: of organisms increases as an exponential 
function of the time, and may be represented as 

~ = +7 t, ( l )  

~here being one organism at time t = 0. 

Thus dn =/b~ dt. (2) 

If  ~. is the mut~tion rate, defined by the relation that  c~ dt is the probability thee an 
individual phage-sensitive organism sha]] undergo mutation to phage resistance in time dr, 
nc~dt is the mean nmnber of mutations whielh occur in time dr. (Strictly, since n is the total 
number of organisms, we should subtract ilion1 n in this formula the number of resistant 
organisms, bu~ in practice the number of mu~,n5 orga~i,~ms in ~ ~u~tare is ~ minute 
tYaction of the total number.) I-Ienee the mean number (m) of mutations which will have 
occurred in the cultm'e by the time i6 has grown to size ++ at  time t is 

t ~ FT~ q. 

Since at all relEVant times n much exceeds unity, we may write 

for ~he mean number of mutations in the culture by the time it has attained size q~, The 
mean number of nmtations which oceu~ whiie the culture grows frmn ~'1 to +z~ organisms 
is evidently 

m (n~-'h ] 
<--Tf-~ / " ( ,l- ) 

If.it  should happen that  the mutat ion rate g and the growth rate/3 are equally affected 
by factors such as nutritional conditions and density of popu].agion which affect/3, then 
the nmtation rage per generations, though no~ per u,~it time, will be independent of these 
factors, and ~,/]3, which may be regarded as the probability of mutat ion per division, will 
be constant even though ~ and/3 are not. Under these conditions Equations (3) and (~I) 
can be derived with.out the assumption of exponential growth. 

We must distinguish be~wee~ the ~mmber of .~rmt~,tions which h~ve occurred,., and the 
number of mutants, the latter being derived not only by mutation of the normal bacteria 
but also by division of bacteria which have suffered mutation earliem If  ~' (,r >/,m) is the 
nmnber of mutattbs in t]:t(~ culture a~ a given time, and if we assume that  the division rate of 
the tauten6 is the same as that  of the normal bacteria, then ~'fid, t = rdn/n is the probability 
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t h a t  one of the  m u t a n t s  shall divide in t ime  dr. Similarly,  ( r - 1 )  dn/n is the  p robab i l i t y  
t h a t  one of the  m.utan.~s shall divide in t ime  dt in a cul ture  conta ining ( r -  ].) mu tan t s .  

Le t  10,. (a i \mct ion  of ~7,) be t:he p robab i l i t y  t h a t  a cul ture  of '~ bac ter ia  grown f rom 
a single b a c t e r i u m  a t  g=O shall have  r m u t a n t s  (i.e. of a large n u m b e r  of cul tures of 
n bacteria,, a p ropor t ion  j)~. of culbures will have  'r m.ugangs). 

Consider the  p ropor t ion  :?),. + w - r  of cultures which, a t  t ime  t-F dr, when the cul ture  
" f b ' ~ ? ,  

size is ~ + d,~z, have  ~' mu tan t s . .These  will be derived f rom:  

(a) cul tures which, a t  time/,,  had  ' r -  l. mugan.gs and[ in which a m u t a t i o n  occurred in the  
in te rva l  dt; 

(b) cul tures which, a,t t ime/, ,  had  r - 1  m u t a n t s  and. in which a m u t a n t  divided in the  
in te rva l  d/,; 

(c) cul.~ures which, a t  t ime  ~, had  ,r m u t a n t s  and in which nei ther  m u t a t i o n  nor  division 
of a m u t a n t  occurred in the  interval, dr; 

providing t h a t  the  in terva l  & is small  enough, l~'or (~//?) d'n, and ,rdn/,~z go be much  less t h a n  
uni ty ,  the  possibi l i ty  of more  t h a n  one of the rare  events  m u t a t i o n  and. division of a 
m u t a n t  in the  in te rva l  dt can be neglected.  We see, therefore,  t h a t  

dp,. { c,. dn' { ~ . dn~ 
+ N = ? + (,,' - l ) W ) + 1 - ?  - ,' 7 ], 

& -57]" 
3{aking, f rom (3), the  subs t i tu t ion  m = (~/fi) ~,, we have  

d~,,. ,' ( l + r - 1 ]  
d'm +P"+m 2~=2''-1 \ ~n /"  (5) 

Mult iplying b y  the  in tegra t ing  fac tor  e "~ we have  

dq,. r / r -  1\ 
~ + ;  q,.=q,._~ [ l  + - ; 7 - ) ,  where q,.=e">,.. (6) 

Now m is the  m e a n  numbm" of m u t a t i o n s  which have  occurred in a cul ture  b y  the t ime  ig con- 
tains ~ bacter ia .  Therefore  e-'', the  first  t e r m  of the  Poisson dis t r ibut ion,  is the p robab i l i t y  
.lJ0 t h a t  no m u t a t i o n  shall have  occurred. Thus  q0 = e"~Jo = 1 for all values  of m. E v i d e n t l y  
initially, when  ~n = 0, qr = 0 for all 'r > 0. 

S tar t ing  from. q0 = 1 we can calculate  ql, q~, ga, etc. in succession f rom the differential  
equat ion  (6). Thus :  

dq, 1 
+ ~ ql = 1, whence ql =-~m; 

e -~m+;  q~=~am [1 - t - ; ) ,  whence q~={-m-I-~,n~; 

a +s) 

Eviden t ly  q,. is a po lynomia l  in m, wi th  powers  ranging f rom 1 to r. 

2~ ~. 'nd ~ m a _~ m r 
Writ ing q,. = Z;__' %., ,. j~- = C1, ,. 'm + %, , .~.  + . . .  + G., f T .  ~ , (7) 



268 D i s t r i b u t i o n  o f  n 'wmbers o f  muta'nt~ i n  bacter ial  p o p u l a t i o n s  
- .p 

wc have tZqr = 32 (!. mi-i  
dm j-_-i ~ J ' r ( j - 1 ) l "  (8) 

Inserting (7) and (8) in (6), and 6quaking coefficienl~s of "~h'i-i/j l, we h,we 

( j  + r) r r =Jq-~,,'-* + ( r -  1) q ,  ,._,. (9) 

Witch this recurrence relation a table of U~,,. may be drawn up. Such a, table, for vMues 
of ,r 4 10, is givm~ in the Appendix. 

1 
Evidently Ci" r ( r + l ) '  C,.,.=2-". (10) 

From (6) and[ (7), 2)o=e-% and for r >  1 

" / " ' <  {~, , , , , , , )+t '=. , . [~- , , ,~. i+ +c',.,. ( i ] )  2,.= E Cj ,. {e-'"-271 = Q ,  . . . .  ;=: ' ~ 0 . /  �9 \ - W ] "  

A generating function for p,. 

Define a function f (x, m) =qo -kqi x+q= x~+ . . . .  E g,.x r. (12) 
' r=0  

~1 -~ ,.~ ~f - @" (13) We have ~ = ~ ' r a :  - qr ~nd ~ = 2 ; x " ~ .  

M~lltiplying equa, tion (6) by xr and summing for all 'r we have 

Ex" d_~q,. + x_ Er x y'-* q,. = x= x Ex"-iq~_i + ~  E ( r -  i) x"-~q,._i, 

or, using (13), ~/' x ~f ,. x 2 af 

a~ x a,~ (1r whence ~ + 7m (1 - x) ~x = x, 

where* r  This equation is satisfied by 
r (~, ~r~)=.~ r (*), 

providing r  ( 1 - x )  ~//=x, 

r s 
i.e. r  

x ( 1 - x ) - l - x "  
Multiplying by x / ( 1 - x )  and integrating 

x ,/j= + l o g  ( l - x ) -  1, 
l ~ x  

the integration constant - 1  being introduced since when z =  0, f =  q0 = 1, so that  ~/~ = 0  
andso  r  Thus 

r  log ( l _ z )  x x z z a 
x = ~ 7 ~ + g 7 5 + ~ . ~  . + ' ' ' '  

whence f =  era'/' = e" (1 - x) m (*-*}1"~, 

so tllat l~,.=e-'"q,, is the eoef~cient of x" in the expansion in ascending powers of x of 

( l - x )  ''(1-'~/~ or of e - " exp  m l ~ . ~ + ~ +  . . . .  (1.5) 

�9 log means nagurM logaribhm, go base e=2-718.., bhroughout tiffs paper. 
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_ l x x ~ ' ) ' r n l x x 2 )  2,m~ ,, 1 ! + t~-~. 2_1_ ~-.~ + ... i . e .  o f  . . - - -  . . ( 1 6 )  

Comparing with (].1), it is evident that  CZr is the coelFmienl~ of a;" in the expansion of 

( x x~ .) ~. 
iU~ + ~-p5 + .. (17) 

I t  will be shown later ~,hat Cj, ,, is the probability/~ha.t a culture in which exactly j muta- 
tions have ocem'red shall contain 'r n:m'~ants. I f  we define 

7' 

DZ,.= E 6'. 

Dj.,,. ~s the prol~aMlity that  a culture in w]~Jch exactly j mutations have occurred shall 
have ~<'r mutants.  Summing equal~ion (9) over all r between j and r leads to the following 
recurrence relation between the Dj- ,., 

( r - l - j )  Oj. r =,.?'(Di-I , , . -1-Dj, , . - : t ) ,  (18) 

or (~' ~-,i ) D], r = ~'D:], r-1 -~,ib~ -1., ,'-1" ( 19 ) 

Equation (18) is useful as an arithmeticM check during the eomputat;ion of the C. by ) , r  

means of equation (9). 
I t  is some~aimes convenient to discuss P,. defined as 

P , . =  (2o) 
-r=l} 

Pr being the probability that  a culture shM1 contain 0, 1, 2, ..., or r mutants,  i.e. any number 
of mutants  up "~o r. P0=e-",;  P r = l  for all ~' a,t m=0 .  The following equations can be 
readily deduced by summing (5) and (11) over MI ,r bet~ween 0 and r: 

dP,. ~ ( l + "  _ (1+  r 
d-~n +l' , .  ~i,) = P , . ,  ~ ) ,  (21) 

P,. = e -'n + E Dj ,. / ','d\ /e - ' + - / .  (22) 
j = l  ' \ j ! ]  

s econd method 
An alternative method of ealculM~ing 2,., the probability of a culture having r mul~ants, 

is ind0ructive. A mut~an~ appearing by mutat ion any time after the culture has passed 
the size �89 will not have time to divide by the time the culture size re~ches n, and will 
therefore contri.bate 1 to the finM complement of mutants, k matant~ appearing by 
mnta,tion during t~he period in which the culture grows fk'om �88 go ~-n will have time to 
divide once only and will therefore contribute 2 mu~a,nts to the final complement. A 
mutant~ appearing by mutation in the period in which the culture grows from i n  to ~n will 
have time go divide twice only and will contribute ~l mutants  to ~ahe final complement, 
and so on. 

Confining attent~ion for the moment to all those cultures in which exactly one mutation 
occurs during the growtt~ of tl:m culture from one organism to n organisms, in one-hMf of 
t~he cultures the mutation will occur wMle the culture is growing from {-n to ~, in one-quarter 
of the cult, nres the mutation will occur while the culture is growing from }n to �89 and. so 
on (compare equation (4)). Or, in other words, in one-half of these cultures ~,he muta'don 
occurs at such a time that  it gives rise finMly to 1 mutant,  in one-quarter of the cultures 
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the mutation occurs at  such a time tha t  it  gives rise finally to 2 mutants, in one-eighth at  
such a time that  it gives rise to 4 mutants,  and so on. 

According to this argument, a mutation is necessarily represented, by the time the 
culture has reached size n, by a clone of 1 or 2 or 4 or 8, etc., organisms, there being no 
intermediate numbers. This would be so if divisions in a clone were synchronous. I t  is 
probably true tha t  clones of 3, 5 or 7 cells will be less common than clones of 2, 4 or 8 cells 
(cp. Adolph & Bayne-Jones, 1932), but rather than make the extreme assumption t h a t  
only integral powers of 2 are to be considered it is probably preferable to neglect this fact 
and to assume that  the frequency of clones of different sizes is a smooth function of 
clone size. 

A clone which, by  time t, contains v mutants  will have originated when the number of 
bacteria in the culture was about n/v. We thus replace the subdivision of the growth of the 
culture into generations by subdivision into intervals in which the population increased 
from �89 to n, from �89 to �89 from In  to �89 and so on, and suppose that  a mutation which 
occurred while the population increased from n/(v + 1) to n/v is, by  the time the population 
has grown to n, represented by a clone of v mutants. Now, of those cultures in which 
exactly one mutation has occurred, the proportion in which the mutation occurred while 

the culture grew from n/(~, + 1) to n/v is ; -~-~-~ v (v + 1) (ep. equation (4)). This may 

be represented as the coefficient of x ~ in the generating function 

x x 2 x v 
. . . .  (23) 

Considering now all those cultures in which exactly j independent mutations occurred, 
the fraction of cultures in which the final number of mutants  is v is, from (23), evidently 
the coefficient of x ~ in the expansion of 

( x x~ xd ...) '. 
+ + + 

Now ff m is the mean number of mutations per culture, the proportion of cultures in 

which exact lyj  mutations occurs is e -~ ~- .  Thus the proportion o f  al l  c u l t u r e s  in which the 
3- 

final number of mutants is r is the coefficient of z r in the expansion of 

/ x x ~ x ~ hi m ~ 

j=0 " )  "j!" 
Thus ?r,  the probability of a culture having r mutants,  m being the mean number of 
mutations per culture, is the coefficient of x ~ in the expansion of 

e -~ e x p [ m  / x x ~ \ ]  ~ + ~ + ' " ) ]  

in agreement with equation (15). 

Arithmetical procedure 
By means of the recurrence relation (9) and the boundary values (10) a table of values 

of CI, r has been computed for all (integral) values o f j  from 1 to 36 and o f t  from I to 64, 
subject to r ~>j. Equation (18) was employed as a cheek on the arithmetic at j = 63. Ci, r 
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is the l)robabiliby that a culture in which exaet]yj mutations have occurred shall contain 
r mutants. In l)raegice when comparing the theoretical and exi)erimental distributions the 
dis bributions will always be grouped. For economy of space, therefore, we do nob publi,@ 
the Nil  table of Cz~. but  give in Table 1 groul?ed values for r = l ,  2, 3, 4, 5-8, 9-16, 
17-32, 33-64 and > 64. 

Table 1. C. J , ? '  

Cj.  r is bhe p r o l ) a b i l i b y  bhab ,~ eulbm'e  in w h i c h  e xa c b ly  j m u ~ b i o n s  lll~Ve oeetH.'red s h a l l  h~uve r mub~mbs (,r~>j). 
F o r  v a l u e s  o f  r g r e a s e r  t h t m  2, bite v a l u e s  o f  6' i ,r h ~ v e  b e e n  g i :ouped .  T h u s  bite n u m b e r s  in  bite c o h m m  het~ded 

r = 3 2  

' 1 7 - 3 2 '  a re  v,~lues o f  E 6'. See  a lso  bite A p p e n d i x  fo r  ee, 'bain o t h e r  v a l u e s  o f  C:i,~.. 
r ~ 1 7  ' )  ' r �9 

j ' ~ . r  I 2 3 ~ I  5 - 8  9 - 1 6  1.7-32 33 - ( i4  > 6 4  

] 0 .5000  0 .1667 0 .1333 0 .0889  0 .0523 0 .0285 0 . ( ) H 9  0 .0154  
2 - -  0 .2500  0 .2778 0 .2118  0 .1272 0 .0671 0 .0335  0 .0325 
3 - -  - -  0 ' 2 5 0 0  0"3100 0"2161 0 '1161  0 ' 0 5 6 3  0 '0515  
4 - -  - -  0 .0625 0 .3093 0 .2986 0 .1735 0 . 0 8 3 4  0 .0726 

5 - -  - -  - -  0 .2060  0 .3479 0 .2353 0 .1149  0 .0960 
6 - -  - -  - -  0 .0885  0.344:5 0 .2949 0.1504, 0 .1216 
7 - -  - -  - -  0 .0260  0 .2907 0 .3441 0 .1894  0 .1497 
8 - -  - -  - -  0 .0039  0 .2100 0 .3753 0 .2305  0 .1804  

9 . . . .  0 . ] 3 1 2  0 .3830 0 .2721 0 .2137 
10 . . . .  0 .0718 0 .3665 0 .3122  0 .2495 
11 . . . .  0 .0342 0.3294: 0 .3486  0 .2878 
12 . . . .  0 .0138 0 .2790 0 .3789  0.3284: 

13 . . . .  0 .0045 0 .2234  0.4:01.0 0.371.1 
14 . . . .  0.0011 0.1698 0.4135 0.4157 
15 . . . .  0-0002 0-1228 0-4155 0.4:616 
16 . . . .  0 ' 0 0 0 0  0 ' 0 8 4 6  0',1071 0.508,!: 

17 . . . . .  0 ' 0 5 5 3  0'3891. 0 ' 5555  
18 . . . . .  0 .0343 0.3633 0 .6024  
19 . . . . .  0 .0200 0 .3315 0 .6485 
20 . . . . .  0 .0109 0 .2961 0 ' 6 9 3 0  

21 . . . . .  0"0055 0 ' 2 5 9 1  0 ' 7 3 5 4  
22 . . . . .  0 ' 0 0 2 6  0 .2222  0 ' 7 7 5 2  
23 . . . . .  0 .0011 0 .1871 0.811.8 
24 . . . . .  0.0004 0.]546 0.8450 

25 . . . . .  0"0001 0.1254 0.8745 
26 . . . . .  0 .0000  0 .0998  0 .9001 
27 . . . . . .  0 .0779  0.9221 
28 . . . . . .  0 .0596  0 .9404  

29 . . . . . . .  0.0447 0.9553 
;t0 . . . . . .  0 .0327  0.9673 
3 ]  - -  . . . . .  0 .0234  0.9766 
32 . . . . . .  0 . 0 ] 6 4  0 .9836 

33 . . . . . . .  0 ' 0 1 1 1  0 '9889  
34 . . . . . .  0 .0074  0.9926 
35 . . . . . .  0 .0048  0 .9952 
36 . . . . . .  0"0030 I).9970 

1),. is the probabil i ty tha t  a culture of such a size tha t  the mean number  of mutat ions is 

(/) 'm, shall contain r mutan t s . .P0  = e-'m and for 'r~> 1, 1)~, = E C. -,,, m~ .w' e . For any given 
j = l  

value of 'm,, p~. can be calculated with the aid of the table of Cz,., for the same groupings 

of ,r. The calculation is facilitated if a table of Poisson coefficients e-"~.  ]s available 

(Molina, 1942). In  Table 2 values of p,. are given for a number  of values of m from 0"05 
to 15. 

The figures in Tables 1, 2 and 4- are liable to occasional rounding errors of one unit in 
the last decimal place. 

J o u r n .  o f  G e n e b i e s  49  19 
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LIMITING FORM OF ])ISTRIBUTION FOI~ LARGE NUMBERS 

Tab]e  2 ]?rovides  ~he m e a n s  of  t e s t i n g  t h e  agreemenJ5 b e t w e e n  ~heorebical  a n d  eXl?er imen~al  

d i s t r i b n g i o n s  ii~ ex]?er imen~s in  w]aietl t h e  m e a n  n u m b e r  o f  m u ta , t ions  ]?er e u l t t  n:e is  15 or  

f ewe r ,  a n d  ~:n w h i c h  a m i n o r i g y  of  t h e  en lbures  h a v e  m o r e  g h a n  64 muta ,n t s .  To  e x g e n d  

T a b l e s  I a n d  2 b y  use  of  ghe r e c u r r e n c e  r e l a t i o n  (9) t o  c o v e r  e x p e r i m e n t s  in w h i c h  ],he 

m e a n  n m n b e r  of  mu~a~,ions p e r  c u l t u r e  c o n s i d e r a b l y  e x c e e d s  15, a n d  go s u b d i v i d e  ghe c lass  

T a b t e  2. ~),. 

lb. is t)he prob~bi3ity f;hag a cult, m'e stroll h,svc r mut~ngs, the a~erage mmaber of mn~:gions which have occm'red 
Iler eultm'o being m. ]for vMues of r gre~tcr tl~a~ 2, the vMues of Pr have been grouped. Thus t)hc nmnbers 

r=,q2 

in l~he column headed '17-32' are va,lues of E p,.. 
r=17 

'm~r 0 1 2 3-4 5-8 9-16 17-32 33~64 > 64 

0.05 0.9512 0.0283 0.0082 0.0067 0.0045 0.0026 0.0014 0.0008 0.0008 
0.I0 0.9048 0.04:52 0,0162 0.0113,1 0.0090 0.0053 0.0029 0,0015 0.0015 
0.15 0-8607 0,0646 0.0239 0.0200 0,0137 0.0081 0'00~14 0.0023 0.0023 
0.20 0-8187 0.0819 0.0314 0.0267 0.0]84 0.0109 0.0059 0.003] 0,00"H 

0,25 0.7788 0-0974 0.0385 0.0332 0,023l 0.0138 0.0074 0.0038 0,0039 
0.30 0.7408 0.] I]i 0.0454 0.0397 0.0279 0,0167 0,0090 0,0946 0.0047 
0.35 0.7047 0.]233 0.0519 0.0462 0.0328 0.0]96 0,0106 0.0055 0.0055 
0,<10 0.6703 0'134] 0-0581 0.0525 0.0376 0.0226 0.0122 0.0063 0.0063 

0.45 0.6376 0.1435 0.0640 0.0587 0.0425 0,0257 0-0139 0-0071 0.0071 
0.50 0.6065 0.151.6 0.0695 0.0648 0.0475 0.0288 0,0155 0.0079 0.0079 
0.55 0.5769 0.1587 0-0747 0.0707 0.0524 0.0319 0,0172 0.0088 0,0087 
0.60 0.5488 0.1646 0-0796 0.0765 0.0573 0,035] 0.0189 0-0096 0,0096 

0.65 0.5220 0.1697 0,084:1 0.0821 0,0622 0.0383 0.0207 0.0105 0.0].04 
0.70 0.4:960 0-1738 0.0884 0.0876 0.0672 0.0415 0.0224 0.0114 0.01.12 
0.75 0.4724 0.;1771 0 . 0 9 2 3  0.0928 0'0721 0.044:8 0'0242 0.011.23 0.0120 
0.80 0.4493 0-1797 0"0959 0-0979 0'0769 0-0:182 0.0200 0-0132 0-0129 

0"85 0.4274 01817 0.0992 0.1028 0 . 0 8 1 8  0'0515 0 " 0 2 7 9  0'0141 0.0137 
0'90 0.4066 0.1830 0'1022 0.1070 0,0866 0'0549 0'0297 0.0150 0.0146 
0"95 0-3867 0-1837 0'1049 0.1121 0-0014 0"0583 0"0316 0.0159 0.0154 

1.0 0.3679 0-1839 0.1073 0.1164 0-0961 0.0617 0"0335 0.0168 0.0163 
1,2 0'3012 01807 0.1145 0.1317 0'1144 0.0757 00414 0-0207 0-0198 
1'4 0.2466 0 . 1 7 2 6  0'1180 0 - 1 4 3 8  0'1316 0 " 0 8 9 9  0 - 0 4 9 6  0 - 0 2 4 7  0-0233 
1.6 0.2019 0.1615 0.1184 0-1528 0.1473 0'1041 0.0581 0-0288 0.0270 

1.8 0.1653 0 . 1 4 8 8  0 . ] .165  0 . 1 5 8 7  0 . 1 6 1 5  0.1184 0.0670 0 0332 0.0307 
2.0 0.1353 0 - 1 3 5 3  0.1128 0.1620 0 . 1 7 3 8  0.1324:  0 . 0 7 6 1  0 . 0 3 7 7  0.0345 
2.2 0,1108 0,121.9 0 . 1 0 7 7  0.1.629 0.1844 0.1462 0.0855 0 . 0 ~ 2 3  0,0383 
2'4 0.0907 0 - 1 0 8 9  0 . 1 0 1 6  0 - 1 6 1 7  0'1930 0'1595 0 " 0 9 5 1  0 . 0 4 7 1  0.0423 
2.6 0 - 0 7 4 3  0'0966 0'0949 0 - 1 5 8 7  0 . 1 9 9 8  0 - 1 7 2 3  0"I049 0-052I 0-0404 
2.8 0.0608 0-0857. 0 . 0 8 8 0  0 . 1 5 4 3  0 . 2 0 4 8  0'1844 0.1149 0 . 0 5 7 3  0.0505 
3'0 0.0498 0 . 0 7 4 7  0 . 0 8 0 9  0.h1:87 0'2080 0 . 1 9 5 8  0.1249 0 . 0 6 2 6  0.0547 
3'2 0'04:08 0-0652 0.0739 0.1421 0'2095 0-2063 0"1351 0"0680 0.0590 

3.4: 0.0334 0.0567 0,0671 0.1350 0,2095 0.2159 0.L152 0 - 0 7 3 6  0,9634 
3.6 0.0273 0,0492 0.0607 0.1274, 0.2081 0.2240 0.1554 0.0794 0,0679 
3.8 0.0224: 0.0425 0.0545 0.1195 0.2054 0.232:1 0.1655 0.0853 0.0725 
4.0 0'0183 0 . 0 3 6 6  0.0,t88 0.1115 0 . 2 0 1 6  0.2391.  0 - 1 7 5 5  0"0913  0.0771 
4,2 0.0150 0.0315 0-0436 0.1036 0"1969 0-2447 0-185~ 0.0975 0,0819 
4.4 0.0123 0.0270 0 , 0 3 8 7  0.0958 0 . 1 9 1 2  0.2~193 0 . 1 9 5 1  0 . 1 0 3 8  0.0867 
4,6 0,0101 0.023] 0,03,13 0-0882 0.1849 0.2529 0,2046 0.1102 0,0917 
4,8 0.0082 0 . 0 1 9 8  0 . 0 3 0 3  0,0809 0'1780 0'2555 0'2139 0.1.167 0.0967 
5 0.0067 0'0168 0 . 0 2 6 7  0'0739 0'1707 0 . 2 5 7 1  0 " 2 2 2 8  0.1234,  0.1018 
6 0,0025 0.0074 0 . 0 1 3 6  0 . 0 4 5 1  0 . 7 3 1 1  0 . 2 5 1 6  0.2620 0 . 1 5 7 7  0.1289 
7 0.0009 0.0032 0 . 0 9 6 6  0.0258 0 . 0 9 3 6  0 . 2 2 8 5  0.2898 0 . 1 9 3 2  0,1584 
8 0.0003 0"0013 0'0031 0'0141 0'0630 0"1953 0'3043 0.2283 0'1903 

9 0,000i 0.0006 0.0014 0 - 0 0 7 4  0 - 0 4 0 4  0,1586 0.3055 0.2615 0,224~t 
10 0.0000 0 - 0 0 0 2  0 . 0 0 0 6  0.0038 0 . 0 2 4 9  0 . 1 2 3 3  0'2950 0 . 2 9 1 3  0.2698 
11 0.0000 0 . 0 0 0 1  0 . 0 0 0 3  0.0019 0'0148 0 . 0 9 2 3  0 . 2 7 5 1  0 . 3 1 6 5  0.2991 
12 0.0000 0.0000 0 . 0 0 0 1  0.0009 0 . 0 0 8 6  0.0668 0.2486 0 . 3 3 5 0  0.3391 
13 0.0000 0.0000 0 . 0 0 0 1  0,0004 0.004:8 0 , 0 4 6 9  0,2185 0 , 3 4 8 9  0.3805 
] 4 0.0000 0"0000 0-0000 0-0002 0'0027 0'0320 0;1871 0'3552 0'4228 
15 0'0000 0'0000 0'0000 0'0001 0'001,1 0-0214 0"1564 0,3549 0"4657 
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> 64, mutants  into KLrther classes, e.g. 65-128, 129-256, 257-512 mutants,  etc., would 
involve an impracticable amount of arithmetic. An a t tempt  was therefore made to find 
asymptotic :formulae :for Pr or P,. val:id for large values of 'm,. We  have not succeeded in 
:finding explicit formulae, but  have obtained some information on the :form of the function. 

I f  we consider P~. as a continuous :function o:f the two variables r and m, then for values 
of r>> 1 we have approximate ly  P r - P r _ i  = 8Pr/a'r. T_hus equation (21) approximates to 

8P,. / ,r \ 8P,. 

(' ) Pr =/~' ~ -  log 'm , (25) which is satisfied by  

where F is any function. 
In Fig. 1 we have ]?lotted P,. (derived from Table 2, i.e. based on the recurrence relation) 

a.ga:hlst (r/,m,-log ~'~) for r = 8 ,  16, g2 and 64, using five values of ,n~ (viz. ~1, 6, 8, 13, 15) 

";'0 

0 . 8 -  

0 . 6 -  

Pr 

0 ' 4 -  

L 
I 

0 . 2 -  

I I J ...... I I '1 I I I t I I I I L I I 

�9 m = 4  

A m =  6 

X m = . 8  

| m = 1 3  

- I -  m = 1 5  

t I I I t I t 1 t t I ~ I 
~ 0 2 4 6 8 10 12 14 

r/m- log rn 

:Fig. 1. Pr, for different ,r and m, is ~ fimction of r/.m. - log .m. The points. ~re plotted for 
r=8, 16, 32 and 64, and with v~,=~t, 6, 8, 13 and 1.5. 

selected so tha t  the twenty  points are conveniently spaced. I t  is seen tha t  the points lie 
quite well on a single curve, showi~g tha t  these values of r are large enough for equa- 
tion (2~t-) to be a satisfactorily close approximation to equation (21). The smooth curve 
in Fig. 1. is thus a graph of the funct ion/~ which enters into equation (25). 

For any given value of m, (@r~-log ,~) is evidently distributed in a skew distribution 
about a median 1.2{L We have found by trial tha t  the derived variate ('r /,n~- log 'm-k ~['5) -1 
is distributed in a distribution rather c]osely approximating to a Gaussia~i distribution of 
standard deviation 0.086. This is shown by  the closeness with which the points in Fig. 2 
lie on a straight line. The points in Fig. 2 are derived from those of Fig. 1 by  transforming 

l____ the ordinates to probits, defined by  the relation ~/(27r)J_~ e-~V"~dY=Pr' where y is the 

probit corresponding to P~.. (Tables of probits are given in Fisher & Yates, 1958.) Also, 
1.9-2 
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the abscissae are trans:formed to values of (r/,rn-log,rn-k~l.5) -1. Fig. 2 shows that ,  
approximately, 

( x 
\ ' r / , m  - l o g  'm, + 4"5 - l og  ~m, + 4:-5 

is a normal deviate. 
We conclude, in this semi-empirical mare:mr, tha.t when the sl?ontaneons mutation 

theory is to be compared with experiments falling outside the scope of Table 2 (i.e. experi- 
ments in which cultures containing more than 6~.1: mutants are frequent), it will be saris- 

[ 11.6 2.02) to be factory for practical purposes to suppose ,,,t = \,r/,m- i~gg vl, + ~1:.5 

7 I I I I ......... 
" X  

6- ~ �9 m = 4  _ 

A m=6 
X m=8 

o 

I 

0 0.1 0.2 0.3 0.4 ().5 

1 
r /m-log m~ 4.g 

Fig. 2. 1 / ( r / ' m - l o g  ,m,-I-~.5) is distributed in ~n approxiuu~tely normal distribution. The 
l?oints are ]?Iotted for r = 8 ,  16, 32 ttnd 64, trod with 'm.=4-, 6, 8, 13 ~nd 15. 

distributed wi~h unit  variance about the value 0. ,r is the number of mutants in an 
individual culture, m :is the mean number of mutations per culture in the batch of parallel 
cultures. 

The median of the distribution satisfies the relation 

11.6 
- 2.02 = 0, i.e. at the median 'r/m-log m =  1.2~. (27) 

, r / , m  - l o g  'm + ~1-5 

This equation provides a means of making a first estimate of ~'r~ from the eolmt of the 
number (r) of mutants  in the median culture of the batch. 

The quartiles of the distribution (~.e. values of 1' making P~.=0.25 or 0.75) satisfy the 
relations : 
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which re la t ions  m a y  be used as a first  t e s t  of whether  the  sp read  of an  exper imen ta l  
d is t r ibut ion is comparab l e  with the theore t ica l  spread. 

All the re la t ions  in this section are approx imat ions ,  to be used only  when deMing wi th  
exper iments  which lie outside the  scope of Table  2. The a p p r o x i m a t i o n  should not  be used 
:['or the ex t reme  ends of ~he distr ibution,  e.g. for values  of Pr  exceeding 0.95 or tess t h a n  0.05. 

THE E s ' r i ~ ' r m N  OF ~UI'ATm~ mvr~ ~go~I EXrm~l:~'~m!i]~ O~S~gW~'mNS 

'm f r o m  the m e a n  nu,m, ber of" mutan t s  per  culture 

As shown b y  Lur i a  and  Delbrtlok, the m e a n  and var iance  of the  d is t r ibut ion  can. be  s imply  
cMeulated, w i thou t  knowing  the  d i s t r iba t ion  p,., as follows : 

While the  cul ture  grows fl 'om n~ to  nl - t -dnl ,  the  mean  n u m b e r  of muSat ions will be  
(,m./n) do h (cp. equa t ion  (4)), the  aetuM n u m b e r  being dista ' ibuted in a Poisson d is t r ibut ion  
abou t  this m e a n  wi th  var iance  also (re~n) dn 1 (since the  var iance  of a Poisson dis t r ibut ion 
is equal  to the  mean) .  The  cont r ibut ion  go the  final n u m b e r  of m u t a n t s  (when the  cul ture  
size is n) will be %/~h nmgants  for each muta t ion .  Thus  the  con~ribution to  the  final n m n b e r  

of m u t a n t s  will be  d i s t r ibu ted  abou t  a m e a n  - - -  d'n 1 wi th  a va r iance  - dn 1. Thus  
n 1 n \n~/ % 

the  mean  of the  requi red  dis t r ibut ion is 

e =jl  log 
and the  var iance  of an individual  de t e rmina t ion  of r will be 

(a0) 
. d  I .  

We can conf i rm t h a t  our  d is t r ibut ion p.,. yields the  same mean  and  var iance.  The  mean  is 

[ )] Sincep is the  coetiicient of x"in the ex~)ansion~ . of e -'~exD.~ m ~ + 2 - - ~ +  ... (equat ion (15)), 

and  since qr = e'~2)~ ,, we have  

E q/~"= exp i'm / x x 2 

Dii:l%rentiating 

1. 1 1 1 1 
Insert ing x = 1, and put~;ing ~ + g + . . .  + _  - log '~ and ~-~ + ~ + . , .  - 1, we have 

'F = E'r p~. = e -'~ E ,r cL,.- ,m log ~. 

Again, mul t ip ly ing  (32) by  x~ and  differentiat ing,  

/ x  ~ x a 1 x - / x x ~ 

Inser t ing  ~ = 1, E ,r (r + 1) f,.-'~r~e?" (n +'m 10g ~ n) 

E 'r (r + 1 )p , . - ' r an  + ,~r~ z ].og ~ n. 
* Bug see Appendix:  ~hc correct wdue is ~r~# 2.m~. 
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Now the variance or" = E ( r -  f)2pr = E r 2 2 r -  2/;E'r p r + f~Epr 

= E r  (r + 1)/)r - '~ _,~2. 

Thus c r " - m ~ - m  log n, i.e. cr~-m~~ since ~>> 1. 
Since ~ = m  log n, a possible method of determining 'm, (and hence the mutat ion r~te) 

experimentally would be to divide by log n the mean number of mutants per culture 
experimentally determined, in a batch of N parallel cultures. Kowever, on examination 
it  appears that  the precision of the estimate of m given by t;his method does nob increase 
with increase of N. For i t  is evident that  the total nmnbers of mutants in batches of 
N parallel cultures each of size n will be distributed (Dora batch go batch) in much the 
same way as the numbers of mutants  in parMM cNtures of size uN. The mean number of 
mutations in a culture of size nN will be "rrtN (since the mean number of mutations is 
proportional to the size of the culture, cp. ectu.ation (g)), and hence by application of (30) 
the variance of the number of mutations in cultm'es of size nN in raN. n N = m n N  2. Thus 
the total  number  of mutants in a batch of N cultures of size ~ is distributed from batch to 
batch with a variance mnN 2. A fraction ]IN of this total number  (i.e. the ]:nea]~ mtmber 
per culture derived from a count of N cultures) is therefore distributed with variance ,ran. 

Thus we see that  the variance of the mean number ~= of mutants  ifi N cldtures is no smaller 
than the variance of the number of mutants  in an individual culture, which shows tha t  
however many cultures are averaged, no improvement in precision is obtained over the 
tlse of a single culture selected at  random. Oonsecluently, the mean number of nmtanbs per 
culture is an extremely inefficient statistic Dom which to calculate the mutation rage. If, 
nevertheless, ~his method d estimating m is employed, the variance (a~,) of the estimate 
of m wii1 (from (29) and (30)) be 

(log ,r@' (33) 

independent of the jaumber N of cultures averaged. 

'm from prol)ortion of cultu'res without mutants 
In view of the unsuitability of ~= as a means of estimating m from numerical data, Luria 

and Delbruck l~roposed its estimation by equating e-" to the proportio~x of cultures 
experimentally determined to be without mutants. In a batch of N parallel cultures, in 
which the mean number of mutations is ,m, per culture, the expected number of cultures 
without mutat ion is No-'% the actual number being distributed about this mean in a 
binomiM distributiml having a variance Ne -'~ ( 1 -  e-'~). Thus the variance of the estimate 

d'm, 
e-" is e -~" (1 - e-'~)/N. Since d (e-") - d'% the corresponding estimate of m has a variance 

(a,~) which in e TM times as great, i.e. 
d '~ - i 

N (34) 

Thus the standard error (%,) in the estimate of m is given by  

(G.,n~ 1[e"--11 \%VS]" (35) 

%,/m thus varies with ~?z. I t  has a minimal value when ~, = 1"594, when a fraction 0.2032 
of cultures have no mutants. At m=l .59 , i ,  (%,/m) ~ takes the vMue 1.544/N. At small or 
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large values of ,m, (e.g. when the fraction of cultures without mutants  exceeds 0.9 or is less 

~ha.n 0'01), ~he value of (%,/'m) is much increased. Fia' 3A shows graphically %~,~N as 
" o "  " ' l ~ b  

a function of ,m. 

The low precision a.g smalI values of ,m is to be at tr ibuted simply to the Net  tha t  an 
experiment in whiclh the great majority of the cultures have no mutants  does not provide 
much precise information about the mutaUion rate. The reduced[ precision at high values 
of ,m, is, however, to be ascribed to the fact tha t  this method of determining 'm does not  

"' L ~  I ~ ~ I z 1 1 1 1  i I I ~ I ~ '  

C 

I I lllllJ I I I I I[_l. ll I I l I lllll I I l l Ill 
0.1 1 10 100 1000 

m 

Fig. 3. The prccmion o1! ~he esi)im~e o[" ~n derived by various me,hods: A, the me~hod of the proportion of 
cultures udghoug nntg~n~s; B, the lneghod of the median; C, the method of 6'Ix] =0 ;  2), ~he method of 
mtbximt~l likelihood. 

make full use of the experimental data, and in these cases more suitable methods, which 
we shall describe, enable a more precise estimate of ~ to be made from the same data. 

',~ f i ' om  the ,median 

When the mutat ion rate is to be deduced from au experiment in which all, or nearly all, 
the cultures had mutants,  so that  the method just discussed is inapplicable, a very 
convenient method is to deduce 'm from the median of the distribution. The counts of the 
numbers of nmta,nts in N parallel cultures are arranged in ascending order, and the middle 
one selected. The count in this culture is an estimate of r 0, the median of the distribution 
of 'r. Since we know that  (approximately) the derived variate 

( ) x . . . .  c with a=11 '6 ,  b=~b5, c=2 '02  (36) 
' r /m - l o g  ,m + b 
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is normally distributed about nledian 0, it follows that  

(& 
'r~ log 'm . . . .  b =1.2,i (37) 
77b C 

This equation enables an estimate of ~ to be made from an experimentMly determined 
value of %. With its aid TM)Ie 3 has been constructed, which enables m to be obtMned :for 
any value of % up to 4400. While the derivation of m from the medium is not the most 
efficient way of utilizing the experimental data from a statistieM standpoint, it is the 
quickes~ satisfactory method, aizd is useful ibr making a preliminary estimate even if 
a more elaborate method is to be employed in malting the final estimate. 

Table 3. Preliminary esti,m, atiorb q/' re.from median value of r 
T h u s  i f  bhe m i d d l e  c u l t u r e  o f  ghe ser ies  h~s  50  mut~ml)s, in~erpol~bion in  t)he l~M)le bel~wee, n r 0 = 4 9 . 2  v, n d  

r 0 = 5 5 . 8  g ives  r0/m = 3.81,  so l~h~g ,m = 5 0 / 3 . 8 1  = 13.1. Th i s  is t;he me,~rt n u m b e r  o f  mut .~gions 1)er cuIImre. 

re ,'o1,,,. .r,, r,,I,,. "0 "01"'. .r,, "'~ 
1.4- 1.3 15 '3 2.9 117 ~t.5 787 (~-1 
1.6 1.d: 17.,1 3"0 132 ,1-.6 88,1: 6 '2  
1.9 1.5 19-9 3.1. 150 4.7 993 6.3 
2.3 1"6 22.7 3-2 169 4:'8 1115 6.4 

2-7 1,7 25-9 3-3 100 4"9 1251 6-;3 
3.2 1.8 29.5 3.4 215 5,0 1,t04 6.6 
3.7 1.9 33.5 3.5 242 5.1 1575 (i.7 
4-3 2.0 38"t  3-6 273 5-2 1767 6.8 

5.0 2.1 43.3 3"7 307 5.3 1981 6"9 
5.7 2.2 49.2 3.8 3,i6 5.4: 2221  7.0 
6.6 2.3 55.8 3.9 389 5.5 2490 7.1 
7.7 2.4: 63.2 4-0 438  5 .6  2791 7.2 

8.8 2.5 71.6 4.1 493 5.7 3127 7.3 
10.1 2.6 81.1 4.2 554  5.8 3503 7,4 
11 '6  2.7 91 '7  4:'3 623 5"9 3924  7"5 
13 '3  2 .8  104 4"4 700 6"0 4395  7"6 

The precision of an estimate of ,m. made in this way from counts of N cultm'es may be 
de~ermined by oMculating cr,,Jm. We shall make use of the approximate result that  x is 
distributed in a normal distribution with unit  variance. The probMJitity of x lying between 

1 , . 1 ~'~ 
e --a * " (IX, x and x + dx i s . ~  e -'-'x= dx. The probM~ility of its lying between 0 and x is f ~  o 0 

and for observations in ~he neighbourhood of the median ( x ~  1) we may  write this as 

x/(2rr). Thus ~ +  is the proba.bility of getting an observation < x, and 1 x 

is the ]?robM~ility of getting an observagion> x. Thus the probabili ty tha~, of N = 2s + 1 
observatiolis, s shall be ~<x, s shall be >x ,  and one shall be be~weetl x and x + d x  is 
(l?roviding x is in the ndghbom'hood of tlte median) 

( 2 s + 1 ) , / 1  x ~ s [ l _  x ~s dx ( 2 s + 1 ) , /  2x~"ts dx 

j 

:for s >> 1. Thus the median vMue of a set of N = 2s + 1 values of  x is distributed about x = 0 
7r 7r 

wibh variance ~ -~ -~ .  



D. E .  LEA AJSD C. A.  C o x ; u s e s  279  

It, :follows tha t  if equation (37) is used to deduce from an experimengMly determined 
median vMue ,r o an estimate of ~)t, then this estinaatc will be subject t,o a variance 

22v/t0v),,/,,' the sufllx 0 denothxg evaluation at t,he median. Different,iaMng (36), 

+~'-L-2= (,~ + c)~_ ,~+c 3z (z-t-c) ~ (1-b+log 'm,)  d, + - - -  (39) 
~'Hb (b';)'b ';;;, 7;'b ');iS 

mhus the where d=(1-b-t-log,m)/<~. Hence i:l,t, the median .m=0, \&m]~ 'm 

" of the estimate of 'm, derived from the median is given by  variance ~m 

(<~,,,I ~= 1 .~-~- (<),/~)" ~ -:i~- 
.m] N (1-i-a, lc-b-i-log v;),)~-N e 2 (ed-I-1) ~' (,.tO) 

or, inserting t,he values of ct, b, e from (36), 

(%t 2= 1 12.70 
~, i  N (2.24-F log ,m) 2" (1-1) 

Fig. 3B is a plot of (%']  @V agMnst m as given by (,fl). Having used Tat31e 3 to naal~e an 
\ m 1 

estimate of ,m tk'om the observat,ion of the median vMne of,r, Fig. 3 B is oonsult,ed to obtMn 
the st,andard deviation to be ascribed to the estimate of 'm. 

m fi'om ,S' [ z ]  = o 

An alternative method of estimating .m from experiment,s in which all or nearly all of 
the cultm'es have mutants  is the following. Since m is distribttt,ed approximately normally 
about the value m=0, the mean value of m is zero. An est,imate of ,m from a set of N 
observations can therefore be made by finding that  value of 'm which makes 

[ a, - e l  =0,  (,1-2) ,S' [:~1 =,5' :;'/,))~-lo-g ,;,,+b 

the summat,ion being over t,he N experimental observat,ions. I13. using this method a ilrst 
estimate of m is made by  t,he median me~hod. Inserting this value of 'm, int,o (36), each 
experimentM value of ,r is converted[ into a value of m, and th.e stun ,S' [z] formed. A series 
of adjacent values of ,,t are then t,ried, and the value of 'm, which makes N [m] =0  found[ 
(e.g. by ]?lotting S [m] against 'm,). 

The estimate of ~)~ obt,ained in t,his way is a little more precise than that  based on t,he 
median. The mean ;S [.m]/N of a bat,ch of N independent values of .~; will be distributed 
(from bat, oh to batch) with variance 1/N about  a mean zero. Suppose that, i t,s value for 
a part,icular batch is 8, so that  

I f  m +8 m is the estimate of 'm derived[ from this particular bat,oh (8 m being the deviation 
between the estimated and true values of 97~), 

~X 
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Thus 8 m S [Ox/~m]_N 8 or approximately 8 m E [0iJ~x- = -8 ,  where we have replaced the 

mean value of Ox/O,n'~ for the set of N observations by ~hc cx2ectation E -3x- of ~,m 

Now fl'om (39) we have 
~x 1 
- -  = -  { . ~ d  + x (2cd  + ~ ) + c"-d + c},  
O't~'b 'Db 

and ~ being normally distributed with unit variance about mean zero, 

E [ x ' q = l  and[ E[x]=0 .  

Thus E [ ~m,] =--', l{d, ~ (1-I-c ~ ) -F c}, 

and so Sm-d (1-Fc ~) +c" 

The variance of 3 from batch ~o batch being l /N,  we obtain for the variance(%~) of ~ the 
relation 

(%,,] ~ 1 1 
G /  - N {~ (~ + ca) + c}~' (43) 

with a=11.6, b=4.5, c=2.02, d=(1-b+Iog  m)/c~. 

A plot of % ~ N  against m as computed by this formula is given in Fig. 3 C. Having 
m 

derived m by the method described in this section, the standard deviation to be ascribed 
to it is read fl'om Fig. 3 C. 

Maximal lilcelihood method: la~ye counts 

None of the methods we have so far described is fully efficient statistically. At the 
expense of somewhat more laborious computation a fltlly efficient estimate of the mutation 
rate may be made by employing the method of maximal likelihood. We give two solutions: 
one for experiments which fall within the range of Tables 1 and 2, i.e. in which most of the 
cultures have fewer than 64 nm~an~s, which is set out in the next section, and one for 
experiments falling outside the range of Tables 1 and[ 2, and for which the approximation 
that x is a normal deviate is employed, which is se~ ou~ in the present section. 

The probability that the number of mutants shall lie between r and r+&'  is given 
approximately (for r not too small) as 

Thus 

1 ix, 7 1 ~~ ~x c-~'"c~x =~-~)) c-~"~ ~ cl,r =f& (say). (44) 
. , / ( 2 ~ )  , ' 

d i df  ~x ~ x  13x log f=  - ( 4 5 )  
tb'I~ U'IIb U't U ' H b [  U'! 

and by differentiating we find 

~x , ,~ d x+c .  
OTr~ =(x+c)  ~q- m ' 

with a= l l . 6 ,  b=4.5, c=2.02, ( 4 6 )  

(47) 
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where d = (1 - b + log m)/a.  (,/:8) 

Thus I df I fc~,~,-- ~ { - x (x + c)~ c~ - ~ (~; + c) + 2 (x + c) ,~ + i}. (,m) 

Now L, the log likelihood, is (apar~ fl'om irrelevan~ ~erms) ,5' [log f], ~he summation being 
for the N observations of r, and the maxinlal likelihood condition is 

o [1 4r] 

i.e. S Ix (x + c) ~- d + z (x + c) - 2 (z + c) d - 1] = 0. (50) 

The routine for applying this method is as :follows. Employing the preliminary estimate 
of m given by the median method, (48) is used to oaloulate d, and ~hen (~1-6) is used to 
calculate a value of x from each of the N experimen~a[ obserw~io~s of r. For eaoh of ~hese 
N values of x the expression 

x (a-t-c) 2 d + x  (x-i-c)- 2 (x-i-c) d - ] .  

is evaluated and the N quanti~ies added. The sum is similarly evaluated for several 
adj scent vMues of m, and by plotting against m (or otherwise) the value of m which satisfies 
(50) is deduced. 

The variance to be attached to ~5e maximal likelihood estimate of a parameter m is 
given by Fisher's formula (cp. e.g. Fisher, 1938) 

1 %/=~, (51) 

where i = E  ' d m ]  J is gee eXl?eetation of \ f d m ]  " I-Ienee, using (49), 

i m  2 = E [{xad + x "a (2Cd + 1) + x (c2d + c - 2d) - (2cd + 1)}2] 

= d ~ E [x  ~] + (6c~d ~ + 6cd - ~d ~ + 1) E [x  ~] 
+ (rid ~ + 2dad - 12c'~d 2 - 12cd + 4d ~ + c a - 2) E [z ~] 
+ (4c2d~+4cd+ 1) 

+ terms involving odd powers of x. 

Now ig is readily shown tha t  m being distributed normally about zero with unit variance, 
E [m~q vanishes for odd n, and 

E [ x ~  [ x ~ ] = l ,  E [x~]=3 ,  E[:~G]=15.  

Inserting these values iu (52) we ob~aiu 

i'm ~ = d 2 (c 4 +10c ') + 7) q- d (2c 3 + 10e) -}- (c z + 2), 

so ~hab \ m ]  Nd" (c'l+ 10U'+7)+d (2ea-I-10c) + (e~+2)' (53) 

with a = l l . 6 ,  b=~.5, c=2.02, d = ( 1 - b + l o g  m)/a.  

The parb of Fig. 3D to the right of m = 1 0  is a plot of (%'~t ~/N against m. Having 
\ m / 

determined the maximal likelihood estimal~e o]! 'm,, as described in hhis section, ~he s~andard 
deviation to at tach to it is read off from Fig. 3 D. 
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Maxima, l lilcelihood .method: smaller co.unts 
In ~his section we describe the method of arriving at the maximal likelihood estimate of 

m from an experimen~ falling with.in the scope of T~btes 1 ~nd 2; i.e. one in which ~he 
majority of cultures have fewer than 64 mutants.  

g. is ~he probabili ty of a culture having r mud, ants. The log likelihood of a set of N values 
of 'r is (apart fi'om irrelevant terms) 

L = S [log 2,.], 

S denot,ing summation over the N experimental  values of ,r. 
The maximal likelihood value of m is tha t  satisfying 

0 :   zP':l 

N o w  f l :om e q u a t i o n  (11)  

$. ~ ,mJ 
?, .  = Z:  b ' j  ,. e - ' '  ~=7 '  

:i=1 ' 7 �9 dm j= i  ~'' \ ( j - l ) !  j ! ] '  

so that  1 dP,,= t,.-?,. (54-) 
IJ~. dm Pr ' 

where t , .=EC.  ( m i - 1 )  j=i 3,,' e - ' ~ ( j - 1 ) !  " (55)  

Thus the maximal likelihood estimate of m is tha~ satisfying 

[t , . -p, ;  =0,  (56) 
L I), ' J 

t,. has been computed for a range of va.lues of m exactly as described earlier for p,., and 
in Table 4~ values of (t,.-p,.)/2) ,, are listed for a range of values of m and for the same 
grouped ranges of ,r as were used previously. 

The method of estimal,,ing m is therefore the following. A preliminary estimate of m is 
obtained either by the median mel,,hod or by ecfaating e -''~ l,,o the proportion of cultures 
without mutants.  Table 4 is entered at the value of m nearest go this preliminary estimal,,e, 
and a value of (t~.-2,.)/2),. read off for each. of the N experimental values of r. The N values 
are summed. The procedure is repeated for several adjacent values of m, and thence 

[t,,-p,.] 
(graphically or otherwise) the value of m inferred which would make S L/--~-,' J = 0. 

The variance of this maximal likelihood estimate of .m is given by the relation 

' , here ' i= 1 

Thus (%,~] z 1 1 (57) 
\ ~-~,/ - 2V  m ~ y  ' ( t , . - l ) , . )  2" 

E here means summation over all values of ,r from 0 to infinity, and is to be distinguished 
from S, meaning summation over the N experimental observal,,ious. 



D. E. LEA A~D C. A, Covr.so~T 283 

Table 4. 6-P~: and %,iN 
~1 r '1 '/'b -- 

T h i s  t a b l e  is used  in  e s l ; im~t ing  mutc~/~ion rtbte by  bhe m a x i m ~ l  l i k e l i h o o d  m e t h o d .  

t~ = - ]  for  a l l  v a l u e s  o f  'm. 
] J o  

" m ~ r  1 2 3 - 4  5 - 8  9 - 1 6  1 7 - 3 2  3 ; I -64  > 64: o-~,..,/N[~u 

0.05 19.000 19.723 20.01i) 20.179 20.211 20.170 20.124 20.057 4.527 
0-I0 9.000 9.698 9.998 ]0-]66 10.206 10.174: 10.12,1: i0.057 3.239 
0.15 5 .667 6.341 6-644: 6.821 6 .898 0 .839 6-7.00 6.723 2.674: 
0'20 4"000 ,I:'652 4'957 5.]42 5'196 5.171 5.]23 5.057 2.34] 

0.25 3 .000 3 .632 3.939 4 ,130  ,1.191 4 .170 4-123 4,057 2-116 
0.30 2.'133 2 .946 3 .254 3 ,452  3,519 3 .50]  3 ,456 3 ,390 1,951 
0.35 ] ' 8 5 7  2.451 2 .760 2 .964  3.038 3 .023 2 .079 2 .914 1.824 
0.40 1 .500 2 ' 077  2 .386 2-596 2.676 2.665 2 .622 2.557 1.722 

0.45 1.222 1-783 2.092 2.307 2.393 2.386 2.344 2.279 1.638 
0 '50  1,000 1.54:5 ] ' 8 5 5  2-075 2,166 2-162 2 4 2 ]  2 .057 1..568 
0.55 0'818 1'349 1.658 1.882 ]'97q ].978 1.939 ],875 1.507 
0'60 0'667 1'184: 1.492 1.720 1.822 1.825 1.787 ] .723 :1.455 

0.65 0 .538  1.043 1,350 1,582 1,689 1.695 1.658 1,595 1-109 
0.70 0 .429 0.920" 1.227 ] .462 1,574 1.584 1.548 1,485 L 3 6 8  
@75 0.333 0'813 1.I19 1.357 1.474 1.487 1.452 1-390 1.332 
0-80 0-250 0-719 1-023 1.264, 1.386 1'402 1'369 1.307 1.299 

0.85 0 .176 0 .634  0.937 1-181 1.308 1.327 1.295 ] .233  1.269 
0.90 0.Iii 0.559 0.860 1.107 1.237 1.259 ].229 1.168 1-242 
0.95 0.053 0.491 0.790 1.039 1-174 1-1.99 ].170 1.109 1.217 

1,0 0.000 0.429 0.727 0.978 1.11.7 1.145 1.1117 1.057 I.]94 
1.2 - 0 .167 0 .228  0 .520 0-777 0.931 0 .971 0 .948 0 .890 1.118 
1.4 - 0 .286 0 .080  0 .364 0 .627 0 .793 0 .845 0 .828  0.771 1.059 
1.6 - 0 .375 - 0 .034  0.243 0 .508  0 .686 0 .749 0 .736  0 .682 1.012 

1.8 - 0 .444  - 0 .125 0 .144  0 ,411 0 .599 0 .672  0 .665  0 ,612  0 ,973 
2.0 - 0"500 - 0.200 0'063 0'330 0.526 0'609 0.608 0'557 0'940 
2-2 - 0 , 5 4 5  - 0 , 2 6 2  - 0 , 0 0 7  0 ,260  0.464: 0 .556 0 .560  0.51.1 0,913 
2.4 - 0 .583 - 0 .315 - 0,066 0 ,200  0 .409 0.5"10 0 ,520  0 .473 0 .888 

2.6 -0-615 -0'361 -0"119 0-147 0'362 0.471 0-486 0'441 0-867 
2-8 - 0 .643  - 0 ' 4 0 1  - 0"164 0 .099 0-319 0 ' 4 3 6  0-456 0-413 0-84:8 
3 '0  - 0"667 - 0 .436 - 0 .205 0"057 0 .280 0"404 0.4:30 0"390 0,831 
3.2 - 0 ' 6 8 8  - 0"467 - 0 .242 0"018 0.245 0 ' 376  0 ,407  0"369 0 ' 816  

3.4 - 0 ' 7 0 6  - 0 ' 4 9 5  - 0 '275  - 0 '0] .7 0 .213 0 ' 3 5 0  0 .386  0 ' 3 5 0  0 .802 
3"6 - 0 ' 7 2 2  - 0 ' 5 2 0  - 0 ' 305  - 0 ' 0 5 0  0"183 0 .326 0 .367 0 ,334  0 .789 
3.8 - 0.737 - 0'542 - 0'333 - 0.080 0'155 0-304 0-350 0-319 0.777 
4.0 - 0 . 7 5 0  - 0 . 5 6 3  - 0 . 3 5 8  - 0 . 1 0 7  0.1.29 0 ,284  0 .334  0 .305 0.76(J 

4.2 - 0 ,762 - 0.58:[ - 0.381 - 0 .133 0 .105 0 .264  0 .320  0 .293 0 .750 
4.4 - 0 .773 - 0 ' 5 9 8  - 0 .402 - 0 .157 0 .082  0 .246 0 .306 0 .282 0 .747 
4.6 - 0 ,783 - 0 .614  - 0 .422 - 0 ,179 0 .061 0 ,229 0 .293 0 ,272 0 ,738 
4.8 - 0 ,792  - 0 .629 - 0.441 - 0 ,200  0-041 0 ,213 0 .282  0 .263 0 ,730  

5,0 - 0 .800 - 0.6"l.2 - 0 .458 - 0 .220  0.021 0-197 0.271 0 .254  0-722 
0 - 0 .833 - 0 ,097 - 0 .530 - 0 ,304  - 0-002 0-130 0-223 0.2]  9 0 .690  
7 - 0"857 - 0"737 - 0-584 - 0 ' 3 6 9  - 0'1.28 0"073 0"784 0 ' 1 9 4  0 ' 6 6 5  
8 - 0 , 8 7 5  - 0 . 7 6 8  - 0 " 6 2 6  - 0 . 4 2 2  - 0 ' ] 8 4  0 .025 0 .151 0 ,174 0 ,644 

9 - 0 ' 8 8 9  - 0 ' 7 9 2  - 0 ' 660  - 0 ,465 - 0 ' 2 3 ]  - 0-010 0 .121 0 ,157 0 ' 627  
10 - 0 ' 9 0 0  - 0 ' 8 1 2  - 0 .689 - 0 ' 5 0 2  - 0"272 - 0 .053 0 .095 0 ' 1 4 3  0 ' 613  
11 - 0 ' 9 0 9  - 0 ' 8 2 8  - 0 " 7 1 2  - 0"534: - 0 ' 3 0 7  - 0 , 0 8 6  0 .071 0 ' 131  0 .600 
12 - 0 ' 9 1 7  - 0 ' 8 4 2  - 0 " 7 3 3  - 0 ' 5 6 1  - 0 ' 3 3 9  - 0 - 1 1 6  0 ' 0 4 8  0 .120 0"589 

13 - 0 ' 9 2 3  - 0 " 8 5 3  - 0 " 7 5 0  - 0 " 5 8 6  - 0 ' 3 6 7  - 0 " 1 4 3  0 ' 0 2 8  0 ' 1 1 0  0 ' 5 8 0  
I 4  - 0 ' 9 2 9  - 0"863 - 0"765 - 0"607 - 0 ' 393  - 0"167 0"008 0"101 0"57 ] 
15 - 0 .933  - 0 .872  - 0 .779 - 0 .626  - 0 .416 - 0 .190 - 0 .010  0 .092  0 ,564  
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In the final column of Table ~ we have tabulated 

1 (58) 

Ii[a%ng de~ermined the maximal  likelihood estimate of 'm as jus~ described, the value of 
%u,x/N/m is read off f rom i;he lash column of Ta,ble 4. These values of % ~ / N / m  have been 
used in plott ing the purl) of Fig. 3D go the ].eft of m =  t0. Between m = 3  and m =  15, the 
values of %~,~/N/m caleula,ged from (58) and from (5a) agree satisfactorily. 

Sta,tist, ical calculations are made of the dis~ribut;ion numbers of mutan ts  in a culture of 
bacteria, in which the mm~ber of mutan t s  ~ncreases on account; botch of new mutal~ions ~nd 
of division of old mu~;a,nts. In  t;his way ~he l~rgely quMitat;ive conclusions of Luria and 
Delbruck are ex~ended ~nd placed on a firm qu~n~itat;ive basis. The resut~;s of these 
ealcu]a,tions, which enM)le t~he murat;ion ra,~;e ~o be inferred from experimen]bs wi~h para]lel 
cultures, are presented in the form of t;ables. Statistically elticien~ methods of using t~hese 
rubles are discussed. 
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APPENDIX. (By C.A.O.) 

(1) I t  has been suggested that  a tattle of the individuM coe~cients U. introduced in ~ , ~ '  

equation (7), slid. which, give the expansion of q,. in, powers of ,m, might be useful. Such 
a table, for r~< 10, is shown below. 

~l'able of  6'. J,?' 

According Lo equation (7), q~)=NI_.Cz ,. .~.'mJ 

, r ~ j  1 2 3 4 5 6 7 8 9 :L0 

2 " :~: 
3 

7 _ ~  ~ o ,~ ~ 7 ,~ ~ _ a ~  ~ J 

. c o  l o o s o  

].o ~ ,%'~7A . . . . . . . . . .  

(2) I t  should perhaps be pointed mtt tha t  the replacement in (3) of ~ - 1  by n is an 
approximation whose effect is quite negligible provided tha t  r ~ ,  as occurs in all 
experiments. In fact, even for r of the order of ,n~, the values of q,. are seriously in error. 
As a result of this, and of the fact tha t  it allows ,r to exceed n (which is manifestly 
impossible since 'r is the number of mutants  and n is the total number of bacteria), the 
generating ftmction (15) actually gives all infinite value for all the moments. These two 
difficulties have been removed in a development of this theory, to be published by I~{r 
D. G. Kendall, of Oxford. But unfortunately his more strictly correct generating function 

-? cannot be expanded with any ease to determine the q,.. Except for large ~' or small ~, 
however, i t  differs insignificantly from our (15). 

(3) Mr Kendall has kindly pointed out to me tha t  the argmnent in (31) and (32), 
which was copied from Lttria and Delbruek, is not quite valid. For in (32) the complete 

1 , ~ ~ 
series ~ + ~  +7~--6"" is not convergent when �9 = 1, and in order to get an expression for 

the mean value alld the variance it was necessary artificially to curtail this series by 
truncating it at its te:rnl xn/'~L Th.is device is not a valid procedure, and it appears tha t  
although there is no change in the mean ~=, the variance ~ of an individual determination 
of r requires to be multiplied by 2, so tha t  the correct relation a ~ -  2ran. 


