THE GENETICS OF *PRIMULA SINENSIS*. III. LINKAGE IN THE DIPLOID.

BY D. DE WINTON AND J. B. S. HALDANE.

(John Innes Horticultural Institution, Merton, London.)

(With One Text-figure.)

IN a previous paper (de Winton and Haldane, 1933) the authors described 30 factors in the diploid *Primula sinensis* located at 28 loci. Two of these are closely linked or allelomorphic. Of the 27 outstanding loci 15 are here shown to be situated in four linkage groups containing 5, 4, 4 and 2 members. The haploid number of chromosomes is 12. There are 12 factors, besides others which have appeared since 1931 but have not yet been

TABLE I.

Chromo- some	Factor	Expression of recessive
Ι	8	Pin. Long style, low anther, small pollen grain
	b	Red. Co-pigment needed for magenta colour absent in petals
	x	Sterile double. Reproductive organs represented by petals
	g	Red stigma and gynaecium. Petals deeply coloured
	Ī	Dark stems and leaves
II	р	Peculiar eye. Eye enlarged, petals rolled, enhances action of f ^s
	w	"Feeble minded." Small flowers, poor growth
	fs	Sutton's crimp. Leaves slightly crimped, eye lobed
	f^1	Lee's crimp. Leaves strongly crimped, eye large
	$^{\mathrm{ch}}$	Stellata. Petals unfringed, 5 instead of 10 calyx teeth
111	m	Fertile double. Extra whorl of petals. Anthers exserted
	v	Fern leaf. Leaf large and narrower than normal
	ĥ	Harlequin. Inner petals lighter coloured than the outer
	k	Coral. Coral pink anthocyanin replaces red
IV	0	Oak leaf. Incised, and divided into three lobes
	mp	Maple leaf. Less servated than normal, subglabrous

fully studied, to be located in 7 chromosomes, if all are independent of those so far located, which is by no means certain.

Our data are those accumulated since 1904 by Bateson and Gregory at Cambridge, and by Bateson and his colleagues and successors at Merton. These are supplemented, as regards the three factors S, B and G, by the results obtained by Altenburg (1916) in New York. Gregory, de Winton and Bateson (1923) had already described the linkages of S, B, G, L and that of F and Ch. The remaining linkages have been detected since their paper was written.

The factors known to be linked with one another are shown in Table I, and their positions on chromosome maps in Fig. 1. Their action

is fully described by de Winton and Haldane (1933). f^s and f^1 are allelomorphs. The precise location of w is uncertain.

CONSTANCY OF LINKAGE.

The cross-over values of Tables III-VI are given with their standard errors. The latter are calculated on the hypothesis that the differences in linkage values between different families derived from the same type of mating are wholly due to random sampling. Is this true, or in other words are we justified in adding together data from many families, and

treating such data as homogeneous? To answer this question we must discover whether the linkage values in different families diverge more than is to be expected as the result of sampling.

The method by which a group of families is tested for constancy of linkage is given in Appendix I. For each group of families so tested we arrive at Pearson's χ^2 and thence at a number ξ . The different values of ξ , if they are an expression of sampling errors only, should be normally distributed about zero with standard deviation unity.

The calculation is rather tedious, so we confined our examination to the back-cross values for adjacent loci, except that as there were only two sufficiently large families showing YH, and one showing HK linkage, the YK families are considered. If we included other data, such as SG linkage, the different values of χ^2 would no longer be independent. In the first chromosome, where data are extensive, we only tested families showing coupling, and in the case of Bb Gg, where there were no less than 250 families, we only included families from BGs.bgs.

Finally, since the χ^2 test gives erroneous results when the expectation in the smallest class is less than about 5, we omitted small families. Thus only families of over 250 from GL.gl \mathcal{J} , over 150 from GL.gl \mathcal{Q} , over 100 from SB.sb \mathcal{Q} , and so on, were included. Provided that the exclusion is based on the total family size this introduces no bias.

The results are assembled in Table II. It will be seen that the overall value of ξ is positive, and only 4 out of its 13 values are negative. The deviation of the mean is 0.27, the standard deviation being 0.28; that is to say that the series as a whole suggests that nothing other than sampling error is affecting linkage. In no series of families does ξ reach the value of 2, which is generally regarded as significant. Moreover, the positive values of ξ are due to a very few families. The largest value, for FCh \mathcal{J} , is 1.52. If we omitted one family, 14/21, which consisted of 45 FCh, 6 Fch, 10 fCh, 30 fch¹, a very large excess of cross-overs, χ^2 would be reduced to 12.58, and ξ to 0.87, while the mean value of ξ would fall to 0.22, which is only just significantly positive. Similarly the removal of one family, 72/28, with a very low cross-over value, would reduce the value of ξ for ChP \mathcal{J} from 1.39 to 0.55. Without these two families, the mean value of ξ would be only 0.15, which is not significant.

We conclude that there are probably significant deviations in the linkage value, but that they are confined to very few families, and that the observed deviations are mainly due to sampling. We may put the matter in another way. The total value of χ^2 is 171.0. The total expected value is 156, the number of degrees of freedom, so that $\xi = +0.86$, which is not in itself significant. Thus there is an excess of about 9.6 per cent. in the variance above that due to random sampling. Hence the standard errors of the linkage values are slightly too low. They should actually be about 5 per cent. above the values given. Nevertheless the order of magnitude is quite correct.

It is of interest that the cross-over values obtained in this work are far more stable than the single-factor ratios of 1:1 to 3:1. de Winton and Haldane (1933) found that while in the case of some factors the

 $^{^1}$ Here and throughout heavy letters are used to denote phenotypes. Thus F means FF or Ff, f means ff.

latter were stable, in others they varied from family to family in such a way that the odds against deviations being due to sampling error were millions to one. The probable explanation is as follows. Factors which upset the ratio of dominants to recessives are common. They are in the same chromosome as the factor under consideration, and either have a lethal or sublethal effect, or alter the relative fitness of gametes at a time of intense competition. Linkage values may be greatly altered by translocations or inversions. But our own back-cross data show no evidence of any such phenomena. The F_2 data, which have not been used for Table II, certainly show a change in the linkage of M and Y between 1907 and 1928.

TA.	ΒI	Æ	II.

Tests for constancy of linkage.

	-		
Factors	No. of families	χ^{a}	Ę
$SB \Omega$	15	$21 \cdot 1$	+1.29
SB_{c}	16	21.5	+1.16
BG♀	48	40.7	-0.61
BG3	15	11.6	-0.35
GT Ŝ	4	3.33	+0.40
GLS	3	0.173	- 1.36
$\mathbf{FCh}^{\mathbf{Q}}$	17	10.4	-1.03
FCh 3	11	18.5	+1.52
$ChP\hat{Q}$	12	11.5	+0.25
$ChP \overset{\circ}{\mathcal{S}}$	15	21.8	+1.39
MY Q	4	2.64	+0.12
YK Ŷ	4	2.47	+0.04
OMp ♀	5	5.25	+0.64
13	169	171.0	+0.86

Chromosome I.

The first chromosome contains the loci of S, B, X, G, and L in that order. In 1934 further evidence was obtained which makes it almost certain that a sixth factor is located in this chromosome. This new factor as far as we yet know has no effect on G (green stigma) plants. But in gg plants it is a semi-dominant suppressor of the effect of gg on the petals. Thus plants carrying it in the homozygous condition have a red stigma, but petals as light as the corresponding G plants. Its locus appears to be near that of S, very possibly on the other side of S from G.

The linkage data are summarised in Table III. The second to fifth columns give the results from selfings or crossings *inter se* of double heterozygotes. *C* represents coupling, *R* repulsion. In column 7 the mean cross-over value from these data is calculated from Fisher and Balmukand's (1928) table, or directly in the case of G and L. Column 8 gives $\theta = pq$ or (1-p)(1-q), as estimated from these data. Column 9 gives the amount of information about θ . Next follow the data on backcrosses, distinguished according as the heterozygous parent was used as a \bigcirc or \Im . Here coupling and repulsion data are pooled. In column 13, x and y represent the number of families in Altenburg's data, which have not been published. His data cover 392 plants from $\frac{\text{SBG}}{\text{sbg}} \times \text{ssbbgg}$ and 3292 from $\text{ssbbgg} \times \frac{\text{SBG}}{\text{sbg}}$. He designated S, B and G by the symbols L, R and S. His cross-overs on the male side were SB 12.45, BG 34.57, SG 41.86, agreeing satisfactorily with our values of 11.56, 35.52 and 41.03.

The data involving X are inadequate, and cannot be supplemented until more Xx plants are obtained. xx plants are sterile, and have to be reproduced vegetatively, while unfortunately our Xx stock has been lost. However, three fertile Xx plants were obtained in the past, and their selfing gave the results here tabulated. S and s cannot be distinguished on xx plants. The location of X between the loci of B and G is made clear by families $2^{A}/19$ and $5^{A}/19$, from $\frac{BxG}{bXg}$ selfed. They consisted of:

	$\mathbf{B}\mathbf{X}\mathbf{G}^*$	$\mathbf{B}\mathbf{X}\mathbf{g}$						
Observed	35	19	32	1	11	11	1	0
Expected	42.0	14.0	25.7	1.5	14.9	12.3	0.6	0.01

The expectations are calculated on the supposition that the cross-over percentages on the \Im side are BX 13, XG 23, BG 32, on the \Im side BX 16, XG 23, BG 35, with 2 per cent. double crossing-over in each case. The agreement is fair. It will be seen that there has been crossing-over between B and X and between X and G in two pairs of gametes which fused, but that there is no evidence of double crossing-over.

The data regarding this chromosome are particularly interesting because the factor pair S, s is the basis of natural heterostylism; and as heterostylism can be compared with sex, though illegitimate unions in this species are fairly fertile, this chromosome may perhaps be compared with the sex chromosomes of dioecious plants and animals. There is, of course, no visible difference between S and s chromosomes. Now Ernst (1933) in the related *Auricula* group of *Primula* species, finds hexamorphic heterostylism, which he attributes to the interaction of three pairs of factors, controlling the length of the style, the position of the anthers and the size of the pollen grains. As no crossing-over has been observed, Brieger (1930), Stern (1930) and Haldane (1933) have interpreted the phenomenon as due to multiple allelomorphism. But it

		Crude	C.O.V.	6.00
		No. of	families	1 (0 2
	B.C.	Cl'OSS-	OVERS	288
some I		B.C.	total	6101
Зћачно			Sex	C
kage in (ы	101.01
uta on lin			θ	0.0210
Dí		Mean	C.O.V.	r r
			70	

TABLE III.

	Standard	error	0.33	0.35		(2:-13)		0.59	0.53	0.82	0.87	(18.28)	0- 1 2	0-4S	0.76	7 8-0	$(15 \cdot 41)$	1	0.31	0.23
	Cor- rected	C.O.V.	6-25	11.56		13·85		34-40	41-03	37-53	97-17	18.46	32-37	35-52	36.73	36.86	22-46	0	3.61	1.82
		T	76,050	66,510		ł		26,630	33.610	12.080	10,430	}	44, 120	38, 450	14,070	10.680			89,310	166,300
	Grinde	C.O.V.	6.88	12.49		ļ		34.39	41.02	37-55	61-49		31.60	34.68	36.20	36.16	ļ	ļ	3.66	1.85
	No of	families	142 + x	69 + y		1		112 + x	60 + y	₹0 7	18	١	$x \neq 691$	81 + y	51	53	-	1	60	37
•	B.C.	OVERS	446	908		I		2066	3334	1063	1051	1	3014	3021	1177	892	}		115	56
	C p	total	6481	7272]		6107	S127	2831	2533		9537	8710	3251	2467			3146	3024
		Sex	01	.10		١		Oł	۲. ₀	01	. ro	1	Oł	۴O	Oł	۲Ċ	1	I	оŀ	۴0
10 11 A		۲œн	19,140	Ì		I		2,470	4,822	4,732	6,769	-	10,910	6,424	6,770	1.773	.		14,420	881,800
		θ	0.8512	0		1610-0		0.3898	0-1696	0.3688	0.1576	ļ	0.4207	0.1650	0-3749	0.1295		ļ	0.9508	0.001929
}	Mean	C.O.V.	1-74	0		13-S5		37-57	41·19	39-27	39-70	18-46	35-14	40.63	38.77	35.98	22-46	0	2.491	1 -39
	No of	families	53	~il i		r،		50 50	21	55	ری 44	ন্য	86	34	51	19	ŝ	Ч	24	70
	{	47	1187	0]	1	ſ	161	139	286	02	~~~	723	120	408	70	က	0	360	က
		$_{\rm XX}$	214	26 26	ſ	ရာ		255	669	524	405	ŝ	907	671	690	71 <i>7</i>	50	L	19	1631
	1 1 1	$X_{\rm P}$	181	22		11		234	612	: 태	322	65 63	1016	592	679	360	46	ഹ	16	1625
	l	XY	3532	58		117		927	1639	1775	878	54	4262	1697	2560	975	SS	19	677	3513
		Factors	SB C	SB R		SN C		SG C	SG R	SL C	SL R	BX R	BG C	BG R	BL C	BL R	XG R	$\Sigma L R$	GL <i>C</i>	GL R

is unusual for a series of allelomorphs to control such disparate morphological features independently. If Erust's hypothesis is correct S is really a group of three or more dominant factors. Only a few plants of P. sinensis have been examined for size of pollen grains, but no case of the dissociation of the supposed factors for style length and anther position has been observed in over 11,000 plants from back-crosses, and 7000 from F_2 's, in which crossing-over might have occurred, and would probably have been detected by the production of homostylism. Hence if S is a group of factors they are probably held together as the result of a localised difference between the S and s chromosomes, e.q. an inversion. If this were so, other factors in the same chromosome should exhibit differences of linkage intensity in heterozygotes according as they are Ss or ss (few SS plants have been tested). The difference in linkage between SsBbGg and ssBbGg plants is not significant. But if the new factor is on the opposite side of S from B, it should be quite possible to detect the effects to be expected on Ernst's theory, and experiments to test it are being undertaken.

Chromosome II.

This chromosome contains the loci of P, W, F and Ch, probably in that order, though the position of W is uncertain. The data for linkage calculation are given in Table IV. The data regarding F are mainly for segregation between the most extreme allelomorphs, F (flat) and f¹ (Lee's crimp), however the data where the intermediate allelomorph f^s (Sutton's crimp) is segregating are concordant. The largest group is from f^{s} Ch selfed, which gave 508 f^s Ch, 27 f^s ch, 44 f¹ Ch, 156 f¹ ch, giving a mean cross-over value of 9.75 per cent.

The locus of W is about 20 units distant from that of Ch. If the order were F Ch W, the mean cross-over value between F and W would be about 30 units, and we should expect to find 1.9 wwff from $\frac{Wf}{wF}$ selfed, whereas none were obtained. Hence it is probable, though by no means certain, that the loci of W and F are near together, and as the linkage between Ch and W is somewhat more intense than that between Ch and P, but less so than that between Ch and F, the order is probably P W F Ch. We are at present engaged in building up a stock in which w, f and ch are coupled. It will however be very difficult to study the linkage of p and w, since on most w plants p cannot be scored, and F and Ch may affect the possibility of scoring p in such cases.

Chromosome III.

This chromosome contains the loci of the factors M, Y, H and K, probably in that order, and possibly that of R, the order being MYHKR. The study of linkage has been made difficult by three facts. In the first place the factor h (harlequin) has no visible effect on kk (coral) plants, except in rare cases when it causes a diminished size of the onter petals. Hence in a back-cross only the Kk plants are available for linkage data. Our hhkk plants are derived from the self-fertilisation of a harlequin plant in an F_2 which proved to be Kk. The crosses Hk.hK×hhkk and reciprocally has given 16 HK, 279 hK, 398 k. Similarly the difference between **R** and **rr** is not always apparent on **kk** plants. **kR** petals are much more deeply coloured than kr, other things being equal. But B and I also dilute the colour of coral petals, hence if either of these (or possibly other) factors are segregating, r cannot be scored. KR.kr×kkrr has given: 130 KR, 77 Kr, 92 kR, 115 kr, corresponding to 40.72 ± 2.41 per cent. crossing-over, while Hr.hR selfed has given: 168 HR, 63 Hr, 42 hR, 6 hr, corresponding to 36.60 ± 5.11 per cent., and M and Y show no linkage with R.

The linkage of M and Y was not discovered earlier for the following reasons. In 1906 Gregory selfed four My.mY plants, obtaining:

188 MY, 39 My, 62 mY, 33 my.

These figures deviate from independence in the direction indicating coupling rather than repulsion, whereas the corresponding figures from 1928 onwards, which alone are given in Table V, agree fairly well with those derived from other crosses. It remains to explain the complete divergence between Gregory's results and our own. Gregory's notes are carefully made, and the morphological character of his doubles was the same as that of our own. Our ferns are descended from his stock, but our doubles are not, so we may be dealing with different factors. On the other hand it would be rather surprising if two different recessive factors not only gave an extra whorl of petals, but caused exsertion of the anthers in pin plants. The most likely hypothesis is that owing to a translocation the factor M in Gregory's plants lay in a different chromosome to Y. Segmental interchange has not yet been detected in *Primula sinensis*, but this is not surprising, as semi-sterility would not be detected unless pollen and developing ovaries were specially examined.

The data for linkage of M, Y, H and K are given in Table V. The order of M, Y and H is clear from experiments where all three are segregating. The provisional order for H and K is based on their linkage

	Standard	error	0-95	1.16	06-0	1.01	0.52	>							Standard	error	1・74	1.79	2.71		2.76	ł	I•61	ł	0.72		1.39 4.15
	Cor- rected	C.O.Y.	15.10	22.15	23.92	29-45	0.04 0.04	2						Cor-	rected	C.O.V.	24.36	16.49		ļ	1	1	I	1	1	ļ	
		Ц	10,090	6, 256	11,430	8,933	10,800	000604								ĩ	2356	2254	1	•]			-	I			11
	Crude	C.O.V.	14.52	21.32	23.10	28.38	60.01	200							Crude	C.O.Y.	22.88	14.79	27.84	l	32.17	-	7-69	1	7.62		5·34 6·06
	No. of	families	9	s	13	10 I D	0 6 6	2 1							No. of	families	õ	ণ ।	က	ļ	က	ļ	ഹ		4	ļ	со –
	B.C. GTOSS-	OVERS	1S2	239	1 69	515	165	100						B.C.	CLOSS-	OVERS	68	сţ Г	20	1	92	****	21		103		ч Ч С1
ome II	B.C.	total	1253	1079	2030	1815	2015	1111							B.C.	total	3S9	284	273]	286	I	273		1351		$262 \\ 33 \\ 33 \\ 33 \\ 33 \\ 33 \\ 33 \\ 33 \\$
romoso		Sex	01	۴o	01	^r 0(ንተና	0					Υ.			Sex	01	۴0	Oŀ	1	0+		0+		-10	1	0 1 ^F O
a for Ch		Ц	1,610	1,698	1,379	2,085	11,200	001.18					ABLE			н	1232	2650		ł				l	l	I	
inkage dat		θ	0.6346	0.09523	0.4711	0.1033	0.000011	##0000-0	S.E.	ļ	2.37	3.45	E			θ	0.6070	0.06692					1]			
Ĺ	Mean	C.O.V.	20.34	30.68	31.36	32.15	9-13 0.51	10.0	I	I	16.09	27-61			Mean	C.O.V.	22.09	25.77		33-47	ļ	26.26		0	-	60-6	
	No. of	families	6	Ŧ	16	9 0	202	10	က	c c	9	10			No. of	families	າດ	9		10	1	9		9		vi	4
		Δx	109	11	162	15	168 9	ر د	61	ſ°	28	9			ſ	, vz	54	s		21	ł	-#1	١	0		I]
		хY	00	146	260	165	001 190	ene	ेस.	52	13	107				$_{\rm XX}$	41	102	1	199	۱	<u>5</u> 6	-	66	١	114	Ś
	₩ ~	$\mathbf{X}_{\mathbf{y}}$	58	112	172	124	171 171		40	32	53	138		E.	וי ן	$\mathbf{X}_{\mathbf{y}}$	68	164	ļ	185		155		134	[102	33
		XΧ	600	301	6711	369	2167		92	$\mathbf{S2}$	232	450				XΧ	529	329		526	1	357	1	318	1	196	87
		Factors	PF C	PF R	PCh C	PCh R	D R CD	TA TA	PW R	WF R	WCh C	WCh R				Factors	MX C	MY R	MH	MH R	MIK	MK R	ΣН	$\Sigma H R$	XK	\overline{YK} R	$\frac{\mathrm{HK}}{\mathrm{HK}}$

TABLE IV.

values with M. Those with Y are inconclusive on this point. A stock recessive for all four factors is in preparation.

Chromosome IV.

This contains the loci of O and Mp. The back-cross values are given in Table VI. The only F_2 data are of six families from Omp.oMp selfed, which gave:

205 OMp, 62 Omp, 96 OMp, 10 omp,

corresponding to a cross-over value of 12.8 per cent. with a large standard error. No satisfactory correction can be made, but it is likely that the true values are slightly lower.

TABLE VI.

Factors	Sex	в.с. total	Cross- overs	No. of families	0.0.V.	S.E.
ОМр ОМр	₽ * 0	$\begin{array}{c} 479 \\ 646 \end{array}$	$\frac{114}{136}$	5 5	$23.80 \\ 21.53$	$1.95 \\ 1.60$

Allelomorphism or close linkage of D and E.

D (dominant white) and e (recessive flake) are very closely linked. If they are allelomorphic only three types of gamete, DE, dE and de, should exist. Now from the cross ddee × DE.de we should expect to find a majority of DE.de (white) and de.de (flake), and crossing-over would give dE.de (fully coloured) and De.de in about equal numbers. The phenotypic appearance of the latter is of course conjectural. Most of our work was done with gg plants, on which DDE and DdE both have a certain amount of pigment, and the flakes of ddee are numerous. Ddee was expected to be a flaked plant with rather pale flakes confined to the inner part of the corolla, since DdEgg plants have a white edge. No plants of this kind have been observed with certainty, but they might be indistinguishable from the rather pale flakes which occur among ddeegg plants.

The following are the results obtained by crossing DDEE (white or "Duchess") with ddee (flaked) and selfing the F_1 or back-crossing it to ddee:

DD and Dd	$\mathrm{dd}\mathbf{E}$	ddee
844	4	238
17	0	31
155	1	152
	DD and Dd 844 17 155	DD and Dd dd E 844 4 17 0 155 1

At first sight the five $dd\mathbf{E}$ (fully coloured) plants would seem to be due to crossing-over. But this is not necessarily so. The factor e occasionally mutates to E. The mutation frequency is 0.39 per cent. On this basis we should only expect about $2 \cdot 2$ whole coloured plants in the F_2 . As the frequency of back-mutation of e varies in different lines the presence of four plants is no evidence of crossing-over.

It is not proposed to attempt further work on this problem till other factors linked with D and E have been found. If some of the exceptional plants are due to crossing-over they should be found associated with crossing-over involving these other factors.

Whites allelomorphic with recessive flakes are found in Antirrhinum (Wheldale, 1909), Lathyrus (Punnett, 1932), Pisum (de Haan, 1930) and Portulaca (Ikeno, 1929). In all these cases, however, the white was recessive. Our white is fully dominant in G diploids, incompletely so in gg diploids and all tetraploids. So the cases are not quite parallel. If the three factors are allelomorphic they could be designated as E^{D} , E and e. E^{D} , or D, is a dominant white, and e a recessive white with a strong tendency to back-mutation, both somatic and germinal. The presence of dominant and recessive allelomorphs at the same locus is known in Drosophila, e.g. dominant and recessive eyeless. The white parts of white and flaked flowers agree in containing about the same amount of flavone, determined by the factor B.

INDEPENDENCE OF THE LINKAGE GROUPS.

There is little doubt of the independence of these four from one another. Table VII gives some representative "cross-over values" from back-cross data only. In the event of independence they should be

		Cross-	Apparent c.o.v.	0/	т
Factors	Total	overs	%	σ%	$D \div \sigma$
SP	664	309	45.03	1.94	2.51
SCh	966	475	49.17	1.61	0.51
\mathbf{BM}	1089	527	48.39	1.52	1.06
BY	271	141	52.03	3.04	0.67
\mathbf{LP}	664	322	48.49	1.94	0.78
GCh	5548	2792	50.32	0.67	0.48
ChM	282	131	46.45	2.98	1.19

TABLE VII.

50 per cent. Male and female data are grouped together. The values for S and P suggest linkage, however, the coupling F_2 data give a mean c.o.v. of $51\cdot05\pm2\cdot24$, and the repulsion data give a value of $55\cdot02\pm4\cdot59$. So linkage is improbable. Similarly on the basis of F_2 data S, G seems to be independent of O, Mp, and so on, though apparent cross-over values of about 45 per cent. are sometimes found. But these are generally inconsistent with other data.

INDEPENDENCE OF OTHER FACTORS.

Since the publication of our last paper the two characters, "cup" leaf and "claw" leaf, have been definitely shown to be due to recessive factors; the relation of Q and U is still not clear. Two new characters have appeared, one being a dominant and the other a recessive. Including these two we have 14 loci outside the linkage groups, those of:

R (blue petal colour).
D, E (white and flake).
A', a (no eye and large eye).
J' (green stem, "Sirdar" petals).
N (leafy bracts).
T (tongue leaf).
Iv (ivy leaf, extinct).
C (cup leaf).
I (intense petal colour).
Q (rosetted habit).
Z (claw leaf).
Pi (pistilloid stamens, undescribed recessive).
Ye (yellow leaf, undescribed dominant).

Of these R is very likely in Chromosome III. Of the rest Iv was not strongly linked with the factors in Chromosomes I, II or III, nor with A, E or V. Nothing more can be said about it. The following seem to be independent of the established groups, and of one another:

(D, E), (A', a), J, N, T, V.

For example, V and S were at one time suspected of linkage, but the pooled back-cross data gave 50.07 ± 1.36 per cent. crossing-over. The linkages of the remaining six factors have been less thoroughly investigated, those of the last two hardly at all, but no evidence of linkage exists.

We thus have 10 linkage groups marked by independent factors, corresponding to 10 of the 12 chromosomes. While our data are entirely consistent with the chromosome theory of linkage, a few more years will be required before we can definitely point to 12 independent linkage groups as well established as the 10 of maize.

We have decided not to publish the complete data involving 510 types of crossing and selfing of 232 pairs of factors, by which the independence of the various factors is demonstrated, since similar data exist in the literature in large numbers, and the plant is not being systematically studied by other workers.

MULTIPLE LINKAGE.

Three-factor crosses are recorded for SBG, SBL, SGL, BGL, PFCh, and MYH, and four-factor crosses for SBGL. The data involving X have already been presented. Back-cross data are given in Table VIII. They are not independent, since for example 77 per cent. of the data for $\frac{\text{SBL}}{\text{sb1}} \times \frac{\text{sb1}}{\text{sb1}}$ are derived from the cross of $\frac{\text{SBGL}}{\text{sbg1}}$, as are 23.9 per cent. of the data for data for $\frac{\text{SBG}}{\text{sbg}} \times \frac{\text{sbg}}{\text{sbg}}$. As there is little crossing-over between G and L the majority of SBL double cross-overs also appear as SBG double cross-overs.

TABLE VIII.

Linkage of SBG (including Altenburg's data).

\Im side (79 + x families).

$\frac{\text{SBG}}{\text{sbg}} \times \frac{\text{sbg}}{\text{sbg}} \\ 1673 \text{ SBG} \\ 1654 \text{ sbg} \\ 127 \text{ Sbg} \\ 125 \text{ sBG} \\ 710 \text{ SBg} \\ 783 \text{ sbG} \\ 42 \text{ SbG} \\ 45 \text{ sBg} \\ \end{cases}$	$\begin{array}{c} S bg \\ \overline{sBG} \times \overline{sbg} \\ 1 Sbg \\ 16 sBG \\ 4 SBG \\ 0 sbg \\ 5 SbG \\ 6 sBg \\ 1 SBg \\ 0 sbG \\ \end{array}$	3344 ——— 256 +——— 1504 ———+ 88 +——+
$\frac{\text{sbg}}{\text{sbg}} \times \frac{\text{SBG}}{\text{sbg}}$ 1999 SBG 1864 sbg 306 Sbg 351 sBG 1149 SBg 1033 sbG 97 SbG 108 sBg	$\begin{array}{l} \mathcal{S} \mbox{ side } (52 + \mbox{y families}). \\ & \frac{\mathrm{sbg}}{\mathrm{sbg}} \times \frac{\mathrm{Sbg}}{\mathrm{sBG}} \\ & 218 \ \mathrm{Sbg} \\ & 206 \ \mathrm{sBG} \\ & 206 \ \mathrm{sBG} \\ & 20 \ \mathrm{sbg} \\ & 115 \ \mathrm{SbG} \\ & 106 \ \mathrm{sBg} \\ & 19 \ \mathrm{SBg} \\ & 11 \ \mathrm{sbG} \end{array} \right)$	4287 721 +
$\begin{array}{c c} \underline{SBL} & \underline{sbl} \\ \hline s & b1 & \times \underline{sbl} \\ 457 & \underline{SBL} \\ 469 & \underline{sb1} \\ 38 & \underline{Sb1} \\ 45 & \underline{sBL} \\ 256 & \underline{SB1} \\ 284 & \underline{sbL} \\ 11 & \underline{SbL} \\ 20 & \underline{sB1} \end{array}$	$\begin{array}{c} Linkage \ of \ SBL. \\ \label{eq:side} \\ \begin{array}{c} \circ side, \ 20 \ families. \\ \hline \\ \hline \\ sbL \\ \hline \\ sbL \\ \\ \hline \\ sbL \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

TABLE VIII (cont.)

& side, 10 families.

	0 , "	
$\frac{\text{sbl}}{\text{sbl}} \times \frac{\text{SBL}}{\text{sbl}}$	$\frac{\text{sbl}}{\text{sbl}} \times \frac{\text{SB}}{\text{sbL}}$	
532 SBL 547 sbl	10 SB1	1099
81 Sb1 96 sBL	2 SbL) 2 sB1	181 +
317 SB1 311 sbL	7 SBL	640
32 SbL 32 sB1	1 Sbl	66+-

Linkage of SGL.

	\mathfrak{P} side, 16 families.	
$\frac{\text{SGL}}{\text{sgl}} \times \frac{\text{sgl}}{\text{sgl}}$	$\frac{\mathrm{SGl}}{\mathrm{sgL}}\times \frac{\mathrm{sgl}}{\mathrm{sgl}}$	
421 SGL 412 sg1	$\begin{array}{c} 37 \ \mathbf{SG1} \\ 47 \ \mathbf{sgL} \end{array}$	917
220 Sg1 264 sGL	16 SgL) 22 sG1	524 +
21 SG1 21 sgL	$\begin{array}{c} 3 \ \mathbf{SGL} \\ 3 \ \mathbf{sgl} \end{array}$	48+
5 SgL 7 sG1	$\begin{array}{c} 0 \ \mathbf{Sgl} \\ 2 \ \mathbf{sGL} \end{array}$	14

3 side, 10 families.

$\frac{\mathrm{sgl}}{\mathrm{sgl}} \times \frac{\mathrm{SGL}}{\mathrm{sgl}}$	$\frac{\mathrm{sgl}}{\mathrm{sgl}} \times \frac{\mathrm{SGl}}{\mathrm{sgL}}$	
641 SGL 645 sg1	$7 \mathbf{SG1}$) $7 \mathbf{sgL}$	1300
451 Sg1 449 sGL	$\begin{array}{c} 6 \operatorname{SgL} \\ 5 \operatorname{sG1} \end{array}$	911 +
11 SG1 13 sGL	0 SGL 0 sgl	24
$8 \mathrm{SgL}$ $4 \mathrm{sG1}$	$\begin{array}{c} 1 \ \mathbf{Sg1} \\ 0 \ \mathbf{sGL} \end{array}$	13 + - +

Linkage of BGL.

 \bigcirc side, 26 families.

$\frac{\text{BGL}}{\log 1} \times \frac{\text{bgl}}{\log 1}$	$\frac{\mathrm{BGl}}{\mathrm{bgL}} \times \frac{\mathrm{bgl}}{\mathrm{bgl}}$	
582 BGL 551 bgl	$37 \mathbf{BG1}$ $47 \mathbf{bgL}$	1217
272 Bg1 326 bGL	$\begin{array}{c} 16 \mathbf{BgL} \\ 22 \mathbf{bG1} \end{array}$	636
28 BG1 25 bgL	3 BGL 2 bg1	58
5 BgL 6 bG1	$\begin{array}{c} 1 \operatorname{Bgl} \\ 2 \operatorname{bGL} \end{array}$	14 ++

TABLE VIII (cont.). 3 side, 15 families. $\frac{\mathrm{bgl}}{\mathrm{bgl}}\times \frac{\mathrm{BG\,l}}{\mathrm{bg\,}\overline{\mathrm{L}}}$ $\frac{bgl}{bgl} \times \frac{BGL}{b\,g\,l}$ $715 \, \mathrm{BGL}$ 8 BG1 1442 -----711 bgl $8 \, \mathrm{bgL}$ 398 Bg1 381 bGL $5 \, \mathrm{BgL}$ 788 -----4 bĞ1 14 BG1 0 BGL $15 \, \mathrm{bgL}$ 1 bgl5 BgL 0 Bgl 4 bĞl $0 \, \mathrm{b} \overline{\mathrm{G}} \mathrm{L}$ Linkage of PFCh. ♀ side, 6 families. 3 side, 8 families. $\frac{\text{pfch}}{\text{pfch}} \times \frac{\text{PFCh}}{\text{pfch}}$ $\frac{\mathrm{PFCh}}{\mathrm{pfch}} \times \frac{\mathrm{pfch}}{\mathrm{pfch}}$ $475 \, \mathbf{PFCh}$ 420 **PFCh** 947 751 — 472 pfch 81 Pfch 331 pfch 103 Pfch 225 +--16180 pFCh 122 pFCh41 PFch 68 **PFch** 89 -124 $56 \, \mathrm{pfCh}$ 48 pfCh 11 PfCh 8 PfCh 216 pFch 10 pFchLinkage of MYH. ♀ side, 3 families. $\frac{\mathrm{MY}\,\mathrm{h}}{\mathrm{m}\,\mathrm{y}\,\mathrm{H}}\times\frac{\mathrm{myh}}{\mathrm{myh}}$ 98 MTYh) 194 -- $96\,\mathrm{myH}$ 29 MyH60 ------ $31 \, \text{mYh}$ 9 MYH $7 \, \mathrm{myh}$ 2 Myh 5 + - +3 mYH Linkage of SBGL. 2 side, 14 families. $\frac{\mathrm{SBG}\,\mathrm{l}}{\mathrm{s}\,\mathrm{b}\,\mathrm{g}\,\mathrm{L}}\times\frac{\mathrm{sbgl}}{\mathrm{sbgl}}$ $\frac{\mathrm{SBGL}}{\mathrm{s}\;\mathrm{b}\;\mathrm{g}\;\mathrm{I}}\!\times\!\frac{\mathrm{sbgl}}{\mathrm{sbgl}}$ 366 SBGL 36 SBG1809 ------361 sbg146 sbgL1 SbgL 28 Sbg1 59 -----29 sBGL1 sBG1174 SBg1 $15 \, \mathrm{SBgL}$ 422 -----212 sbGL21 sbG13 SBGL 19 SBG1 17 sbgL 2 sbgl4 SbGL 1 SbG1 16 ++--1 sBgL 10 sBgl0 Sbg1 0 SbgL 2 sBG10 sBGL2 SBgL 0 SBg1 4 sbGl2 sbGL1 SbGl 0 SbGL 2+++ l sBgl $0 \, \mathrm{sBgL}$

n. of Genetics xxx1

6

TABLE VIII (cont.).

Linkage of SBGL.

	3 side, 9 families.	
sbgl SBGL	$sbgl \cup SBGl$	
$sbgl^{sbgl}$	$sbgl^{sbgL}$	
527 SBGL	7 SBG1)	1084
544 sbgl	űsbgL ∫	100 %
80 Sbg1	2 SbgL	179
$96 \mathrm{sBGL}$	$1 \mathrm{sBG1}$	
308 SBg1	4 SBgL	617
301 sbGL	4 sbGl	
9 SBGI	0 SBGr [19
10 sbgL	0 sbg1	,
30 SbGL	0 SbG1	62
$31 \mathrm{sBg1}$	IsBgL)	1 1
2 SbgL	1 Sbg1	4
$1 \mathrm{sBG1}$	$0 \mathrm{sBGL}$	- 1 1
$5 \mathrm{SBgL}$	0 SBg1	8
$3 \mathrm{sbGl}$	0 sbGL	~ 11
1 SbG1	0 ShGL	1 + + +
0 sBgL	()sBgl)	- 1 1 1

From these data Table IX has been compiled. The fourth column gives the observed double cross-overs, the fifth the number calculated if there were no interference. The ratio is the coincidence. This ranges from 1.00 to 0.61, with a mean value of 0.78, when the two regions of crossing-over are adjacent, but rises above unity, though not significantly, when they are separated. These results are very similar to those

TABLE IX.

Interference.

m		11 (1	G	matal	Observed	Calculated	Claim ai dan an
Re	egions a	and lengths	DOX	Total	doubles	doubles	Conneidence
SB	$6 \cdot 3$	BG $32 \cdot 1$	Ŷ	5192	88	102.4	0.86
SB	11.6	BG 35.0	ð	7646	235	304.8	0.77
SB	$6 \cdot 3$	BL 36.7	₽	1743	33	43.8	0.75
SB	11.6	BL 36.9	రే	1986	66	87.6	0.75
SG	34.4	$GL - 3 \cdot 6$	4	1503	14	$22 \cdot 2$	0.63
\mathbf{SG}	41.0	GL 1.8	ð	2248	13	15.2	0.85
\mathbf{BG}	$32 \cdot 1$	GL 3.6	Ŷ	1925	14	24.3	0.58
\mathbf{BG}	35.0	GL 1.8	ð	2269	9	13.7	0.66
\mathbf{PF}	$15 \cdot 1$	FCh 16.4	₽.	1253	21	21.6	0.97
\mathbf{PF}	$22 \cdot 2$	FCh 7.6	ð	1079	14	$22 \cdot 8$	0.61
MY	24.4	YH 7.7	<u> </u>	275	5	$5 \cdot 0$	1.0
SB	$6 \cdot 3$	GL 3.6	<u>ұ</u>	1359	4	$3 \cdot 1$	1.30
SB	11.6	GL 1.8	ð	1974	5	4.0	1.25

found in *Drosophila*, though interference seems to be somewhat weaker in *Primula sinensis*. It will be seen that, as in *Drosophila*, triple crossovers occur, three being recorded among 3333 plants.

The data from selfing triple and quadruple heterozygotes are given in Table IV. The calculated values are derived by multiplying the gametic series deduced from Table VIII. The agreement is on the whole satisfactory, but quantitative tests are rather difficult, since the calculated values are derived from fairly small samples, and have errors of their own. Moreover, no allowance has been made for the deviations in the single factor ratios. In each progeny of a triple heterozygote all members of a certain class are derived from one or two gametes whose factors have undergone double crossing-over. Thus from $\frac{\text{SBG}}{\text{s}\text{ bg}}$ selfed all **sBg** plants are either derived from the union of two sBg gametes, or by an sBg and an sbg. Similarly from $\frac{\text{SBg}}{\text{s}\text{b}\text{G}}$ selfed, all **Sbg** plants are derived from a union of two Sbg gametes, or of an Sbg with an sbg. The plants in these classes are summarised in Table XI. It will be seen that the total is only 80 per cent. of the expectation in the absence of interference. The standard error of the expectation is about 7.4, so the deviation is not significant, but if a correction were made for these plants the coincidence values would be altered by under 2 per cent. on the average.

The data for single crossing-over from F_2 plants have already been incorporated with those from back-crosses. If any **sBgL** plants had been derived from $\frac{\text{SBGL}}{\text{sbgl}}$, or **Sbgl** from $\frac{\text{SBgL}}{\text{sbGl}}$ they would have been due to triple crossing-over. No such plants were observed, but their joint expectation was only 0.02. So no further data on triple crossingover can be derived from the F_2 plants.

LINKAGE DIFFERENCES BETWEEN FEMALE AND MALE SIDES.

For this purpose only back-cross data are available. They are collected in Table XII. In each case the non-cross-over and cross-over elasses of the two sexes were collected in a fourfold table, thus $\frac{a}{c} \left| \frac{b}{d} \right|$ and the measure of divergence

$$\chi = (ad - bc) \sqrt{\frac{a + b + c + d}{(a + b)(c + d)(a + c)(b + d)}} \quad \text{calculated.}$$

If the two cross-over values are really equal, this has an expected value 0 with normal distribution and standard error of unity. Hence we can calculate the probability P of a divergence as great as that observed, *i.e.* the probability that the apparent sexual difference is due to sampling error. The values of P are given in column 5. The smallest segments are marked with an asterisk, the remainder consisting of several such segments.

TABLE X.

$\frac{SB}{ab}$	G selfed. 19 fai	milies.	$\frac{SBg}{rbG}$	selfed. 18 fa	milies.
ua Ua	Obs.	Cale.	Dua	Obs.	Cale.
SBC	1000	005.7	SBC	1204	1102.2
SBr	995	992.9	SBa	466	535.7
ShG	32	39.1	SbG	77	174.3
Sbg	21	40.2	Sbg	15	11.1
sBG	55	66.3	sBG	84	87.9
\mathbf{sBg}	12	13.0	sBg	27	32.7
$sb\breve{G}$	213	197.2	$sb\tilde{G}$	503	458.9
\mathbf{sbg}	173	156.3	\mathbf{sbg}	85	58.3
	1731			2551	
SE	BL gelfed 29 for	milion	SB1	colfod 16 for	milios
sl	bl senett. 22 m	mmes.	sbL	seneu. 10 ia	mmes.
	Obs.	Cale.		Obs.	Cale.
\mathbf{SBL}	1577	1616.6	\mathbf{SBL}	591	$625 \cdot 6$
SB1	4.08	396.7	SB1	225	$245 \cdot 6$
\mathbf{SbL}	66	70.9	\mathbf{SbL}	31	20.4
Sbl	34	62.2	Sbl	2	5.4
SBL	94	111.0	sBL -DI	4.5	40.1
SBI	24	22-2	SB1 chl	8 946	910-0 910-0
shi	250	234.6	shl	48	32.4
5.51	2862	2010		1196	0
SG	$\frac{L}{2}$ selfed. 3 fam	nilies.	$\frac{\mathrm{SG1}}{\mathrm{SG1}}$	selfed. 10 fa	milies.
SG s g	$\frac{dL}{dl}$ selfed. 3 fam	nilies.	$rac{\mathrm{SG1}}{\mathrm{sgL}}$ s	selfed. 10 fa	milies.
SG sg	L selfed. 3 fam Obs.	ilies. Calc.	$\frac{\mathrm{SG1}}{\mathrm{sgL}}$	selfed. 10 fai Obs.	milies. Calc.
SGL	L selfed. 3 fam Obs. 161	nilies. Calc. 164·8	$\frac{\mathrm{SG1}}{\mathrm{sgL}}$	selfed. 10 fa Obs. 280	milies. Calc. 198·7
SGL SG1 S-J	$\frac{dL}{dt}$ selfed. 3 fam Obs. 161 3	nilies. Calc. 164·8 3·4 2·2	$\frac{\text{SG1}}{\text{sgL}}$	selfed. 10 fa Obs. 280 127 105	milies. Calc. 198·7 147·1 108-6
SGL SGL SgL SgL Sgl	$\frac{4L}{31}$ selfed. 3 fam Obs. 161 $\frac{3}{2}$ 45	cale. 164·8 3·4 2·3 41·5	$\frac{\text{SG1}}{\text{sgL}}$	selfed. 10 fan Obs. 280 127 105 0	milies. Calc. 198·7 147·1 108·6 0·05
SGL SG1 Sg1 Sg1 Sg1 Sg1 SG1	$\frac{4L}{31}$ selfed. 3 fam Obs. 161 3 2 45 44	Calc. 164·8 3·4 2·3 41·5 43·0	$\frac{\text{SG1}}{\text{sgL}}$ $\frac{\text{SGL}}{\text{SG1}}$ $\frac{\text{SGL}}{\text{Sg1}}$ $\frac{\text{SGL}}{\text{SG1}}$	selfed. 10 fa Obs. 280 127 105 0 98	milies. Calc. 198·7 147·1 108·6 0·05 151·0
SGL SG1 Sg1 Sg1 sGL sG1 sGL sG1	$\frac{4L}{3}$ selfed. 3 fam Obs. 161 3 2 45 44 0	calc. 164.8 3.4 2.3 41.5 43.0 0.6	$\frac{SG1}{sgL}$ SGL SG1 SG1 Sg1 SG1 sG1	selfed. 10 fa Obs. 280 127 105 0 98 17	milies. Cale. 198·7 147·1 108·6 0·05 151·0 27·2
SGL SGL SGL SGL SGL SGL sGL sGL sGL sGL	$\frac{dL}{g1}$ selfed. 3 fam Obs. 161 3 2 45 44 0 1	Calc. 164.8 3.4 2.3 41.5 43.0 0.6 1.8	$\frac{\frac{SG1}{sgL}}{\frac{SGL}{sgL}}$	selfed. 10 fa Obs. 280 127 105 0 98 17 72	milies. Calc. 198·7 147·1 108·6 0·05 151·0 27·2 66·0
SGL SGI SGI SGI SGL SGL SGL SGL sGL sg1	$\frac{dL}{g1}$ selfed. 3 fam Obs. 161 3 2 45 44 0 1 27	tilies. Calc. 164.8 3.4 2.3 41.5 43.0 0.6 1.8 25.0	$\frac{\frac{SG1}{sgL}}{\frac{SGL}{sgL}}$	selfed. 10 fa Obs. 280 127 105 0 98 17 72 0	milies. Calc. 198-7 147-1 108-6 0-05 151-0 27-2 66-0 0-06
$\frac{SG}{sg}$ SGL SGL SGL SGL SGL SGL SGL SGL SGL sGL sg1 sg1	$\frac{4L}{31}$ selfed. 3 fam Obs. 161 3 45 44 0 1 27 283	Tilies. Calc. 164:8 3:4 2:3 41:5 43:0 0:6 1:8 25:0	$\frac{\text{SGl}}{\text{sgL}} \stackrel{\text{s}}{\text{sgL}} \stackrel{\text{s}}{\text{sgL}}$ $\frac{\text{SGL}}{\text{Sgl}} \stackrel{\text{sGL}}{\text{sgL}} \stackrel{\text{sGL}}{\text{sgL}} \stackrel{\text{sGL}}{\text{sgl}} \stackrel{\text{sgL}}{\text{sgl}}$	selfed. 10 fay Obs. 280 127 105 0 98 17 72 0 699	$\begin{array}{c} \text{milies.} \\ \text{Cale.} \\ 198.7 \\ 147.1 \\ 108.6 \\ 0.05 \\ 151.0 \\ 27.2 \\ 66.0 \\ 0.06 \end{array}$
SGL SGL SGL SGL SGL SGL SGL sGL sgl SGL sgl	$\frac{4L}{31}$ selfed. 3 fam Obs. 161 3 2 45 44 0 1 27 283 $\frac{3}{12}$ selfed. 1 fam	nilies. Calc. 164.8 3.4 2.3 41.5 43.0 0.6 1.8 25.0	$\frac{\text{SG1}}{\text{sgL}}$ SGL SG1 SG1 Sg1 sGL sG1 sG1 sgL sG1 sg1 sG1 sg2 sg1 SG2 Sg1 SG2 Sg2 Sg2 Sg2 Sg3 Sg2 Sg3	selfed. 10 far Obs. 280 127 105 0 98 17 72 0 699 selfed. 21 far	milies. Calc. 198-7 147-1 108-6 0-05 151-0 27-2 66-0 0-06 milies.
$\frac{SG}{sg}$ SGL SGL SGL SGL SGL SGL SGL SGL SGL SGL	$\frac{4L}{31} \text{ selfed. 3 fam} \\ \text{Obs.} \\ 161 \\ 3 \\ 2 \\ 45 \\ 444 \\ 0 \\ 1 \\ 27 \\ 283 \\ \frac{31}{51} \text{ selfed. 1 fam} \\ \text{Obs.} \end{cases}$	hilies. Calc. 164.8 3.4 2.3 41.5 43.0 0.6 1.8 25.0 hily. Calc	$\frac{\frac{SG1}{sgL}}{\frac{SG1}{sgL}}$	selfed. 10 far Obs. 280 127 105 0 98 17 72 0 699 selfed. 21 far	milies. Calc, 198-7 147-1 108-6 0-05 151-0 27-2 66-0 0-06 milies.
$\frac{SG}{sg}$ SGL SGI SGI SGI SGI sGL Sg1 sGL sg1 $\frac{Sg}{sG}$	$\frac{4L}{31} \text{ selfed. 3 fam} \\ \text{Obs.} \\ 161 \\ 3 \\ 2 \\ 45 \\ 44 \\ 0 \\ 1 \\ 27 \\ 283 \\ \frac{3}{4L} \text{ selfed. 1 fam} \\ \text{Obs.} \\ 12 \\ 283 \\ \frac{3}{4L} \text{ selfed. 1 fam} \\ 0 \\ 12 \\ 283 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	hilies. Calc. 164.8 3.4 2.3 41.5 43.0 0.6 1.8 25.0 hily. Calc.	$\frac{SG1}{sgL} $	selfed. 10 far Obs. 280 127 105 0 98 17 72 0 699 selfed. 21 far Obs.	milies. Calc. 198-7 147-1 108-6 0-05 151-0 27-2 66-0 0-06 milies. Calc.
SGL SGL SG1 SG1 SG1 SG1 SG1 SG1 SG1 SG1	$\frac{4L}{31} \text{ selfed. 3 fam} \\ \text{Obs.} \\ 161 \\ 3 \\ 2 \\ 45 \\ 44 \\ 0 \\ 1 \\ 27 \\ 283 \\ \frac{31}{4L} \text{ selfed. 1 fam} \\ \text{Obs.} \\ 43 \\ 1 \end{bmatrix}$	nilies. Calc. 164.8 3.4 2.3 41.5 43.0 0.6 1.8 25.0 nily. Calc. 55.3	$\frac{SG1}{sgL} $	selfed. 10 far Obs. 280 127 105 0 98 17 72 0 699 selfed. 21 far Obs. 985 296	milies. Calc. 198-7 147-1 108-6 0-05 151-0 27-2 66-0 0-06 milies. Calc. 988-3 988-3
$\frac{SG}{sg}$ SGL SGL SGL SGL SGL SGL SGL SGL SGL SGL	$\frac{4L}{31} \text{ selfed. 3 fam} \\ \text{Obs.} \\ 161 \\ 3 \\ 2 \\ 45 \\ 44 \\ 0 \\ 1 \\ 27 \\ 283 \\ \frac{31}{1L} \text{ selfed. 1 fam} \\ \text{Obs.} \\ \frac{43}{1} \\ 1 \\ 1 \\ 1 \end{bmatrix}$	nilies. Calc. 164.8 3.4 2.3 41.5 43.0 0.6 1.8 25.0 nily. Calc. 55.3 1.1	$\frac{SG1}{sgL} $	selfed. 10 far Obs. 280 127 105 0 98 17 72 0 699 selfed. 21 far Obs. 985 386 481	milies. Calc. 198-7 147-1 108-6 0·05 151-0 27·2 66-0 0·06 milies. Calc. 988-3 381-1 543-4
$\begin{array}{c} \underline{SG}\\ \underline{SG}\\ \underline{SG}\\ \underline{SGL}\\ \underline{SGGL}\\ S$	$\frac{\frac{4L}{31} \text{ selfed. 3 fam}}{\text{Obs.}}$ $\frac{161}{3}$ $\frac{2}{45}$ $\frac{44}{44}$ 0 1 27 283 $\frac{21}{31} \text{ selfed. 1 fam}$ $\frac{43}{1}$ $\frac{1}{26}$	Calc. 164.8 3.4 2.3 41.5 43.0 0.6 1.8 25.0 sily. Calc. 55.3 1.1 1.2 21.0	$\frac{SG1}{sgL}$ SGL $SG1$ $SG1$ $SG1$ $sG1$ $sg1$ $Sg1$ $\frac{SgL}{sG1}$ $SG1$ $SG1$ $SG1$ $SG1$ $SG1$ $SG1$ $SG1$	selfed. 10 far Obs. 280 127 105 0 98 17 72 0 699 selfed. 21 far 0bs. 985 386 481 0	milies. Calc. 198-7 147-1 108-6 0-05 151-0 27-2 66-0 0-06 milies. Calc. 988-3 381-1 543-4 0-4
$\frac{SG}{sg}$ SGL SGL SGL SGL SGL SGL SGL SGL SGL SGL	$\frac{\frac{4L}{31} \text{ selfed. 3 fam}}{\text{Obs.}}$ 161 3 2 45 44 0 1 27 283 3 1 selfed. 1 fam Obs. 43 1 1 26 31	Calc. 164.8 3.4 2.3 41.5 43.0 0.6 1.8 25.0 aily. Calc. 55.3 1.1 1.2 21.0 21.9	$\frac{SG1}{sgL}$ SGL SG1	selfed. 10 fat Obs. 280 127 105 0 98 17 72 0 699 selfed. 21 fat 0bs. 985 386 481 0 342	milies. Calc. 198-7 147-1 108-6 0-05 27-2 66-0 0-06 milies. Calc. 988-3 381-1 543-4 0-4 287-8
$\frac{SG}{sg}$ SGL SGL SGL SGL SGL SGL SGL SGL SGL SGL	$\frac{4L}{31} \text{ selfed. 3 fam} \\ \text{Obs.} \\ 161 \\ 3 \\ 2 \\ 45 \\ 444 \\ 0 \\ 1 \\ 27 \\ 283 \\ \frac{31}{1L} \text{ selfed. 1 fam} \\ \text{Obs.} \\ 43 \\ 1 \\ 1 \\ 26 \\ 31 \\ 0 \\ \end{bmatrix}$	Calc. 164.8 3.4 2.3 41.5 43.0 0.6 1.8 25.0 nily. Calc. 55.3 1.1 1.2 21.0 0.4	$\frac{SG1}{sgL}$ SGL $SG1$	selfed. 10 far Obs. 280 127 105 0 98 17 72 0 699 selfed. 21 far Obs. 985 386 481 0 342 245	milies. Calc. 198.7 147.1 108.6 0.05 151.0 27.2 66.0 0.06 milies. Calc. 988.3 381.1 543.4 0.4 287.8 256.1
$\frac{SG}{sg}$ SGL SGI SGI SGI SGL SGL SGL SGL SGL SGL SGL SGL SGL SGL	$\frac{4L}{31} \text{ selfed. 3 fam} \\ \text{Obs.} \\ 161 \\ 3 \\ 2 \\ 45 \\ 44 \\ 0 \\ 1 \\ 27 \\ 283 \\ \frac{31}{4L} \text{ selfed. 1 fam} \\ \text{Obs.} \\ 43 \\ 1 \\ 26 \\ 31 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	nilies. Calc. 164.8 3.4 2.3 41.5 43.0 0.6 1.8 25.0 nily. Calc. 55.3 1.1 1.2 21.0 21.0 0.4 0.2	$\frac{SG1}{sgL} + \frac{SG1}{sgL} + \frac{SG1}{sgL}$ $\frac{SG1}{sG1} + \frac{SgL}{sG1} + \frac{SgL}{sg1}$ $\frac{SgL}{sg1} + \frac{SGL}{sG1} + \frac{SGL}{sG1}$ $\frac{SGL}{sG1} + \frac{SGL}{sG1}$ $\frac{SGL}{sG1} + \frac{SGL}{sG1}$	selfed. 10 far Obs. 280 127 105 0 98 17 72 0 699 selfed. 21 far Obs. 985 386 481 0 342 245 112	$\begin{array}{c} \mbox{milies.} \\ Calc. \\ 198\cdot7 \\ 147\cdot1 \\ 108\cdot6 \\ 0.05 \\ 151\cdot0 \\ 27\cdot2 \\ 66\cdot0 \\ 0.06 \\ 0.06 \\ \end{array}$
$\frac{SG}{sg}$ SGL SGI SGI SGL SGL SGL SGL SGL SGL SGL SGL SGL SGL	$\frac{4L}{31} \text{ selfed. 3 fam} \\ \text{Obs.} \\ 161 \\ 3 \\ 2 \\ 45 \\ 44 \\ 0 \\ 1 \\ 27 \\ 283 \\ 3 \\ 1 \\ 27 \\ 283 \\ 3 \\ 1 \\ 26 \\ 31 \\ 1 \\ 26 \\ 31 \\ 0 \\ 3 \\ 3 \\ 3 \\ 1 \\ 26 \\ 31 \\ 0 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$	nilies. Calc. 164.8 3.4 2.3 41.5 43.0 0.6 1.8 25.0 nily. Calc. 55.3 1.1 1.2 21.0 21.0 0.4 0.2 3.7	$\frac{SG1}{sgL} + \frac{SG1}{sgL} + \frac{SG1}{sgL} + \frac{SG1}{sG1} + \frac{SgL}{sG1} + $	selfed. 10 far Obs. 280 127 105 0 98 17 72 0 699 selfed. 21 far 085 386 481 0 342 245 112 0	$\begin{array}{c} \mbox{milies.} \\ Calc. \\ 198\cdot7 \\ 147\cdot1 \\ 108\cdot6 \\ 0.05 \\ 151\cdot0 \\ 27\cdot2 \\ 66\cdot0 \\ 0.06 \\ 0.06 \\ \end{array}$

BGI	L selfed.	8 families.			BG1	selfed.	14 familie	З.
ъg	1 Dh		lalo		nar	, Oba		lale.
BGL	980	,. 	280.6		BGI.	616		588.1
BGI	20,	, . L	8.0		BGI	303		327.9
BgL	-	$\hat{2}$	$5\cdot 5$		\mathbf{BgL}	209		214.9
$\mathbf{B}_{\mathbf{g}1}$	7()	63.2		$\mathbf{B}_{\mathbf{g}1}$	0		0.09
\mathbf{bGL}	7()	63.0		\mathbf{bGL}	166		166-2
pG1	()	0.9		pel	50		48.8
bgL	4	1	3.4		bgL മംപ	104	:	0.15
ngr	40C))	40.4		ngr	1500		0.19
	902	u	BgL so	lfed. 21 f	amilies.	1500		
			bG1 ~	Obs.	(Calc.		
		\mathbf{BGL}		1131	10	82.3		
		BGl		419	4	18.2		
		\mathbf{BgL}		544	6	23.9		
		Bgi		965	9	0.4 94.7		
		հել		263	0 2	89.6		
		bgL		111	-	83.9		
		bgl		0		0.02		
				2833				
	SF	GL		SBG			SBgL	
	8	bgl selfed.		sbe	L selfed.		$\frac{1}{8 b G I} s$	elfed.
	3	families.		91	amilies.		18 fami	lies.
	Obs.	Cal).	Obs.	Cale.	(Obs.	Calc.
SBGL	158	$158 \cdot$	7	261	260.5		937	913.2
SBG1	3	3.	2	120	136.3		357	$354 \cdot 1$
SBgL	2	1.	7	94	79-9		466	533.7
SEGI	40	30. 6.	1	Q Q	13.4		18	0.4
SbG1	ŏ	0.	i	2	1.6		$\frac{10}{29}$	±3 £ 53·6
\mathbf{SbgL}	0	0.	3	8	14.5		15	9.4
\mathbf{Sbgl}	5	5.	8	0	0.01		0	0.06
sBGL	4	10.	2	26	17.9		62 22	63.7
SBGI	0	0.	29	2 4	7-2		22 97	20.4
sBgl	2	1.	8	n n	0-01		21	0.01
sbGL	40^{-1}	33.	2	67	60.3		280	249.8
sbGl	0	0.	4	15	19.6		223	$212 \cdot 1$
sbgL	1	l·	7	67	59.0		85	63.9
spär	25 283	23.	1	0 674	0.00	2	0 551	0.01
	ຠໞຒ		Dfal		Dfacil	-	31371	
	Fron 8	elfed.	TECH	selfed.		selfed.		selfed.
	pren 4 fam	ilies	2 fa	1 milies	ր բ շ դ 1 քոյ	milw	myri 2 far	nilios
	Ope -1 1011	Colo		Cale		Chla	181 ک	nuics.
DIGL	105	Ualle.	ບມສ. 167	Uale.	co.	CHIC.	B (1979-9-1	. CDS.
Prun Proh	130 6	121.2	107	140.8	02 18	18-1	1VI X H	. ТТ лб
PfCh	5	3.0	4	14.7	34	39.2	JVIv H	40 13
Pich	10	13.2	46	58.1	Ō	0.4	Myh	0
\mathbf{pFCh}	10	15.3	74	69.9	24	16.6	mŸH	. 7
pFch	1	1.1	5	$2 \cdot 9$	24	22.5	mYh	1
pfCh	წ ეი	5.8 95.6	1	0.4 9.0	2	1.3	myH	12
pren	22	20.0	0	2.0	U 1 <i>04</i>	0.008	myn	0
	190		901		104			199

TABLE X (cont.).

86

It will be seen that GL and MY are undoubtedly larger, and SB and PF undoubtedly shorter, on the female than on the male side, while in the other cases of neighbouring loci the evidence is still uncertain. No similar cases are known with certainty in hermaphrodite organisms. Stadler (1926) found slightly more crossing-over on the male than on the female side of *Zea Mays*, but Collins and Kempton (1927) found the opposite in most of their families.

TABLE XI.

F_2 classes showing double crossing-over.

	Obs.	Calc.
sBg	12	17.8
Sbg	15	11.1
sBĬ	24	31.3
Sb1	2	5.4
sG1	0	0.6
Sgl	0	0.05
sgL	0	0.22
bGl	0	0.9
Bgl	0	0.09
bgl	0	0.03
pFch	1	$1 \cdot 1$
pfCh	1	0.4
pfch	0	0.01
	55	69.0

TABLE XII.

Sex differences of linkage.

Factor	P	ð	x	P
SB^*	6.88	12.48	11.77	$3 imes 10^{-36}$
SG	34.39	41.02	8.011	6×10^{-16}
\mathbf{SL}	37.55	41.49	2.960	0.0031
BG*	31.59	34.68	1.550	0.121
BL	36.20	36.16	0.1047	0.916
GT_*	3.66	1.85	4.192	2.8×10^{-5}
PF^*	14.52	21.32	4.774	1.8×10^{-6}
PCh	$23 \cdot 10$	28.38	3.740	1.8×10^{-4}
FCh*	10.45	9.58	1.351	0.178
MY^*	22.88	14.79	3.296	$9.8 imes 10^{-4}$
HK*	5.34	6.06	0.1581	0.874
OMp^*	23.80	21.53	1.698	0.89

On the other hand in animals crossing-over is generally more frequent in the homozygous sex (see Stern, 1933), though this is not so in Landauer's (1932) case in poultry.

A possible explanation of our data would be that chiasmata were generally formed further away from the spindle attachment on the female side than on the male, since this attachment is believed to be in the SB region of Chromosome I. But for the present this must remain speculative.

DIFFERENCES BETWEEN COUPLING AND REPULSION.

Theoretically, back-crosses involving coupling and repulsion should give the same linkage values. The results are compared in Table XIII for all cases where over 100 plants were available in each cross. In this connection we have not used Altenburg's data, as they give figures for coupling only, of which plenty are available, whereas repulsion data are

TABLE XIII.

Comparison of coupling and repulsion.

	Coupling	Repulsion		
Factors	0.0.V.	C.O.V.	х	P
SB 3	12.51	12.72	0.3613	0.74
SGA	40.74	38.94	0.9230	0.32
$SL \tilde{Q}$	37.82	33.13	1.200	0.23
BG₽	31.27	45.32	4.957	7×10^{-7}
BGð	34.69	37.84	0.6890	0.49
BLÝ	36.53	30.06	1.674	0.094
GLΫ́	3.54	4.63	0.9865	0.32
PChQ	23.51	19.63	1.277	0.20
$PCh \hat{\mathcal{S}}$	28.11	30.57	0.7157	0.47
$\mathbf{FCh} \tilde{\mathbb{Q}}$	11.23	4.38	2.496	0.013
FCh 3	9.61	9.31	0.1358	0.89

rather few. In column 4 the measure of divergence χ is given. It will be seen that the linkage is more intense in repulsion than coupling in 6 out of the 11 cases, in fact there is no significant difference between the two. Except in the case of BG \Im the differences are such as might be expected as the result of sampling. In this case the numbers are small, and the single factor ratios extremely aberrant. The divergence is largely due to one family, 106/12, which accounts for 34 per cent. of the total, and consisted of 33 BG, 32 Bg, 16 bG, 14 bg. With this single exception the figures are quite satisfactory, though the FCh \Im divergence is suspiciously large. In 106/12 the proportion of bb was only 32 per cent., instead of 50 per cent., so some lethal or other similar factor was at work. A lethal in the neighbourhood of S would account for the shortage of bb, and would somewhat raise the cross-over value, but not to the extent observed.

We conclude that the observed differences between coupling and repulsion are not systematic but due to a few aberrant families.

SIMULTANEOUS CROSSING-OVER IN TWO CHROMOSOMES.

In order to see whether there was any correlation between the crossing-over of unlinked factors, plants of composition $\frac{\text{sbgl}}{\text{sbgl}}\frac{\text{chp}}{\text{chp}}$ were made up and crossed with a heterozygous dominant. The resulting

 $\frac{\text{SBGL ChP}}{\text{sbgl chp}}$ were crossed as females and males with the sextuple recessive, and 664 progeny raised. The results are summarised in Table XIV.

TABLE XIV.

Simultaneous crossing-over in two chromosomes.

	181 and 183/30, 9			1	182 and 184/30, ඊ				
	ChP	Chp	chP	chp	ChP	Chp	chP	chp	Total
SBGL	47	13	22	41	26	8	9	26	192
SBG1	3	2		2			1	1	9
SBgL							—		
SBgl	21	5	13	28	16	3	5	14	105
$\mathbf{Sb}\mathbf{\tilde{G}}\mathbf{L}$					1	2	*******	2	5
SbGl				A					
SbgL									
Sbgl	2	2		5	5	3		7	24
sBĞL			2	4	4	1	4	5	20
sBGl	1							1	2
sBgL		A						-	******
sBgl			1		2	-		-	3
$sb\tilde{G}L$	22	5	11	34	8		2	20	102
sbGl	1			·					1
sbgL		-		4.	1				5
sbgl	46	12	7	55	22	9	11	34	196
-		Tota	1411			Tota	1253		

TABLE XV.

Independence of crossing-over in separate chromosomes.

			¥ 	ð		
Factors		Unchanged II	Cross-over II	Úuchanged 11	Cross-over II	ſ
SB, ChP	Unchanged I Cross-over I	$\begin{array}{c} 304 \\ 12 \end{array}$	90 5 (3•9)	$\begin{array}{c}168\\27\end{array}$	48 10 (8∙5)	
BG, ChP	Unchanged I Cross-over I	$\begin{array}{c} 210 \\ 106 \end{array}$	60 35 (32·6)	132 - 63	46 12 (17·2)	
GL, ChP	Unchanged I Cross-over I	305	93 2 (3·0)	$192 \\ 3$	57 1 (0.9)	

The results are now classified as regards crossing-over affecting each adjacent first chromosome factor pair SB, BG, GL, on the one hand, and Ch and P on the other. The first set of figures in Table XV have the following significance. There were 304 plants in which no crossing-over had occurred between SB or ChP, 12 which had crossed between SB but not ChP, 90 between ChP and not SB, and 5 which had crossed over between both pairs. In the event of complete independence the last number should be $\frac{95 \times 17}{411}$, or 3.9.

It will be seen that the two crossings-over are quite independent. The sum of the observed values for the smallest class is 65, of the calculated 66.1. A similar independence is found between crossing-over in two chromosomes of *Pisum* (de Winton, unpublished).

THE PROBABLE LOCATION OF A SPINDLE ATTACHMENT.

In diploid organisms spindle fibre attachments can only be located in relation to the loci of the genes, either where tetrads can be analysed, or when segregation is abnormal, as in "equational non-disjunction" or when the X-chromosomes are attached. But in tetraploids or triploids normal segregation provides data on this question. Mather (1935) points out that, in a triplex (AAAa) plant, if the dominant A is located near the attachment constriction it will almost always segregate reductionally at the first meiotic division, and very few aa gametes will be produced. If, however (to consider one possibility only), a single chiasma is formed between its locus and the attachment constriction, the first division will be equational for A and a, and one gamete in 24 will be aa. Probably so high a proportion is never reached in practice, though if the locus is very far from the attachment we may expect one gamete in 28 (Haldane, 1930).

The linkage of S, B and G in the tetraploid has been described by de Winton and Haldane (1931). The cross-over values are intermediate between those found on the two sexual sides of the diploid. They are not significantly different on the two sides in the tetraploid.

Several plants have been found which are without much doubt of the composition GGGg, but yet have given a few gg gametes. On the other hand no SSSs or BBBb plant has yet given a recessive gamete.

For example the plant $181^3/28$, known from its ancestry and its behaviour on selfing and crossing to be SBG. $(sbg)_3$, was selfed. One of its **SBG** progeny was $119^{1}/29$. This plant, on crossing to $(sbg)_4$ as female and male gave: 103 **SBG**, 19 **SBg**, 0 **SbG**, 2 **Sbg**, 3 **sBG**, 0 **sBg**, 11 **sbG**, 6 **sbg**. It was therefore of composition $(SBG)_2.(sbg)_2$. On selfing it gave 30 **SBG**, 1 **SBg**, 1 **sbG**. One of its **SBG** progeny was $54^{1}/30$. This plant crossed as a female with $(sbg)_4$ gave 95 **SBG**, 1 **SBg**, as a male 117 **SBG**, 1 **SBg**. That is to say 214 gametes contained at least one S and one B, and two were gg. In order to test the composition of this plant, 11 of its **SBG** progeny were crossed as females with $(sbg)_4$. The results are given in Table XVI. It will be seen that for each of the factors S, B and G, 6 plants were duplex and 5 simplex. Now if $54^{1}/30$ were triplex when crossed with $(sbg)_4$, if duplex it should give 1 duplex : 4 simplex. There can be no doubt that it was triplex, in view of the good agreement

of the results for all three factors. It is not certain whether it was of composition SBG.SBG.SBg.sbG, or $(SBG)_3$.sbg, but the latter seems more likely.

The plant 51³/30 derived from selfing a plant duplex for S, B and G, gave 356 G, 4 g when crossed with $(sbg)_4$. It was simplex for S and duplex for B. Analysis of the progeny confirmed these facts as regards S and B. Seven or eight out of twelve were duplex for G, hence the parent was triplex. Similarly 51²/30 (SBG) gave 45 SBG, 2 SBg when crossed with the triple recessive. Five of the SBG progeny were analysed; three were duplex, and two doubtful whether duplex or simplex for G. Thus 51²/30 was almost certainly triplex for all three

T W D T T A W	γı	
---------------	----	--

Analysis of progeny of $54^{1}/30$.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Family									Composition of
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1932)	\mathbf{SBG}	SBg	\mathbf{SbG}	\mathbf{Sbg}	\mathbf{sBG}	sBg	\mathbf{sbG}	\mathbf{sbg}	parent
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	182	45	3	1	1	0	0	4	4	SBG.SBG.sbg.sbg
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	183	48	7	0	1	0	0	10	4	SBG.SBG.sbg.sbg
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	184	5	4	1	0	0	0	4	2	SBg.sbG.sbg.sbg
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	185	24	3	1	0	0	1	14	6	SBG.sbG.sbg.sbg
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	186	11	1	1	0	0	0	1	5	SBG.sbg .sbg.sbg
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	187	28	11	2	1	0	0	1	7	SBG.SBg.sbg.sbg
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	188	22	2	0	0	0	0	1	1	SBG.SBG.sbg.sbg
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	189	38	6	0	0	0	0	5	1	SBG.SBG.sbg.sbg
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	190	31	6	0	0	0	0	21	4	SBG.sbG .sbg.sbg
$192 14 8 1 1 0 1 7 17 { m SBG.sbg} \ .{ m sbg} \ .{ m sbg}$	191	26	17	0	0	0	0	4	3	SBG.SBg.sbg.sbg
	192	14	8	1	1	0	1	7	17	SBG.sbg .sbg.sbg

factors. $51^{1}/30$ (SBG) gave 43 SBG with the triple recessive, and 8 SBG when selfed. But since some of the latter segregated for G it was presumably triplex.

Three other plants whose progeny was not analysed behaved in a similar manner for G. One of them is particularly interesting as being derived from a simplex selfed. This may of course yield a triplex on selfing, since a Gggg plant may give a small proportion of GG gametes, just as a GGGg may give a few gg gametes. In all, the plants certainly triplex for G gave 8 gg gametes out of 664, while those whose progeny were not analysed gave 14 out of 454.

Besides the plants mentioned above, $54^2/30$, which was duplex for G, was triplex for S and B, as shown by progeny analysis, and gave 146 SBG, 27 SBg with the triple recessive.

We thus find that while GGGg plants gave 1–2 per cent. of gg gametes, SSSs and BBBb gave no recessive gametes out of 434. We conclude that S and B obey the laws of segregation laid down by Muller (1914) while G gives a fair number of exceptions. Hence the spindle fibre attachment is probably located in the neighbourhood of S and B, while G is far enough from it to segregate equationally at the first division in over 1 per cent. of meioses.

DISCUSSION.

The available data regarding linkage agree completely with the postulates of the chromosome theory, which has been verified in great detail in several species of *Drosophila* and in *Zea Mays*, and less completely in *Lathyrus odoratus*, while at present the number of apparently independent factors in *Pisum* is too large. However, our data, bearing only on four chromosomes, are not conclusive, and it is only worth discussing the points of novelty which they present.

In the first place the difference in linkage between the two sexual sides has now been found in three chromosomes with certainty, and probably in a fourth.

Interference is considerably less than is usual in *Drosophila*. Thus in the X-chromosome white and vermilion give 30.5 per cent. crossing-over, vermilion and sable 10.1 per cent. The case is parallel with G, B and S on the male side where the values are 35.0 and 11.6. But in *Drosophila* the coincidence is 0.52 (Morgan and Bridges, 1916) as compared with 0.77 in *Primula*. Similarly Bridges and Morgan (1923) found a coincidence of 0.64 for sepia, dichaete and spineless, the distances being 14.8 and 13.0. We find 0.97 for P, F and Ch, the distances being 15.1 and 16.4. In this case the spindle fibre attachment is included in the region between dichaete and spineless.

If coincidence is really as low in *Primula* as in *Drosophila*, we must suppose that the spindle fibres are attached near B, F and Y. Even so the coincidence for BGL, whose mean value is 0.61, is surprisingly high. The comparison with *Zea* is still more striking. Here Stern (1933) lists four coincidence values, none exceeding 0.40, where our lowest value is 0.58.

On the other hand Castle (1933) found a coincidence of 0.70 between C, Y and B in the rabbit, the distances being CY 14.4, YB 26.8. This is more in accordance with our values than with those in *Drosophila*. While therefore it is too early to be dogmatic, it seems likely that in some organisms (*Drosophila* and *Zea*) interference is on the whole greater than in others (*Primula* and *Oryctolagus*). The map distances have been calculated on this hypothesis.

The linkage values found in different families are remarkably constant. Equally constant values are found in other organisms where

closely related stocks are used, and temperature and age carefully controlled. Thus Gowen (1919) in Table B lists cross-over values from 16 Drosophila females. For the cross-over values in Region 4 we find $n=15, \chi^2=9.64, \xi=-1.06$, an extremely good fit. But age, temperature and other causes give divergences which cannot be explained by chance. Hence Primula may be suitable for work on crossing-over which could not be undertaken in other organisms, and is certainly more suitable than Drosophila and Zea for the application of refined statistical methods.

APPENDIX I.

The technique of testing for goodness of fit, as given by Fisher (1925) can be considerably simplified. Suppose we have n+1 families, totalling N individuals, of which Nc are cross-overs. Then Pearson's (1900) measure of divergence

$$\chi^2 = \Sigma \, \frac{(x_r - ca_r)^2}{ca_r}.$$

It is inconvenient to calculate each term in this sum, since this involves multiplying by the fraction c. We therefore choose a simple decimal c'near to c (e.g. c' = 0.10 or 0.25). Then it can easily be shown that

$$\chi^{2} = \frac{1}{c} \left[\sum \frac{(x_{r} - c'a_{r})^{2}}{a_{r}} - N (c - c')^{2} \right]$$
$$= \frac{1}{Nc} \left[N \sum \frac{(x_{r} - c'a_{r})^{2}}{a_{r}} - (Nc - Nc')^{2} \right].$$

As Nc is the total number of cross-overs, the calculation is simple.

TABLE XVII. Analysis of linkage data from $\frac{PF}{pf} \varphi$. $\underline{(x_r-c'a_r)^2}$ Family $c'a_r$ $x_r - c' a_r$ a_r x_r 227/3186 12.9+1.10.0148 14 229/31 216 $\mathbf{28}$ 32.4-4.4 0.089635.4 231/31 23630 -5.40.1236233/3123437 $35 \cdot 1$ +1.90.0151

57

16

182

55.35

16.8

+1.65

-0.8

369

112

1253

235/31

420/32

 a_r

0.0074

0.0057

0.2562

Table XVII gives the requisite calculations for the families derived from $\frac{\text{PF}}{\text{pf}} \diamondsuit \frac{\text{pf}}{\text{pf}} \eth. \text{ Here } c = \frac{182}{1253} = 0.1453 \text{, so we take } c' = 0.15.$ $\Sigma \frac{(x_r - c'a_r)^2}{a_r} = 0.2562,$ $\chi^2 = \frac{1253 \times 0.2562 - (182 - 187.95)^2}{182} = 1.569.$

so

This value is low, corresponding to P=0.90, *i.e.* only once in ten trials should we get as good a fit as the result of random sampling. The number of degrees of freedom is n=5.

If more accurate values of P are required, or if it is desired to compare the results of a number of different series of families, we use Wilson and Hilferty's (1931) theorem, which may be stated as follows:

If
$$\xi = \left[\left(\frac{\chi^2}{n} \right)^{\frac{1}{3}} + \frac{2}{9n} - 1 \right] \left(\frac{9n}{2} \right)^{\frac{1}{2}},$$

B

then ξ is very nearly normally distributed with mean zero and standard error unity. Thus a given value of ξ has the same significance as a departure of $\sigma\xi$ from the expected value in a case where there are only two classes. Here $\xi = -1.3095$. That is to say, the probability that ξ should differ from 0 by more than this value is 0.1904. Hence the probability of a greater negative value is 0.0952, and P = 0.9048. Actually this value is not significant. In only one of the 13 sets of families tabulated in Table I is there so large a negative value of ξ .

Appendix II.

Methods for the combination of linkage data.

In a favourable case data as to the linkages between two factors are available from six different types of families, namely:

ack-crosses	of	AB	.ab	♀×ab	.ab J	
,,	,,	Ab	.aB	♀×ab	.ab J	
,,	,,	ab	.ab	$\mathbf{Q} \times \mathbf{A} \mathbf{B}$.ab J	
,,	,,	ab	.ab	$\mathbf{Q} \times \mathbf{A} \mathbf{b}$.aB♂	
F_2	,,	AB	.ab	selfed o	or inter	se
,,	,,	$\mathbf{A}\mathbf{b}$.aB		,,	

Still other data (e.g. from $AB.ab \times Ab.ab$) are sometimes available, but these are not present in appreciable numbers in the present case.

The problem is how best to combine the various figures so as to calculate the values of the two unknowns, the cross-over values on the female side and on the male side. The first two data enable us to calculate the female cross-over probability p (one-hundredth of the percentile cross-over value). The second two give us a value for the male cross-over probability q. The coupling F_2 figures gives us an estimate of (1-p)(1-q), the repulsion F_2 of pq.

In each case we can calculate the standard error σ , or more conveniently the quantity $I = \sigma^{-2}$ called by Fisher the amount of information.

In the case of back-crosses, where n is the total number, z the number of cross-overs,

$$I = \frac{n^3}{z (n-z)}.$$

In the case of F_2 we find the most likely value of $\theta = pq$ or (1-p) (1-q), and then

$$I = \frac{n(1+2\theta)}{2\theta(1-\theta)(2+\theta)}$$

(Fisher and Balmukand, 1928; Haldane, 1919*a*). We have now the following figures:

Statistic	Estimate	Amount of information
p	p_0	I_p
q	q_0	I_{a}
pq	r	L_r
(1-p)(1-q)	С	I _c

Now supposing r exceeds p_0q_0 the most likely values of p and q will exceed p_0 and q_0 , and so on. The logarithm of the likelihood (Fisher's definition) of any pair of values of p and q is

$$\begin{split} L = \text{constant} - \tfrac{1}{2} I_p \; (p - p_0)^2 - \tfrac{1}{2} I_q \; (q - q_0)^2 - \tfrac{1}{2} I_r \; (pq - r)^2 \\ & - \tfrac{1}{2} I_c \; [(1 - p) \; (1 - q) - c]^2. \end{split}$$

To obtain the likeliest values of p and q we make this a maximum, by putting

$$\begin{split} & -\frac{\partial L}{\partial p} = I_{r} \left(p - p_{0} \right) + I_{r} q \left(pq - r \right) - I_{c} \left(1 - q \right) \left[\left(1 - p \right) \left(1 - q \right) - c \right] = 0, \\ & -\frac{\partial L}{\partial q} = I_{q} \left(q - q_{0} \right) + I_{r} p \left(pq - r \right) - I_{c} \left(1 - p \right) \left[\left(1 - p \right) \left(1 - q \right) - c \right] = 0. \end{split}$$

Now put

$$p-p_0=x, q-q_0=y, c-(1-p_0)(1-q_0)=u, r-p_0q_0=v.$$

Then

$$\begin{split} I_{p}x + I_{r}\left(q_{0} + y\right)\left(q_{0}x + p_{0}y + xy - v\right) - I_{c}\left(1 - q_{0} - y\right) \\ \left[-\left(1 - q_{0}\right)x - \left(1 - p_{0}\right)y + xy - u\right] = 0, \end{split}$$

and another similar equation. In most cases it will be found that x, y, u and r are small compared with p_0 and q_0 . Hence their squares and products may be neglected, and we have:

$$\begin{split} & [I_{p} + (1-q_{0})^{2} I_{c} + q_{0}^{2} I_{r}] \, x + [(1-p_{0}) \, (1-q_{0}) \, I_{c} + p_{0} q_{0} I_{r}] \, y \\ & + (1-q_{0}) \, I_{c} u - q_{0} I_{r} v = 0, \\ & [(1-p_{0}) \, (1-q_{0}) \, I_{c} + p_{0} q_{0} I_{r}] \, x + [I_{q} + (1-p_{0})^{2} \, I_{c} + p_{0}^{2} I_{r}] \, y \\ & + (1-p_{0}) \, I_{c} u - p_{0} I_{r} v = 0, \end{split}$$

whence x, y, p, q may readily be found. In many cases $p_0 - q_0$ is small.

Here if $p_0 - q_0 = 2s$, we have

$$p = p_0 - \frac{I_q \left[(1-s) I_c u - sI_r v \right]}{I_p I_q + (I_p + I_q) \left[(1-s)^2 I_c + s^2 I_r \right]},$$

$$q = q_0 - \frac{I_p \left[(1-s) I_c u - sI_r v \right]}{I_p I_q + (I_p + I_q) \left[(1-s)^2 I_c + s^2 I_r \right]}.$$

Both these sets of approximate formulae give results which only differ from the optimal values by a small fraction of their standard errors, but the second set should only be used when $p_0 - q_0$ is small compared with its standard error, as in the case of B and L. If complete accuracy is desired we can use the equations:

$$p - p_0 = \frac{I_c}{I_p} \left[(1 - p) (1 - q) - c \right] (1 - q) - \frac{I_r}{I_p} (pq - r) q,$$

$$q - q_0 = \frac{I_c}{I_q} \left[(1 - p) (1 - q) - c \right] (1 - p) - \frac{I_r}{I_q} (pq - r) p.$$

and

We substitute the values of p_0 , q_0 , or some other estimates of p, q, in the right-hand side of these equations, and thus obtain approximate values p_1 , q_1 . We then substitute p_1 , q_1 on the right-hand side and obtain p_2 , q_2 , continuing the process until successive approximations agree. This iteration is rather tedious, but it is a much easier method than the direct solution, which leads to quintic equations for p and q. It has the further advantage that small mistakes in arithmetic are automatically eliminated. However, the approximations first given have been used throughout this paper.

The standard errors of p and q are given by

$$\begin{split} \sigma_p{}^{-2} = & I_p{}' = -\frac{\partial^2 L}{\partial p^2} = I_p + (1-q)^2 I_o + q^2 I_r \\ \sigma_q{}^{-2} = & I_q{}' = -\frac{\partial^2 L}{\partial q^2} = I_q + (1-p)^2 I_o + p^2 I_r. \end{split}$$

the optimal values of p and q being substituted.

Another set of data assume importance when one factor, say b, is lethal. In this case we can only distinguish between p and q by means of the matings AaBb×aaBb and aaBb×AaBb. Here we also have the results of AaBb *inter se*. But if bb is lethal at such an early stage that Abb and aabb cannot be distinguished, families of all these kinds only give estimates based on the ratio of AB to Abb. Now this is affected by the single-factor ratio A: aa, which, as we have shown, is in *Primula sinensis* generally more variable than a linkage value. Hence results on linkage of lethals are likely to be rather unreliable.

In such a case we should have estimates of p and q from AaBb×aaBb and aaBb×AaBb, and of (1-p)(1-q) and pq from AaBb×AaBb. These data could be treated by the methods already given. A few data on p and q derived from AaBb×aaBb and the reciprocal cross exist for non-lethal genes. We have not used them, as they would affect neither the found cross-over values nor their standard errors appreciably. The viability of all the genotypes considered is so good that there appears to be no need to apply the method of balanced inviability so useful in the case of *Drosophila*.

APPENDIX III.

The relation between map distance and crossing-over.

As a result of double crossing-over the map distance between two factors is always greater than their observed recombination value. But the correction is negligible for short distances. In *Drosophila* it is thus possible, by using a number of factors, to determine the map distance corresponding to say 30 per cent. crossing-over. Where this is not possible we must determine the appropriate correction on the basis of the facts known about double crossing-over. Unfortunately it has been shown by Anderson and Rhoades (1931) and others, that the amount of double crossing-over within a given distance is not constant, being larger near the spindle fibre in *Drosophila*. The theory which follows is admittedly inexact, as it assumes that interference is constant throughout the chromosome.

Let 100x be the map distance between two factors.

Let 100y be the percentage recombination between two factors.

Let z be the marginal coincidence corresponding to this map distance. That is to say if A, B, C are in that order, and y be the recombination value for A and B, while that for B and C is the small value h, let zyhbe the probability of a double cross-over, both between A and B and between B and C.

Then the following conditions must be fulfilled:

(1) y=x approximately when both are small, and $y=\frac{1}{2}$ when x is infinite.

(2) The values of y lie between

 $y = \frac{1}{2} (1 - e^{-2x})$ or $x = \frac{1}{2} \log_e (1 - 2y)$

corresponding to no interference (Haldane, 1919b) and y = x (corresponding to complete interference). Also y is always less than $\frac{1}{2}$.

(3) z is about proportional to y when both are small, and tends to

the value 1 when y tends to the value $\frac{1}{2}$. Anderson and Rhoades found values of z/y for small values of y ranging from about 1.5 to 0.3 in different parts of the X-chromosome. If y=f(x), then the frequency of double cross-overs:

$$zyh = \frac{1}{2} [f(x) + f(h) - f(x+h)]$$

or in the limit

$$z = \operatorname{Lt}_{h \to 0} \frac{f(x) + f(h) - f(x+h)}{2hf(x)}$$
$$= \frac{1}{2y} \operatorname{Lt}_{h \to 0} \left[\frac{h + f(x) - f(x+h)}{h} \right]$$
$$= \frac{1}{2y} \left(1 - \frac{dy}{dx} \right).$$

Now if we assume that z is everywhere the same function of y, we may take $z = \frac{2cy}{1+2(c-1)y}$, in which case z/y = 2c when both are small, and z=1 when $y = \frac{1}{2}$. Since $\frac{dy}{dx} = 1-2yz$, $x = \left(\frac{-dy}{-1} + 2(c-1)y\right) = \frac{1+2(c-1)y}{-1} dy$

$$x = \int \frac{ay}{1 - 2yz} = \int \frac{1 + 2(c - 1)y}{1 + 2(c - 1)y - 4cy^2} dy$$
$$= \frac{\frac{1}{c} \log_e (1 + 2cy) - c \log (1 - 2y)}{2(c + 1)} \dots \dots (1).$$

Whereas in the X-chromosome of Drosophila c ranges from about 0.15 to 0.7, c=2 is an appropriate value for Primula sinensis, giving the formula

$$x = \frac{1}{12} \log_e (1 + 4y) - \frac{1}{3} \log_e (1 - 2y) \qquad \dots \dots (2).$$

When x is small $x=y+\frac{4c}{3}y^3$ approximately, so the curve y=f(x) has a point of inflexion at 0, touching y=x. On the other hand the curve given by Haldane (1919 b) has single contact with y=x, and leads to a finite value of z when x vanishes. Using equation (2) we find the double cross-overs calculated in Table IX. The sum of the double cross-overs from the SBG plants calculated from this formula is 329, agreeing well with the observed value of 323. Thus the equation is at least a rough guide to the facts. Corresponding values of x and y were tabulated. Table XVIII is extracted from this table. Using it the map distances of Table XIX were calculated, and Fig. 1 is constructed on this basis. It is to be noted that formulae of the type here developed do not enable Journ. of Genetics xxxx

the prediction of triple crossing-over, or of interference between two separated segments of a chromosome, such as SB and GL.

TABLE XVIII.

Calculated relation between map distance and percentage recombination.

Recombi	natio	a :									
100y	0	อี	10	15	20	25	30	35	40	45	50
Map dist	ance:										
$1\bar{0}0x$	0	5.03	10.24	15.81	21.93	28.88	37.11	47.43	61.56	85.34	ŝ

TABLE XIX.

Calculated map distances.

	Recom-			Recom-	
Factors	bination value	Map distance	Factors	bination value	Map distance
SBQ	6.25	6.33	$SB \sigma$	11.55	11.92
SG Ŷ	34.40	46.06	SG 3	41.03	65.37
$SL \hat{Q}$	37.53	54.03	$SL \tilde{\delta}$	41.45	67.07
BGQ	32.14	41.21	BG 3	35.01	47.45
BLΎ	36.73	51.77	$BL \delta$	36.86	52.11
GL♀	3.61	3.61	GL \overline{A}	1.82	1.82

TABLE XX.

Provisional loci.

	ę	ਨੂੰ		9	ਹ		Ŷ	ð		Ŷ	ਨੂੰ
S	0	0	Р	0	0	М	0	0	0	Ó	ŏ
В	6.3	11.9	W	8	14	Y	28	17.6	Mp	27	24
X	21	26	\mathbf{F}	16	25	Н	34	The second			
G	47	68	Ch	27	35	K	37				
\mathbf{L}	50.6	69.8									

SUMMARY.

1. Fifteen factors have been located on four out of the twelve chromosomes. Some other linkages are suspected, and a new case of multiple allelomorphism or very close linkage is described.

2. As compared with *Drosophila*, interference is definitely less marked, though it certainly occurs.

3. In two regions linkage is tighter on the male than on the female side, in two looser, while in two others it is nearly the same. Apart from this the figures are inadequate for a judgment.

4. In one chromosome the genetical data from the tetraploid permit the rough location of a spindle attachment.

5. The linkage values found in different families show a remarkable constancy.

6. New mathematical methods are given for dealing with goodness of fit, combination of linkage data, and allowance for double cross-overs when mapping.

REFERENCES.

ALTENBURG, E. (1916). "Linkage in Primula sinensis." Genetics, 1, 354.

- ANDERSON, F. G. and RHOADES, M. C. (1931). "The distribution of interforence in the X-chromosome of Drosophila." Pap. Mich. Acad. Sci. 13, 227.
- BRIDGES, C. B. and MORGAN, T. H. (1923). "The third chromosome group of mutant characters in *Drosophila melanogaster*," *Publ. Carneg. Inst.* No. 327.
- BRIEGER, F. (1930). Selbststerilität und Kreuzungssterilität. Berlin: Springer.
- CASTLE, W. E. (1933). "The linkage relations of yellow fat in rabbits." Proc. Nat. Ac. Sci. 19, 947-50.
- COLLINS, G. N. and KEMPTON, J. H. (1927). "Variability in the linkage of two seed characters of maize." U.S. Depart. of Agric. Bull. 1468, 1-64.
- DE WINTON, D. and HALDANE, J. B. S. (1931). "Linkage in the tetraploid Primula sinensis." J. Genet. 24, 121.

----- (1933). "The genetics of *Primula sinensis*. II. Segregation and interaction of factors in the diploid." *Ibid.* 27, 1-44.

- ERNST, A. (1933). "Weitere Untersuchungen zur Phänanalyse, zum Fertilitätsproblem, und zur Genetik heterostyler Primeln. I. Primula viscosa All." Arch. Klaus-Stift. VererbForsch. 8, 1.
- FISHER, R. A. (1925). Statistical methods for research workers. Edinburgh: Oliver and Boyd.
- FISUER, R. A. and BALMUKAND, B. (1928). "The estimation of linkage from the offspring of selfed heterozygotes." J. Genet. 20, 79.
- GOWEN, J. W. (1919). "A biometrical study of crossing-over." Genetics, 4, 205.
- GREGORY, R. P., DE WINTON, D. and BATESON, W. (1923). "Genetics of Primula sinensis." J. Genet. 13, 219.
- HAAN, H. DE (1930). "Contributions to the genetics of Pisum." Genetica, 12, 321.
- HALDANE, J. B. S. (1919 a). "The probable errors of calculated linkage values, and the most accurate method of determining gametic and zygotic series." J. Genet. 8, 291.
- ----- (1919 b). "The combination of linkage values, and the calculation of distances between the loci of linked factors." *Ibid.* 8, 299.
- ---- (1930). "Theoretical genetics of autopolyploids." Ibid. 22, 359.
- (1933). "Two new allelomorphs for heterostylism in Primula." Amer. Nat.
 67, 559.
- IKENO, S. (1929). "Studien über die Vererbung der Blütenfarbe bei Portulaca grandiflora. III. Mitteilung. Mosaikfarbe." Jap. J. Bot. 4, 189.
- LANDAUER, W. (1932). "Studies on the creeper fowl. The linkage of the genes for creeper and single-comb." J. Genet. 26, 285.
- MATHER, K. (1935). "Reductional and equational separation of the chromosomes in bivalents and multivalents." *Ibid.* **30**, 53.
- MORGAN, T. H. and BRIDGES, C. B. (1916). "Sex-linked inheritance in *Drosophila*." *Publ. Carneg. Inst.* No. 237.

MULLER, H. J. (1914). "A new mode of segregation in Gregory's tetraploid Primulas." Amer. Nat. 48, 508.

- PEARSON, K. (1900). "On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can reasonably be supposed to have arisen from random sampling." *Phil. Mag.* 50, 157.
- PUNNETT, R. C. (1932). "Further studies of linkage in the sweet pea." J. Genet. 26, 97.

STADLER, L. J. (1926). "The variability of crossing-over in maize." Genetics, **11**, 1. STERN, C. (1930). "Multiple Allelie." Handb. Vererbungsw. **1**.

---- (1933). "Faktorenkoppelung und Faktorenaustausch." Ibid. 1.

- WHELDALE, M. (1909). "Further observations upon the inheritance of flower colour in Antirrhinum majus." Rep. Evolut. Comm. roy. Soc. 5, 61.
- WILSON, E. B. and HILFERTY, M. M. (1931). "The distribution of Chi-square." Proc. nat. Acad. Sci., Wash., 17, 684.