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INTRODUCTION.

Tars paper is concerned with the evolutionary processes in populations
in which the selective values of different grades of a character depend on
the (squared) deviations of the latter, from an optimum. It is assumed
that the effects of different genes on the character combine additively
(no epistasis). The cases of no dominance and of complete dominance in
these primary effects will be treated in succession. A preceding paper
(1934) dealt with the analysis of variability and the correlations between
relatives with respect to squarved deviations from the optimum. The
same symbols will be used here. Equation numbers from the preceding
paper will be referred to in square brackets.

CASE OF NO DOMINANCE ON PRIMARY SCALE.

The naturve of the evolutionary processes under the conditions
described may be visualised by treating the population at a given moment
as located at a point in a multidimensional space defined by the set of
gene frequencies {¢,, ... ¢,) pertaining to the plus members (4, ... 4,) of
gene pairs affecting the character (of. Haldane, 1931). Ozrdinates are to
be erected measuring the average adaptive value (H) of the character.
The signs of H and y, (net effect of substitution of 4, for ¢; on adaptive
value in the population in question) are taken so as to make the high
points correspond to optimal values. The effect of substitution of 4, for
a; on the premary character is represented by e;. The position of the
optimum on this primary scale is represented by O and that of the mean
by M (=2Zeg): _
H= 2% (1—¢)~(M~-0)?, ... (1) (=[16])
yimo[a(2—1) —2M = 0)]. ... (2) (=[19])
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The rate at which the mean of a character changes in relation to
changes in the frequency (g;) of one of the genes must equal twice the net
effect of a single gene substitution:

oH
@,—.:2%. ...... (3) (=[18])

i

The rate of change of gene frequency per generation in the case of no
dominance is well known to be Ag=sg (1—¢), where s measures the
selective disadvantage of one allelomorph (Fisher, 1922). In the general
case, the selective disadvantage must be proportional to the momentary
net effect of gene replacement on adaptive value:

Agi=sy,qi(l—q). .. (4)

The rate of change of the mean adaptive level of the population per

generation can be written

AH= %

oH
1 9q;
The right-hand member of this equation is proportional to the general
formula for the portion of the variance of I which can be attributed to
additive gene effects [20].

Ag;=2s2y% (1—¢). ... (5)

AH=sog2 ... (6)

This principle was arrived at in a different way by Fisher (1930). He
enunciated it as the “fundamental theorem of natural selection.” “The
rate of increase in fitness of an organism at any time is equal to its genetic?
variance at that time.”

I have criticised this application of it on the ground that it measures
merely the lendency toward increase in fitness due to selection, Other
evolutionary factors such as recurrent mutation, immigration and the
effects of sampling in populations of limited size must also be considered.
There must ordinarily be an approximate balancing of these first order
pressures so that evolutionary change is a second order resultant (Wright,
1930).

From the formula as given, AH cannot be negative as is of course to
be expected. In the absence of other factors, evolutionary change ceases
whenever A/ =0. This occurs at any point at which each ¢ has one of
the three values 0, 1 or such a value that y=0.

Consider first the case in which there is complete homozygosis (all
¢’s either 0 or 1). Whether there is stability in the face of low rates of
mutation or immigration depends on the gradient. If ¢; =0 and %[; >0,

1

1 Fisher explicitly includes in “genetic variance” only that portion of the variance
which can be attributed to additive gene effects.
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the homozygote @, is unstable, since H increases with mutation of « to

A. Similarly if ¢, =1 and oH <0, 4,4, 1s unstable. These conditions for

g4
instability may be written as follows from (3) and (2):
(M~0)<——%1, (n=0) ... (1)
(M —0) >%1. (=1 . (8)

Thus if the mean of the character is below the optimura by more than
half the effect of a gene which is fixed in the minus phage, this fixation is
unstable, or it the mean is above the optimum by more than half the
effect of a fixed plus factor, minus mutations will tend to accumulate.
Since the effect of replacing a,a, by 4,4, is to increase the mean by
a;, it is possible for both homogenic populations to be unstable. There is
M-0
1
The condition when the population is heterogenic in more than one
respect requires further consideration. The condition that the s for all
unfixed genes be zero is that for each of them
7
qlz%’l‘]‘_[c/ 0. ...... (9)
1
Thus all of the ¢’s (frequencies of plus genes) must be less than §, all
equal to % (mean and optimum coincide at the mid-point of the scale
where M =Xa), or all greater than 4. Those with the same effect (o) must
have the same gene frequency at equilibrivm. The limiting case for small

stable equilibrium at the point ¢, = ¥ + if all other genes are fixed.

values of all ¢’s, all «’s the same, occurs with the optimum at % The other

limiting case (all ¢’s close to 1) occurs with the optimum at 2na »~g. Thus

no equilibriam of 2 or more unfixed factors is possible unless the optimum
is more than half a gene effect within the limits of variation. With un-
equal gene effects, the possible range of location of the optimum is less.

As to the stability of these equilibria, consider the way in which the
y's vary:

Ov;
a—zllj=~4r/.iaj, ...... (10)
unless ¢=7, when % = — 20,2,
yi= % Oyi Sq;=20; [0, 80, —SM). ... (11)

j=10;
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The expression 83 (=2Xadq) is the deviation of the mean of the
character from its value at equilibrium, brought about by the deviations
of the ¢’s from their values at equilibrium. If all 3y’s are opposite in sign
to the corresponding 8¢’s (as is obviously the case when all 8¢’s are of the
same sign) all ¢’s tend to return to equilibrium. If, on the other hand, all
8y’s are of the same sign as the corresponding 8¢’s (as is obviously the
case when the signs of the 8¢’s are so balanced that there is no change of
mean (83 =0)), all ¢’s tend to depart farther from equilibrium. In inter-
mediate cases, some ¢’s may go toward equilibrium, others go farther
away. Clearly there can be no stable equilibrium (under selection alone)
when move than one factor is unfixed. The points at which A =0 and
more than one gene is unfixed ave of the nature of saddles in our multi-
dimensional space.

With » factors affecting the character, there may be any number from
1 to (7@;—1257‘3 “peaks,” stable to small displacements, relative to adaptive
value H. As shown above, there is either fixation of all loci or of all but
one, at each peak. The number of such peaks depends on the position of
the optimum and the relative magnitudes of the gene effects.

‘While the number of peaks is in general large (if » is large), the total
number of stationary points (AH =0) is much larger. These are of the
two sorts alveady discussed. All of the 27 points at which all genes are
fixed, minus those which ave peaks, are stable only in the absence of
mutation or immigration. In addition are the usually numerous 2 to
n-dimensional “saddles.”

For further discussion it will be convenient to restrict attention o the
case in which all genes have the same effect on the character.

This gives the simplification that at stationary points all unfixed genes
have the same value of q. Assume that at a stationary point (AH =0)
there ave 1, genes in which the plus phase is fixed (g=1), ny in which the
minus phase is fixed (¢==0) and =, which are unfixed (g=g¢,). Let
O =ko be the optimum.

1
_k—2n,—3

e (12)

Ga

from (9).
There is, of course, a stationary point only if the values of 1y, n, and n,
are such that g, falls between 0 and 1. The number of combinations with

7
the same values of %y, , and n, is |7—7|77]:|"; . All of these are stationary
At
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points with the same adaptive value, if any one is. The adaptive value H
reduces to the following expression:

— 2
He=— [712& — (M —0)? (2%»1)1, ...... (13)
b—om—ng

The points which are stationary merely because all factors are fixed
(n,=0) have, of course, the mean adaptive value

H=—(M~0)2= —(k—2ny)2c2
This may range from 0 to very large negative values. On the other hand,

a stationary population with even a large number of unfixed factors is
not handicapped very much if its mean is at the optimum. In this case,

__“__7_7'3;2
H= 5 *

For example, with » factors with unit effects and optimum at the
mid-point of the range (k=n), the adaptive values of completely fixed
combinations may be ag low as —=? while a population in which no

factors ave fixed, all values of ¢ being £, would have a value of H onlyg

points below that of the optimal fixed combination. This is the greatest
depression for any “saddle,” since the term (M —0)* (2n,—1) is neces-
sarily positive for all values of 1, except 0. Thus the population can pass

from one peak to any other of the “peaks” without crossing any

7
(n2)?
but very shallow valleys.

COMPLETE DOMINANCE.

It is important to compare the preceding results with those found
where there is complete dominance of gene effects on the primary
character. Using p, for the frequency of a recessive gene and «; for the
effect of the corresponding dominant gene (whether plus or minus), the
mean adaptive value H of the population and y, the momentary net effect
on adaptive value of replacing a, by 4, are as follows:

He= 2?2 (l—p)—(M-0), ... (14) [=69]
where M =2 (1—p?),
yi=—ople@2p2-1)+2(M-0)]. ... (15) [=T0]

As before (equation b), AH =0 if each p,is 0, 1 or such a value that
y;=0. In this case if p;=0,y,;=0. There is instability of a fixed dominant
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(p;=0) in the face of occasional mutation if y; <0, which occurs if the
mean exceeds the optimum by more than balf the effect of a dominant
plus gene or ig below the optimum by more than halt the effect of a
dominant minus gene, The value of v, is of course exceedingly small in
either case.

If p;=1 (fixation of recessive), dominant mutations will tend to

accumulate if ¢, > 0. This occurs if (M —0)< ~%  where the mutation

2
hag a plus effect, and if (M —0)> %@ if e; i negative.

As the effect of veplacing a,a, by 4,4, is to change the mean by «,,
one or the other homogenic population must be stable against rare
mutations. It is, however, possible for H to remain unchanged for all
frequencies of one gene.

The condition that the s for all unfixed gene pairs be zero is that for
each of them

M-0
iR (16)

But as M=o (1 —p?), p,* drops out. Thus the value of the character
H at any of these equilibrium points remains unchanged by change in any
one of the gene frequencies. But change of any one at such a point will
change the s of all others. Thus these points are all of the nature of
“saddles.” This agrees with conclusions of Fisher (1930) and of Haldane
(1932) reached by different methods.

The condition for such a saddle is analogous to that in the case of no
dominance. The range of variation of the primary character possible with
a given set of equally effective unfixed factors, for n, of which the plus
phase is dominant (effect o) and for m, of which the minus phase is
dominant {effect —a), is from —m, e to nye. The optimum must fall more
than half a gene effect within these limits.

The nature of the “surface” of adaptive values (H) is similar in many
respects to that in the case of no dominance. Again assuming that the
effects of all gene differences are the same in magnitude, but assuming that
in » pairs the dominant has a plus effect while in m it has a minus effect,
we may distinguish the following classes:

a9
R

po=

DOJpst

Dominant plus genes Dominant minus genes
. ‘ * \.
P No. loci P No. loci
0 g 0 Ny
1 Ty 1 My

L M-0 ) A\/1 I-0
T Ty fole s " by,
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The number of combinations with the same set of 6 numbers is

i [m
72 g [, |10 g "

All of these are stationary points if p, and p, for unfixed factors fall
between 0 and 1. Assuming that the optimum is at ke, we have

...... (17)

Py 10y — Mg — b — %
Ny by, — 1

_ - Y 2
H=— L(LLJ'”_)L — (M —0)2 (ny+m, — 1)}. ...... (19)

2

Do =

, pr=1l-pt (18)

Tor completely homogenic populations this, of course, reduces to
— (M — 0)? which may be a very large negative number. For “saddles”

(0 + ) o
4

with mean at the optimum it reduces to — which is relatively

small. Again we find that all peaks are connected by shallow saddles.

NATURE OF EVOLUTIONARY PROCESS.

If evolution were controlled only by selection, the locus of a popula-
tion characterised by any given set of gene frequencies would move up the
steepest gradient in the feld, each gene frequency changing at the rate
Ag (=syq (1—¢q)) and the mean adaptive value rising at the rate
AH (=s2y?q (1 —q)=s0,?) per generation. This process, supplemented
by the occurrence of wholly new mutations favourable from the first is
that which has been investigated chiefly by Haldane in 1924 and later,
and by Fisher (1930).

Having reached a “peak” at the optimum grade of the character in
question such evolutionary change must cease until conditions change.
Any new mutation must necessarily cause a shift from the optimum and
therefore he injurious at its first appearance as Fisher (1930) has pointed
out. Of course if the optimum is beyond the current limits of variation,
there is the possibility of slow advance through utilisation of new muta-
tions (each with chance of reaching fixation of 2s (Fisher, 1930)). But the
process ceases with attainment of the optimum grade in all respects.

Indeed it may appear that there is no possibility of further advance
by any mechanism. We have seen that with an intermediate optimum
there is in general a very large number of separate peaks separated by
shallow “saddles.” But all of these peaks must be at the same or very
nearly the same level, and even if the locus of the population could by
some means be moved across a saddle to a new peak it would mean no
advance.
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The subject presents a somewhat different aspect when we recall that
genes in general have multiple effects. The system of peaks relative to
one character is not independent of that relative to another. Moreover,
it is the harmonious adjustment of all characteristics of the organism as a
whole that is the object of selection, not the separate metrical “ characters.”
Tt is estimated that there are many thousands of genes at least in higher
organisms (about 15,000 in Drosophila melanogasier, according to Gowen
and Gay), and each of these is probably capable of mutating through
indefinitely extended series of multiple allelomorphs. No limit can be set
o the number of possible combinations, and it seems safe to postulate an
inconceivably great number of “peaks,” many of them characterised by
different harmonious combinations of characters (although many also for
the same character). These may be at all levels and of all orders of
dominance and subordination in relation to each other. It hag seemed to
me (1929 et seq.) that the central problem of evolution (as of live stock
improvement (Wright, 1920, 1922)) is that of a trial and error mechanism
by which the locus of a population may be carried aeross a saddle from one
peak to another and perhaps higher one. This view contrasts with the
conception of steady progress under natural selection developed in most
extreme form by Fisher (1930). Haldane has taken to some extent an
intermediate position. He notes (1931) that almost every species is to a
first approximation in genetic equilibrium, and after treating mathe-
matically the two-factor case of “metastable equilibrium” he suggests
that in many cases ‘“the process of species formation may be a rupture of
the metastable equilibrium.” The mathematical analysis in the present
paper deals with a case in which there may be innumerable separate peaks
though all at approximately the same level. It may be looked upon as a
simplified model of the complex case in which adaptation of the organism
as & whole replaces that of a single metrical character. Consideration of
the means by which the locus of a population may be carried across a
saddle may be of interest from this standpoint.

The rate of mutation of particular type genes has been found to be of
the order of 10-% or 10-® per generation in Drosophtla (Muller, 1928) and
gorn (Stadler, 1930). This is enough to prevent complete fixation of any
genes in large populations. There may be special cases in which mutation
pressure drives the locus of a population from one peak to another against
the pressure of selection. In general, however, mutation pressure seems
to be so low compared with selection pressure that the population would
merely be held at a point a little below a particular peak. In the case of
no dominance this point is approximately at the array of values typified
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U 1o o that of : 3 :
s [43] and in that of dominance by 5,=, S (where w, is
the rate of mutation of gene 4,).

If the population is not indefinitely large, the accidents of sampling
will cause independent fluctuations about this point of equilibrium in all
of the gene frequencies. Bach of these distributions is I-shaped if 4Nu
and 4Ns ave large (N effective size of breeding population) but J or U-
shaped if 4Nw and 4Ns are less than 1 (Wright, 1931). While the rate of
change per generation of gene frequency due to accidents of sampling is
low (causing fixation abt the rate of 1/2N per generation in the absence of
gelection and mutation)itis possible that in the course of time it may carry
the system of gene frequencies across a shallow saddle to a new peak.

The effectiveness of this mechanism is enormously increased if the
population is subdivided into many local groups which breed largely
within themselves, The distribution of gene frequencies under random
sampling is here determined by the relation between effective size of the
local group and the cross breeding index. The rate of random drift of each
gene frequency may be relatively rapid per generation. The shallow
saddles would be crossed so easily that no local group would be expected
to stay long at the same peak and no two sufficiently isolated local groups
would occupy the same peak at a given time. As far as the metrical
character in question is concerned there wounld be no appreciable changes.
The average in all local groups would remain very close to the optimum
even when the locus is crossing a saddle. But there would be a kaleido-
scopic shifting among other characters, affected by the same genes, and at
the time subject only to selection of second order importance. At any time
combinations might be reached by chance, in particular local groups, with
effects of the first ovder of importance, leading to expansion of such groups
(intergroupselection). Thisprocessshould be of much greater evolutionary
significance if considered with respect to total adaptive value of the
organism, instead of approach of a particular character to an optimum.

So far we have assumed that conditions arve constant. A drastic
change of conditions, resulting in a drastic shift in the position of the
optimum, would be followed by steady evolutionary change of the type
described by Haldane and Fisher until the lost ground is regained and the
mean again coincides with the optimum. But minor changes of conditions,
shifting the position of the optimum back and forth by no more than the
effect of a single gene, will have evolutionary consequences of a different
sort. With such a shift of the optimum, the old peak will be depressed and
there will axrise in general a large number of new peaks immediately about

by ¢;=1-—
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it. To which of these the population moves will depend on the preceding
accidents of sampling. If now the optimum shifts back to its original
position, it will be very unlikely that the population will move back to
the original peak. Thus frivial oscillations in conditions will be enough to
carry the population to any peak in the system with similar consequences
for other characters to those suggested above. Again the process will be
enormously speeded up if there is local inbreeding and there are slight
local differences in conditions.

The combination of the effects of inbreeding and of varying local
conditions of selection provide a mechanism for the indefinitely continued
process of trial and error among local populations with respect to gene
combinations which is probably necessary for progressive evolution.
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