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Dual 
Billiards 

~ he first volume of The Mathematical Intelligencer contains an article by Ji~rgen Moser 

"Is the solar system stable?" [24]. As a toy model for planetary motion, Moser pro- 

posed the system illustrated in Figure 1 and called it dual (or outer) billiards. The 

dual billiard table P is a planar oval. Choose a point x outside P. There are two tan- 

gent lines from x to P; choose  one of  them, say, the right 
one from x ' s  viewpoint ,  and ref lect  x in the tangency  po in t  
z. One obta ins  a new point,  y, and the t ransformat ion  T:  
x ~ y is the dual  bi l l iard map. Like the p lane ta ry  motions,  
the dual  bi l l iard dynamic  is easy  to define but  ha rd  to an- 
alyze; in par t icular ,  it is difficult  to reach  conclus ions  about  
its global  proper t ies ,  such as  boundednes s  or  unbounded-  
ness  of  orbits.  

In this  ar t ic le  we survey resul ts  on the  dual  bi l l iard prob-  
lem ob ta ined  s ince the publ ica t ion  of  Moser 's  article. We 
hope  that  the  r eade r  will share  our  fascinat ion with this 
beautiful  subject .  We do not  a s sume familiari ty with a much 
be t t e r  s tudied  subjec t  of  the  conventional ,  inner  billiards; 

an in te res ted  r eade r  is re fe r red  to [13, 17, 28]. 

The defini t ion of  the  dual  bi l l iard map  has  a shor tcom-  

ing: T is not  def ined if the  t angency  poin t  z is not  unique. 
This is the case  if  the dual  bi l l iard curve T, the  bounda ry  

of  P, conta ins  a s t ra ight  s e g m e n t - - f o r  example ,  if T is a 
polygon. The dual  bi l l iard map  and its i tera t ions  are not  de- 
f ined for the  poin ts  on the ex tens ions  of  s t raight  segments  
of  T and their  p re images  under  T. This set  is a countable  
col lect ion of  lines and therefore  a null set; hence  one has  

ample  room to p lay  the  game of  dual  billiards. The situa- 
t ion r e sembles  inner  bil l iards:  if a bi l l iard bal l  hits a c o m e r  

of  the  bil l iard table  then its mot ion  is not  def ined beyond  
that  point.  

J. Moser  also cons idered  the dual  bi l l iard sys tem in his 
influential  book  [23]. He learned  abou t  dual  bi l l iards from 
B. Neumann,  whose  1959 address  on the subjec t  to the  Man- 
ches te r  Mathemat ical  Colloquium, t i t led "Sharing ham and 
eggs," appea red  in [25]. By now, there  exis ts  a substant ia l  
l i tera ture  on dual bi l l iards l is ted in the  bibl iography.  

Let us cons ider  examples .  

y=T(x)  z 

Figure 1. Defining the dual billiard map. 

X 
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Figure 2. Dual  billiard about a square. 

Example  1. If the dual billiard table is a circle then every 
point moves along a concentric circle, that is, the concen- 
tric circles are invariant curves of the dual billiard map. Thus 
the dual billiard map about a circle is integrable (i.e., there 
is a conserved quantity): the radius of  the circles is an in- 
variant function. Since the dual billiard map commutes  with 
affine transformations of the plane, the dual billiard system 
about an ellipse is integrable as well. An outer version of  the 
celebrated Birkhoff conjecture (concerning inner billiards) 
states that the only integrable dual billiard system is the el- 
liptic one. Like its inner counterpart, this conjecture is open. 

Example  2. If the dual billiard table is a square then the 
motion of  every point is periodic. The structure of orbits is 
depicted in Figure 2, where every point of  a tile marked n 
makes one visit to all other tiles with the same marking 
(there are 4n of  them) before returning back. One can sim- 
ilarly describe the dynamics of  dual billiards about  a tri- 
angle or  an affine-regular hexagon. 

Example  3. Let the dual billiard table be a regular penta- 
gon. This example was analyzed in [29, 32]; see also [28]. The 
set of  full measure, made of regular pentagons and decagons, 

Figure 3. Dual  billiards about regular pentagon and octagon. 

Figure 4. Dual  billiards about a semicircle. 

consists of periodic orbits. In addition, there exist infinite or- 
bits. One such orbit, or rather its closure, is shown in Figure 
3 on the left. One cannot help noticing self-similarity of  this 
set. Its Hausdorff dimension is equal to In 6/ln(X/5 + 2) -- 1�9 
�9  Computer experiments show a similar behavior for other 
regular n-gons (except n = 3, 4, 6), but so far a rigorous analy- 
sis is available only in the cases n = 5, 8; see Figure 3 and 
the cover for the case of a regular octagon. See [1, 3, 12, 19, 
21, 22] for related study of piecewise rotations. 

Example  4. An interesting example of  a dual billiard 
table is a semi-circle. A numerical study of  this case reveals 
a very complicated behavior: periodic trajectories and sur- 
rounding elliptic "islands" (large white ovals in Figure 4) 
coexist  with chaotic orbits (black set). There is strong com- 
puter  evidence that some orbits, and even domains, escape 
to infinity; these escaping domains are seen in Figure 4 as 
small white ovals, posit ioned between large elliptic islands. 

We fmish this section with a mechanical interpretation of  
the dual billiard system as an impact oscillator, due to Ph. 
Boyland [4]�9 Consider a harmonic oscillator on the line, that 
is, a particle whose coordinate, as a function of  time, satis- 
fies x " ( t ) + x ( t ) =  O. Now let there be a 2qr-periodi- 
cally moving massive wall to the left of the particle whose 
position p(t) satisfies the differential equation p"(t) + p(t) = 
r(t), where r(t) is a non-negative periodic function which is 
L 2 orthogonal to sin t and cos t. t When the particle collides 
with the wall, an elastic reflection occurs, so that the veloc- 
ity of the particle relative to the wall instantaneously changes 
sign. This is illustrated in Figure 5, borrowed from [4]. 

This mechanical  system will be proved isomorphic to 
the dual billiard system about a closed convex curve ~/(t), 
parametrized by the angle made by its tangent line with the 
horizontal direction, whose curvature radius is r(t). Choose 
an origin O inside ~, and let p(t)  be the support  function, 
that  is, the distance from O to the tangent line at 7(t). El- 
ementary differential geometry tells us that  p"(t) + p(t)  = 
r(t), see, e.g., [26]. 

1The reader will easily show that this condition is necessary, because for any p one has f2~ (p"(t) + p(t)) sin t d t  = f 2~ (p"(t) + p(t)) cos t d t  = O. 
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Figure 7. Area-preserving property of the dual billiard map. 

Figure 5. Impact oscillator. 

Let x be a point outside of % and let the whole plane ro- 
tate clockwise with constant angular speed about the ori- 
gin. Consider the projections of x and 3' on a horizontal 
line. The projection of the point x is a harmonic oscillator 
on the line, and the right end point of the projection of 3' 
is "the wall" p( t ) .  We say the oscillator and the wall collide 
when the tangent line from x to 3' is vertical; the elastic re- 
flection occurs in the projection because the point x gets 
replaced by its reflection y in the tangency point--see Fig- 
ure 6. One computes that the horizontal component of y's 
velocity and that of x satisfy the relation prescribed for the 
impact oscillator. 

T h e  A r e a - P r e s e r v i n g  P r o p e r t y  
Irrespective of the shape of the dual billiard table, the dual 
billiard map enjoys the fundamental area-preserving prop- 
erty. Let us explain why. 

Choose infinitesimally close points X and X' on the dual 
billiard curve. For a positive number r, consider the tan- 
gent segments to 3, of length r. The end points of these seg- 
ments trace the curves AA' and B B ' ,  see Figure 7. The dual 
billiard map T takes AA' to B B ' .  Now repeat the construc- 
tion replacing r by r - ~ where ~ is an infinitesimal. We ob- 
tain two infinitesimal quadrilaterals A A ' C ' C  and  B B ' D ' D ,  

and the map T takes one to another. Let ~ be another in- 
finitesimal, the angle between AB and A ' B ' .  

/ 

Figure 6. Dual billiards as an impact oscillator. 

Let us compute the areas of the two quadrilaterals mod- 
ulo ~2 and ~2. One has 

Area A Y A '  = ~r2/2; 
Area CYC'  = ~ ( r -  ~)2/2 = &2/2 - 8sr, 

and hence Area A A  ' C'  C = 6s t .  Likewise, Area B B ' D ' D  = 

6sr, and the area-preserving property follows. 
This property has numerous consequences. The phase 

space of the dual billiard map T is the exterior of the oval 
P: topologically, a cylinder. This cylinder is foliated by the 
positive tangent half-lines to 3,. The map T is an area-pre- 
serving twist map; the latter means that the differential d T  

rotates the tangent vectors to the leaves in the positive 
sense, see Figure 8. 

The theory of area-preserving twist maps is well devel- 
oped, see, e.g., [18]. One of the consequences of this the- 
ory concerns periodic orbits of the dual billiard map. Such 
an orbit is an n-gun, circumscribed about % whose sides 
are bisected by the tangency points, see Figure 9. A peri- 
odic trajectory has a topological characteristic called the 
rotation number, the number of turns made by the respec- 
tive circumscribed polygon around the dual billiard table. 
A dual billiard version of the celebrated Birkhoff theorem 
asserts that for every n --> 3 and every integer rotation num- 
ber 1 <- r <- n /2  there exist at least two distinct n-periodic 
orbits with the rotation number r. 

In fact, periodic trajectories of the dual billiard map cor- 
respond to circumscribed polygons of extremal area. This 
is illustrated in Figure 10: if the side AB is not bisected by 
the tangency point then an infinitesimal rotation of the seg- 
ment to the new position A ' B '  changes the area in the lin- 
ear approximation (this is essentially the same argument 
as in Figure 7). One of the n-periodic orbits with a fixed 

Y 
/ /x 

Figure 8. Twist condition for the dual billiard map. 

20  THE MATHEMATICAL INTELLIGENCER 



Figure 9. A 5-periodic orbit  of the dual bill iard map with the rotat ion 

number 2. 

rotation number  corresponds to the circumscribed n-gon 
of  minimal area; the second one is of  mini-max type. 

Suppose that the dual billiard map has an invariant 
curve, say, F. Can one recover the dual billiard curve 7 f rom 
F? The following construct ion does the job. Consider the 
1-parameter family of  lines that cut off a segment of fixed 
area c f rom F, and let 7 be the envelope of  this family. This 
envelope may have singularities--generically, semi-cubical 
cusps (see, e.g., [9] for a study of these singularities); as- 
sume however  that 3' is smooth. Then the dual billiard map 
about  y preserves the curve F; a proof  of  this fact is, es- 
sentially, in Figure 7. Note that this area construct ion de- 
pends  on the area c: there is a 1-parameter family of  dual 
billiards with a given invariant curve. 2 

Note also that the area construction resembles a more clas- 
sical string construction for inner billiards: to recover a billiard 
table ~ from an invariant curve F of the billiard map one wraps 
a closed non-stretchable string around the curve and moves it 
around as shown in Figure 11 on the right (see, e.g., [28]). Ap- 
plied to an ellipse, the string construction produces a confo- 
cal ellipse; this fact is known as the Graves theorem [2]. 

A A '  

B 

Figure 10. Periodic orbits correspond to area extrema. 

F 

Figure 11. Area and string construct ions. 

The invariant curve 17 does not  have to be smooth. For  
example, one can start with a square; then the dual billiard 
curve will consist  of  four arcs of  hyperbolas. D. Genin [10] 
discovered recently that if the area parameter  c is small 
enough then this dual billiard system exhibits a hyperbolic 
behavior inside this invariant square F (and outside of  four 
4-periodic regular octagons). For  inner billiards, numerous  
examples of  convex domains are known that enjoy hyper- 
bolic dynamics, starting with the celebrated Bunimovich 
stadium, see [28] for a survey. 

Duality between Inner and Outer Billiards 
The reader has noticed a duality of sorts between the in- 

ner and outer billiards. For example, a periodic billiard tra- 
jectory is a polygon of  extremal perimeter length, inscribed 
in the billiard curve (see, e.g., [28]), while a periodic dual 
billiard trajectory is a circumscribed polygon of  extremal 
area. Another manifestation of  this duality is shown in Fig- 
ure 11. How does one explain this length-area duality? s 

The situation becomes  more clear if one replaces the 
plane by the unit sphere. On the sphere, one has duality be- 
tween points and oriented lines (i.e., great circles): to a pole 
there corresponds its oriented equator, see Figure 12. Note 
that the spherical distance AB equals the angle between the 
lines a and b. 

Duality preserves the incidence relation: if a point A lies 
on a line b then the dual point B lies on the dual line a. Du- 
ality extends to smooth  curves: a curve 7 determines a 1- 
parameter  family of  tangent lines, and each line determines 
the dual point. The resulting 1-parameter family of  points 
is the dual curve 7*- If one applies this construct ion to 7*, 
then one obtains the curve that is antipodal to 7. 

Consider an instance of  the billiard reflection in a curve 
% see Figure 13. The law of billiard reflection says: the an- 
gle of incidence equals the angle of  reflection. In terms of 
the dual picture, this means that A L  = L B ,  and hence the 
dual billiard reflection about the dual curve 7* takes A to 
B. Thus the inner and outer billiards are conjugated by the 
spherical duality. 

We can also explain the length-area duality. Consider a 
polygon of  extremal perimeter inscribed in a curve % The 
dual polygon is circumscribed about the dual curve 7* and 

2This construction is also known in flotation theory, where a segment of constant area represents the submerged part of a floating body; the constant c is the density, 
See [11] on flotation theory, 
3Which justifies the term "dual billiards." 
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Figure 12. Spherical duality. 

has an extremal sum of angles. The latter is related to the 
area of the polygon via the Gauss-Bonnet theorem: the sum 
of the exterior angles of spherical-polygon equals 2~- mi- 
nus its area. This explains why area extrema characterize 
dual billiard periodic trajectories. One may consider the 
plane as a sphere of infinite radius. In this limit, the sum 
of angles of a polygon becomes a constant, but the area re- 
tains its role as the generating function of the dual billiard 
map, whose extrema correspond to periodic orbits. 

Behavior at Infinity; Rational and 
Quasi-rational Polygons 
A property that is peculiar to dual billiards in the plane is 
a simple limiting motion far away from the table, observed 
in computer experiments. A bird's-eye view of a dual bil- 
liard curve ~/is almost a point, and the map T is almost the 
reflection in this point. More precisely, after rescaling, the 
distance between a point x and its second iteration T2(x) 
is very small, and the evolution of a point under the sec- 
ond iteration T 2 appears a continuous motion. This motion 
follows a piecewise smooth centrally symmetric curve F 
and satisfies the second Kepler law: the area swept by the 
position vector of a point depends linearly on time (the unit 
of time being one iteration of the map T2). Figure 14 fea- 
tures some dual billiard curves ~/and the respective tra- 
jectories "at infinity" F. The last curve F is made of two 

l 

Figure 13. Duality between inner and outer billiards. 

F 

Figure 14. Trajectories of the dual billiard map at infinity. 

parabolas intersecting at right angles; it corresponds to a 
semi-circle % cf. Example 4 in the first section. 

To explain these observations, assume that ~(t) is a pa- 
rametrized smooth curve. Consider the tangent line to ~/(t). 
There is another tangent line, parallel to that at ~(t); let v(t) 
be the vector that connects the tangency points of the for- 
mer and the latter (see Figure 15). 

For points very far away from the dual billiard table, the 
angle at vertex B in Figure 15 is very small, and the tan- 
gent direction to the trajectory at infinity F(t) is parallel to 
the vector v(t). Thus we need to solve the differential equa- 
tion F'(t) - v(t). If a solution exists, it is unique, up to ho- 
mothety. In fact, one can solve the equation explicitly: 

r ( t )  - v'(t) 
v(t) • v'(t) 

where x denotes the cross-product, that is, the determi- 
nant of two vectors. Indeed, a straightforward computation 
(left to the reader) reveals that l", defined by the above for- 
mula, satisfies v x F' = 0, as needed. 

An explicit formula for F(t) makes it possible to explain 
the Kepler law: the velocity of the motion along F is v(t), 
and the rate of change of the sectoriai area is v(t) x F(t) = 
1; of course, the value of the constant does not make much 
sense since everything is defined only up to scaling. 

The reader is challenged to prove that if ~, is centrally 
symmetric, then the correspondence 1, ~-* s is a duality-- 
that is, applied twice, it yields the original curve % 

We see that the dual billiard dynamics at infinity is ap- 
proximated by a continuous motion along curves homo- 
thetic to F. This motion has an integral (a conserved quan- 
tity): a homogeneous function whose level-curves are these 

]B 

Figure 15. Explaining the behavior at infinity. 
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curves, homothetic to F. Thus the dual billiard map at in- 
finity is a small perturbation of an integrable mapping. AS- 
sume that 7 is sufficiently smooth (C 5 will do) and has 
everywhere positive curvature. Then one has a KAM (Kol- 
mogorov, Arnold, Moser) theory type theorem that the dual 
billiard map has invariant curves arbitrarily far from % This 
result was described by Moser in [23, 24]; a detailed proof 
was given by R. Douady [8]. A T-invariant curve serves as 
a wall that no orbit of the dual billiard map can cross, and 
hence all its orbits stay bounded. It is unknown whether 
this remains true for dual billiard curves that are less 
smooth or whose curvatures have zeros. 

If the dual billiard curve ~, is a polygon, then the trajec- 
tory at infinity I" is a centrally symmetric 2k-gon, and the 
vectors -+Vl, �9 �9 �9 +Vk are diagonals of % To every side of 
F there corresponds "time," the ratio of the length of this 
side to the magnitude of the respective vector v. One ob- 
tains a collection of "times" (tl, �9 �9 , tk), defined up to a 
common factor. The polygon is called quasi-rational  if all 
these numbers are rational multiples of each other. 

An example of a quasi-rational polygon is a lattice polygon 
whose vertices have integer coordinates. Another example is 
a regular polygon: the numbers ti are all equal in this case. 

A partial answer to Moser's question [24] is given by the 
following theorem [27, 20, 15]: if the dual billiard table is a 
quasi-rational polygon, then every orbit of the dual billiard 
map T is bounded. In this situation one has an analog of 
invariant curves: these are T-invariant necklaces of poly- 
gons around the dual billiard table connected to each other 
at their common vertices. In Figure 3, one can see the first 
such necklace: it consists of 5 regular decagons surround- 
ing the fractal "pentagram" for the left table (so the fractal 
pentagram is the interior of the necklace), and of 8 regular 
octagons around the fractal 8-ended star for the right one. 

A corollary of this theorem is that if ~, is a lattice poly- 
gon, then all dual billiard orbits are periodic. Indeed, the 
orbit of a point is discrete and, by the above theorem, 
bounded. One would expect an easy proof of this property 
of lattice polygons; we are not aware of one. 

In conclusion of this section, let us mention that, until 
very recently, it was not known whether the dual billiard 
system about a polygon always has a periodic orbit. In sum- 
mer of 2004, a participant of the Penn State REU program, 
C. Culter, proved that, for every polygonal dual billiard sys- 
tem, periodic orbits exist and, moreover, as far as measure 
is concerned, periodic points constitute a positive portion 
of the whole plane [5]. 4 

Dual Billiards in the Hyperbolic Plane 
We have discussed dual billiards in the Euclidean plane and 
on the sphere. One can equally well consider dual billiards 
in the hyperbolic plane H 2. It is convenient to use the Klein- 
Beltrami (or projective) model of hyperbolic geometry. Then 
H 2 is represented by the interior of the unit circle ("circle at 

infinity"); straight lines by the chords of this circle; and the 
distance between points x and y is given by the formula 

d(x,y)  = ln[a,x,y,b], 

where a and b are the intersection points of the line xy  with 
the circle and 

[a,x,y,b] = 

is tile cross-ratio. 

(?4- a ) ( b - x )  
(x - a)(b - y) 

The first steps in the study of dual billiards in the hy- 
perbolic plane are made in [7, 30, 35]. In this case, the dual 
billiard map T extends to a continuous map t : S 1 --~ S 1 of 
the circle at infinity. This circle map contains much infor- 
mation about the dual billiard map. Let p ~ IUZ be the 
Poincar~ rotation number of t (see, e.g., [18] for a defini- 
tion and main properties). The rotation number p depends 
continuously on the dual billiard table. 

Assume first that the dual billiard curve is sufficiently 
smooth and strictly convex. As we saw, in the Euclidean 
plane this would imply that all dual billiard orbits stay 
bounded. In the hyperbolic plane, the situation is quite dif- 
ferent. Assume that p is rational and the circle map t has a 
hyperbolic periodic orbit. Then there exists a domain in H 2 
that escapes to infinity under the dual billiard map--more  
specifically, is attracted to a hyperbolic periodic orbit at in- 
finity. Moreover, this behavior is stable with respect to 
small perturbations of the dual billiard table. 

If the dual billiard curve is a circle in the hyperbolic 
plane, then the dual billiard map is integrable: its invariant 
curves are concentric circles, just as in Example 1 at the 
beginning of this article. What about an elliptical dual bil- 
liard curve ~,? The dual billiard map is still integrable, and 
the invariant curves are ellipses from the pencil of conics 
generated by ~ and the circle at infmity. 5 One can derive 
the classical Poncelet porism of projective geometry from 
this integrability, see [30]. 

Consider now the case of polygonal dual billiards in the 
hyperbolic plane. Let ~/be a convex n-gon. One can prove 

f \ 

/ ,, 

\ / 

\ / 

Figure 16. A large quadr i la tera l .  

4For inner polygonal billiards, even for obtuse triangles, the existence of periodic trajectories is an open problem. A remarkable advance has been recently made by R. 
Schwartz who proved the existence of periodic billiard trajectories in all triangles with the obtuse angle net greater than 100 ~ 
5A pencil consists of conics passing through four fixed points; in the case at hand, these points are complex. 
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that p >- 1/n. An n-gun is called large if p = 1/n and the cir- 
cle map t has a hyperbolic n-periodic point; see Figure 16 
for an example. The set of large polygons is open in the 
natural topology. 

As far as the stability properties of the dual billiard or- 
bits, large polygons in the hyperbolic plane are on the op- 
posite end of the spectrum from smooth strictly convex 
curves in the Euclidean plane: it is proved in [7] that every 
dual billiard orbit about a large polygon escapes to infinity. 

The class of large triangles can be described explicitly. 
Consider a triangle with sides al, a2, and a3 and semi- 
perimeter s. This triangle is large if and only if 

~/sinh s sinh(s - al) sinh(s - a2) sinh(s - a3) > 1 
2 

The left-hand side of this formula resembles Heron's for- 
mula for the area of a Euclidean triangle. 

Example 5. Let the dual billiard table P be a regular n- 
gon with right angles (n - 5). Such polygons tile the hyper- 
bolic plane, see Figure 17. Similarly to Example 2 in Section 
1, all orbits of the dual billiard map T are periodic: T cycli- 
cally permutes the tiles that form concentric "necklaces" 
around P. The rotation number is given by the formula: 

n - ~ / ~ ( n  - 4) 
p(P)= 

2n 

(In a sense, this formula holds for n = 4 as well: a square 
tiles the Euclidean, not the hyperbolic, plane, and the dual 
billiard map "at infmity" is just a central symmetry with the 
rotation number 1/2.) 

We do not know whether there exist polygons in the hy- 
perbolic plane for which all orbits of the dual billiard map 
are bounded but not all orbits are finite. Such polygons 
would be analogs of quasi-rational, but not lattice, polygons 
in the Euclidean setup. 

Figure 17. Tiling of the hyperbolic plane by regular right-angled pen- 
tagons. 

M u l t i - d i m e n s i o n a l  Dua l  B i l l i a rds  
Inner billiards are defined in any dimension. Dual billiards 
can be defined in any even-dimensional space (the plane is 
even-dimensional, after all). Identify R un with C n and let J 
be the operator of multiplication by X/~l.  A dual billiard 
table is a bounded convex domain with smooth boundary 
M 2n-1, the dual billiard hypersurface. One would be able 
to define the dual billiard map if there were a unique tan- 
gent line at every point of M. The problem is, there are too 
many such tangent lines. 

This difficulty is resolved as follows. Let N be the outer 
normal direction to M at point z. Then J(N) is tangent to 
M at z, and we obtain a well-defined oriented tangent line 
f(z) at every point z G M. One can prove that through 
every point x outside of M there pass exactly two such 
tangent lines to M, one oriented from M the other towards 
M, just as in the plane. The dual billiard map is defined 
as follows: find a point z C M so that f(z) passes through 
x and reflect x in z to obtain a new point y = T(x), cf. 
Figure 1. 

As an indication that this is "the right" definition, one 
has an analog of the area-preserving property. The space 
C n carries a symplectic structure, a non-degenerate skew- 
symmetric bilinear form, given by the formula 

~(u ,  v) = J ( u )  . v ,  

where u and v are tangent vectors. The above-defined line 
s is the symplectic orthogonal complement to the tan- 
gent hyperplane TzM (it is called the characteristic direc- 
tion at point z). 

For every dual billiard table, the dual billiard map Tpre- 
serves the symplectic structure. As in the plane, this has 
numerous consequences, for example, the existence of pe- 
riodic orbits; see [28, 29, 32, 36]. However, by and large, 
multi-dimensional dual billiards remain terra incognita. 
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