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1. Introduction

One response of activated platelets to certain stimuli is
shedding of microparticles. Microparticles released from
platelets (PMPs) may play a role in the normal hemostatic
responses to vascular injury because they demonstrate pro-
thrombinase activity [1]. It is also possible that local genera-
tion of microparticles in small atherosclerotic arteries or
arterioles promotes acute arterial occlusion by providing and
propagating catalytic surfaces for the coagulation cascade.

PMPs carry several antigens characteristic of intact
platelets, chiefly glycoproteins (GP) IIb/IIIa (�IIb�3) and
GPIb/IX. PMPs cannot be detected by standard platelet
counting methods but they can be detected by other means.
PMPs were first described by Wolf [2], and Warren et al [3]
demonstrated the release of vesicles from platelets following
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the adhesion of platelets to vessel walls. Platelet-derived pro-
coagulant activity was previously called platelet factor 3
(PF3) [4]. The discovery of PMPs answered some questions
concerning PF3. Extensive studies of PMPs were made pos-
sible by flow cytometry, which is now the most widely used
method for studying PMPs because of its simplicity and the
wealth of information it provides about the population under
study [5-7]. Despite many interesting findings, the signifi-
cance of PMPs in various clinical conditions remains contro-
versial.

Pathologic levels of fluid shear stress may occur in small
arteries or arterioles partially obstructed by atherosclero-
sis or vasospasm and may induce activation and aggrega-
tion of circulating platelets [8-11]. This type of platelet
aggregation may play a crucial role in thrombogenesis in
various pathological states [9,10,12]. High shear stress can
initiate both platelet aggregation and shedding of procoag-
ulant-containing microparticles [13,14], suggesting the pos-
sibility that microparticles are generated by high shear
stress in small diseased arteries and arterioles.

We present here a literature review regarding PMPs,
including the growing list of clinical disorders associated with
elevated PMP levels.
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2. PMP Composition

PMPs can range in size from 0.02 �m to 0.1 �m, and
they have no clear definition. It is unclear whether PMPs
arise from complete conversion of a few platelets or from
partial conversion of many or most platelets, but it is likely
that either scenario occurs. There is a growing body of evi-
dence that platelets comprise a heterogeneous population
that is not attributable solely to senescence [15-17].
George et al [18] quantified many different GPs on PMPs
and many are present routinely, notably �IIb�3 and GPIb/
IX. Sims et al [19] characterized PMPs and reported the
presence of �IIb�3, GPIb/IX, and �-granule membrane
protein-140 (P-selectin or CD62P). In addition, an activa-
tion-dependent epitope of �IIb�3 was found on comple-
ment-activated platelets but not on PMPs [20]. Other
researchers have also reported differences in the composi-
tion of membrane proteins between activated platelets
and PMPs [20-22].

Gemmel et al [23] reported that at least 1 of the �IIb�3
adhesion ligands is involved in the mechanism of PMP gen-
eration. However, this finding is controversial [24,25]. PMPs
contain molecules in addition to GPs, such as platelet-
activating factor (PAF)[26], �-amyloid precursor protein
[27], Ca2+-dependent protease calpain [28,29], and many
phospholipids [30-32], which are particularly important
because they are related to the function of PMPs.

3. Mechanism of PMP Production

3.1. Production of PMP by Complement Components

Release of PMPs follows activation of platelets by strong
agonists such as thrombin and collagen or by an increase in
the intracellular calcium concentration induced by comple-
ment components C5b-9, calcium ionophores, or high shear
stress [1,13,14,32]. Thus, PMP generation is stimulated by
various agonists. Variations in the type of PMP produced by
these agents, even at concentrations considered saturating
with respect to aggregation, indicate that platelet activation
and PMP generation are not simply all-or-none phenomena
[33,34].

Sims et al [35] have extensively investigated platelet acti-
vation and associated PMP production caused by exposure
of platelets to purified complement components. They spec-
ulated that recovery of membrane potential may follow
shedding of PMPs carrying the C5b-9 pore (membrane
attack complex [MAC]), on the basis of the finding that
PMP from platelets exposed to MAC carried the majority of
available MACs [35]. This process was dependent on exter-
nal Ca2+, which presumably moved through MAC pores.
Wiedmer et al [36,37] investigated the roles of Ca2+ and cal-
pain in MAC-induced vesiculation and subsequently clari-
fied the role of protein kinases is this process. Cytoplasmic
Ca2+ levels were increased by MAC regardless of the pres-
ence of protein kinase or phosphatase. However, PMP for-
mation was reduced by kinase or calmodulin inhibitors, sug-
gesting the role of platelet myosin light chain kinase or
another Ca2+/calmodulin-regulated membrane component
in PMP generation.

3.2. Roles of the Cytoskeleton and Calpain in PMP
Production

The cytoskeleton in platelets is spectrin-rich and is closely
associated with �IIb�3. Platelets have a network of filaments
throughout their cytoplasm that exhibit distinct changes in
composition and structure following platelet activation or
aggregation [38,39]. Fox et al [40] presented evidence that
the membrane skeleton in resting platelets stabilizes
platelets against vesiculation and that shedding of micropar-
ticles is correlated with the extent of membrane skeleton dis-
ruption. These findings were extended by Basse et al [41]
who used calpeptin to inhibit calpain-mediated cytoskeleton
proteolysis. They found morphological differences in the
filopods of activated platelets in the presence or absence of
calpeptin following activation with A23187, a calcium
ionophore, and they concluded that PMPs resulted from
fragmentation of such filopods (pseudopods). Yano et al [42]
concluded that PMPs are formed by fracture of budding
pseudopods upon activation and noted that cytochalasin D
nearly eliminated the PMP fraction. They also investigated
the effects of protein phosphatase inhibitors (calyculin A and
okadaic acid) on PMP formation. In the presence of phos-
phatase inhibitors, the number of PMPs arising from A23187
activation doubled, further supporting a key role for
cytoskeleton dynamics in PMP formation. Pasquet et al [43]
recently reported that PMP formation after A23187 adminis-
tration is associated with activation of �-calpain, increased
protein tyrosine phosphatase activity, and decreased tyrosine
phosphorylation.

3.3. PMP Generated by Shear Stress

Miyazaki et al [13] examined the mechanisms involved in
PMP production induced by high shear stress and showed
that binding of von Willebrand factor to GPIb, influx of
extracellular calcium, and activation of platelet calpain were
required to generate PMPs under conditions of high shear
stress.Activation of protein kinase C (PKC) promoted shear-
dependent PMP formation. Iwamoto et al [26] investigated
the mechanism of release of platelet activating factor (PAF)
from platelets and found that it is released from activated
platelets in conjunction with the formation of PMPs. In addi-
tion, they found that PAF is concentrated in PMPs released
from platelets activated by high shear stress [44]. Chow et al
[45] suggested that thrombin formed in the vicinity of pri-
mary hemostatic plugs in areas of elevated shear stress plays
a major role in the propagation of thrombi by potentiating
shear-induced platelet microvesiculation.

4. Functions of PMPs

4.1. Procoagulant Effects of PMPs

PMPs were initially thought to be related to disease
because they express phospholipids, which are procoagu-
lants. The outer membrane leaflet of platelets is rich in
choline phospholipids (sphingomyelin and phosphatidyl-
choline), which do not support coagulation, whereas the
inner leaflet is rich in amino phospholipids (phosphatidyl-
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ethanolamine and phosphatidylserine), which are more neg-
ative (anionic) at physiologic pH. Zwaal et al [46,47] showed
that a key event in platelet activation is translocation of
anionic phospholipids from the inner leaflet, especially phos-
phatidylserine, to the outer leaflet, where their exposure pro-
motes cell-to-cell interactions and supports coagulation in
the presence of calcium. The PMPs shed during activation
are also enriched in phosphatidylserine, which accounts for
the PF3 activity. It has been shown that collagen induces
external exposure of anionic phospholipids in the resulting
PMPs [31].

PMPs contain surface receptors for both factor VIII, a
cofactor in the tenase enzyme complex [48], and factor Va,
which combines with factor Xa to form the prothrombinase
complex [49]. Whereas transient factor VIII binding to
platelets has been reported, stable expression of factor VIII
and factor Va has been reported for PMPs [48]. High- and
low-affinity binding sites for activated factor IX are also
present on PMPs [50]. These findings suggest that PMPs can
exert procoagulant effects distant from the site of platelet
activation and for a period longer than that for activated
platelets.

4.2. Anticoagulant Roles of PMP

It was argued by Tans et al [51] that some PMP species
may inhibit coagulation by accelerating inactivation of factor
Va by activated protein C. Because PMPs are subject to the
same platelet stimulation reactions, PMPs possess both pro-
and anticoagulant properties. The relative distributions of
pro- and anticoagulant activities in platelets and PMPs are
similar. Furthermore, a recent study reported that protein C
inhibitor, a member of the serpin family selected from acti-
vated platelets, binds preferentially to the phosphatidyletha-
nolamine in platelet membranes and PMPs and efficiently
inhibits phospholipid-bound activated protein C [52]. PMPs
do not always display procoagulant phospholipids, possibly
due to an incomplete flip-flop of phospholipids between the
membrane leaflets or to scramblase activity. These observa-
tions underscore the heterogeneity of PMPs. The density of
aminophospholipids has also been shown to be greater on
PMPs than on remnant platelets [53,54].

4.3. PMPs Influence Endothelial and Monocyte
Functions

It is now understood that platelets and neutrophils are
intimately involved in coagulation, inflammation, and hemo-
stasis, either directly through cell-to-cell contact (adhesion)
or indirectly via cytokines or tissue factors [55-58]. Recently,
the possibility that PMPs evoke cellular responses in the
microenvironments where they are formed has been sug-
gested [59,60]. Bary et al [60] reported that PMP may acti-
vate platelets, monocytes, and endothelial cells and that
PMPs, which are known to increase in number during inflam-
mation, may facilitate adhesive interactions between mono-
cytes and endothelial cells [59,60]. PMPs, generated via acti-
vation of human platelets by thrombin or A23187 in the
presence of the cyclooxygenase (COX) inhibitor indometh-
acin, dose-dependently increase platelet aggregation, intra-

cellular movement of Ca2+ in platelets and monocytes, and
inositol phosphate (IP) formation [59]. Thus, PMPs evoke
biological responses irrespective of the COX activity of their
precursors. PMPs also demonstrate transcellular delivery of
unmetabolized arachidonic acid, and PMP activation of
human vascular endothelial cells (HUVECs) and U-937 cells
induces de novo expression of COX-2 but not COX-1
[59,61].

4.4. PMP in Cell-to-Cell Interactions

Studies with pharmacological inhibitors suggest that
PMP-induced HUVEC activation is not mediated via acti-
vation of thromboxane, platelet-activating factor, or
�-adrenergic receptors [59]. The concentrated delivery of
PMP bioactive lipids may modulate multicellular interac-
tions that occur in the early stages of atherogenesis. The
significance of platelet activation in atherogenesis is unclear.
Because circulating PMPs have been reported in human
platelet activation and inflammation syndromes [28,62], the
role of PMPs in modulating interactions between monocytes
and endothelial cells have been investigated. Recently, MPs
of monocytic and lymphocytic origin have been shown to be
present in atherosclerotic plaques but not in the underlying
arterial walls [63]. In addition, Combes et al [64] reported
that MPs formed after induction of tumor necrosis factor
may participate in the dissemination of proadhesive and
procoagulant activities in thrombotic disorders. A role of
PMPs in atherosclerosis has also been suggested. PMPs can
alter adhesive interactions among endothelial cells, mono-
cytes, and monocytoid cells. Barry et al [60] reported that
PMP stimulation of HUVECs increased levels of intracellu-
lar adhesion molecule-1 (ICAM-1), and stimulation of
monocyte and U-937 cells increased expression of lympho-
cyte function-associated antigen-1 (CD11a/CD18), macro-
phage antigen-1 (CD11b/CD18), and CD14. Nomura et al
[65] also reported that PMPs induced by high shear stress
enhance expression of cell adhesion molecules by THP-1
and endothelial cells. They noted that these PMPs may con-
tribute to the development of adhesion and participate in
the vascular damage observed in inflammatory disorders.
Forlow et al [66] reported that P-selectin–expressing PMPs
bind to leukocytes that express P-selectin glycoprotein
ligand-1 (PSGL-1), suggesting that PMPs may enhance
leukocyte aggregation and leukocyte accumulation on sub-
strates that express selectin, especially in diseases in which
the number of PMPs is increased.

4.5. PMPs Activate Platelets, Monocytes, and
Endothelial Cells Through a Mitogen-Activated
Protein Kinase–Dependent Pathway

The interaction and functional cross-talk between leuko-
cytes and endothelial cells is essential for vascular homeosta-
sis [67]. Most MPs appear to induce endothelial cell activa-
tion [65,68,69]. The signaling pathway involved in
PMP-induced cellular activation has been studied by Barry
et al [59-61]. Both PMPs and arachidonic acid from PMPs
induce platelet activation in a PKC-dependent, PKA-
independent manner [59]. A role of PKC in both PMP- and
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Figure 1. Mechanism of vascular changes by platelet-derived microparticles (PMPs). PMPs activate monocytes by a reaction between P-selectin and
PSGL-1 (P-selectin glycoprotein ligand-1). Activated monocytes induce expression on the cell surface of tissue factor (TF) and CD11b. Activated
monocytes also induce release of monocyte-derived microparticles (MMP). PMPs induce COX-2 production in endothelial cells. PMPs enhance
expression of CD54 (ICAM-1) on the endothelial surface. Activated endothelial cells also induce release of endothelial cell–derived microparticles
(EMP), enhancing adhesion between endothelial cells and monocytes. Finally, monocytes induce migration of endothelial cells, resulting in vascular
changes. AA indicates arachidonic acid; PKC, protein kinase C; MAPK, mitogen-activated protein kinase.

arachidonic acid from PMP–induced cell-to-cell adhesion
and chemotaxis has been suggested [60]. Similarly, PMPs and
arachidonic acid from PMPs induce monocyte COX-2
expression in a PKC-dependent fashion [61]. PMP stimula-
tion of U-937 cells resulted in the translocation of PKC from
the cytosol to the cell membrane with concomitant activation
of downstream mitogen-activated protein (MAP) kinases
[61]. In particular, PMP induced activation of ERK1/2, JNK1,
and p38 kinase in U-937 cells [61]. Although PKC activation
is required for PMP-induced activation of ERK1/2 MAPK,
activation of stress kinases, p38 kinase, and JNK1 is PKC-
independent. Furthermore, PMP-induced phosphorylation
of ERK1/2 MAPK, p38 kinase, and JNK1 is PI-3-kinase
dependent. PMP-induced activation of U-937 COX-2
expression is also dependent upon activation of ERK1/2, p38
kinase, and PI-3-kinase. PMPs also induce transcriptional
activation of COX-2 and transcription factors c-Jun and
Elk-1 but not cyclic AMP (adenosine monophosphate)
response element (CRE) [61]. The novel functions of PMPs
are summarized in Figure 1.

5. Clinical Significance of PMP

Many clinical disorders are associated with elevated
PMP levels (Table 1). However, the significance of PMPs
in various clinical conditions remains controversial.
Recently, assays for measurement of PMPs have improved
[69-71] and their clinical significance is gradually being
clarified.

5.1. Scott Syndrome

Scott syndrome, a rare bleeding disorder, was first
described in 1979 [72]. It was reported in 1989 that platelets
from patients with Scott syndrome were “markedly impaired
in their ability to generate PMPs in response to all platelet
activators, and this is accompanied by a comparable decrease
in the number and function of inducible factor Va receptors”
[1]. Scott syndrome was reviewed by Weiss in 1994 [73], and
it was reported in 1996 that Scott syndrome “appears to be
transmitted as an autosomal recessive trait reflecting the
deletion or mutation of a putative phosphatidylserine

Table 1.
Clinical Disorders Associated With Elevated PMP Levels

Immune thrombocytopenic purpura (ITP)
Thrombotic thrombocytopenic purpura (TTP)
Heparin-induced thrombocytopenia (HIT)
Drug-induced thrombocytopenia
Transient ischemic attack (TIA)
Multiple sclerosis (MS)
Alzheimer disease (AZ)
Acute coronary syndrome (ACS)
Cardiopulmonary bypass
Scott syndrome
Diabetes mellitus
Uremia
Antiphospholipid antibody syndrome (APS)
Systemic lupus erythematosus (SLE)
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translocase” [74,75]. Further studies found that this translo-
case (scramblase) is present but inactive in persons with
Scott syndrome [76].

5.2. Immune Thrombocytopenic Purpura

The presence of PMPs in a clinical disorder was first
described for immune thrombocytopenic purpura (ITP)
[77,78]. In 1992 it was reported that patients with ITP have
significantly elevated levels of PMPs as measured by flow
cytometry [6]. Of greater interest, the same study showed
that ITP patients who had thrombocytopenia but were
asymptomatic had approximately twice the level of PMPs
found in those patients with symptoms, suggesting that the
PMPs in ITP patients are functional and protect these
patients from thrombocytopenic bleeding [79,80]. Genera-
tion of PMPs was correlated with concentrations of anti-
platelet antibodies and was largely abolished by preheating
plasma to inactivate complement, indicating the involvement
of complement in antibody-mediated PMP generation [81-
83]. These findings suggested that at least some anti-platelet
antibodies can induce complement-mediated formation of
PMP and initiate platelet destruction.

5.3. Transient Ischemic Attacks

On the basis of having observed small-vessel transient
ischemic attacks (TIA) in patients with ITP and high PMP
levels, the same researchers performed PMP assays on non-
ITP patients with cerebrovascular accidents or other neuro-
logic disorders. Four groups of patients were studied: those
with large-vessel strokes, small-vessel strokes, multiinfarct
dementias, or Alzheimer disease. All patients except those
with Alzheimer disease had significantly elevated PMP levels
[84]. PMP levels were higher in patients with small-vessel
strokes (small-vessel TIA, lacunar infarcts) than in those
with large-vessel strokes [85]. It thus appears that elevated
PMP levels are associated with small-vessel thrombosis with
or without ITP. Elevated PMP levels are associated chiefly
with small-vessel occlusions, which manifest as small-vessel
TIA, mini-strokes, or progressive cognitive dysfunction and
lead to dementias. Nomura et al [27] reported that PMPs rich
in �-amyloid precursor proteins were strictly segregated
between healthy controls and patients with cerebral infarcts,
diabetes (P < .001), or uremia (P < .01).

5.4. Acute Coronary Syndrome

Platelets play a key role in arterial thrombosis and acute
coronary syndrome (ACS) [86-88]. Katopodis et al [89] eval-
uated platelet calcium homeostasis and activation markers in
2 groups of patients undergoing coronary angiography for
suspected ACS: those with recent myocardial infarction and
those with unstable angina, and a control group. PMP levels
were significantly higher in ACS patients than in control sub-
jects. Direct percutaneous transluminal coronary angioplasty
(PTCA) is more effective than thrombolysis in restoring
patency and preventing reocclusion of infarct-related arter-
ies [90]. Gawaz et al [91] examined various aspects of platelet
function in patients with acute myocardial infarction under-

going direct PTCA.They concluded that platelet activation is
significantly enhanced soon after direct PTCA as reflected
by increased platelet consumption and PMP formation.
There is some evidence that PMPs participate in atheroscle-
rosis and reccurrent stenosis [62,92-94]. Merten et al [93]
reported that PMPs bind to subendothelial matrices in vitro
and in vivo and can act as substrate for further platelet bind-
ing. This interaction may play a significant role in platelet
adhesion to sites of endothelial injury. Weber et al [94]
reported that PMPs might directly affect proliferation of vas-
cular smooth muscle cells.

5.5. Other Thrombotic Disorders

Kelton et al [28] found high calpain levels in the sera of
patients with active thrombotic thrombocytopenic purpura
(TTP) and that this activity was found on PMPs.This was not
observed after patient recovery. More recently, Galli et al
[95] performed a careful study of PMPs in TTP and found a
rise and fall in PMP levels with the course of disease, sug-
gesting that PMPs may be clinically relevant.

Anti-heparin antibodies in heparin-induced thrombocy-
topenia (HIT) are potent activators of platelets and cause
copious shedding of procoagulant PMPs [96], indicating that
PMPs cause the thrombotic complications in HIT-with-
thrombosis and that they might serve as a diagnostic crite-
rion for it [97]. Recently, Hughes et al [98] conducted a mor-
phological analysis of PMPs to document the presence of
PMPs in HIT.

Patients with diabetes mellitus develop hypercoagulabil-
ity and platelet hyperaggregation; premature atherosclerosis
also occurs with this disease [99].A few studies on the poten-
tial role of PMPs in diabetic complications can been reported
[7,27,62,100-103].

Some patients undergoing cardiopulmonary bypass
(CPB) surgery experience neurological complications mani-
festing as mild cognitive and somatic changes [104]. George
et al [18] reported elevated PMP levels during CPB. They
reported a drop in expression of GPIb and -IIb on platelets
following CPB. In contrast, Nieuwland et al [105] demon-
strated that PMPs generated in vivo can stimulate coagula-
tion in CPB patients.

Elevated PMP levels have been detected in other clinical
conditions including uremia [106], infectious diseases
[107,108], peripheral blood stem cell harvest [109], collagen
diseases [110,111], and arteriosclerosis obliterans (ASO)
[112]. In addition, PMPs are used as indicators for antithrom-
botic therapy [113,114] or side effects of blood transfusion
[115].

6. Conclusion

We have summarized the literature to date relevant to
PMPs, including the growing list of clinical disorders associ-
ated with elevated PMP levels. PMPs were initially thought
to be small particles with procoagulant activity, however, the
possibility that PMPs evoke cellular responses in the imme-
diate microenvironments where they are formed is now
under investigation.
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