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For a large number of purposes, both theoretical and practical, it is
desirable to produce a population as homozygous as possible. In the
course of this process it may be necessary to keep a certain gene or
group of completely linked genes heterozygous. In these cases it is de-
sirable to calculate the probability that the other pairs of genes linked
with the gene kept heterozygous should still be bheterozygous after
n generations.

The principal gene may be heterozygous for two reasons. In the
first place the object of the experiment may he to introduce it into a’
pure line, so as to study its effects against a standard genetic back-
ground. This is done by repeated back crossing, and if it is not lethal
a homozygous stock can finally be obtained. Or the heterozygosis may
be enforced by genetical considerations, as when the gene in question is
lethal when homozygous, or when it is responsible for sex, heterostylism
or self-sterility. In these cases self-fertilisation or brother-sister mating
leads to a population homozygous for most genes, but still heterozygous
for genes closely linked to the permanently heterozygous pair.

Bxamples of the first type of heterozygosis occur in the work of
Timoféeff-Ressowsky (1933) on Drosophile and Fisher (unpublished) on
poultry. Examples of the second type are found in the selfing of Oeno-
thera Lamarckiona or the double-throwing Matthiola incana, the in-
breeding of yellow mice by Little and McPheters (1932), or that of
self-sterile plants by numerous workers.

1. INTRODUCTION OF NEW GENES INTO A PURE LINE.
(@) Autosomal dominant.

Here and throughout the gene pair kept permanently heterozygous
will be denoted by Z, z, the pair linked with it, whose heterozygosis is
to be investigated, by A, a, and the probability of recombination, or
cross-over value, by e, while ¢’ is the corresponding probability in the
opposite sex.
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In this case an organism containing the dominant gene is crossed to
the pure line;, and the progeny carrying the dominant back-crossed again,
for n generations. If crossing-over is confined to one sex, the dominant
gene must of course be carried, after the first generation, by that sex only.
Otherwise all genes linked with it will be introduced along with it. If the
original cross is ZZAA x zzaa, let z, be the proportion of ZA .za in I,
1=, being the proportion of Za.za.

Clearly @, . = (1 —¢) m,, and @, =1, s0 @, = (1 —¢)"~1. So after n genera-
tions the chance of introducing an unlinked gene is 217, that of intro-
ducing a linked gene (1 —c¢)*~t. Further, the mean genetical length of
chromosome introduced along with Z, on each side of it, if it is not
terminal or nearly so, is

1—2-

H — -1 -
‘[0(1 ey"tde or R

which approximates to 1/n when » is large.

(b) Sex-linked dominant.
The calculation is exactly the same as in the last case, provided that
(in the case of Drosophile) males of the pure line are used in each cross.

(6) Autosomal recessive.

Suppose that the procedure of Fig. 1 is adopted, and repeated m times,
1.e. 2m+1 generations in all are used, or n# generations of crossing, where
n=2m. Let z, be the proportion of za gametes produced by the zz
females of F,,, where a was originally associated with z. Then Fy, .,
consists of (1—u,) ZA.zA : z, ZA .za, giving z gametes:
(1 —(13,”-{-0%,”) zZA (1 —C) Ly, 28,
and (1—=z,+cz,) zA: (1-¢) z, za,

in the two sexes. Hence

c+¢
NS <1 - "T)“) L and @y =1.
2
0+G, m
So a;m=<1- 5 > .
ad

c w
—5> ; for un-

If ¢’ =0, as in Drosophila, then for all linked genes ,, = <1
P

linked genes x,,=2-*, while for linked genes with approximately 50 per

cent, crossing-over x,, = (§)".

When ¢’ =c¢ the mean length of chromosome introduced on each side
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1 . . -
of the locus Z is __iﬁ-, or approximately 2/n when = is large. When
mn
¢/ =0 this length is
]
“~ 1— _.i m-+1 ,
s [ (@]

or approximately 4/n when n is large.
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(@) Sex-linked recesstves.
Suppose the procedure of Fig. 2 is adopted, as it was by Timoféefi-
Ressowsky, the Z 33 being taken throughout from a pure line ZA, and

the original zz @ from a za line. Let z,, be the proportion of a genes in
the zz 99 of #,,. Then

e
il = <1 - 5) %, and z,=1.
~

So Ty = <1 —?)—>m just as in case 11 (¢).

Timoféefi-Ressowsky generally carried out his procedure for twenty
or more generations, v.e. s =10. The mean length of foreign chromosome
introduced into the pure line was thus slightly under 200/11 or 18 units
on each side of the locus of the introduced gene. Kven after forty genera-
tions the length would only be reduced to 9 units on each side. While,
therefore, we do not wish to criticise Timoféefi-Ressowsky’s general con-
clusions, the possibility that important linked genes were introduced
along with the principal gene is by 1o means excluded.

In particular, allelomorphs of white were studied. A fairly large
group of genes, including yellow and scute, are at a distance of 1-5 units
(¢=0-015) from white. After twenty generations the probability that
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genes at these loci were introduced with white was 0-9925% or 0-926, ¢.¢
in 93 per cent. of cases these genes would not have been eliminated.
Bven after forty generations they would still be present in 86 per cent.
of cases.

We believe that these difficulties could largely be overcome by the
following procedure. The gene to be introduced, e.g. white, is put into
the same chromosome with two closely adjacent genes on each side of it,
e.g. broad and facet. In the course of inbreeding males are picked out
which contain X-chromosomes that have been formed by two successive
cross-overs, one on each side of the gene introduced. Only after this is
systematic inbreeding begun.

We now pass to cages of inbreeding in organisms which are necessarily
heterozygous on genetical grounds. There arve three groups of cases,
according as the heterozygosis is of the same character in all the organisms,
confined to one member of each mating pair, or different in the two mates.

The first group, our group II, is found where lethal genes or de-
ficiencies, or genes causing sterility or suppression of one class of gamete,
are found balancing one another in a homologous pair of chromosomes,
This is the case in Oenothera Lamarckiana, the ever-sporting double-
throwing races of Matthiola incana, and the yellow mouse. The second,
our group- I, occurs when one partner is homozygous, e.g. a female
Lebistes reticulatus or a pin Primulae obconioa, while the other, a male ox
thrum, is necessarily heterozygous. The third, our group IV, oceurs in
plants where self-sterility is determined as in Nicotiana. Here both
partners are heterozygous, but not for the same pair of genes.

II. INBREEDING WITH BALANCED LETHALS.
(a) Self-fertilisation.

Consider a plant ZA . za, where ZZ and zz are inviable or sterile, or
cannot be obtained because one class of gametes are not formed or do
not function. Here on selfing ZA..za we obtain

L(c+c¢ —2¢c’) ZA 2A: (1 —c) (1—¢') ZA .za:
ed Za.zh § (c+0 —2c0') Za. za.

Hence if 2, be the proportion of Aa heterozygotes in the nth generation,
Ty =(1—0c— ' +2¢" )z, and 2=1. So @, ={1—c—c"+2cc’y, orif ¢’ =¢,
@, = (1 —2¢4-2¢)%, or putting ¢ (1 —c¢) =k, @, = (1 —2k)"

The mean length of chromosome remaining heterozygous after »
generations is thus, when n is large, about 1/2n on each side of every
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gene or group of genes which is kept heterozygous, e.g. after twenty-five
generations, 2 units. Thus in Oenothera, where cross-over values are very
small, of the order of 1 or 2 per cent., heterozygosis due to mutation will
be eliminated very slowly. In a self-fertilised plant it is normally halved
in each generation. In the case of a gene giving 1 per cent. of crossing-
over with the complex it is reduced to 0-98 per generation, 4.e. the
number of generations needed to halve it is about thirty-four. Thus the
amount of heterozygosis due to mutation in a selfed population of
Oenothera may be expected to be of the order of thirty times that of a
normal plant.

The problem of creating a pure line of a heterothallic haplont in
which sex-linked genes occur, e.g. Sphaerocarpus Donnellii ox Neurospora
sitophila, is clearly similar. Here since the haploids mated are derived
by meiosis from the same diploid, the process is analogous to self-fertili-
sation.

(0) Brother-sister wmating with autosomal lethal,
linkage equal tn two sexes.

In what follows we shall not give the somewhat complicated formulae
arising when the cross-over values ave finite and different in both sexes,
but consider the cases in which they are the same in both sexes, as is
nearly true in mammals, or zero in one sex, as in Drosophila.

In a population where all individuals are Zz, there are four geno-
types, ZA..zA, Za.za, ZA .za and Za.zA. There are ten types of mating.
Let them occur with frequencies:

ZA zA xZA za
[Za .za X Za .zA
Za .za X ZA . za
lZA.zAXZa ZA

ZA zaxZA za t, ZA .zaxZa.zA
1 \Za .za x Za .zA

T

{ZA.ZAXZA.ZA Gn ZA 2A xZa . za
])n Z
a.za XZa .za

where p,+¢,+7,+5,+4,=1, and reciprocal crosses are equally frequent,
but matings of the types bracketed together are not in general equally
frequent, though they are so if we start from a mating ZA .zA x Za.za,
1.¢. ¢y=1. It is clear that the proportion of heterozygotes

P
Ly =57, + 8, -t tn .

Then the frequencies of the mating types in the next generation are



332 The Theory of Inbreeding with Forced Heterozygosis

given by the following set of simultaneous linear finite difference equa-
tions, on the supposition that ¢’ =¢, and k=c—c?

Puir = Put e 20k%s,,+ 3 (l- 2k)% ¢,
nv1 = 2]‘:2871 -+ '_1,7 (1 - 2]‘/)2 tn:
Ty = L+ Al (L—2k) 5o+ 4 (1—2k) 1,
Sppr = L+ (L—2k) 1+ (1 —4k+2k%) s+ 20%,,
bp = Tt & by 2k7s, + k%, .

The equations are derived as follows. The Zz progeny of the mating
ZA zA X ZA .za arve in the proportions:
LZA zA: L (1—c) ZA za: fcZa.zA.
Hence matings between them occur in the proportions:
ST N L

13k ZA .za xZa .zA.
Hence #, contributes t0 Ppi1, Tuit> Sugq and £, in the proportions
1:1:1(1-2%): 4k, and similarly with the other mating types. The last
four of the above five equations are an independent group. Hence the
values of ¢, 7, Sy, b, arve of the form

AL+ A F g™+ A\,
where a;, @y, @y, ¢; ave constants depending on the initial values gy, 74, 5,
and £y, and A, Ay, Ay, A, ave the roots of the determinant

—A 0 2> L (1—2k)2 |=0.
0 3—-A 4k (1-2k) 4k (1 --2Fk)

3 I (1—2k) 1—4k+2k2—-A 2k?

1 1k 2k? k2 —A

Clearly =, is an expression of the same form.
If we put =27, [ =2k the determinant becomes
pr— (3 — 414+ 20%) P+ (1 — 40+ 412 —415) p?
+(3— 100+ 1412 ~ 1213+ 81*) u—2 (1 —B5l+ 1002 — 1013 4 41%) =0.

The four roots are always real, the values of A lying between + 1. The
actual values of x, for a series of values of & are given in Table I and
Tig. 3. When n is sufficiently large we have approximately ,=aA",
where A, is the largest of the four roots. We can obtain the value of a;
with sufficient accuracy from the value of z;,. Values of ¢; and A; are
given in Table I. The exact solutions when &=0 (complete linkage) and
k=0-25 (no linkage) are

@, =}[1—(-2)"], and fvnzjgg [(i%ﬂ>7l“<%ﬁ>z};
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the latter heing of course the formula for'the amount of heterozygosis
at a normal locus in brother-sister mating. It will be seen that in this
case, as in all subsequent cases, the values of o, finally approximate to
a diminishing geometric series whose common ratio lies hetween 1 and
0:8090, the value found in the absence of linkage.

100

50

1 ! L ! | 1 1 1 I
0 I 2 3 4 5 6 7 8 9 (0
Tig. 3. Abscissa: time in generations. Ordinates: Percentages of Aa heterozygotes,
starting from ZA.zA x Za.za, when ZZ and zz are eliminated and brothers and
sisters inbred, linkage equal on both sides.

TABLE I,

x,, m case L1 (b).

Generations ... 1 2 3 4 5 6 7 8 9 10
k=0 1 05 0756 0625 0687 0656 0672 0664 0668 0666

0-05 1 05 066 0519 0-516 0454 0424 0-38¢ 0353 0-322
o1 1 05 059 0447 0410 0342 0208 0254 0-219 0-188
015 1 05 054 0403 0350 0-284 0-237 0-195 0162 0-134
0-2 1 05 051 038 0321 0257 0210 0-171 0139 0118
0-25 1 05 05 0-375  0-313 0250 0203 0164 0-133 0-107

E ... 0 0-05 01 . 015 0-2 0-25

oy 0-667 0-790 0-861 0-890 0-893 0-894

Ay 10 0-9143 0-8585 0-8274 0-8129 0-8080

When ¢ is very small, A; =1—2k=1—2¢, approximately. The mean
length of chromosome remaining heterozygous on each side of the
heterozygous locus, if A;=1—ac, ig

% . u l _____w_al,__ _ _g' n-+1
foal(l o) o= [1 (1 2) ,

. a .
or approximately ma. Iu this case the length on each side is

Journ. of Genetics XXXT 99
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3.~—~*—(nl+ 1)’ Thus after twenty generations of brother-sister mating of
yellow mice we may expect to find a mean length of 200/63 or 3-2 units
still heterozygous. The probability of finding heterozygosis at a locus
1 unit distant from that of yellow is % 0-98%, or 0-44. It is worth
noticing how much more completely such a population of mice approxi-
mates to a pure line than a population of Drosophile where the procedure
for introducing a recessive gene has been carried out for twenty genera-
tions.

(¢) Inbreeding with an autosomal lethal, no crossing-over in one sex.

Here reciprocal crosses give quite different results. If the frequencies
of mating types are as in the last case, we arrive at the equations:

Prir = Put 7}?’)";1, + % ¢*s, + ‘é (1 - 0)2 U
Tn1 = 3%, + % (1—=c)?ty,
Ppog = Y+ 2ks,, +2kt,,
Spr1 = $quti(L=k)r+ (1 —0)? s, + 0%,
by = Fq k.
So —4A 0 c? (I—¢)? =0,
0 1—2A k k
1 1—k (L—c)2—A c?
1 J 0 .

or if p=2A,
pr— (3 —2k) p¥+ (1 —2k) p2+{(1—2k) [1+2 (3 ~2k) (1—20¢)]
—4 (1 —2¢) (L—¢)} p—2 (1—k) (1 —2k) (1 —2¢)=0.
The values of z, for a series of values of ¢ are given in Table IL. When
n is large we have, as before, , =A™

TABLE II.
&, v case I (c).
Generations ... 1 2 3 6 7 8 9 10
¢=0 1 05 0750 0656 0-672 0664 0-668 0-666
01 1 05 0664 0460 0-431 0391 0-361 0-330
0-3 1 05 0558 0:300 0-253 0-211 0-176  0-147
0-5 1 05 05 0-25 0-203 0-164 0-133 0-107
[ 0 0-1 0-2 0-3 0-4: 0-5
[ 0-667 0779 —_ 0-886 — 0-894.
A 10 0-9177 0-8671 0-8358 0-8192 0-8090

Values of ¢, and A, are also given in Table II. The exact solutions
when ¢=0 and ¢=4 are the same as in the last case.
For very small values of ¢, A=1—¢, so that z,=% (1—c)" and the
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mean length of chromosome heterozygous on each side of the locus of Z

9
BT

(d) Inbreeding with a sex-linked lethal.

Let us suppose that z is lethal to the male (supposed heterogametic)
while ZZ females are eliminated. This occurs in a culture of such a
deficiency as Notch in Drosophila melanogaster. Thus all matings are
Zz @xZ 3. Let mating types occur with the frequencies

ZA zA xZA ZA zA xZa
Pn {Za‘za x Za " {Za.za X ZA
ZA .za xZA ZA za xZa
T {Za ZA X zA " {Za ZA X ZA
where p,+¢,+7,+s,=1, and the proportion of Aa females, z, =7, +s,,.
Then Patr = Pn + ¢ (l ——G) Tnto (1 _C) Sns
Qo1 = 'y + (1—e)?s,,
Tppr = (1 - 0)2 Tt €%,
Spy1r = gn"}"c(l“‘c) 7‘71+0(1_O) Sp»
Whence
-2 c? (1—e)? =0,
0 (I—-e)2=A c?
1 ¢(l—c) c(l—c)—A |

or A2 —(1—c) A*—(1—0) (1 —2¢+2e%) A+ (1 —¢)t—ct=0.

It gy=1, we have the values of z, given in Table ITI. It will be seen
that the values oscillate considerably. Although ultimately x,=a,\?,
there is a large negative root responsible for the oscillations. Thus for
¢=0-1, A3=—0-856. For ¢=0, z,=%~% (—1)*. For other values of ¢,
the values of @, given in Table III are calculated by considering g,
and z;y, and eliminating the oscillatory effects of \,.

TABLE 111
@y, v case L1 (d).
Generations ... 1 2 3 4 5 G 7 8 9 10

¢=0 1 0 1 0 1 0 1 0 1 0
0-1 1 01 0828 0163 0692 0200 0-584¢ 0219 0-497 0296
0-2 102 0704 0264 0513 0266 0-384 0243 0-295 0-211
0-3 103 0616 0321 0405 0271 0280 0212 0-199 0-160
04 1 04 0552 0352 0342 0258 0225 0-180 0-151 0-123
05 1 05 05 0375 0-313 0-250 0-203 ©0-164 0-133 0-107
4 0 01 0-2 03 O-4: 0-5
[ 0-5 0-572 0-667 0-764: 0-843 0-894
Ay 1-0 0:9499 0-9013 0-8581 0-8254. 0-8090

22-2
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For ¢=1% we have the usual equation for z,.
When ¢ is small, then Ay =1—1%¢, \;=1—2¢, Ay= —1+4$¢, and
2, =% (1—%ep =3 (=1 (1—Zo)m
Hence the mean length of chromosome heterozygous on each side of

the locus of Z is
i

n+1
approximately when » is large.

[1=4 (~1)]

III. INBREEDING WITH HETEROSTYLISM OR PARTIAL SEX LINKAGE.

In the case of heterostylism, while in certain plants pinxpin ov
thrum x thrum matings are possible, in other cases they are quite in-
fertile. Thus all matings are Ss x ss, where S is the gene for the thrum
condition. Hence, in building up a pure line, genes linked with S will
remain heterozygous for a long time.

Similarly, where a gene is found both in the X- and ¥-chromosomes
it may cross-over from one to the other, a state of affairs found in
Lebistes by Winge (1923) and in Drosophila by Philip (1935). In this
case the male is clearly analogous to the thrum, the female to the pin.

Let the mating types oceur with the following frequencies:

sA.sA xSA . sA - XA XAxXA. YA
Pn {sa sa xSa.sa  Xa.XaxZXa.YVa
(sA.sA x Sa .sa XA XAxXa.Ya
I sa .sa x SA.sA % Xa.Xa xXA.YA
~ (sA.sAxSa.sA =~ XA XAxXA.Ya
" {sa.sa xSA.sa O Xa.XaxXa.YA
(sA.sA xSA . sa ~ XA XAxXa.YA
‘1 lsa .sa xSa.sA % Xa.Xa xXA.Ya
; (sA.sa x SA .sa or XA Xa x XA YA
" |sA.sa x Sa .sA XA.Xa xXa .Ya
sA.sa x SA.sa XA.Xa xXa.Ya

Y {sA.sa xSa.sA ' XA .Xa xXA.Ya

then the proportion of heterozygous females or pins is @, ={¢,+u, and
that of heterozygous males or thrums is y, =7, 48, +u,.

We find

Pnst = Pt c(I—0)rp+e(l—0c)s,+3t,+%c(l—c)uy,,

Gnia = _'14: {02 + (l - 0)2} Uy, 5
Tugr = (L—c)?ry+ %, + TP+ (1—0)% uy,
Spa1 = ‘llt‘n + % c (1 - C) Up s
Zvn 1 = GET‘)L + (1 - 0)2 Sy + Z}lgtn + % Uy s

1

+

i

Uy g = Gutc(L—6) 1 4c (1 —0) Sy Ety + i tn-



Whenece
—A 0 0 0 I—2¢(1—0c) \
0 (1—c)?—A c? 0 1—2¢(1—¢) |
0 0 —A 1 2¢ (1 —c¢) ‘
0 c? (1—¢)? 1—4A 1 l
1 ¢(l—c) ¢(1—c) 1 1—4X i

or if p=2A, k=c (1—¢),
w8 — (3 —2c—2k) pt—ep®+{(5—To—2k) (1 —2k) +(1 —20) 4% p*
—(1—2¢) (1 —2k) (1 —4k) p—2 (1 —2¢) (1 —2k)*=0.
If ¢o=1, 7.e. il we start with the mating
sA.sAx8Sa.saor YA XAxXa.Ya

we have the values of z, and g, given in Table IV. When # is large we
have @, =@ A", ¥, =0, '\, approximately, where the values of o, @, and Ay
are given in Table IV. When ¢=1 we get the usual equations for unlinked

TABLE IV.

x, and 1, wn case 111,

Fenerations ... 1 2 3 4 5 6 7 8 9 10
6=0 Xy 1 05 0500 0-375. 0313 0-25 0:203 0-164 0-133 0-107
- U 1 035 0750 0625 0687 0656 0-672 0664 0-668 0-666
=01 {®n 1 05 0516 0-397 0-346 0292 0-252 0-217 0-189 0-166
- Un 1 05 0644 0512 0501 0442 0407 0-366 0-332 0-299
c=0-3 { % 1 05 0512 0-389 0:332 0271 0-224 0-186 0-154 0-126
- Yy 1 05 0528 0400 0-344 0-281 0-234 (193 (160 0-132
=05 {Tn 1 05 05 0-375 0-313 025 0203 0-164 0133 0-107
- Yn I 05 05 0375 0-313 0-25 0-203 0-164 0-133 0-107
¢ 0 01 0-2 0-3 0-4 0-5
a, (fora,) 0 0-432 — 0-848 — 0-894
a,’ (for y,) 0-667 0-888 — 0-882 —_— 0-894
Ay 1-0 0-8984 0-8553 0-8270 0-8136 0-8090

genes. When ¢=0 we have the same values for ,,, for since @, vanishes
we have @, =a,A", and this expression is the same as when ¢=4. On
the other hand y,=% {1 —(—=%)"} and clearly two-thirds of the thrums
or males remain heterozygous in the absence of crossing-over.

If, however, #,=1, 4.e. if we start with the mating sa.sa x SA.sa,
or Xa.Xax Xa.YA, things are rather different. This is the case if, for
example, in Lebistes we introduce a new gene in the Y-chromosome, or
in Drosophile inbreed a strain all of whose X-chromosomes contain the
bobbed gene, whilst the Y carries the normal allelomorph.

Here the values of A, when ¢ is very small, are approximately

do 1+45 ; 1-4/b 1
1 ER R S ,and —%.
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. . 4: n -
So the value of y, ultimately approximates to (1 - §C> while that of z,

rises gradually to a value of nearly 4¢, and then very slowly falls off to
ZEro.

In all cases, when  is large, the mean length of heterozygous chromo-
some in pins or females is very small, decreasing in a geometrical series.
The length heterozygous in thrums or males is about 1/2n on each side
of the locus of the genes for heterostylism or sex if ¢,=1, and 3/4n if
ro=1. In Drosoplala melanogaster Philip (1935) finds crossing-over be-
tween the locus of bobbed and the sex genes in less than one gamete
per thousand. So over 500 generations of brother-sister mating would
be needed to produce homozygosis for this locus in half a population, and
even in a “pure line” heterozygosis for this locus would hardly ever be
abolished.

IV. BROTHER-SISTER MATING WITH SELF-STERILITY
orF THE NICOTIANA TYPE.

Here there are in any population three or more allelomorphs such
that a pollen grain carrying any one of them cannot enter a zygote
carrying the same gene. Hence if these allelomorphs ave called S;, S,,
Ss, Sy, ete., then while 8,8, x 8,8, gives S;8; +S1Sy+ 8,5, +S,5;, the
mating SyS, x Sy gives SyS,y + 555 and the reciprocal mating S48, +.5,85,.

It 1s clear that as the result of any system of inbreeding, ultimately
all but three allelomorphs (say Sy, S, and S;) will disappear from a
population. Moreover, a population consisting of equal numbers of the
three genotypes 5,9, S8; and S5, , will be in stable equilibrium under
any mating system in which there is no selection in favour of any
genotype.

If A is linked with the S locus, twelve genotypes are possible in such
a population, and each can be fertilised by pollen grains from eight others.
There are thus ninety-six types of fertile mating. In a symmetrical
population the frequency of a mating is unchanged if we permute S; S, S,
or exchange A and a. Also reciprocal crosses arve equally frequent. Let
the frequencies of the mating types be as follows:

P S3ALSA XS ALSA (one of 12 types),

7, SA.S;A xSa .S,a (one of 12 types),

7n SzALSA xS AL S and reciprocally (one of 24 types),

s, S;ALSA xS S,A and reciprocally (one of 24 types),

b, S S AxSA L Sa or S;a S A xSa SA (bwo of 24 types).
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While the two groups of mating types under #, do not occur with equal
frequency (the second type having the frequency ¢,) they yield progeny
in the same proportions, and may be grouped together. The proportion
of Aa heterozygotes, ©, =4 (1, -+8,) +1- Then

Pui1 = Pau -+ %C’}"}L + % (l ~c) Sy + k (1 _27") [
Gt = k(1—2k)¢,,
Typr = LA —2k)yr, -+ (1—2k) s, - (1 —2k)2¢,,
Spp1 = For,, -+ ks, + 4k,
bory = Gt 5 (L—0)r,+ des,+ 2k {1 ~2k)¢,.
So
—A 0 0 k(1 —2k) =0.

0 1—2k—2A 1—2k (1—2k)?

0 k k—A 2k

1 1—¢ ¢ 2k (1—2k)—2A

Hence A=0, or
A% — (1 44k —8k%) A7 —{(1 —c) (1 —4&) +45% A
—~2k (1 —2k) {1 -2k —c (1 —4k)}=0.
If gy=1, 4.c. the initial matings are S;A .S A x S;a.Sa and recipro-
cally, or similar matings, then we have the values of @, given in Table V.
The exact equation for ¢=0 is

TABLE V.
@, 9 case IV,
Generations ... 1 2 3 4 5 Rt 7 8 9 10
c=0 r 05 075 0-625 0-687 0656 0-672 0664 0-668 0-6G6
01 1 045 0628 0-503 0489 0435 0402 0355 0-335 0-305
0-3 1 05 051 0-391  0-333 0-270 0-224 0-184¢ 0-151 0-127
05 I 05 05 0-375 0-313 0-250 0203 0-164 0-133 0107
c 0 0-1 0-2 03 04 0-5
aq 0-667 0-753 —_ 0-882 — 0-894
Ay 1-0 0-9137 0-8554 0-8221 0-8108 0-8090

and for ¢=4% the usual equation for brother-sister mating. For large n
%, =A™ approximately, the values of ¢y and A, being given in Table V.
When ¢ is small, z,=§ (1 —c)* approximately, so after n generations the
mean length of chromosome heterozygous on each side of the S locus
is 2/3m.
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V. SUMMARY.

When a foreign gene is being bred into a pure line, or when a popu-
lation with a lethal gene, incomplete sex linkage, heterostylism, or self-
sterility is being inbred, the population is kept heterozygous fora
particular gene or chromosome segment, but otherwise inbred. In these
cases expressions ave found for the probability of introducing a gene
linked with the given gene, or for finding such a linked gene still hetero-
zygous after inbreeding. Expressions are also found for the mean length
of foreign chromosome introduced, or the length of chromosome re-
maining heterozygous (Table VI). The difficulty of introducing a single
gene without any linked genes is emphasised.

TABLE VI

Mean length of chromosomne heterozygous on each side of principal locus
after n generations (n large).

I(a), (b) Introduction of dominant ... . e In
I{e) Introduction of autosomal recessive (c =c) e 2
I(c) Introduction of autosomal recessive (¢’ =0) e e
I{d) Introduetion of sex-linked recessive e d/n
IT (@) Self-fertilisation o 120
I1(b) Brother-sister mating, Lmtosomal lcbha] scloctcd ( =¢) ... 1/3n
I (¢c) Brother-sister mating, autosomal lethal selected (¢/=0) ...  2/3n
1T {d) Brother-sister mm,mg, sex-linked lethal selected ... - In (L-% (=1)")
I1I Brother-sister mating, partial sex- hnkagc or hotuostyhsm 1/2n
v Brother-sister mating, self-sterility .. e 2/3m
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