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Abstract. The equations of motion of flexible slender bodies with constant body sections immersed in a 
uniform axial flow are discussed and used to derive some simple results for the divergence speed and the 
flutter speed. The results are compared with a classical waving flag result in two-dimensional flow. The 
slender body result for the flutter speed is compared with values obtained from wind tunnel experiments for 
some low budget paper strips. 

1. Introduction 

In Milne-Thomson's book 'Theoretical Hydrodynamics' [1] the problem of a two 
dimensional flapping flag is formulated in two examples, 18 and 19, in chapter XV as 
follows: 

'18. Two portions of a large uniform stream of liquid of density p, flowing with 
velocity U, are separated by a plane boundary of perfectly flexible fabric, of mass m 
per unit area, and subject to a tension T, the boundary being parallel to the stream. 
Show that waves of length 2 can be propagated along the fabric, in the direction of 
the stream, with a velocity V given by 

m V  2 -- T + 2P (U - V) z = O, (1.1) 

provided that 

T 1 + > m U  2. (1.2) 

19. Explain, giving the necessary theory, why a flag flaps in a breeze'. 

In this paper the slender body problem corresponding to the waving flag problem 
referred to above is treated. Solutions corresponding to (1.1) and (1.2) will be derived 
for flexible slender bodies with arbitrary cross-sections which are invariable in the 
streamwise direction. For cases with nearly neutral buoyancy (i.e. with the density of 
the body nearly equal to the density of the surrounding fluid) the results are relevant 



176 R. Coene 

to the readily observed wavy motions of weeds in a river. We also obtain some results 
for the divergence and flutter of a beam supported at both ends. Here divergence is the 
steady state aeroelastic instability and the term flutter is used for the oscillatory 
instability in a potential flow which involves no separation. 

In the present context some general remarks on slender body theory are in order. 
Here a body is called slender if the local thickness in all directions perpendicular to the 
stream, is small with respect to the length in the direction of the undisturbed stream. A 
body whose local thickness is small in one direction only is called thin. Thus a line is 
the limit of a slender body as the thickness tends to zero, while the limit of a thin body 
is a surface. Whenever a slender body is laterally compressed the body may be both 
thin and slender, the result being a slender wing. 

An essential feature of the slender body-approximation is that the velocity potential 
which describes the flow outside the boundary layer satisfies the two-dimensional 
Laplace equation in the near field. (In the far field the flow is dominated by a three- 
dimensional dipole). Satisfying certain conditions of smoothness in the streamwise 
direction solutions are readily obtained for many flow regimes of practical interest. 
The idea to use the concept of virtual momentum of a lateral section is due to Munk 
[2]. The same method is also applicable to unsteady flow problems. An interesting 
example of such an application is due to Lighthill [3] who explains the swimming of 
slender fish. The theory indicates that efficient propulsion can be generated by a wave 
of increasing amplitude which passes down the body at a phase velocity V slightly 
larger than the swimming speed U. At the sharp trailing edge a weak Joukowski 
condition, which allows for a finite pressure jump, is being satisfied while vorticity is 
being shed into the wake. Positive thrust can only be generated at a positive rate of 
working by the body. Conversely, a negative rate of working by the body is associated 
with drag. This case, of course, is related to 'flutter' and instability of motion. 

In [4] and [5] the dynamics and the stability of towed flexible cylinders is discussed. 
Modes of oscillation are obtained for neutrally buoyant cylinders allowing for viscous 
effects and a variable tension in the bodies, keeping the nose of the body fixed in a 
steady stream. Surprisingly no reference is made in [4] and [5] to the fundamental 
results (1.1) and (1.2) or their slender body counterparts. 

The stability problem and the voluntary swimming problem, where the body 
experiences a propulsive force by actively generating a wave passing down the body, 
are not the only ones which may lead to waves in a body. 

As shown in [6] a wavy stream leads to a passive recoil mode with a phase velocity 
equal to the phase velocity of the oncoming waves when there is no tension in the 
body. Another example is a flag waving in the von Karman vortex street of the mast, 
where the wave velocity is dictated by the phase velocity at which the alternating 
vortices are convected downstream. In this paper, however, we consider the stability 
problem of slender bodies with constant tension and invariable body sections to 
derive the slender body counterpart of (1.1) and (1.2). Some experimental values for 
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the flutter speeds 1-7] of three strips of paper will be compared with the slender body 
results. 

2. The equations of motion 

We consider a flexible slender body in a uniform oncoming flow. A Cartesian 
coordinate system (x, y, z) which is an inertial system has its x-axis aligned with the 
oncoming flow velocity U. The body has length I and lateral dimensions which are 
small with respect to I (Fig. 2.1). 

The cross-sections may perform displacements h(x, t) in the vertical z-direction. 
Moreover, the z-x plane is a plane of symmetry of the body (Fig. 2.2). Therefore the 
flow is also symmetrical and there will be no torsional moments. The z-axis is a 
principal axis of the body sections and we assume a bending stiffness EI. We neglect 
deformations due to shear. 

For the lateral (z-component) force exerted by the fluid on the body per unit length 
in the x-direction we use the classical slender body result [3]: 

~x,  t)= - p  + u (wA), (2.1) 

where p is the density of the fluid, and w is the resultant cross-flow with 

Oh Oh 
w = ~- + U 0-~" (2.2) 

Fig. 2.1. The coordinate system. 

X 

! 
'z L(x,t) 

I h(x,t) 

Fig. 2.2. The lateral displacements and the lateral 
force. 
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pA is the virtual mass of the cross-sections for motions in the z-direction. The virtual 
mass (per unit length in the x-direction) is defined by 

pA = p ~x (p dy, (2.3) 

where ~b is the velocity potential of the two-dimensional cross-flow when the cross- 
section moves at unit velocity in the z-direction. This quantity can be obtained from 
complex-variable theory of two-dimensional irrotational flow. For an elliptic section, 
of any excentricity, with axes a and b, moving in the direction of the a axis, one obtains 

/ [  
A = ~ b z, (2.4) 

which is independent of a and therefore also valid for a flat plate with a = 0. For a = b, 
(2.4) is equal to the cross-sectional area of the circular cross-section. One may also 
observe that for a < b, A is given by the cross-sectional area of the smallest possible 
circular cylinder which circumscribes the section. 

The differential operator (O/Ot + U(O/Ox)) appearing in (2.1) and (2.2) is the linearized 
approximation of the material derivative; i.e. a time derivative following a particle. 
Thus the right-hand side of (2.1) stands for the material time derivative of the z- 
component of momentum of a slice of fluid of unit thickness in the x-direction. One 
may write, neglecting the x-component of the velocity perturbations with respect 
to U: 

D O 0 
= ~ + U~7_, (2.5) 

u . ~  

for the time derivative in a coordinate system travelling at speed U in the positive x- 
direction with respect to the body. Obviously this coordinate system is fixed with 
respect to the fluid which is undisturbed far from the body. Equation (2.1) is valid for 
smooth variations in the x-direction and by virtue of the physical significance of (2.5) 
it is obvious that both w and A may depend on x and t. In this paper, however, only w 
is dependent on x and t while A is assumed to be constant. This restriction is not 
important for the validity of (2.1) but it is relevant to what follows. It implies that the 
expression on the right-hand side of (2.1) involves only second derivatives of h(x, t) 
with respect to x and t and this, in turn, leads to the possibility of simple solutions 
which exhibit some interesting features. 

By virtue of (2.1) the differential equation for h(x, t), equating the rate of change of 
lateral momentum to the forces, becomes 

(PbS) oiz -- O-x \ Ox J -- ~x2 ~ EI o~x 2 ) - + U (pwA ), (2.6) 
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where the first three terms are the usual contributions for a vibrating beam, with 

p~ the mass density of the body; 
S the area of the cross-sections; 
T the axial tension; 
E1 the flexural rigidity. 

Assuming constant p~S = tr, constant El,  constant T and constant pA = ct, equation 
(2.6) simplifies to 

aEh 02hEiO'h (0 0 )  2 
a- f l iT= T-~x 2 ~ - ~ -~ + C ~x h. (2.7) 

This is a fourth order linear equation for h(x, t) involving only second and fourth order 
derivatives. This opens the way for wave solutions of exponential growth. 

3. Exponentially growing wave solutions 

Equation (2.7) has solutions of the form 

h(x, t) = a e "kx-°'°, (3.1) 

where a is the amplitude in the steady oscillation case and the wavenumber k is related 
to the wavelength by k = 2rc/2; co is the circular frequency. 

Substitution of (3.1) into (2.7) yields a quadratic equation for to (with a ~ 0): 

- tro9 2 = - Tk  2 - E l k  4 - o~( - o92 _ U2k 2 + 2ogUk), (3.2) 

which is solved by 

o91.2 = ~ (~tU +_ x / ( T  + k2EI)(ot + ~) - ~ttrU 2 ). (3.3) 

Equating the discriminant in (3.3) to zero yields the critical situation: 

~ttr 
T + k2EI - U 2 = 0. (3.4) 

0c+tr 

If the left-hand side in (3.4) is positive one has the possibility of steady oscillations. If it 
is negative one has the possibility of exponential growth, i.e. flutter. 

Starting from the critical situation (3.4) we distinguish three cases: 
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(a) In the absence of external flow, with U = 0, (3.4) cannot be satisfied with positive 
values of T. In what follows we shall come back to the case with negative values of 
T. 

(b) Putting T = 0 in (3.4) yields a unique wavelength (2 = 2n/k): 

2 =  U q  ea - - '  (3.5) 

and the corresponding frequency 

o ~  = - -  ( 3 . 6 )  
a+a ~/ ot+a EI '  

and wavespeed 

a~ ~U 
V -  - - - < U .  (3.7) 

k ~ + a  

(c) For  a body with negligible rigidity, of perfectly flexible fabric, but also in the limit 
k --, 0, one obtains a unique flutter speed, U , ,  for given T with 

Uc~ = ~ + a T, (3.8i) 
~G 

or alternatively, a critical tension Tcr for given U, 

0~o" 
T~r = - -  U 2. (3.8ii) 

~ + t r  

We note that in this case the wave speed is also given by (3.7): 

o~ ~U 
V = -  = < U, (3.8iii) 

k ~ + a  

but 2 and ~o are indeterminate. 

For  a waving weed with a circular cross-section and neutral buoyancy (~ = a) in a river 
the wave speed which follows from (3.7) is one half the flow speed: V = ½U. Obviously, 
the present analysis does not apply to the behaviour of the weeds after the onset of 
actual flutter, nor to large amplitude waves with variable stress and viscous effects but 

personal observations suggest that V = ½U might not be too far off. 
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The results (3.8) explain why the trailing part of a banner towed by an aircraft will 
generally be unstable. Adding a drag device behind the banner which increases the 
tension above the value (3.8ii) would stabilize the banner and increase its lifetime. The 
added drag due to the extra device is not a pure loss since a flapping banner with 
V < U has a larger drag than a quiescent banner. The results (3.8) can be obtained in a 
slightly different way which sheds some light on the physical background. Putting 
E1 = 0 in (2.7) and thereby retaining only the second order derivatives, equation (2.7) 
can be expressed as 

~-~ + cl ~xx ~ + c 2 ~  x h = 0 ,  (3.9) 

with 

T - ~U 2 
clc 2 = - - ,  (3.10) 

~t+ t7  

and 

2~U 
cl + c2 e + a  (3.11) 

From (3.10) and (3.11) one readily obtains 

/ (  o~U ~2 T -  ctU 2 
_ ~ U  + + - -  ( 3 . 1 2 )  

C1'2 (X-'i- O" -- ~] ktX-{'-O" ] (X-'}- O" 

The discriminant in (3.12) vanishes with 

60" 
T = U 2, (3.13) 

~-{- ¢7 

and the two phase velocities are then equal: 

~U 
cl = c2 ~+tr  (3.14) 

The flutter speed which follows from (3.13) is the same as obtained before, in (3.8), and 
arises when two waves have the same phase velocity (3.14). From (3.10) we note that 
with 

T = ~U 2, (3.15) 
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which is larger than the critical value (3.8ii), one of the phase velocities, say cl, 
vanishes and one finds: 

2~U 
= - . (3.16) cl 0 and Cz c(+tr 

At the special value (3.15) for the tension, a steady deformation h(x), with 8h/at = 0, of 

arbitrary shape is possible. Thus, from (3.15) we obtain a divergence speed given by 

T 
U2iv = -- (3.17) 

We note that this divergence speed is smaller than the flutter speed given by (3.8i) since 

ct+tr c t+a  
U2r- Ud2iv and > 1, 

t7 tY 

although for ct << tr the two will be close together. 
It is easily verified that equations (3.15) and (3.17) can be derived directly from 

equation (2.7) by putting the time derivatives equal to zero. Retaining the flexural 
rigidity then yields, with T = - P ,  

O2h EI 84h 
(P + atU 2) ~-£x 2 + ~ = O. • (3.18) 

Thus, e.g. Euler's buckling formula for a doubly pinned beam of length l (l = 2/2) can 
be supplemented with an apparent mass effect for exterior flow as 

7z2 E l 
P~ = - - i f -  - otU 2. (3.19i) 

For a given value of the compression force one also obtains the divergence speed given 

by 

~2EI 
~U2i~ - 12 P. (3.19ii) 

4. The two dimensional analogy 

In the two dimensional case, referred to in the introduction, we start from a wave 
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potential in the form 

+ = - ac e-kz cos[k{x --(U + c)t}]. (4.1) 

It is easily verified that (4.1) satisfies the two dimensional Laplace equation and 
vanishes for z ~ + ~ where we have uniform flow at speed U in the x-direction. 

The + indicating the upperside of the flag. At the lower side one has 0 -  = - ~ ÷. 
(U + c) is the phase speed of the wave and k is, again, the wavenumber, related to the 
wavelength 2 by k = 2n/2. 

At z = 0  ÷, the boundary condition becomes 

Oh 0h (0tk)  k + 
= = -  q~(z=or (4.2) w=~i+u~ 7z  ~z=o~ 

For the lateral force per unit surface we have from the linearized Bernoulli equation: 

= - p(~=o~=2p ~ +  U 4~=o~= -20ac2ks in[k{x- (U+c) t}] .  (4.3) 

From (4.2) and (4.3) we obtain 

~-~ + U ~ x  h = - k  ~-~ + U~-~- x q~tz=O)- ~pp. (4.4) 

With k = 2n/2, the lateral force may be expressed in terms of the wavelength: 

L ( x , t ) = - - - 2 P ( O  0 )  2 ~z ~ +  U~x-x h. (4.5) 

Equating the rate of change of vertical momentum to the vertical component of the 
force, this leads to an equation of motion analogous to (2.7) with E1 = O, 

02h 02h ,~p(O 0) 2 
m - ~ - - -  T ox ~ ~ ff[ + U ~x h, (4.6) 

where m is the mass per unit area of the fabric, as in (1.1). 
With 

2p 
ct = - - ,  (4.7) 
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\ 

A 

Fig. 4.1. The virtual mass in the two dimensional case. 

the analogy with the slender body case is established. This leads to an interpretation of 
the coefficient 2p/n in the two dimensional case which is somewhat unusual. 
Apparently the term 2p/n plays the role of a virtual mass. A layer of fluid with 
thickness 2/re is effectively involved in the two dimensional flag case, see Fig. 4.1. In 
contrast with the slender body case this term is wavelength dependent. 

Neglecting the flexural rigidity in equation (3.2) and putting og/k = V, we obtain 

a V  2 - T + ~ ( U -  V) z = O. (4.8) 

By virtue of (4.7) equation (4.8) is equivalent to (1.1) and (1.2) is implied. We note that 
the slender body results of Section 3 are more general than the two dimensional result 
in the sense that the cross-sections of the slender bodies need only be symmetrical with 
respect to the z-x plane, while there is no need for them to be laterally compressed, or 
'thin'. 

Moreover, we note that in the two dimensional case there are no unique speeds. The 
wave speed, the divergence speed and the flutter speed are wavelength-dependent, 
while the wavelength is indeterminate. In the slender body case these three speeds are 
uniquely determined but the wavelength and the corresponding frequency, being 
inversely proportional are also indeterminate in the free-free problems for a perfectly 
flexible body or foil. 

5. Experimental results 

The results (3.8) for the flutter speed and the critical tension will be compared with 
some experimental results for three strips of paper with different spans. These strips 
were mounted in the M-tunnel of the Aerospace Department in Delft, as indicated in 
Fig. 5.1. The test section of the M-tunnel is 0.40 × 0.40 m z and the speed range used 
was from 7 m/s to 16 m/s. 

The end conditions for the strips were of the free-free type; the cable mountings 
restrained the strips only in the streamwise direction. The weights attached to the 
trailing edges were used to vary the tension in the strips. The tensions applied were 



p a p e r  s t r i p  

Flutter of slender bodies under axial stress 185 

Fig. 5.1. The experimental set up. 

sufficiently large with respect to the variations due to viscosity to justify the 
assumption of constancy of the tension. The length of the paper strips was 0.96 m. 
Three spans, 0.25 m, 0.165 m and 0.085 m were used. The mass density of the paper 
was 1.31 × 103 kg m -3. The flexural rigidity was considered negligible, the thickness 

being 0.10 × 10 -3 m. The tension applied went up to 2.6 N for the strip of largest span. 

The following procedure was followed: weights were installed to adjust the tension. 
Then the wind tunnel speed was increased to the point where instability was observed. 
Then the tension and the corresponding dynamic pressures were plotted. 

The results are given in Figs 5.2 and 5.3. In the latter the appropriate theoretical 

values are compared with the experimental values in terms of a referential tension 

defined by 

T* = U 2 t/2a°tr° (5.1) 
t/~t o + ~ro ' 

where r/defines the span of a strip with respect to the span bo = 0.085 m of strip 3: 

b = t/bo. (5.2) 

For  ~t o, the apparent mass per unit length of the reference strip, we have the mass of air 
enclosed by the circumscribed circular cylinder: 

/t 
~o = P ~ bo 2 = 7.32 x 10- a kg/m, 

and for ao one has 

a o = 1.13 × 10 -2 kg/m. 



186 R. Coene 

2.5 

2.0 

1.5 

1.0 

0.S 

0 
0 

T (Newtons) / / +  strip 1, b=0.25 
/ strip 2 b 0.165 L strip 1 strip 3 b 0.085 

,+ strip 2 

p 3  

dynamic pressure 
I I 

50 100 150 Ap b [Nm-Z] 

Fig. 5.2. The experimental results for the relation between the dynamic pressure Apb =½pU 2 and the tension 
in the strips at the trailing edge. 
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Fig. 5.3. Comparison of the theoretical T* (equation 5.1) and the experiments with three strips. In fact, only 
strip 3 (b/l= 0.09) is 'slender'. 
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We note that the experimental results for strip 3 (span b = 0.085 m are closest to the 
theoretical prediction. Clearly strip 3 is 'more slender' than the other two. 

6. Concluding remarks 

From Fig. 5.2 it can be seen that the agreement of theory with experiment for strip 3, 
with aspect ratio b/l = 0.09, is satisfactory. The other strips, with b/l = 0.17 and 0.27, 
are not so slender and the agreement is less satisfactory. In all cases the critical speed is 
(safely) underpredicted. One reason is probably the neglect of viscous effects in the 
theory. In the experiments the tension due to the weights applied is only a minimum 
value at the trailing edge. The actual tension will slowly increase to some higher value 
(larger by the amount of the drag of the strip) at the leading edge. Thus one would 
expect the trailing part to be more unstable than the leading part. This however, could 
not be observed. Whenever flutter set in, the strip moved violently along the whole 
length. 

Equation (3.8i) indicates that underpredicting Ucr may be due not only to 
underestimating T but also to overprediction of ~. Strictly speaking, the value ~tb2/4 
(2.4) for the thin strip should be considered as an upper limit for I and 2 tending to 
infinity. It may be noted that in the short wave limit, ,~/b ~ O, the virtual mass ~ is 
given by (4.7) which vanishes with 2, rather than by (2.4). Obviously, only a more 
complete three dimensional lifting surface theory could match and incorporate both 
limits. 
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