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~ pproximately 94 million American adults use the In- 
ternet on a typical day [24]. The number-one Inter- 

~ net activity is reading and writing e-mail. Search en- 
gine use is next in line and continues to increase in 
popularity. In fact, survey findings indicate that nearly 60 
million American adults use search engines on a given day. 
Even though there are many Internet search engines, Google, 
Yahoo!, and MSN receive over 81% of all search requests 
[27]. Despite claims that the quality of search provided by 
Yahoo! and MSN now equals that of Google [11], Google 
continues to thrive as the search engine of choice, receiv- 
ing over 46% of all search requests, nearly double the vol- 
ume of Yahoo! and over four times that of MSN. 

I use Google's search engine on a daily basis and rarely 
request information from other search engines. One day, I 
decided to visit the homepages of Google, Yahoo!, and MSN 
to compare the quality of search results. Coffee was on my 
mind that day, so I entered the simple query "coffee" in 
the search box at each homepage. Table 1 shows the top 
ten (unsponsored) results returned by each search engine. 
Although ordered differently, two webpages, www.peets.corn 
and www.coffeegeek.com, appear in all three top ten lists. 
In addition, each pairing of top ten lists has two additional 
results in common. 

Depending on the information I hoped to obtain about 
coffee by using the search engines, I could argue that any 
one of the three returned better results; however, I was not 
looking for a particular webpage, so all three listings of 
search results seemed of equal quality. Thus, I plan to con- 
tinue using Google. My decision is indicative of the prob- 
lem Yahoo!, MSN, and other search engine companies face 
in the quest to obtain a larger percentage of Internet search 
volume. Search engine users are loyal to one or a few search 
engines and are generally happy with search results [14, 
28]. Thus, as long as Google continues to provide results 

deemed high in quality, Google likely will remain the top 
search engine. But what set Google apart from its con> 
petitors in the first place? The answer is PageRank. In this 
article I explain this simple mathematical algorithm that rev- 
olutionized Web search. 

Google's Search Engine 
Google founders Sergey Brin and Larry Page met in 1995 
when Page visited the computer science department of Stan- 
ford University during a recruitment weekend [2, 9]. Brin, 
a second-year graduate student at the time, served as a 
guide for potential recruits, and Page was part of his group. 
They discussed many topics during their first meeting and 
disagreed on nearly eve W issue. Soon after he began grad- 
uate study at Stanford, Page began working on a Web proj- 
ect, initially called BackRub, that exploited the link struc- 
ture of the Web. Brin found Page's work on BackRub 
interesting, so the two started working together on a proj- 
ect that would permanently change Web search. Brin and 
Page realized that they were creating a search engine that 
adapted to the ever-increasing size of the Web, so they re- 
placed the name BackRub with Google (a common mis- 
spelling of go~ol, the number 10100). Unable t o  convince 
existing search engine companies to adopt the technology 
they had developed but certain their technology was su- 
perior to any being used, Brin and Page decided to start 
their own company. With the financial assistance of a small 
group of initial investors, Brin and Page founded the Web 
search engine company Google, Inc. in September 1998. 

Almost immediately, the general public noticed what 
Brin, Page, and others in the academic Web search com- 
munity already knew--the Google search engine produced 
much higher-quality results than those produced by other 
Web search engines. Other search engines relied entirely 
on webpage content to determine ranking of results, and 
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Table 1. Top Ten Results for Search Query "coffee" at www.google.com, www.yahoo.com, and 

www.msn.com, April 10, 2006 

Order Google Yahoo! MSN 

1 www.starbucks.com (�9 www.gevalia.com (O) www.peets.com (*) 

2 www.coffeereview.com ($) en.wikipedia.org/wiki/Coffee (A) en.wikipedia.org/wiki/Coffee (A) 

3 www.peets.com (*) www.nationalgeographic.com/coffee www.coffeegeek.com (*) 

4 www.coffeegeek.com (*) www.peets.com (*) coffeetea.about.com (A) 

5 www.coffeeuniverse.com (1-) www.starbucks.com (0) coffeebean.com 

6 www.coffeescience.org www.coffeegeek.com (*) www.coffeereview.com {1-) 

7 www.gevalia.com (O) coffeetea.about.com (A) www.coffeeuniverse.com (t) 

8 www.coffeebreakarcade.com kaffee.netfirms.com/Coffee www.tmcm.com 

9 https://www.dunkindonuts.com www.strong-enough.net/coffee www.coffeeforums.com 

10 www.cariboucoffee.com www.cl.cam.ac.uWcoffee/coffee.html www.communitycoffee.com 

Approximate Number of Results: 

447,000,000 151,000,000 46,850,246 

Shared results for Google, Yahoo!, and MSN (*); Google and Yahoo! (�9 Google and MSN (t); and Yahoo! and MSN (A) 

Brin and Page realized that webpage developers could eas- 
ily manipulate the ordering of search results by placing con- 
cealed information on webpages. 1 Brin and Page developed 
a ranking algorithm, named PageRank after Larry Page, that 
uses the link structure of the Web to determine the im- 
portance of webpages. During the processing of a query, 
Google's search algorithm combines precomputed Page- 
Rank scores with text-matching scores to obtain an overall 
ranking score for each webpage. 

Although many factors determine Google's overall rank- 
ing of search engine results, Google maintains that the heart 
of its search engine software is PageRank [31. A few quick 
searches on the Internet reveal that both the business and 
academic communities hold PageRank in high regard. The 
business community is mindful that Google remains the 
search engine of choice and that PageRank plays a sub- 
stantial role in the order in which webpages are displayed. 
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Maximizing the PageRank score of a webpage, therefore, 
has become an important component of company market- 
ing strategies. The academic community recognizes that 
PageRank has connections to numerous areas of mathe- 
matics and computer science such as matrix theory, nu- 
merical analysis, information retrieval, and graph theory. As 
a result, much research continues to be devoted to ex- 
plaining and improving PageRank. 

The Mathematics of PageRank 
The PageRank algorithm assigns a PageRank score to each 
of more than 25 billion webpages [7]. The algorithm mod- 
els the behavior of an idealized random Web surfer [12, 
23]. This Internet user randomly chooses a webpage to view 
from the listing of available webpages. Then, the surfer ran- 
domly selects a link from that webpage to another web- 
page. The surfer continues the process of selecting links at 
random from successive webpages until deciding to move 
to another webpage by some means other than selecting a 
link. The choice of which webpage to visit next does not 
depend on the previously visited webpages, and the ide- 
alized Web surfer never grows tired of visiting webpages. 
Thus, the PageRank score of a webpage represents the 
probability that a random Web surfer chooses to view that 
webpage. 

Directed Web Graph 
To model the activity of the random Web surfer, the 
PageRank algorithm represents the link structure of the Web 
as a directed graph. Webpages are nodes of the graph, and 
links from webpages to other webpages are edges that show 
direction of movement. Although the directed Web graph 
is very large, the PageRank algorithm can be applied to a 
directed graph of any size. To faciliate our discussion of 
PageRank, we apply the PageRank algorithm to the directed 
graph with 4 nodes shown in Figure 1. 

What is, a developer could add text in the same color as the background of the page, invisible to the user but detected by automated search engines. If the terms of 
a search query occurred many times in the hidden text, that webpage could appear higher in rank than webpages that were really more informative. 
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Figure I .  Directed graph with 4 nodes. 

Web Hyperlink Matrix 
The process for determining PageRank begins by express- 
ing the directed Web graph as the n x n "hyperlink ma- 
trix" 1t, where n is the number  of webpages.  If webpage  
i has It--- 1 links to other webpages  and webpage  i links 
to webpage  j, then the e lement  in row i and column j of 
H is/q,.. = -1. Otherwise, H~ = 0. Thus, H~- represents the like- 

~J lz 
l ihood that a random surfer will select a link from web- 
page i to webpage  j. For the directed graph in Figure 1, 

H =  0 0 

0 0 

Node 4 is a dangling node because it does not link to other 
nodes. As a result, all entries in row 4 of the example ma- 
trix are zero. This means the probability is zero that a ran- 
dora surfer moves from node  4 to any other node  in the 
directed graph. The majority of webpages  are dangling 
nodes (e.g., postscript files and image files), so there are 
many rows with all zero entries in the Web hyperl ink ma- 
trix. When a Web surfer lands on dangling node webpages,  
the surfer can either stop surfing or move to another web- 
page, perhaps by entering the Uniform Resource Locator 
(URL) of a different webpage  in the address line of a Web 
browser. Since H does not model  the possibility of moving 
from dangling node webpages  to other webpages,  the long- 
term behavior  of Web surfers cannot  be determined from 
H alone. 

Dangling Node Fix 
Several options exist for model ing the behavior of a ran- 
dom Web surfer after landing on a dangling node, and 
Google does not reveal which option it employs. One op- 

F i g u r e  2. Dangling node fix to Figure 1. 

tion replaces each dangling node  row of H by the same 
probability distribution vector, w, a vector with non-  
negative elements that sum to 1. The resulting matrix is S = 
H + dw, where d is a co lumn vector that identifies dan- 
gling nodes, meaning di = 1 if li = 0 and di = 0 otherwise; 
and w = (Wl w2 �9 . . w , )  is a row" vector with wj>- 0 for 
all 1 - < j -  n and s wj = 1. The most popular  choice for 

(1 1 l) This amounts  w is the uniform row vector, w = 7 7 �9 " ' 7 ' 
to adding artificial links from dangling nodes to all web- 

1 1 1 pages. With w = (�88 g 7 g)' the directed graph in Figure 1 
changes (see Figure 2). 

The new matrix S = H + dw is, 

(i 1~ (i)/4 4/ s 0 0 , 0 +  1 1  
0 0 4 4 

0 0 

0 1 0  

= - 0 0 . 

1 1 

7 

Regardless of the option chosen to deal with dangling 
nodes, Google creates a new matrix S that models the ten- 
dency of random Web surfers to leave a dangling node; 
however, the model is not yet complete. Even when  web- 
pages have links to other webpages,  a random Web surfer 
might grow tired of continually selecting links and decide 
to move to a different webpage  some other way. For the 
graph in Figure 2, there is no directed edge from node 2 
to node 1. On the Web, though, a surfer can move directly 
from node 2 to node 1 by entering the URL for node 1 in 
the address line of a Web browser. The matrix S does not 
consider this possibility. 

Google Matrix 
To model the overall behavior of a random Web surfer, 
Google forms the matrix G = a S + ( 1 - ~ ) l v ,  where 
0 -< c~ < 1 is a scalar, 1 is the column vector of ones, and 
v is a row probability distribution vector called the per- 
sonalization vector. The damping factor, c~, in the Google 
matrix indicates that random Web surfers move to a dif- 
ferent webpage  by some means other than selecting a link 
with probability 1 - a. The majority of experiments per- 
formed by Brin and Page during the development  of the 

(1 1 1 )  PageRank algorithm used oe = 0.85 and v = 7 7 ' ' " [12, 
23]. Values of ~ ranging from 0.85 to 0.99 appear in most 
research papers on the PageRank algorithm. 

Assigning the uniform vector for v suggests Web surfers 
randomly choose new webpages to view when not selecting 
links. The uniform vector makes PageRank highly suscepti- 
ble to link spamming, so Google does not use it to deter- 
mine actual PageRank scores. Link spamming is the practice 
by some search engine optimization experts of adding more 
links to their clients' webpages for the sole purpose of in- 
creasing the PageRank score of those webpages. This attempt 
to manipulate PageRank scores is one reason Google does 
not reveal the current damping factor or personalization vec- 
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tor for the Google matrix. In 2004, however,  GyOngyi, 
Garcia-Molina, and Pederson developed the TrustRank algo- 
rithm to create a personalization vector that decreases the 
harmful effect of link spamming [17], and Google registered 

the trademark for TrustRank on March 16, 2005 {61. 
Because each element G# of G lies be tween  0 and 1 

(0 -< Gr -- 1) and the sum of elements in each row of G is 
1, the Google matrix is called a row-stochastic matrix. It is 
known  that a = 1 is not a repeated eigenvalue of G and is 
greater in magnitude than any other eigenvalue of G [18, 
26]. Hence the eigensystem rrG = ~r has a unique solution, 
where Jr is a row probability distribution vector. 2 We say 
that ,~ = 1 is the d o m i n a n t  eigenvalue of G, and Jr is the 
corresponding d o m i n a n t  left eigenvector of G. The ith en- 
try of ~" is the PageRank score for webpage  i, and ~r is 
called the PageRank vector. 

Table 2 shows four different Google matrices and their 
corresponding PageRank vectors (approximated to two dec- 
imal places) for the directed graph in Figure 2. The table in- 
dicates that the personalization vector has more influence on 
the PageRank scores for smaller damping factors. For instance, 
when  a = 0.85, as is the case for the first and second mod- 
els, the PageRank scores and the ordering of the scores dif- 
fer significantly. The first model assigns the uniform vector to 
v, and node 1 is one of the nodes with the lowest PageRank 
score. The second model uses v = (1 0 0 0), and node 1 re- 
ceives the highest PageRank score. This personalization vec- 
tor suggests that when Web surfers grow- tired of following 
the link structure of the Web, they always move to node 1. 
For the third and fourth models, ~ = 0.95. The difference in 
PageRank scores and ordering of scores for these models is 
less significant. Even though v = (1 0 0 0) in the fourth model, 
the higher damping factor decreases the influence of v 

Computing PageRank Scores 
For small Google matrices like the ones in Table 2, we can 
quickly find exact solutions to the eigensystem, ~'G = ~-. 
The Google matrix for the entire Web has more than 25 
billion rows and columns, so computing the exact solution 
requires extensive time and computing resources. The old- 
est and easiest technique for approximating a dominant  
eigenvector of a matrix is the power method. The power  
method converges for most starting vectors when  the don> 
inant eigenvalue is not a repeated eigenvalue [13, ~9.4]. 
Since h = 1 is the dorninant  eigenvalue of G and ~r is the 
dominant  left eigenvector, the power method applied to G 
converges to the PageRank vector. This method was the 
original choice for computing the PageRank vector. 

Given a starting vector r/~ e.g. Jrc0) = v, the power  
method calculates successive iterates 

rr (k) = rr(~'-I)G, where k = 1, 2, . . . , 

until some convergence criterion is satisfied. Notice that 
~k) = ~.(~-I)G can also be stated ~-(k) = Jr(0)GZ~ ' As the num- 
ber of nonzero elements of the personalization vector in- 
creases, the number  of nonzero elements of G increases. 

Thus, the multiplication of Jr(~-1) with G is expensive; how- 

ever, since S =  H +  d w  and G = a S +  (1 - a) l v ,  we can 
express the multiplication as follows: 

1;-(4) = rr(k 1) G 

= ~.(k-]) [oe(H+ dw) + (1 - a)  ]v] 
= O/,./T(k 1) Hq- a("JT ( k - l )  d) w +  (1 - a)  (Jr (b-t) 1) v 
= aJr (k-l) H +  oe(~r ( k - l )  d) w +  (1 - a)  v, 

because Jr(* 1)1 = 1, ~.(k-]) is a probability vector. This is 
a sum of three vectors: a multiple of Jr(k 1) H, a multiple 
of w, and a multiple of v. (Notice that ~r(k-Dd is a scalar.) 
The only matrix-vector multiplication required is with the 
hyperlink matrix H. A 2004 investigation of Web documents  
estimates that the average number  of outlinks for a web- 
page is 52 [22]. This means that for a typical row of the hy- 
perlink matrix only 52 of the 25 billion elements are 
nonzero, so the majority of elements in H are 0 (H is very 
sparse). Since all computations involve the sparse matrix H 
and vectors u' and v, an iteration of the power  method is 
cheap (the operation count is proportional to the matrix di- 
mension n). 

Writing a subroutine to approximate the PageRank vec- 
tor using the power  method is quick and easy. For a sim- 
ple program (in MATLAB), see Langville and Meyer [20, ~4.6]. 

The ratio of the two eigenvalues largest in magnitude 
for a given matrix determines how quickly the power  
method converges [16]. Haveliwala and Kamvar were the 
first to prove that the second-largest eigenvalue in magni- 
tude of G is less than or equal to the damping factor a [18]. 
This means that the ratio is less than or equal to a for the 
Google matrix. Thus, the power method converges quickly 
when  a is less than 1. This might explain why Brin and Page 
originally used a = 0.85. No more than 29 iterations are re- 
quired for the maximal element of the difference in succes- 
sive iterates, ~-(k+]) _ It(a,), to be less than 10 -2 for a = 0.85. 
The number  of iterations increases to 44 for a = 0.90, 

An Alternative Way to Compute PageRank 
Although Brin and Page originally defined PageRank as a 
solution to the eigensystem 7TG = ~r, the problem can be 
restated as a linear system. Recall, G = a S  + (1 - a )  ~v. 
Transforming rrG = ~r to 0 = ~" - ~-G gives: 

0 = J r -  rrG 
= ~ I -  Jr(aS + (1 - oz) ~v) 
= ~ r ( I -  c~5) - (1 - cO (~rl)v 
= J r ( I -  aS) - (1 - a ) v  

The last equality follows as above from the fact that ~r is a 
probability distribution vector, so Jr]l = 1. Thus 

r r ( I -  aS)  = (1 - a)v, 

which means ~r solves a linear system with coefficient ma- 
trix I -  a S  and right-hand side (1 - a)v. Since the matrix 
I -  a S  is nonsingular  [19], the linear system has a un ique  
solution. For more details on viewing PageRank as the so- 
lution of a linear system, see [8, 10, 15, 19]. 

2Though not required, the restriction is often made that the personalization vector v and the dangling node vector w have all positive entries that sum to 1 instead of 

all non-negative entries that sum to 1. Under this restriction, the PageRank vector also has all positive entries that sum to 1. 
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Table 2. Modeling Surfer Behavior for the Directed Graph in Figure 2 

Damping 

Factor 
(a) 

Model 1 0.85 

Model 2 0.85 

Model 3 0,95 

Model 4 0.95 

Personalization Google Page Rank Ordering of 

Vector Matrix Vector Nodes 

(v) (G) (~  ~) (1 = Highest) 

80 go so go 
3 3 71 3 

1 1 (0.21 0.26 0.31 0.21) (3 2 1 3) 
~. 37 3 3 37 

~ 8o ~ 8o 
1 1 1 1 

2O 0 0 

17 
(1 0 0 0) go 0 go 0 (0,30 0.28 0.27 0,15) (1 2 3 4) 

23 0 0 17 
4~ 40 
29 17 17 17 
gd 80 g6 80 

so 8o so 
77 

[ 1  1 1 1~ 39 1 ~1 39 (0,21 0.26 0.31 0.21) (3 2 1 3) 
~ ~ 7.] so s-0 s0 57 

1 1 1 1 

gd 0 0 

19 
(1 0 0 0) ~o 0 go 0 21 19 (0.24 0.27 0.30 0.19) (3 2 1 4) 

o o 40 

23 19 19 19 
~ so ~ so 

Google's Toolbar PageRank 
The PageRank score of a webpage  corresponds to an en- 
try of  the PageRank vector, ~'. Since ~r is a probability dis- 
tribution vector, all elements of  rr are non-negative and sum 
to one. Google 's  toolbar includes a PageRank display fea- 
ture that provides "an indication of the PageRank" for a 
webpage  being visited [5]. The PageRank scores on the tool- 
bar are integer values from 0 (lowest) to 10 (highest). Al- 
though some search engine optimization experts discount 
the accuracy of toolbar scores [25], a Google webpage  on 
toolbar features [4] states: 

PageRank Display: Wondering whether a new website 
is worth your  time? Use the Toolbar's PageRank TM dis- 

Table 3. Tooibar PageRank Scores for the Top Ten Results 

Returned by www.google.com for April 10, 2006, Search 

Query "coffee" 

Order Google's Top Ten Results Toolbar PageRank 

1 www.starbucks.com 7 

2 www. coffee review, com 6 

3 www.peets.com 7 

4 www.coffeegeek.com 6 

5 www.coffeeuniverse.com 6 

6 www.coffeescience.org 6 

7 www.gevalia.com 6 

8 www.coffeebreakarcade.com 6 

9 htt ps://www.dunkindonuts.com 7 

10 www.cariboucoffee.com 6 

play to tell you how Google 's  algorithms assess the im- 
portance of the page you ' re  viewing. 

Results returned by Google for a search on Google's toolbar 
PageRank reveal that many people pay close attention to the 
toolbar PageRank scores. One website [1] asserts that web- 
site owners have become addicted to toolbar PageRank. 

Although Google does not explain how toolbar 
PageRank scores are determined, they are possibly based 
on a logarithmic scale. It is easy to verify that few web- 
pages receive a toolbar PageRank score of  10, but many 
webpages  have very low scores. 

Two weeks after creating Table 1, I checked the tool- 
bar PageRank scores for the top ten results returned by 
Google for the query "coffee." Those scores are listed in 
Table 3. They reveal a point worth emphasizing. Although 
PageRank is an important componen t  of Google 's  overall 
ranking of results, it is not the only component .  Notice that 
bttps://www.dunkindonuts.com is the ninth result in 
Google 's  top ten list. There are six results considered more 
relevant by Google to the query "coffee" that have lower 
toolbar PageRank scores than bttps..//www.dunkindonuts.com. 
Also, Table 1 shows that both Yahoo! and MSN returned 
coffeetea.about.com and en.wikipedia.org/wiki/Coffee in 
their top ten listings. The toolbar PageRank score for both 
webpages  is 7; however,  they appear  in Google 's  listing of 
results at 18 and 21, respectively. 

Since a high PageRank score for a webpage  does not 
guarantee that the webpage  appears high in the listing of 
search results, search engine optimization experts empha- 
size that "on the page" factors, such as placement and fre- 
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quency of important words, must be considered when de- 
veloping good webpages. Even the news media have started 
making adjustments to titles and content of articles to im- 
prove rankings in search engine results [21]. The fact is most 
search engine users expect to find relevant information 
quickly, for any topic. To keep users satisfied, Google intist 
make sure that the most relevant webpages appear at the 
top of listings. To remain competitive, companies and news 
media must figure out a way to make it there. 

Want to Know More? 
For more information on PageRank, see the survey papers 
by Berkhin [10] and Langvilte and Meyer [19[. In addition, 
the textbook [20] by Langville and Meyer provides a de- 
tailed overview of PageRank and other ranking algorithms. 
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