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single lightbulb flickers into life in 
he center  of  the room. 100 pris- 

oners shade their eyes from the glare, 
then focus on the prison warden stand- 
ing by the lightswitch, with a s tandard 
evil-puzzler's glint in his eye. He begins 
to speak: 

In  one hour, you  wi l l  all be taken 

to your  cells to be kept  i n  so l i tary  

conf inement ,  w i t h  no poss ib i l i t y  o f  

c o m m u n i c a t i n g  w i t h  any  o f  y o u r  

fe l low inmates .  
Well, almost  no poss ib i l i ty  . . . .  

every night  f r o m  now on, I wil l  

choose one o f  you at random, re- 

trieve you f r o m  your  cell, and take 

you to this room, where  you m a y  see 

i f  the lightbulb is  on  or off,  and you 

m a y  turn  i t  on  or o f f  as you wish.  

A murmur  ripples around the room as 
the prisoners consider the prospect  of  
having such an effect on their hitherto 
impotent  and externally controlled ex- 
istences. 

I f  at  some  point ,  I take you to this  

room and you believe that  all 100 

pr i soners  have been chosen and 

taken here at  some  t ime,  then you  

m a y  tell m e  this. 

I f  you  are correct, I wi l l  f r ee  you 
all. I f  o f  course you are incorrect  

�9 . . well  let's say  none  o f  you  wi l l  
l ive to f l i p  a n y  more  lightbulb 
swi tches  in  this  world�9 

He exits with a flourish of  his cloak, 
thoughtfully leaving the lightbulb on. 

The prisoners are in the dark as to 
how to get free, but  they are perfectly 
clear about  wanting to be able to at 
least flip light switches into old age 
(and it looks like they might need to!). 
So they must  come up with a strategy 
that will announce  that all 100 prison- 
ers have been chosen only if they ac- 
tually have, with 100% certainty, prefer- 
ably before they all die of  old age. 

At first it seems impossible that any 

one prisoner could know about  what  
the other  99 have been up to. Coming 
into the room and seeing the lightbulb 
is on  doesn ' t  seem to give you much 
information. You don ' t  know who s e t  

it, and if you flip the switch you have 
no idea who will see that you flipped 
it. There seems to be no way to send a 
message to anyone in particular. It 
seems hopeless that they will get o u t  

at all. But in fact: 

A m a z i n g  f a c t  1. They can get out. 

Here is how. (You may wish to pon- 
der on your  own before reading on.) 

If a t  F i r s t  Y o u  D o n ' t  S u c c e e d  . . . 

S t r a t e g y  1. Cut  the sequence of  days 
into blocks of  length 100. The first pris- 
oner to enter the room in a given block 
turns  the lightbulb off. If a prisoner en- 
ters the room a second time in the 
same 100-day block, then he turns the 
lightbulb on .  If a prisoner enters the 
room on the last day of  a 100-day block, 
and it is his first time, and the lightbulb 
is still off, then that prisoner knows 
that every prisoner has been chosen 
exactly once in this 100-day block. He 
then correctly declares that all prison- 
ers have been in the central room at 
least once. If the lightbulb is on  on the 
last day in a block then we have failed 
this time so we try again in the next 
block of  100 days, and keep trying un- 
til someone announces.  

E x p e c t e d  r e s u l t s  f o r  s t r a t e g y  1. 
The probability of  succeeding in any 
given block is the number  of  orderings 
of  the 100 prisoners divided by the 
number  of  possible ways the prisoners 
could have entered the room. With n 
prisoners, that  is (n!/nn). 

The expected number  of  blocks 
which must  be used before succeeding 
is  equal to 1/p where p is the probabil- 
ity of  succeeding with one block. To 
see this, suppose p is the chance of  suc- 
ceeding in any given block�9 Then the 
expected number  of  blocks until we 
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succeed is equal to Zk kpq k-1 where 
q = 1 - p. This is equal to 

p ~ q  (1/(1 - q)) = p/p2 = 1/p 

Thus the expected number of 
blocks is nn/n!. Each block has length 
n, so the expected number of days un- 
til freedom is nn+l/n!, which is 
O(nU2en) (using Stirling's formula). 

For 100 prisoners, the expected value 
is 1001~ or approximately 1044 . 

They can get out, although this is a 
disappointingly large number for the 
prisoners: about 104t years. Sadly the 
universe may have ended long before 
they are free [4]. 

Amaz ing  fact  2. They can get out be- 
fore the universe ends. 

Soul -Co l l ec t ing  
Strategy  2. One prisoner, who will be 
known as The Countess, will be re- 
sponsible for announcing that every 
other prisoner has entered the room at 
some time. The other (n - 1) prisoners 
will be ordinary. 

Each ordinary prisoner starts with a 
single token, called a soul, and each 
will try to leave that token in the cen- 
tral room. The Countess will collect 
souls from the central room until she 
has all of them. She may then declare 
S u c c e s s .  

We may assume that the lightbulb 
starts in the off  position (as the pris- 
oner who enters on the first day may 
turn it o f f  before doing anything else). 

When an ordinary person enters 
the room and f inds  the lightbulb 
off, he m a y  drop his soul in  the 
room, i f  he has not already done so, 
by turning the lightbulb o n .  I f  the 
lightbulb is already o n  then he 
leaves it alone. 

When the Countess enters the 
room, i f  she f inds  the lightbulb o n  

then she turns it o f f  and adds one 
to her soul count. I f  her count is now 
n - 1, then she knows that everyone 
must  have entered the room, so she 
can declare. I f  the lightbulb is o f f  
when she enters, she leaves it off. 

E x p e c t e d  resu l t s  for  s t ra tegy  2. 
For the strategy to complete we need 

to have a sequence of events happen. 
We first need a soul dropped in the 
room, then for the Countess to pick it 
up, then another soul dropped, etc. As 
the number of uncounted souls goes 
down, the probability of a new one 
turning up on the next day goes down 
from (n - 1)/n for the first soul to 1/n 
for the last soul. Meanwhile, the prob- 
ability for the Countess to show up on 
the next day is constantly 1/n. 

Since the expected time needed for 
an event occurring with probability p 
on the next day is 1/p, we immediately 
get that the time is 

/n--1 1 x 
nlk~=l ~ ) +  ( n -  l)(n), 

which is between n 2 and 2n 2. Therefore 
the expected number of days until the 
prisoners escape is O(n2). 

This is much better than our previ- 
ous exponential solution. The 100 pris- 
oners should get out in around 10,400 
days, or about 29 years. They will be 
past their best, but they will live to see 
the outside world. However, they can 
do much better than that: 

Amaz ing  fact  3. They can get out be- 
fore they are ineligible for  the Fields 
medal. 

Pyramid Scheme 
This is again a method for collecting 
souls. This time there is no single 
counter. Rather everyone is involved in 
a process of collecting souls together. 
The lightbulb will be worth different 
numbers of souls on different nights. 

Strategy  3. A sequence is given 
which describes how many souls the 
lightbulb is worth on each night, which 
is always a power of two. Let V(n) de- 
note the number of souls that the light- 
bulb is worth if it is left in the on po- 
sition on night n, or discovered on  on 
night n + 1. 

Assume that the number of prison- 
ers is a power of two. This will turn out 
not to matter in the end. 

A prisoner enters the room on a night 
and collects however many souls have 
been left there the night before (so if it 
is night n and the llghtbulb is on he 
picks up V(n - 1) souls) and turns the 
lightbulb off. He now looks at the num- 
ber of souls M that he has collected, but 

represented in base 2. If the coming 
night is worth V(n) = 2 k souls then he 
looks at the binary bit of M worth 2 k 
souls. If this bit is 1 then he drops 2 k 
souls by turning the lightbulb on and 
subtracting 2 k from M, his own total of 
souls collected. If the 2k-bit is zero then 
he leaves the lightbulb off. 

Notice that this has the effect that 
souls are "glued together" into lumps 
of size 2 k which can be transferred on 
nights which are worth 2 k. Whenever a 
prisoner has two lumps of size 2 k he 
glues them together into a lump of size 
2 k+l. This may occur if he has just 
picked up a 2 k lump or has just glued 
two smaller 2 k 1 lumps together. When 
all the souls have been glued together 
into one lump of size n = 21~ n then 
the prisoner who holds this lump de- 
clares success. 

We have yet to say what would be 
an efficient choice of values for the 
V(n). Starting with a block of nights 
worth 1 is a good idea, to hopefully 
glue all the single souls into palm. Then 
follow with a block of nights worth 2 
to glue into blocks of 4 souls, and so 
on. We want the lengths of the blocks 
to be long enough to give a good 
chance of gluing all the lumps of size 
2 k-1 into lumps of size 2 k, but not too 
long as we don't want to waste time 
once they have all been glued. 

E x p e c t e d  resu l t s  for  s t ra tegy  3. 
In order to achieve a good asymptot- 
ics, we start with a block of (n log n + 
n log log n) 1-nights, then (n log n + 
n log log n) 2-nights, then (n log n + 
n log log n) 4-nights, all the way up to 
(n log n + n log log n) (log2 n)-nights. 
If we have failed after this number of 
days, then we can simply throw up our 
hands and start over again. In other 
words, the sequence V(n) repeats. 

The probability of gluing all lumps 
of 2 k-1 into lumps of size 2 k within 
n log(n) + cn nights (where c is some 
constant) is bounded by e -e c asymp- 
totically. This is known as the coupon 
collector's problem [2]. With some care- 
ful estimation this result can be ex- 
tended by changing c to a function 
c(n) <- log(n). This gives us a proba- 
bility of successfully completing each 
stage of at least e-t4~ where 
e(n) is an error factor such that 
e(n)l~ (n) tends to 1. 
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The chance of successfully com- 
pleting all log2(n) stages is at least 
el~176 (n). Thus the expected 

number of times we need to go through 
the whole cycle is less than el~ (e) 
I/e(n)l~ (n). This gives that the ex- 
pected number of days is of order 
e-l~ (e) [n log(n)(log(n) + log(log(n)))], 
which is O(n log(n)2). 

It can be proved that no changes to 
the lengths of blocks of nights V(n) can 
improve the asymptotics; but what if 
we want the best sequence for pre- 
cisely 100 prisoners? 

Our assumption that the number of 
prisoners is a power of two can be re- 
laxed. To apply our strategy, we just 
need that everyone starts with at least 
one soul. So, with 100 prisoners for ex- 
ample, one prisoner could be given 29 
souls and the other 99 prisoners given 
1 soul to start with. The prisoner who 
first collects 128 souls declares. 

To try to get a good upper bound on 
the expected number of days to free- 
dom, we used a computer simulation 
to search through the choices for V(n). 
Our best give around 4400 days, or 12 
years. One sequence of block lengths 
which has about this average is [730, 
630, 610, 560, 520, 470, 560, 720, 490, 
560, 570, 560, 590, 590], that is to say: 
730 1-days, then 630 2-days, . . . then 
560 64- days, then 720 1-days, . . .  then 
590 64-days, then (back to the start) 
730 1-days . . . .  The optimisation algo- 
rithm works by trying to optimise the 
V(n) for two passes through the types 
of days (1-days, then 2-days, then 4- 
days etc.) then just repeats that se- 
quence for the unlikely cases in which 
the prisoners have still not finished af- 
ter 2 passes. It is not entirely clear why 
the above sequence is good, though it 
makes sense that the first six terms are 
decreasing because fewer people have 
to "meet" in later stages. It also makes 
sense that the seventh term is larger, 
since one would want to give a lot of 
time for the last two blocks of 64 souls 
to meet. Giving up at this stage means 
having to continue through the next 
seven stages to finish up. 

Can t h e y  do be t ter  wi th  s o m e  
o t h e r  s trategy?  For 100 prisoners we 
suspect that some sort of hybrid algo- 
rithm is probably the best, to use good 
points of more than one strategy. Col- 

lecting together souls as in the pyramid 
scheme is certainly a good idea to start 
with, but something else may be better 
in the endgame. A hybrid given by B. 
Felgenhauer [1] uses the pyramid 
scheme to start with, but has a Count- 
ess start collecting midway through. 
His sequence of block lengths (chosen 
by hand) has expected days of around 
3949, and running our optimisation 
program on the variables for his strat- 
egy gives around 3890. 

Asymptotically, they cannot do bet- 
ter than O(n log n) expected number 
of days to freedom, because that is the 
expected number of days for everyone 
to have visited the room, ignoring that 
all prisoners actually have to commu- 
nicate! 

Variat ions  
Here are some variations you might 
like to think about. Each variation as- 
sumes all the conditions in the original 
problem, but with some aspects al- 
tered. In each case, you might like to 
ask yourself whether the prisoners can 
escape, and if so what is an efficient 
way to do this. We assume that the 
lightbulb always starts off. 

1. Multiple bulbs---The central room 
contains two (or more) lightbulbs 
(the communication channel is 
wider). 

2. Multiple rooms--There  are two 
(or more) identical rooms. The pris- 
oners are taken to one at random 
but don't know which they are in. 

3. Separate  t ransmi t t er / rece iver - -  
The warden turns the lightbulb of f  
at 12 AM, chooses one prisoner to 
visit at 1 AM, and chooses again for 
someone to visit at 2 AM. The visi- 
tors only transmit or receive, not 
both. 

4. Mal ic ious  Warden- -The  warden 
is malicious and knows the strat- 
egy that the prisoners will use (he 
listens to them agreeing on what to 
do). Each day he will choose which 
prisoner to allow into the room. 
His conscience demands that he al- 
low every prisoner to visit the 
room infinitely often. 

5. All  pr i soners  have  to  an- 
n o u n c e - T h e  condition for every- 
one to be freed is that every pris- 

oner must correctly announce (at 
some time). In other words: every 
prisoner must be sure that all pris- 
oners have been to the room. 

6. S imul taneous  announcing--Any-  
one can announce on any day, not 
just the prisoner who was selected 
that morning. The condition for 
everyone to be freed is that every- 
one must correctly announce on 
the same day. If they are incorrect 
or if some announce while some do 
not, then they all die. 

7. Pr i soners  are freed w h e n  they  
announce--Everyone must cor- 
rectly announce at some time. 
When someone announces, he is 
freed (never to visit the room 
again), but the others stay until they 
too announce. Visitors are chosen 
uniformly among the remaining 
prisoners. Note that the prisoners 
are still most interested in everyone 
escaping, rather than in minimizing 
their own time to escape. 

8. Red/Blue cells (one  a n n o u n c e r ) - -  
The prisoners are allocated red or 
blue prison cells. The announcing 
prisoner must correctly say how 
many red cells there are in order 
for them all to be released. 

9. Number s  in ce l l s  ( o n e  an- 
nounce r ) - -Each  cell has a natural 
number written on the wall. The 
announcer must give all the num- 
bers. 

10. All pr i soners  send  m e s s a g e s  to  
all pr isoners- - ( th is  is a combina- 
tion of 5 and 9). 

l l .  Random vis i t ing  t imes---The 
prison is subterranean, with no 
clocks, calendars, or any other in- 
formation as to what the time is. 
The prisoners lose all track of time, 
and the warden chooses prisoners 
at random times. In other words, 
the prisoners have no idea how 
many people have visited the room 
since they were last there, and they 
cannot use strategies which count 
days. They only know the order in 
which events occur. 

12. Random t imes ,  all p r i s o n e r s  
m u s t  announce--Combine  varia- 
tions 5 and 1 i. Every prisoner must 
announce that everyone has visited 
at some time, and they cannot use 
day-counting strategies. 
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13. Random times,  message  from 
one  to  one--There  are only two 
prisoners and the transmitter has 
to send a message (a natural num- 
ber) to the receiver, but as in 11 
they cannot count days. 

14. Random times, messages  from 
many to one--Combine varia- 
tions 9 and 11. One announcer 
must give all numbers written on 
the walls, and the prisoners lose 
track of time. 

15. Random times, message  from 
many to  many, 2 l ightbulbs 

16. Random times, messages  from 
many to  many, 1 l ightbulb 

We now give a spoiler for most of 
these problems. It turns out that the 
strategies listed above (or slight modi- 
fications of them) are suitable for most 
of these variations. 

1. Multiple bulbs---Counting 
souls (strategy 2) will still work, 
and can be made even faster as 
2 k souls can be left in a room 
which has k distinct lightbulbs, 
log2n lightbulbs allow for the 
best possible time to escape--as 
soon as everyone has actually 
been in the room, then the pris- 
oner in the room can declare. 
Strategy 3 can also be improved 
by allowing gluings of souls into 
larger lumps, such as lumps of 
size (2k) t if there are k distinct 
lightbulbs. 

2. Multiple rooms--Counting 
souls (strategy 2) will still work. 
It will be slower, although the 
expected time until escape (for 
number of rooms independent 
of n) is still O(n 2) days. 

3. Separate transmitter/re- 
ce iver--A strategy similar to 
soul-collecting (strategy 2) 
works. The Countess always 
picks up and never drops souls. 
Everyone else drops souls at 
every opportunity (though they 
are forced to pick them up if 
they find them). This strategy 
has expected time between 
n210g2n and n 3. (If there are k 
souls outstanding, then the 
chance of the countess picking 
one up the coming night is be- 
tween k_ • 1 and 1/n 2, depend- 

n n 

8-10. 

ing on how those k souls are 
distributed. This gives a total 
expected time of between 
n 2 log2 n and n3.) 

4. Malicious Warden--Strategy 
2 will work, although there is 
clearly no bound on the time 
until escape; it depends on how 
mean the Warden wants to be. 

5. All prisoners have to an- 
nounce--"Try-try-again" (strat- 
egy 1) works. Interleaving cycles 
of strategy 3 ~ l l  also work: Each 
prisoner has one type of soul for 
each prisoner who will have to 
announce. One cycle is given to 
each prisoner's attempts to col- 
lect the souls destined for her, 
then after n of these a second cy- 
cle is devoted to each prisoner, 
and so on. This gives an ex- 
pected time of n21og2(n). 

6. S imultaneous  announc ing- -  
The prisoners cannot be sure of 
escaping. Suppose they will an- 
nounce on day A. There is a first 
day, D, on which they all know 
this. The prisoner who enters on 
day D knows that she has en- 
tered and the state of the light- 
bulb. Every other prisoner only 
knows that he did not enter the 
room on that day. If a different 
prisoner entered on day D then 
all of the other prisoners who 
did not enter would have the 
same information, and so would 
have to come to the same con- 
clusion: that they should an- 
nounce on day A (provided there 
are at least 3 prisoners). There- 
fore it cannot matter who enters 
on day D, so they must all know 
on day D -  1. This contradicts 
the assumption that D was the 
first day they all knew they 
would announce on day A. 

7. Prisoners  are freed when 
they amtounee--"Sloshy" soul- 
collecting (as in the answer to 
variation 12 below) will work. 
When a prisoner has collected 
100 souls and then given them 
all away again she may declare 
and be set free. 
Red/Blue cells, or Numbers 
in cells (one  or all announ- 
cer(s ) ) - -The  prisoners can es- 

11. 

12. 

cape. See the 0ber-theorem (be- 
low) for a strategy and proof. 
Random visit ing t i m e s - -  
Counting souls (strategy 2) will 
still work. 
Random times,  all prisoners  
must  announce--"Sloshy" soul 
counting will work. The light- 
bulb is always worth one soul. 
Any prisoner who has not an- 
nounced does the following: If 
the lightbulb is on when he en- 
ters, then he collects the soul 
and turns the lightbulb off. ff the 
lightbulb is of f  when he enters 
and he has one or more souls, 
then he drops one soul and turns 
the lightbulb on. Any prisoner 
who has already announced al- 
ways drops any souls that he 
has, and leaves any that are in 
the room. This strategy has ex- 
pected time order less than or 
equal to e n. This can be shown 
by constructing an appropriate 
Markov chain and giving lower 
bounds for the chance that a 
given prisoner will announce in 
the next 200 days. Notice that 
when there is only one prisoner 
left to announce, this strategy re- 
duces to Strategy 2, soul-collect- 
ing with one Countess. 

Note that this strategy would 
also work (less efficiently) if 
prisoners who have already an- 
nounced just continue to slosh 
souls around (give and take 
souls rather than just give). 
This is because a random walk 
in a fmite space will eventually 
get everyplace. We will use this 
fact extensively later on. 

Another strategy is that each 
prisoner who is not a soul-col- 
lector has a (very small) chance 
each day he enters of becom- 
ing one. After a number of vis- 
its to the room as a soul-col- 
lector he gives up and goes 
back to being an ordinary soul- 
giver. Any prisoner who has al- 
ready announced always gives 
souls and never collects. 

Can you think of a variation 
where the best strategy is 
worse than exponential in the 
number of prisoners? 
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13. R a n d o m  t i m e s ,  m e s s a g e  
f r o m  o n e  t o  one---We have 
two prisoners, one of whom is 
trying to send a message to the 
other. The transmitting pris- 
oner encodes the message as a 
natural number, M. He tries to 
give the receiving prisoner M 
souls. The problem now is how 
the receiver knows when the 
message has been sent--how 
does she know when she has 
received all of the souls? To do 
this, she occasionally puts a 
soul back into the room when 
she finds it empty. Hopefully 
the transmitter, having dropped 
all of his souls, will take the last 
soul back--thus indicating that 
he is finished. The receiver will 
then see that the soul has been 
taken and know that all of the 
souls  have been sent, because 
the transmitter will only pick 
up a soul when he is done. 

To do this reliably, the two 
prisoners behave as follows: 

The t ransmi t ter  drops all o f  

his  souls unt i l  he has none left. 

When he has no souls left he 

will  take one soul f r o m  the 

room i f  he can. When he has 

one soul he will  drop it  in  the 

room i f  he can. 

The receiver takes every soul 

that she can, although she oc- 

casionally drops one back in  

the room ("pings"). I f  when  

she next  enters the room she 

f i n d s  that the soul she has 
dropped has been taken, then 

she knows that the t ransmi t ter  

is f i n i shed  and so knows the 

total number  o f  souls sent. 

14. R a n d o m  t i m e s ,  m e s s a g e s  
f r o m  m a n y  t o  one - -Fo r  n 
prisoners transmitting and one 
receiving, the transmitters all 
behave as in variation 13. First 
suppose that the receiver wants 
to know the sum of the num- 
bers of the transmitters, M. 

This time the receiver occa- 
sionally tries to drop n souls 
back at the same time. The only 
way that all n pings will be taken 
is if all n of the transmitting pris- 

15. 

16. 

oners are finished. When she 
succeeds then her ma.ximum 
value was the sum of the num- 
bers of the transmitters, M. 

What happens is that the re- 
ceiver's total collected souls 
usually increases, but never falls 
back as much as n from the cur- 
rent all-time maximum unless 
that maximum is the total num- 
ber of souls being transmitted. 
When a transmitter finishes, the 
receiver's total is allowed to 
slosh back by one more than be- 
fore. When all transmitters are 
finished, then the receiver's to- 
tal will slosh between M and 
M - n, and when she sees both 
extremes in that order then she 
knows it is done. 

Knowing the total, M, is 
enough to allow all the n 
transmitters to send arbitrary 
messages. Choosing base 2, 
give the i-th transmitter digits 
i,i + n, i + 2n, . . . in which to 
encode his message. 
Random times, m e s s a g e s  
f r o m  m a n y  t o  many ,  2 l ight-  
bulbs---We can use the solution 
to variation 13 together with a 
way to pass around who is trans- 
mitter and who is receiver. To be 
precise, they use lightbulb one 
just as in 13. Some prisoner is 
chosen to be the first transmit- 
ter. We assume lightbulb two is 
on  to start with. Whoever turns 
it off  (picks up the "listening 
stick") is the first receiver. The 
transmitter sees that the listen- 
ing stick has been picked up, and 
starts transmitting on lightbulb 
one. When the receiver knows 
the message is done, he puts 
down the listening stick and be- 
comes the new transmitter. The 
new receiver is whoever next 
picks up the stick. The prisoners 
keep sending messages around 
(without knowing whom they 
are transmitting to), and eventu- 
ally each prisoner collects all the 
messages. 
R a n d o m  t i m e s ,  m e s s a g e s  
f r o m  m a n y  t o  m a n y ,  1 l ight-  
b u l b - - S e e  the Ober-(3ber-theo- 
rem below. 

Ober-Theorem 
We will now give our method for vari- 
ations 8, 9 and 10. 

It turns out that each prisoner can 
transmit an arbitrary message to all of 
the other prisoners, using only the one 
light. 

We will start with one prisoner 
transmitting one bit to every other 
prisoner. If the transmitter wants to 
send a 0-bit, then on any even-num- 
bered day he leaves the lightbulb o n  
and on any odd-numbered day leaves 
the lightbulb off. If he wants to send a 
1-bit, then on any even day he leaves 
the lightbulb of f  and on any odd day 
he leaves the lightbulb on. Every other 
prisoner leaves the lightbulb off. Now 
any prisoner who finds the lightbulb o n  
when he enters the room will know for 
sure that the transmitted bit is a 0 or a 
1, depending on whether the previous 
day was even or odd. Every prisoner 
will find the lightbulb on at some time 
(with probability 1), and so will receive 
the message. Of course, there is noth- 
ing special about even and odd days. 
Any bijection between ~ and {0,1} X 
would do just as well. For example, 
j (---* (0,k) would mean that day j  is the 
k th 0-bit day. Those days whose num- 
ber correspond to (0,n) are "even days" 
and those which correspond to (1,m) 
are "odd days." 

To send two bits, divide the days 
into four sets. In other words, provide 
a bijection between ~ and {0,1} x 
{0,1} • ~. The first bit is represented 
by the first two types of day, 0 and 1 
mod 4 say, and the second bit by the 
other two types of days, 2 and 3 mod 4 
say. Any prisoner who finds the light- 
bulb on will know for sure one of the 
bits being transmitted. 

To transmit a message of arbitrary 
length, provide a bijection between 
and {0,1} x ~ x ~. 

To allow every prisoner to transmit 
a message to every other prisoner, f irst 
divide the days among the prisoners 
(so that each is allocated an infinite 
number) and then run the above algo- 
rithm with prisoner k transmitting on 
days which are allocated to her. For M 
prisoners, this can be thought of as 
given by a bijection between N and 
{ 1 , . . . , M } X { 0 , 1 } X N X N .  

To speed up transmission, if another 
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prisoner knows a given bit in one of the 
messages being transmitted then he can 
retransmit this bit by acting as the trans- 
mitter would--"echoing" the message. 

0 b e r - 0 b e r - T h e o r e m  

We will now discuss a method that 
allows each of the prisoners to send a 
set of arbitrarily long messages, one to 
each other prisoner. We assume fur- 
ther that we are in the setting of vari- 
ation 11 (Random visiting times), and 
hence that the prisoners have no time 
reference other than the order in which 
events occur. Unlike all the variations 
discussed up until now, this one could 
not be solved using direct modifica- 
tions of strategies i or 2. One of the au- 
thors (D.F.) came up with what we 
think is an original strategy. 

The idea of the method 

�9 The n prisoners will have agreed 
upon an ordering among them ahead 
of time. 

�9 Prisoner I will be the observer, look- 
ing at the sys tem formed by all the 
other prisoners (and the lightbulb). 
Those non-observers will be called 
robots because they will follow a 
simple rule. 

�9 Before starting his rule, the first 
transmitter, say prisoner n, intro- 
duces 0 or 1 souls into the system. 

�9 The observer will try to deduce how 
many souls were originally intro- 
duced from the behavior of the ro- 
bots. For this, prisoner 1 has differ- 
ent procedures at his disposal: 

- -Two  testing procedures P0, P1 
that allow prisoner 1 to conduct 
experiments. He is trying to an- 
swer  positively to one of  the two 
questions Q0,QI: "Did prisoner n 
introduce I souls (i = 0 or 1) in  
the system?" However, both P0 
and P1 can only produce posit ive 
results, or be inconclusive. Hence 
prisoner 1 will only answer  neg- 
atively to Q1 when P0 is conclu- 
sive. 

- -A resetting procedure that allows 
prisoner 1 to set the sys tem back 
to its original posit ion (the num-  
ber of  souls in the sys tem is as 
the transmit ter  left it). This al- 

lows h im  to proceed wi th  addi- 
tional experiments. 

The two testing procedures will even- 
tually give an answer to the observer. 

�9 Now prisoner 1 triggers prisoner 2 
into an observing phase. That is, they 
(more or less) exchange roles, and 
prisoner 2 becomes an observer, 
while prisoner 1 starts following a 
simple rule and so becomes a robot. 
Eventually, from the experiments he 
will conduct on the system formed by 
the other prisoners, prisoner 2 will 
find out which bit prisoner i left in the 
system and then become a robot. 

�9 This continues, cycling through all 
the prisoners. We have each prisoner 
i sending a first bit to prisoner i + 1 
mod n, then all of them sending a 
second bit, etc . . . .  

�9 Using intermediates, any prisoner 
can send a message to any other, and 
not only to his follower in the or- 
dering. 

The simpler case n = 3 

We now describe each step in full for 
the case n = 3. 

Simple rules. The behavior of the 
prisoners who are not currently observ- 
ing will be given by the directed graphs 
~Pk, with k a positive integer (see diagram 
1). These graphs describe the number of 
souls each prisoner is eager to have at 
any time, and hence determine whether 
he wants to drop or grab a soul each 
time he enters the room. The graphs are 
to be read left to right, and considered 
to repeat (the dashed line). At any time 
where more than one option is offered, 
the prisoner chooses which option to try 
with equal probability. 

k 
k4 
k-2 

Tri99er 

9 
8 
7 

6 
5 
4 
3 

: / - . _ \  

D i a g r a m  1 

�9 slosh 

To start with, one of the robots will 
follow ek0 and one will follow ~kr As- 
sume that k0 is big, and kl is bigger. 
This will be made precise later. We play 
the role of prisoner 1, and (for now) 
only observe prisoner 2 (and 3) nmning 
the instructions ek~ (resp. ~ki). More 
precisely, when we get a chance to go 
into the room, we note whether the 
state of the lightbulb has changed from 
the last time we were there (what we 
call a flickering). 

If the total number of souls in the 
system is 0 (remember we include the 
lightbulb in the system!), nothing can 
happen because both prisoners are ea- 
ger to get more souls, but none are 
available. If the total is 1, the lightbulb 
might be switched o n  and of f  some 
small number of times (if the prisoner 
who starts with the soul is initially ea- 
ger to get rid of it), but eventually one 
of the two prisoners will have 1 soul 
and be eager to have 2, and the other 
will have 0 and be eager to have 1. So 
the situation will stall after a fmite 
number of flickerings. Similar stops 
will occur if there are 4 or 5 souls in 
the system. 

On the other hand, if 2 souls are 
available in the system, the system 
might stop in a situation where each 
has 1 soul and is eager to have 2, but 
more importantly, the lightbulb might  
be turned o n  and of f  an arbitrarily 
large number of times, if they both 
keep going through a sequence 2, 1, 0, 
1, 2, 1, 0, . . . (with a delay in their 
phases). The lightbulb is then said to 
f l icker indefinitely. The same thing 
could happen if there are 6, 7 , . . .  souls 
in the system. Finally, in the case of 3 
souls, the system might produce indef- 
inite flickering in the lamp in a more 
complicated fashion. 

This behavior is summarized in the 
accompanying chart. 

Number  of souls Indefinite 

in the system f l ickering 

6, 7 . . . . .  ko + kl possible 

4, 5 impossible 

2, 3 possible 

0, 1 impossible 

It is also worth noting that there ex- 
ists an integer M such that if there are 
0, 1, 4, or 5 souls in the system, the sys- 
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tern will  s tal l  af ter  fewer  than  M flick- 
erings. Hence,  observing M + 1 flick- 

er ings will  guarantee  that  we are  not  in 

any of  the  cases  0, 1, 4, or  5, wha t  we  

call a posit ive result.  
E x p e r i m e n t a t i o n .  Assume the sys- 

tem contains  either 0 or 1 soul, and con- 
duct  one of  the following procedures:  

P1 Add 1 soul to the system. Wait 
for  a positive result for  some 
time. I f  this positive result ar- 
rives, return Yes, otherwise 
return u n k n o w n .  

P0 Add 3 souls to the system. Wait 
for  a posit ive result. I f  this 
posit ive result arrives, return 
Yes, otherwise return un-  

k n o w n .  

The wait ing t imes  should  be taken  so 
tha t  we can  potent ia l ly  observe  at  leas t  
M § 1 f l ickerings and hope  to get  a 

posi t ive result .  
We have the fol lowing char t  of  out- 

comes:  

# of souls 0 1 
originally 

# of souls 3 4 
after adding- 
step in Po 

Possible unknown, Yes unknown 
outputs 
for Po 

# of souls 1 2 
after 
adding- 
step in P1 

Possible unknown unknown, Yes 
outputs 
for P1 

Hence,  a posi t ive  resul t  to Pi  guaran- 
tees  a posi t ive  answer  to Qi. 

Assuming that  we did not  get  a con- 
clusive result ,  we  would  cer ta inly  like 
to run fur ther  exper iments ,  but  the  sys- 
t em has  p robab ly  stalled.  What  should  
we do now? 

Resetting. If we could  re turn  the 
sys tem to its original  s ta te  with 0 or  1 

soul (as set  up by  p r i soner  3), we could  

exper imen t  further. To do this, we 
would  like to t ake  souls  out  of  the  sys- 

tem. It s eems  hopeless ,  if for  ins tance  

one robo t  has  no souls, the  o ther  has  
5, and they  are bo th  eager  to have 
more.  But if we are  ready  to give them 
some,  they  will eventual ly  have 6 and 
be willing to drop  the souls  again. We 

can then grab those  leftovers,  unti l  we 

are  back  to the  initial number  (0 or  1). 

This a l lows us to conduc t  o ther  exper-  

iments,  and hence  to de te rmine  even- 

tual ly whe the r  p r i soner  3 left  beh ind  a 

soul  or  not. Note that  we never  have to 
raise the number  of  souls  added  to the  
sys tem to more  than  12 to get  it  mov- 
ing again, because  with  12, at  leas t  one 

robo t  p r i soner  is at  the  s tar t  or  into his 
"slosh" region, and is willing e i ther  to 

t ake  or  give souls. 
T r igger ing .  Now that  we know what  

the bit  sent  by pr isoner  3 was, we pre- 
pare  our message for pr isoner  2 by set- 
ting the total  number  of  souls to 0 or  1. 

After that, we would like to signal pris- 
oner  2 to start  his role of  observer. This 

is where the numbers  ki come into play. 
Pr i soner  2 has  agreed  be fo rehand  

that  he will be "triggered" when  he has  
exact ly  18 souls  (k0 = 18). Note first 
that  we never  needed  to go that  high 
during our  exper imenta t ion  phase  (we 
needed  to go at  mos t  up to 12). So we 
can be sure  that  we have not  t r iggered 

pr i soner  2 before  now. We drop those  

18 souls  in the  system, and then  s tar t  

to apply  the  rule ~k2 for some k2 agreed  
on ahead  of  t ime, bigger  than kl. 

We now have 18 or  19 souls in the 
system, and each pr i soner  is running a 
rule ~ , .  We only have robots  running 
the place! So the whole  system evolves 
according to a random walk. Since there 
are only 18 or  19 souls, there  are finitely 
many  possible  states. Moreover, we 

know that  one of  the pr isoners  has  at  
least  6 souls, and hence the option of  in- 

creasing or  decreasing his number  of  
souls. This guarantees  that  our  random 
walk never  stops, and there is a non- 
zero probabi l i ty  of  getting from any 
state to any other  state. Hence pr i soner  
2 will eventually end up with 18 souls. 

Now that  he has  his 18 tr iggering 
souls, p r i soner  2 jus t  needs  to e rase  
them in his menta l  count  of  souls. He 
is back  to 0 souls, and there  might  be 
1 soul  left  somewhere  else in the sys- 

tem. He be c ome s  an observer  and  his 

s i tuat ion is s imilar  to the  one enjoyed 

by  p r i soner  1 at  the start.  
In the case  of  3 pr isoners ,  we can 

actual ly  take  k0 = 18, kl = 20, k 2 = 22, 
k3 = 24, �9 �9 �9 and in general  the k's will 
grow incrementa l ly  by 2 each time. The 
only requi rements  are  that  they  be  big 

enough that  wi th  that  many  souls  in the  

sys tem (or one more  if the  message  is 
a 1) the  sys tem never  gets  s tuck  (when 

all p r i soners  are  robots) ,  and  that  pris- 

oners  are  not  t r iggered too  ear ly when  

one is trying to t r igger  s omeone  else. 
Inc rements  of  2 give jus t  enough lee- 
way  so that  the  1-bit message  doesn ' t  

se t  someone  else off too  early. 
Cycl ing .  Now the p r i soners  jus t  

have to cycle  th rough  that  algori thm, 
and give fur ther  bi ts  to the  p r i soner  fol- 

lowing them in the  ordering.  This will 

eventual ly al low them to exchange  ar- 
bi t rar i ly long messages  with the  o ther  

pr i soners  too. 

The case of more  pr isoners 

We would  like first  to identify the im- 
por tan t  p roper t i e s  that  the  rules  ~k 
have tha t  a l low the a lgor i thm to work.  
Really all we care  about  is the  behav- 
iour  of  the  sys tem as  a whole.  Specifi- 
cally, we want  it  to behave  in different  
ways  depending  on the number  of  
souls  in the  system, as shown in dia- 

gram 2. In the  case  of  3 pr isoners ,  the  

tes t  for P1 is done at  the  bounda ry  be- 
tween  1 and 2 souls  and  the tes t  for P0 

at  the bounda ry  be tw e e n  3 and 4 souls. 
The ma x imum number  of  souls  tha t  the  
observer  needs  to add  to the  sys tem to 

rese t  it  is 12. Also, in sending the first  
bit, the t r igger  value k is 18. 

trigger - - *  

upper bound 
for resetting - -b  
procedure 

test for Po "--~ 

test for P, --~ 

will run indefinitely 

can run indefinitely 

will stop after at 
most M flickers 

can run indefinitely 

will stop after at 
most M fl ickers 

Diagram 2 

Note that  in the case  of  n = 3, the 
fact that  all the  rules used  are of  the  

same type is not  really important .  In the  

general  case, we will have n - 1 types  
of  rule, all with different tr igger values  

k, and we require the triggering pr i soner  
to adopt  the same type of  ni le  as  the 
one the t r iggered pr i soner  is running. 
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hn 2 

hn-3 

hn 4 

(Pk,O 
~:T ~T 

Trigger k Trigger k Trigger k Trigger . L,l.,O.h il.,o. h '  "l"~ 
i: ' i,,, ii 

(~k,1 ~k,2 ~k,n-2 
mT 

Diagram 3 

He knows  which ni le  is nmning  jus t  by  
counting the number  of  cycles  all the  
pr i soners  have gone through. 

The ru l e s .  A set  of  rules  tha t  will 
work  for genera l  n is shown in dia- 
gram 3. 

We set hi  to 2, and the other hi are de- 
fined recursively, so that  h/-> 2 }~-~ by. 
The value T refers  to a number  of  soul  
exchanges  required to cover  that  sec- 
t ion of  the  graph, ra ther  than  the num- 

ber  of  peaks.  Take the number  of  peaks  
si to be  such tha t  the  to ta l  "length" 

2sihi >- T. The value of  T will be  spec-  
if ied later. 

M1 exper imenta t ion  happens  for  

values  of  souls  less than H, so once  a 
p r i soner  s tar ts  up on the long jou rney  
towards  H, she will never  be able  to 

come back  down until  the  obse rve r  
wants  to rese t  tim system. H has  to  be 
set  larger  than  hn-2 + Zn-2hi (the sum 

of  the highest  p e a k  in each  ~ , , i )  so that  
the  normal  running of  the  system, with 
o ther  p r i soners  on thei r  zig-zags down  
be low will not  bring an e scapee  to H 
and a l low him to go back  down.  Again, 
we defme the exac t  value of  H a lit t le 

later,  but  a s sume for now tha t  it  is big. 
The t r igger  values  k are  different  for  

each  pr isoner .  The a lgor i thm will  work  

with  k --- (n  - 1)H so that  with that  

many  souls  in the  system, at  leas t  one 
p r i soner  is into his s losh  range and 
therefore  the  sys tem cannot  get  s tuck  
when that  many  are  added.  They need  
only inc rement  by  2 each  time, as  in the  
case  for 3 pr isoners .  To t r igger  the  pris-  
oner  running rule ~k,*, s imply add  k 
souls, and your  message  (0 or  1), and  
b e c o m e  a robot.  As in the  case  of  3 

pr isoners ,  the  r andom walk  will  even- 
tually end up with the p r i soner  being 
t r iggered on k souls, and  all o ther  pris-  
oners  have tr iggers of  at  least  2 more  
than k and so will not  be  t r iggered pre- 

maturely.  
Clearly this system will not  run in- 

definitely with 0 souls. It is also clear that 

it might run indefinitely with ~.n12hi 
souls. Here is one sequence that,  if fol- 
lowed, will run forever: Call the  pris-  
oner  applying the rule ~ . , i  robo t  i. To 

start,  set  robo t  0 to be at  the bo t tom of  
any val ley on his cycle, jus t  before  a 
peak  of  a l t i tude hj, and give to each  ro- 
bot  i exac t ly  hi souls  (necessar i ly  start-  

ing at  the  peak  of  his cycle).  If r o b o t j  
gives his hj souls  to robo t  0 and then 
takes  them back,  we are  in a s imilar  po- 

s i t ion to the  one we s ta r ted  with. We 
can cont inue doing this indefinitely. 

We need  to show that  the  sys tem 
gets s tuck  for  some  higher  value of  
souls. This will require  us to prove  that  
no p rope r  subse t  of  the robo t s  can run 
indefinitely, if the re  are  fewer  than  H 
souls  in the  system, which  is p roved  
la ter  on. Given this, it  only takes  one 

robo t  on his way  up to H to stall  the 
system. We can ensure  this  will happen  

n - 2  by put t ing in hn-2 + Zi= 1 hi + 1 souls. 
We can now take  H to be any number  

larger  than this number ,  say  hn-2 + 
n - 2  Zi=l hi + 2. 

The p o w e r  o f  t h e  C o l l e c t i v e .  We 
n o w  s h o w  tha t  wi th  f e w e r  than  H 
souls ,  the  s y s t e m  c a n n o t  run  indefi-  
n i te ly  if no t  all  r o b o t s  a re  involved.  
A s s u m e  the  s y s t e m  is runn ing  indef i -  
n i te ly  wi th  a min ima l  n u m b e r  of  sou l s  
changing  hands .  Once  a r o b o t  s t a r t s  

up t o w a r d s  H, she  can  only  t ake  sou l s  
and  n e v e r  r e t u r n  them.  By min imal -  

ity, she  neve r  t a k e s  any new sou l s  
and  might  as  wel l  no t  be  there .  So 
we  can  a s s u m e  tha t  our  s u b s e t  of  ro-  
b o t s  m u s t  be  ab le  to  run  indef in i t e ly  
w i thou t  a n y o n e  leav ing  t o w a r d s  H o r  

giving sou l s  to  any  r o b o t  going to- 

w a r d s  H. 
First ,  we  will a s sume that  ~.,0 is 

missing. Assume a subse t  not  including 
q~.,0 runs; then  there  is a minimal  sub- 
set  not  including ~. ,0 which  runs. 

Now, let  m be the largest  number  
such that  ~*,m is included in this sub- 
set. As the subse t  is minimal, q~,m must  
comple te  a full cycle, for if it did not, 

then we could s imply leave robot  m out. 
Thus, at  some t ime robot  m must  have 

hm souls. However,  by  the choice of  the 
m - I  sizes of  the peaks  hm > ~i=o hi, it is 

clear  that  he can never  get rid of  them 
all wi thout  pushing one of  the o ther  ro- 
bots  onto its pa th  towards  H. 

As the re  is a f ini te  n u m b e r  of  ini- 
t ia l  s t a t e s  ( look ing  on ly  at  the  r o b o t s  
b e l o w  the i r  p e a k s  hi),  t he re  is  a 
g loba l  b o u n d  on the  n u m b e r  of  ex- 

changes ,  L, wh ich  can  o c c u r  be fo re  
the  s y s t e m  hal ts .  T is c h o s e n  to  be  

la rger  than  L. 

So we are  left  with the  case  when  

q~,,0 is inc luded in the  subset ,  but  some 
~*,m is missing. As ~,,0 is included,  it 
mus t  comple te  a full cycle  (o therwise  
it could  be left  out  and we would  have 
the previous  case).  Once it has  reached  
the beginning of  the  ser ies  of  peaks  of  
height hm it  will, for  at  leas t  the  next  T 
soul-exchanges,  behave  exact ly  as  

~*,m did in the  prev ious  case. But this  
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subsystem is guaranteed to stop before 
~,,0 finishes its height-hm peaks, as for 
at least the next T transitions this 
subsystem behaves exactly as in the 
previous case. Thus ~,,0 will never 
complete its hm peaks, and so never 
complete a full cycle. 

Epilogue. We have now proved ex- 
istence of a strategy. To apply this 
strategy, we would need to calculate 
precisely the value of several constants 
used in our algorithm. For instance, the 
constants T and M and the values at 
which we test for P0, P1 are hard to 
find, particularly within the hour that 
the warden has given us. 
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